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Preface of the Editor

In this work the authors apply concepts of Neutrosophic Logic to the
General Theory of Relativity to obtain a generalisation of Einstein’s four-
dimensional pseudo-Riemannian differentiable manifold in terms of Sma-
randache Geometry (Smarandache manifolds), by which new classes of
relativistic particles and non-quantum teleportation are developed.

Fundamental features of Neutrosophic Logic are its denial of the Law
of Excluded Middle, and open (or estimated) levels of truth, falsity and
indeterminancy.

Both Neutrosophic Logic and Smarandache Geometry were invented
some years ago by one of the authors (F. Smarandache). The application of
these purely mathematical theories to General Relativity reveals hitherto
unknown possibilities for Einstein’s theory.

The issue of how closely the new theoretical possibilities account for
physical phenomena, and indeed the viability of the concept of a four-
dimensional space-time continuum itself as a fundamental model of Nature,
must of course be explored by experiment.

December 2005 Stephen J. Crothers



Chapter 1

PROBLEM STATEMENT. THE BASICS OF
NEUTROSOPHY

1.1 Problem statement

Neutrosophic method is a new method for scientific research.

This method is based on neutrosophy — “a theory developed by Flo-
rentin Smarandache in 1995 as a generalization of dialectics. Neutrosophy
considers every notion or idea <A> together with its opposite or negation
<Anti-A> and the spectrum of “neutralities” <Neut-A> (i.e. notions or
ideas located between the two extremes, supporting neither <A> nor
<Anti-A>). The <Neut-A> and <Anti-A> ideas together are referred
to as <NON-A>. The theory proves that every idea <A> tends to be
neutralized and balanced by <Anti-A> and <Non-A> ideas — as a state of
equilibrium”, (see the Afterword of Neutrosophic Dialogues by Smaran-
dache and Liu [1]).

“I coined the term “neutrosophy” in 1995 in my correspondence with
Charlie Le. Neutrosophy actually resulted from paradoxism (which I ini-
tiated in the 1980’s) from my effort to characterize a paradox, which did not
work in fuzzy logic or in intuitionistic fuzzy logic because of the restriction
that the sum of components had to be 1. Paradoxism is a literary and artistic
vanguard movement, as an anti-totalitarian protest, based on excessive
use of antitheses, antinomies, contradictions and paradoxes in creation. It
was later extended to the sciences, philosophy, psychology, etc. The first
thing published that mentioned neutrosophy, was my book: Neutrosophy.
Neutrosophic Probability, Set and Logic, Am. Res. Press, 1998” [2].

“I then introduced the notion of neutrosophy: Etymologically Neutro-
sophy (from Latin “neuter” — neutral, Greek “sophia” — skill/wisdom)
is a branch of philosophy which studies the origin, nature, and scope of
neutralities, as well as their interactions with different ideational spectra”
(4, 5, 6].

The main task of this study is to apply neutrosophic method to the
General Theory of Relativity, aiming to discover new hidden effects. Here
it’s why we decided to employ neutrosophic method in this field.

Einstein said that the meaning of the General Theory of Relativity is
that all properties of the world we observe are derived from the geometrical
structure of our space-time. All the other postulates and laws of both
the General Theory and its particular case, the Special Theory, may be
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considered as only consequences of the space-time geometry. This is a
way of geometrizing physics. All postulates — “outer” laws introduced
by Einstein before this thesis became historical; only geometry remained
under consideration.

Einstein made a four-dimensional pseudo-Riemannian space with the
signature (+—--) or (—+++) the basic space-time of the General Theory of
Relativity, reserving one dimension for time, while the other three were
used for three-dimensional space. Experiments, starting with Eddington
(1919) and until today, verify the main conclusions of the theory. It is
therefore supposed that a four-dimensional pseudo-Riemannian space is
the basic space-time of our world.

Of course, the theory does not explain all of today’s problems in physics
and astronomy (no theory can do that). For instance, when an experiment
shows a deviation from the theory, we need to expand the General Theory
of Relativity. But even in this case, we have to start this expansion from
this basic four-dimensional pseudo-Riemannian space.

One of the main properties of such spaces is the continuity property,
in contrast to discrete spaces. This property is derived from the fact
that Riemannian spaces, being a generalization of Euclidean geometry
spaces, are continued. So if we consider two infinitely closed points in
a Riemannian space, we can put infinitely many points in between them.
There are no omitted points, lines, surfaces or sub-spaces exist in Rie-
mannian spaces. As a result there are no omitted points in intersection of
lines, surfaces or sub-spaces in any Riemannian spaces. This phenomenon,
derived from pure geometry, is like numbering houses in crossed streets:
each corner-house has a double number, one number of which is related to
one street, the second number is related to the other. If a city is referred
to as a Riemannian space, no street intersection without its own double-
numbered corner-house exists in the city. As a result, considering such
an intersection, we see that the corner-house is labelled in two ways
simultaneously: “13 Sheep Street/21 Wolf Road”, for instance. So the
corner-house bears properties of both streets simultaneously, although each
of its neighbouring houses “11 Sheep Street” and “23 Wolf Road” bear the
property of only that street in which it is located.

Neutrosophic method “means to find common features to uncommon
entities: i.e., <A> intersected with <Non-A> is different from the empty
set, and even more: <A> intersected with <Anti-A> is different from the
empty set” [4]. Therefore, considering the property of space continuity as
a basis, we have wide possibilities for the application of the neutrosophic
method in the General Theory of Relativity. The neutrosophic method will
be employed here in the following directions of research.

Each particle located in space-time has its own four-dimensional tra-
jectory (world-trajectory), which fully characterizes this particle. So each
kind of world-trajectory defines a specific kind of particle. As many kinds
of trajectories exist in space-time as kinds of particles inhabit space-time.

Following this notion we will study a set of trajectories (particles)
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which have previously been considered in the General Theory of Relativity.
Neutrosophic method will display new trajectories (particles) of “mixed”
kinds, bearing properties of trajectories (particles) of two uncommon kinds,
which have never studied before. For instance, there will be putting to-
gether non-isotropic/isotropic trajectories corresponding to both mass-
bearing particles (their rest-masses are non-zero) and massless light-like
particles (which have no rest-mass) simultaneously. It will be further
shown that such non-isotropic/isotropic trajectories lie outside the basic
space-time of the General Theory of Relativity, but particles of such
“mixed” kinds are accessible to observation — we can see them in different
phenomena in Nature.

The basis of the General Theory of Relativity, a four-dimensional
pseudo-Riemannian space, is that particular case of Riemannian metric
spaces where the space metric is sign-alternating (denoted by the prefix
“pseudo”). Because of the sign-alternating metric, the space is split into
three-dimensional spatial sections “pinned up” by a time axis. All relativ-
istic laws, like the Lorentz transformation etc., are derived only from the
sign alternation of the space metric. There are 4 signature conditions in
total, which define the space metric of such sign-alternating kind.

Neutrosophic method on the foundations of geometry leads to S-denying
an axiom [7, 8, 9, 10], i.e. in the same space an “axiom is false in at least
two different ways, or is false and also true. Such an axiom, not only in
geometry but in any domain, is said to be Smarandachely denied, or S-
denied for short” [11]. As a result, it is possible to introduce geometries,
which have common points bearing mixed properties of Euclidean,
Lobachevsky-Bolyai-Gauss, and Riemann geometry simultaneously. Such
geometries have been called paradoxist geometries or Smarandache geo-
metries. For instance, Iseri in his book Smarandache Manifolds [11] and
his articles [12, 13] introduced manifolds that support particular cases of
such geometries.

In this research we will S-deny each of 4 signature conditions in the
four-dimensional pseudo-Riemannian space one after another, obtaining
thereby four kinds of expanded space-time for the General Theory of
Relativity. We will see that the expanded space-time of the 4th kind (where
the 4th signature condition is S-denied) permits instant motion of photons
— photon teleportation, well-established in recent experiments but which
is inconsistent with the basic space-time. We will also find out that only the
expanded space-time of the 4th kind permits virtual photons (predicted by
Quantum Electrodynamics) — instant-moving massless mediators between
entangled regular particles.

It is important to note that this research, using only the mathematical
apparatus of Riemannian geometry, does not introduce any additional equa-
tions or additional physical requirements. For this reason all results herein
are derived from only the geometrical structure of the four-dimensional
pseudo-Riemannian spaces we are considering.
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1.2 The basics of neutrosophy

Neutrosophy studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra. It considers that every
idea <A> tends to be neutralized, balanced by <Non-A> ideas; as a state
of equilibrium.

Neutrosophy is the basis of neutrosophic logic, neutrosophic set which
generalizes the fuzzy set, and of neutrosphic probability and neutrosophic
statistics, which generalize the classical and imprecise probability and
statistics respectively.

Neutrosophic Logic is a multiple-valued logic in which each proposition
is estimated to have percentages of truth, indeterminacy, and falsity in T,
I, and F respectively, where T, I, F are standard or non-standard subsets
included in the non-standard unit interval | ~0,17[. It is an extension of
fuzzy, intuitionistic, paraconsistent logics.

Etymology

Neutro-sophy (French “neuter”, Latin “neuter” — neutral, and Greek
“sophia” — skill/wisdom) means knowledge of neutral thought.

Definition

Neutrosophy is a branch of philosophy that studies the origin, nature, and
scope of neutralities, as well as their interactions with different ideational
Spectra.

Characteristics

This mode of thinking:

— proposes new philosophical theses, principles, laws, methods, for-
mulae, movements;

— reveals that the world is full of indeterminacy;

— interprets the uninterpretable, i.e. to deal with paradoxes (Le, 1996
[14, 15]) and paradoxism (Popescu, 2002 [16]);

— regards, from many different angles, old concepts and systems: show-
ing that an idea, which is true in a given referential system, may be
false in another one, and vice versa;

— attempts to make peace in the war of ideas, and to make war in the
peaceful ideas;

— measures the stability of unstable systems, and instability of stable
systems.
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Methods of neutrosophic study

Mathematization (neutrosophic logic, neutrosophic probability and statist-
ics, duality), generalization, complementarity, contradiction, paradox, tau-
tology, analogy, reinterpretation, combination, interference, aphoristic, lin-
guistic, transdisciplinarity.

Introduction to non-standard analysis

In the 1960’s Abraham Robinson [17] developed non-standard analysis, a
formalization of analysis and a branch of mathematical logic that rigorously
defines the infinitesimals. Informally, an infinitesimal is an infinitely small
number. Formally, z is said to be infinitesimal if and only if for all positive
integers n one has |z| < 1/n. Let € > 0 be such an infinitesimal number.
The hyper-real number set is an extension of the real number set, which
includes classes of infinite numbers and classes of infinitesimal numbers.
Let us consider the non-standard finite numbers 17 = 1 + ¢, where 1 is its
standard part and ¢ its non-standard part, and —0 = 0 — ¢, where 0 is its
standard part and ¢ its non-standard part.

We call |~a,b™|[ a non-standard unit interval. Obviously, 0 and 1,
and analogously non-standard numbers infinitely small but less than 0 or
infinitely small but greater than 1, belong to the non-standard unit interval.
Actually, by a one signifies a monad, i.e. a set of hyper-real numbers in
non-standard analysis:

(Ta) ={a —z:z € R,z is infinitesimal}, (1.1)
and similarly b is a monad:
(b7) ={b+z: z € R*,z is infinitesimal} . (1.2)

Generally, the left and right borders of a non-standard interval | ~a,b™|
are vague, imprecise, themselves being non-standard (sub)sets (~a) and
(b™) as defined above.

Combining the two aforementioned definitions one gets, what we would
call, a binad of ~c¢*: (T¢") = {¢—z:z € R*,z is infinitesimal} |J {c+z:
z € R*,z is infinitesimal}, which is a collection of open punctured neigh-
borhoods (balls) of c.

Of course, “a < a, and b > b. There is no order between ~cT and c.

Neutrosophic components

Let T, I, F be standard or non-standard real subsets of | ~a,b"[. These
T, I, F are not necessarily intervals, but may be any real sub-unitary
subsets: discrete or continuous; single-element, finite, or (countable or
uncountable) infinite; union or intersection of various subsets; etc. They
may also overlap. The real subsets could represent the relative errors in
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determining t, i, f (in the case when the subsets T, I, F are reduced to
points).

In this article, T, I, F, called neutrosophic components, will represent
the truth value, indeterminacy value, and falsehood value respectively
referring to neutrosophy, neutrosophic logic, neutrosophic set, neutrosophic
probability, neutrosophic statistics.

This representation is closer to human reasoning. It characterizes or
catches the imprecision of knowledge or linguistic inexactitude received
by various observers (that is why T, I, F are subsets — not necessarily
single-elements), uncertainty due to incomplete knowledge or acquisition
errors or stochasticity (that is why the subset I exists), and vagueness due
to lack of clear contours or limits (that is why T, I, F are subsets and I
exists; in particular for the appurtenance to the neutrosophic sets).

Formalization

Let us note by <A> an idea, or proposition, theory, event, concept, entity,
and by <Non-A> what is not <A>, and by <Anti-A> the opposite of <A>.
Also, <Neut-A> means what is neither <A> nor <Anti-A>, i. e. neutrality
in between the two extremes. And by <A’> a version of <A>.

<Non-A> is different to <Anti-A>.

For example: If <A> = white, then <Anti-A> = black (antonym),
but <Non-A> = green, red, blue, yellow, black, etc. (any color, except
white), while <Neut-A> = green, red, blue, yellow, etc. (any color,
except white and black), and <A’> = dark white, etc. (any shade of
white). <Neut-A>, <Neut-(Anti-A)>, neutralities of <A> are iden-
tical with neutralities of <Anti-A>. <Non-A> includes <Anti-A>,
and <Non-A> includes <Neut-A> as well,

also:
<A> intersection <Anti-A> is equal to the empty set,
<A> intersection <Non-A> is equal to the empty set.
<A>, <Neut-A>, and <Anti-A> are disjoint in pairs.

<Non-A> is the completeness of <A> with respect to the universal
set.

Main principle

Between an idea <A> and its opposite <Anti-A>, there is a continuum-
power spectrum of neutralities <Neut-A>.

Fundamental thesis

Any idea <A> is T% true, 1% indeterminate, and F% false, where the
subsets T, I, F are included in the non-standard interval |~0,17].
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Main laws

Let <V> be an attribute, and (T, I, F) in |70, 17[. Then:

— There is a proposition <P> and a referential system R, such that <P>
is TY% <V>, 1% indeterminate or <Neut-V>, and F% <Anti-V>.

— For any proposition <P>, there is a referential system R, such that
<P> is T9% <V>, 1% indeterminate or <Neut-V>, and F% <Anti-V>.

— <V> is at some degree <Anti-V>, while <Anti-V> is at some degree
<V>.

Therefore:

For each proposition <P> there are referential systems R;, Rs, ..., so
that <P> looks different in each of them — having all possible states from
<P> to <Non-P> until <Anti-P>.

And, as a consequence, for any two propositions <M> and <N>, there
exist two referential systems Rjs and Ry respectively, such that <M> and
<N> look the same.

The referential systems are like mirrors of various curvatures reflecting
the propositions.

Mottos

— All is possible, the impossible too!

— Nothing is perfect, not even the perfect!

Fundamental theory

Every idea <A> tends to be neutralized, diminished, balanced by
<Non-A> ideas (which includes, besides Hegel’'s <Anti-A>, the
<Neut-A> too) — as a state of equilibrium. In between <A> and
<Anti-A> there are infinitely many <Neut-A> ideas, which may balance
<A> without necessarily <Anti-A> versions.

To neutralise an idea one must discover all of its three sides: of sense
(truth), of nonsense (falsity), and of undecidability (indeterminacy),
then reverse/combine them. Afterwards, the idea will be classified as
neutrality.

Delimitation from other philosophical concepts and theories

(a) Neutrosophy is based not only on analysis of oppositional propositions,
as dialectic does, but on analysis of neutralities in between them as
well.

(b) While epistemology studies the limits of knowledge and justification,
neutrosophy passes these limits and places under the magnifying glass
not only the defining features and substantive conditions of an entity
<E>, but the whole <E’> derivative spectrum in connection with
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(c—d)

(e)

(f)

(g

Chapter 1 Problem statement. The basics of neutrosophy

<Neut-E>. Epistemology studies philosophical contraries, e.g. <E>
versus <Anti-E>, neutrosophy studies <Neut-E> versus <E> and
versus <Anti-E>, which means logic based on neutralities.

Neutral monism asserts that ultimate reality is neither physical nor
mental. Neutrosophy considers a more than pluralistic viewpoint:
infinitely many separate and ultimate substances making up
the world.

Hermeneutics is the art or science of interpretation, while neutrosophy
also creates new ideas and analyzes a widely ranging ideational field
by balancing unstable systems and unbalancing stable systems.

Philosophia Perennis expounds the common truth of contradictory
viewpoints, neutrosophy combines with the truth of neutral ones as
well.

Fallibilism attributes uncertainty to every class of beliefs or proposit-
ions, while neutrosophy accepts 100% true assertions, and 100% false
assertions as well and, moreover, checks in what referential systems
the percent of uncertainty approaches zero or 100.

Evolution of an idea

<A> in the world is not cyclic (as Marx said), but discontinuous, knotted,
boundless:

<Neut-A> = existing ideational background, before the arising of
<A>;

<Pre-A> = a pre-idea, a forerunner of <A>;

<Pre-A’> = the spectrum of <Pre-A> versions;

<A> = the idea itself, which implicitly gives birth to <Non-A> =
what is outside <A>;

<A’> = the spectrum of <A> versions after (mis)interpretations
(mis)understanding by different people, schools, cultures;
<A/Neut-A> = spectrum of <A> derivatives/deviations, because
<A> partially mixes/melts first with neutral ideas;

<Anti-A> = the exact opposite of <A>, developed inside of
<Non-A>;

<Anti-A’> = the spectrum of <Anti-A> versions after (mis)inter-
pretations (mis)understanding by different people, schools, cultures;
<Anti-A/Neut-A> = the spectrum of <Anti-A> derivatives/deviat-
ions, which means partial <Anti-A> and partial <Neut-A> combined
in various percentages;

<A’/Anti-A’> = the spectrum of derivatives/deviations after mixing
<A’> and <Anti-A’> spectra;

<Post-A> = after <A>, a post-idea, a conclusiveness;
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<Post-A’> = the spectrum of <Post-A> versions;

<Neo-A> = <A> retaken in a new form, at a different level, in new
conditions, as in a non-regular curve with inflection points, in evolute
and involute periods, in a recurrent mode; the life of <A> restarts.

Marx’s “spiral” of evolution is replaced by a more complex differential
curve with ups-and-downs, with knots — because evolution means cycles
of involution too.

This is dynaphilosophy = the study of the infinite path of an idea.

<Neo-A> has a larger sphere (including, besides parts of old <A>, parts
of <Neut-A> resulting from previous combinations), more characteristics,
is more heterogeneous (after combinations with various <Non-A> ideas).
But, <Neo-A>, as a whole in itself, has the tendency to homogenize its
content, and then to de-homogenize by mixture with other ideas.

And so on, until the previous <A> gets to a point where it paradoxically
incorporates the entire <Non-A>, being indistinct from the whole. And this
is the point where the idea dies, can not be distinguished from others. The
Whole breaks down, because the motion is characteristic of it, in a plurality
of new ideas (some of them containing grains of the original <A>), which
begin their life in a similar way.

Thus, in time, <A> comes to mix with <Neut-A> and <Anti-A>.

1.3 Neutrosophic subjects

1. Neutrosophic topology including neutrosophic metric spaces and
smooth topological spaces.

2. Neutrosophic numbers and arithmetical operations, including ranking
procedures for neutrosophic numbers.

3. Rough sets, neutrosophic rough sets, rough neutrosophic sets.

4. Neutrosophic relational structures, including neutrosophic relational
equations, neutrosophic similarity relations and neutrosophic order-
ings.

5. Neutrosophic geometry.

6. Uncertainty theories including possibility and necessity theory, plau-
sibility and belief measures, imprecise probabilities.

7. Logical operations, including n-norms, n-conorms, neutrosophic im-
plicators, neutrosophic quantifiers.

8. Measures of neutrosophication.

9. Deneutrosophication techniques.
10. Neutrosophic measures and neutrosophic integrals.
11. Neutrosophic multivalued mappings.
12. Neutrosophic differential calculus.

13. Neutrosophic mathematical morphology.
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Applications

Neutrosophic relational databases, neutrosophic image processing, neutro-
sophic linguistic variables, neutrosophic decision making and preference
structures, neutrosophic expert systems, neutrosophic reliability theory,
neutrosophic soft computing techniques in e-commerce and e-learning

1.4 Neutrosophic logic. The origin of neutrosophy

As an alternative to the existing logics we propose a non-classical one,
which represents a mathematical model of uncertainty, vagueness, am-
biguity, imprecision, undefined, unknown, incompleteness, inconsistency,
redundancy, contradiction.

Definition

A logic in which each proposition is estimated to have the percentage of
truth in a subset T, the percentage of indeterminacy in a subset I, and the
percentage of falsity in a subset F, where T, I, F are defined above, is called
Neutrosophic Logic.

We use a subset of truth (or indeterminacy, or falsity), instead of a
number only, because in many cases we are not able to exactly determine
the percentages of truth and of falsity but only approximate them: for
example a proposition is between 30-40% true and between 60-70% false,
or even worse: between 30-40% or 45-50% true (according to various
analyzers), and 60% or between 66-70% false.

The subsets are not necessarily intervals, but can be any sets (discrete,
continuous, open or closed or half-open/half-closed intervals, intersections
or unions of the previous sets, etc.) in accordance with the given pro-
position.

A subset may have one element only in special cases of this logic.

Constants: (T, I, F) truth-values, where T, I, F are standard or non-
standard subsets of the non-standard interval | 0, 17|, where n;,s =inf T +
+inf I+inf F > 0, and ngyp = sup T+ sup I +sup F < 37,

Atomic formulae: a, b, c, ....

Arbitrary formulae: A, B, C, .. ..

Neutrosophic logic is a formal frame endeavouring to qunatify truth,
indeterminacy, and falsehood. There are many neutrosophic rules of in-
ference (Dezert, 2002 [18]).

History

Classical Logic, also called Bivalent Logic for its taking only two the values
0, 1, or Boolean Logic after the British mathematician George Boole (1815-
64), was called by the philosopher Quine in 1981 [19] “sweet simplicity”.
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Peirce, before 1910, developed a semantic for three-valued logic in an
unpublished note, but Emil Post’s dissertation (1920’s) is cited for originat-
ing the three-valued logic. Here 1 is used for truth, 1/2 for indeterminacy,
and 0 for falsehood. Reichenbach, the leader of logical empiricism, also
studied it.

Three-valued logic was employed by Hallddn in 1949 [20], K6rner in
1960 [21], and Tye in 1994 [22] to solve Sorites Paradoxes. They used
truth tables, such as Kleene’s, but everything depended on the definition
of validity.

A three-valued paraconsistent system (LP) has the values: “true”,
“false”, and “both true and false”. The ancient Indian metaphysics con-
sidered four possible values of a statement: “true (only)”, “false (only)”,
“both true and false”, and “neither true nor false”. J. M. Dunn in 1976 [23]
formalized this in a four-valued paraconsistent system in his First Degree
Entailment semantics;

Buddhist logic added a fifth value to the previous ones, “none of these”
(called catushkoti).

The 0, aj, ..., a,, 1 Multi-Valued, or Plurivalent Logic, was developed
by Lukasiewicz, while Post originated the m-valued calculus.

The many-valued logic was replaced by Goguen in 1969 [24] and Zadeh
in 1975 [25, 26] with an Infinite-Valued Logic (of continuum power, as
in classical mathematical analysis and classical probability) called Fuzzy
Logic, where the truth-value can be any number in the closed unit interval
[0, 1]. The Fuzzy Set was introduced by Zadeh in 1975.

Therefore, we finally generalize the fuzzy logic to a transcendental
logic, called “neutrosophic logic”: where the interval [0, 1] is exceeded,
i. e., the percentages of truth, indeterminacy, and falsity are approximated
by non-standard subsets, not by single numbers, and these subsets may
overlap and exceed the unit interval in the sense of non-standard analysis.
Furthermore, the superior sum, nsy, = sup T+ sup I + sup F € ]70,37[,
may be as high as 3 or 3", while the inferior sum n;,; = inf T +inf I +
inf F €]70,3"[, may be as low as 0 or —0.

The idea of tripartition (truth, falsehood, indeterminacy) appeared in
1764 when J. H. Lambert investigated the credibility of one witness affected
by the contrary testimony of another. He generalized Hooper’s rule of
combination of evidence (1680’s), which was a Non-Bayesian approach to
find a probabilistic model. In the 1940’s Koopman introduced the notions of
lower and upper probability, followed by Good, and in 1967 Dempster [27]
gave a rule for combining two arguments. Shafer in 1976 [28] extended it
to the Dempster-Shafer Theory of Belief Functions by defining the Belief
and Plausibility functions and using the rule of inference of Dempster for
combining two pieces of evidence obtained from two different sources. A
Belief Function is a connection between fuzzy reasoning and probability.
The Dempster-Shafer Theory of Belief Functions is a generalization of
Bayesian Probability (Bayes 1760’s, Laplace 1780’s). It uses mathematical
probability in a more general way, and is based on probabilistic combination
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of evidence in artificial intelligence.

In Lambert “there is a chance p that the witness will be faithful and
accurate, a chance g that he will be mendacious, and a chance 1—p—gq that
he will simply be careless”, according to Shafer [29]. Thus there are three
components: accuracy, mendacity, and carelessness, which add up to 1.

Van Fraassen [30] introduced the supervaluation semantics in his at-
tempt to solve the Sorites paradoxes, followed by Dummett in 1975 [31]
and Fine in 1975 [32]. They all tripartitioned, considering a vague predicate
which, having border cases, is undefined for these border cases. Van
Fraassen took the vague predicate “heap” and extended it positively to
those objects to which the predicate definitively applies and negatively to
those objects to which it definitively does not apply. The remaining objects
border was called the penumbra. A sharp boundary between these two
extensions does not exist for a soritical predicate. Inductive reasoning is
no longer valid either; if S is a Sorites predicate, the proposition 3n (Sa, —
— Sa,q1) is false. Thus, the predicate Heap (positive extension) = true,
Heap (negative extension) = false, Heap (penumbra) = indeterminate.

Narinyani in 1980 [33] used the tripartition to define what he called the
“indefinite set”, and Atanassov in 1982 [34] extended the tripartition and
gave five generalizations of the fuzzy set, and studied their properties and
applications to neural networks in medicine:

(a) Intuitionistic Fuzzy Set (IFS): Given a universe E, an IFS A over E
is a set of ordered triples <universe-element, degree-of-membership-
to-A(M), degree-of-non-membership-to-A(N)> such that M+ N < 1
and M, N € [0,1]. When M + N = 1 one obtains the fuzzy set, and if
M + N < 1 there is an indeterminacy I =1 — M — N.

(b) Intuitionistic L-Fuzzy Set (ILFS): Is similar to IFS, but M and N
belong to a fixed lattice L.

(c) Interval-Valued Intuitionistic Fuzzy Set (IVIFS): Is similar to IFS,
but M and N are subsets of [0, 1] and sup M +sup N < 1.

(d) Intuitionistic Fuzzy Set of Second Type (IFS2): Is similar to IFS,
but M? + N? < 1. M and N are inside the upper right quadrant of the
unit circle.

(e) Temporal IFS: Is similar to IFS, but M and N are in addition, func-
tions of the time-moment.

Neutrosophic logic is an attempt to unify many logics in a single field.
Yet, too large a generalization may sometimes have no practical impact.
Such attempts at unification have been throughout the history of science.

1.5 Definitions of neutrosophics

Neutrosophic Logic is a general framework for unification of many existing
logics. The main idea of NL is to characterize each logical statement in a
3D Neutrosophic Space, where each dimension of the space represents
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respectively the truth (T), the falsehood (F), and the indeterminacy (I)
of the statement under consideration, where T, I, F are standard or non-
standard real subsets of | ~0,1"[. For software engineering proposals the
classical unit interval [0, 1] can be used. T, I, F are independent components,
leaving room for incomplete information (when their superior sum < 1),
paraconsistent and contradictory information (when the superior sum > 1),
or complete information (sum of components = 1). By way of example, a
statement can be between [0.4,0.6] in truth, {0.1} or between (0.15,0.25)
indeterminant, and either 0.4 or 0.6 false.

Neutrosophic Set. Let U be a universe of discourse, and M a set
included in U. An element z from U is denoted with respect to the set
M as z (T, I, F) and belongs to M in the following way: it is t% true in the
set, 1% indeterminate (unknown if it is) in the set, and % false, where t
varies in T, i varies in I, f varies in F. Statically T, I, F are subsets, but
dynamically T, I, F are functions/operators depending on many known or
unknown parameters.

Neutrosophic Probability is a generalization of the classical probability
and imprecise probability in which the chance that an event A occurs is
t% true — where t varies in the subset T, i% indeterminate — where i
varies in the subset I, and f% false — where f varies in the subset F. In
classical probability n_sup [1, while in neutrosophic probability n_sup [3*.
In imprecise probability, the probability of an event is a subset T_[0, 1], not
a number p X [0, 1], and what is left is supposed to be the opposite, a subset
F (also from the unit interval [0,1]). There is no indeterminate subset I in
imprecise probability.

Neutrosophic Statistics is the analysis of events described by the neut-
rosophic probability. The function that models the neutrosophic probability
of a random variable z is called the neutrosophic distribution: NP (z)=
=(T(z),1(z),F (z)), where T (z) represents the probability that value
occurs, F(z) represents the probability that value z does not occur, and
I(z) represents the indeterminant / unknown probability of the variable z.

Neutrosophy is a new branch of philosophy that studies the origin,
nature, and scope of neutralities, as well as their interactions with different
ideational spectra. The neutrosophics were introduced by Dr. F. Smaran-
dache in 1995. This theory considers every notion or idea <A> together
with its opposite or negation <Anti-A> and the spectrum of “neutralities”
<Neut-A> (i.e. notions or ideas located between the two extremes, sup-
porting neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas
together are referred to as <Non-A>. According to this theory every idea
<A> tends to be neutralized and balanced by <Anti-A> and <Non-A>
ideas — as a state of equilibrium.

Neutrosophy is the basis of neutrosophic logic, neutrosophic set, neutro-
sophic probability and statistics used in engineering applications (especially
for software and information fusion), medicine, military, cybernetics,

o



Chapter 2

TRAJECTORIES AND PARTICLES

2.1 Einstein’s basic space-time

What is a four-dimensional pseudo-Riemannian space, which is the basic
space-time of the General Theory of Relativity?

As it is well-known, Euclidean geometry is set forth by Euclid’s five
axioms:

1. Given two points there is an interval that joins them;
2. An interval can be prolonged indefinitely;

3. A circle can be constructed when its centre, and a point on it, are
given;
4. All right angles are equal,

5. If a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which the angles are less
than the two right angles.

Non-Euclidean geometries are derived from making assumptions which
deny some of the Euclidean axioms. Three main kinds of non-Euclidean
geometries are conceivable — Lobachevsky-Bolyai-Gauss geometry, Rie-
mann geometry, and Smarandache geometries. They can be illustrated by
the following example: let’s consider two rays connected altogether by the
common perpendicular. In a space of Euclidean geometry the rays are
infinitely parallel (i.e. they never intersect). In the Lobachevsky-Bolyai-
Gauss geometry space the rays diverge. Such a geometric space is known as
hyperbolic (from the Greek hyperballein — “to throw beyond”). In a space
of Riemann geometry the rays converge and ultimately intersect. Such a
geometric space is known as elliptic (from the Greek elleipein — “to fall
short”).

In a Smarandache geometric space we may have altogether two or three
of the previous geometric cases, i. e. either rays which are infinitely parallel
in a subspace, or other rays which diverge in another subspace, or again
other rays which converge in a different subspace of the same space.

The second Euclidean axiom asserts that an interval can be prolonged
indefinitely. The fifth axiom says that, if a line meets two other lines so
that the two angles the crossed lines make on one side of it are together
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less than two right angles, the other lines, if prolonged indefinitely, will
meet on this side.

In Lobachevsky-Bolyai-Gauss (hyperbolic) geometry the fifth axiom is
denied. In Riemann (elliptic) geometry, the fifth Euclidean axiom stated
above is satisfied formally, because there are no lines parallel to the given
line. But if we state the fifth axiom in a broader form, such as “through a
point not on a given line there is only one line parallel to the given line”, the
fifth axiom is also denied in Riemann geometry. Besides the fifth axiom,
the second axiom is also denied in Riemann geometry, because herein the
straight lines are closed: a circle or, alternatively, an infinitely long straight
line is possible but then all other straight lines are of the same infinite
length.

“Because it is impossible in practice to measure how far apart the rays
will be when extended millions of miles, it is quite conceivable that man
is living in a non-Euclidean universe. Because intuition is developed from
relatively limited observations, it is not to be trusted in this regard. In
such a world, railroad tracks can still be equidistant, but not necessarily
perfectly straight” [35].

To illustrate non-Riemannian geometries in the best way we have to
look at the sum of the angles of a triangle. So, it is 180° in Euclidean
geometry, while it less than 180° in hyperbolic geometry and more than
180° in elliptic geometry. In Smarandache geometries the sum of the angles
of a triangle can be either 180° in a subspace and less or bigger than 180° in
another subspace because these geometries can be partially Euclidean and
partially non-Euclidean, and so, different from 180°. Actually, Euclidean
geometry is a geometry in the plane. Lobachevsky-Bolyai-Gauss geometry
is a geometry on a hyperbolic surface. Riemann geometry is a geometry
on the surface of a sphere. Smarandache geometries are geometries whose
space includes as subspaces, combinations of these.

Riemannian geometry is the generalization of Riemann geometry, so
that in a space of Riemannian geometry (we consider a space of n dim-
ensions):

(1) The differentiable field of a non-degenerate symmetric tensor of the
2nd rank gog is given by

goo Goi --- Gon
gio 911 --- Qin

Gop = : : . : , (2.1)
gno Ini .o Inn

9aop = 9B » (2.2)

g =det||gapll #0, (2.3)

so that the distance ds between any two infinitely close points in the
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space are given by the non-degenerate quadratic differential form

ds? = " gap(z)dz¥de® = gopdzda®, (2.4)

1<a,f<n

known as the Riemann metric. According to this definition, the tensor
Jag is called the fundamental metric tensor, and its components define
the geometrical structure of the space;

(2) The space curvature may take different numerical values at different
points in the space.

Actually, a Riemann geometry space is the space of the Riemannian
geometry family, where the curvature is constant and has positive numer-
ical value [36].

In the particular case where the fundamental metric tensor g.g takes
strictly diagonal form

1 0 0
01 ... 0

Gop = . . . . > (2.5)
0 O 1

the Riemannian space becomes Euclidean.

Pseudo-Riemannian spaces are specific kinds of Riemannian spaces,
where the fundamental metric tensor g, (and also the Riemannian metric
ds?) has sign-alternating form so that the diagonal components of the metric
tensor bear numerical values of opposite sign, for instance

1 go1 ... gon
gio -1 ... gin

9ap = : — : . (2.6)
gno gn1 o -1

Here the prefix “pseudo” is used to distinguish Riemannian spaces
of the sign-alternating metric from Riemannian spaces whose metric is
definite-signed.

Einstein’s basic space-time of the General Theory of Relativity is a
four-dimensional pseudo-Riemannian space having the sign-alternating
signature (+—--) or (—+++), which reserves one dimension for time z° = ct
whilst the other three dimensions z! = z, 2 = y, 3 = z are reserved for
three-dimensional space, so that the space metric is

ds® = 9op dz®dzP = goo c2dt? + 290¢cdtda:i + gik dzidz®. 2.7

In general, there is no real difference between the signatures used —
(+——-) or (—+++). Each of them has its own advantages and drawbacks. For
instance, Landau and Lifshitz in their The Classical Theory of Fields [37]
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use the signature (-+++), where time is imaginary while spatial coordinates
are real so that the three-dimensional coordinate impulse (the spatial part
of the four-dimensional impulse vector) is real. We, following Eddington
[38], use the signature (+——-), where time is real while spatial coordinates
are imaginary, because in this case the three-dimensional observable im-
pulse, being the projection of the four-dimensional impulse vector on an
observer’s spatial section, is real. But all these are only pure mathematical
tricks for getting some profit in calculations and representing the results in
a more conceivable form.

In the particular case where the fundamental metric tensor g, of
the four-dimensional pseudo-Riemannian space takes the strictly diagonal
form

1 0 0 0
0 -1 0 0
Gap = 0 0 -1 0 ) (2.8)
0 0 0 -1
the space becomes four-dimensional pseudo-Euclidean. Its metric is
ds? = gopdz®dzP = 2dt* — dz* — dy® — d2?, (2.9)

and such a four-dimensional pseudo-Euclidean space is known as Minkow-
ski’s space, because he had introduced it first. It is the basic space-time of
the Special Theory of Relativity.

In the general case a four-dimensional pseudo-Riemannian space is
curved, inhomogeneous, gravitating, rotating, and deforming (any or all
of these properties may be anisotropic).

The first property implies that the space may be of a non-zero curvature.
Here there are four cases: (1) the four-dimensional curvature K # 0 and
the three-dimensional curvature C # 0; (2) the four-dimensional curvature
K # 0, while the three-dimensional C = 0; (3) the four-dimensional cur-
vature K = 0, while the three-dimensional curvature C # 0; (4) the four-
dimensional curvature K = 0 and the three-dimensional curvature C' = 0.

The space inhomogenity implies that Christoffel’s symbols (the space
coherence coefficients) are non-zero.

The presence of gravitational potential* implies inhomogeneity of time
references — values of the zero component ggp of the fundamental metric
tensor g of the space are different at each point of the space.

If the space rotates, the space-time (mixed) components gg; of the
fundamental metric tensor are non-zero. From the geometrical viewpoint
this implies that time lines become locally non-orthogonal to the three-
dimensional spatial section. Such spaces are known as non-holonomic, in
contrast to holonomic (free of rotation) spaces.

*It should be noted that the presence of gravitational potential does not necessarily imply
hat forces of gravity are also present. For instance, in a homogeneous gravitational field the
potential can be very strong, but no forces of gravity (the potential gradient) exit there because
the field is homogeneous.
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If the space produces deformations, its metric is non-stationary so the
derivative of the metric tensor with respect to time is not zero (in different
directions).

All space properties are linked to one another by different equations,
proceeding from Riemannian geometry.

2.2 Standard set of trajectories and particles. A way to expand the set

Each particle, located in a four-dimensional pseudo-Riemannian space, has
its own four-dimensional trajectory (world-trajectory). No two different
particles having the same world-trajectory exist. So its own trajectory
characterizes all specific properties of the particle moving in it, disting-
uishing this particle from other particles located in the space-time. Hence,
as many specific kinds of trajectories exist in the space-time as specific
kinds of particles inhabit the space-time.

From the purely mathematical viewpoint each world-trajectory is char-
acterized by two four-dimensional vectors (world-vectors):

(1) A vector Q¢ tangential to it at each of its points;
(2) And also by a vector N® orthogonal to it at each of its points.

The first of them is the derivative of the world-coordinate increment
along the trajectory with respect to a parameter p which could be monotone
and non-zero along the trajectory

dz®
QRQY¥=¢e—, a,u,v=0,1,2,3 (2.10)
dp
where € is a parameter making each point of the trajectory a particle
moving on it, so the parameter & could be a scalar which is a world-
invariant like rest-mass, etc. The second vector, which is orthogonal to the
trajectory, is the absolute derivative of the previous
Ne — D> dQ“ o ~pdz”

= = r 2.11
dp dp + §724 dp ) ( )

which is different to the regular differential dQ% owing to the presence
of Christoffel’s symbols of the 2nd kind I'}, — the coherence coefficients
of the given Riemannian space. The Christoffel symbols of the 2nd kind
are calculated through the Christoffel symbols (the coherence coefficients)
of the 1st kind I';,, , and they are functions of the first derivatives of the
fundamental metric tensor g,g, namely

1 (%9 89vp  Ogu
a . aop P Hp b _ H
Puy =9 F/_,,u,py ]._‘/_u/,p - 2 ( 8$V + 62}“ amp . (212)

Motion of a particle in a Riemannian space, in particular in a four-
dimensional pseudo-Riemannian space, is a parallel transfer of the part-
icle’s own four-dimensional vector Q% tangential to its trajectory. In this
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process the vector N%, which is normal to the particle’s trajectory, also
undergoes parallel transfer. Parallel transfer in Riemannian spaces is of
the Levi-Civita’s kind, where the square of any transferred vector remains
unchanged along the entire trajectory

QaQ% = const, (2.13)

N,N® = const. (2.14)

Paths of each family may be geodesic or non-geodesic. A geodesic tra-
jectory is the shortest path between any two points in the space. The laws of
mechanics (both Classical Mechanics and relativistic) require that a particle
affected by gravitational fields moves along shortest (geodesic) line. Such
motion is known as geodesic motion. If the particle is affected by additional
forces of non-gravitational origin, the latter causes the particle to diverge
from its geodesic trajectory, so the motion becomes non-geodesic.

Equations of motion along geodesic world-trajectories, known as geo-
desic equations, are actually given by N® =0, i.e.

dQ“ a ~pdz’
dp +I',Q i =0, (2.15)

while equations of motion along non-geodesic world-lines N # 0 include a
deviating “non-geodesic” force on the right side.

In general, all world-trajectories can be split into different kinds by
numerical values of the space-time interval ds along each of them: ds? >0,
ds? =0, or ds?<0. So, considering the possible trajectories we arrive at
a standard set of three kinds of known trajectories. Actually these are
three different regions of the basic space-time, each of which has world-
trajectories and particles of its own kind, specific for only this region. So
we have trajectories as follows:

Non-isotropic real trajectories, which lay “within” the light hyper-
cone in the well-known Minkowski diagram. Along such trajectories the
square of the space-time interval ds? >0, so the interval ds itself is real.
These are trajectories of regular mass-bearing particles which, having non-
zero rest-masses mg > 0, move at sub-light velocities v < ¢ so that their
relativistic masses m = \/%72/& are real. Each particle moving along
such a trajectory is characterized by its own four-dimensional impulse
vector de®  m do®

o
P* =my s - o dr (2.16)
which is tangential to the trajectory at any of its points. The square of the
vector is constant like that of any transferred vector in Riemannian spaces,
and its length is equal to the rest-mass of the particle

dz® dzP
P,P® = mggaﬁ%% = mg = const. (2.17)
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Isotropic trajectories, which lie on the surface of the light hyper-cone
and are trajectories of particles with zero rest-mass (massless light-like
particles), which travel at the light velocity v = c. The relativistic mass

m . ..

=——720__ and energy E = mc? of any massless particle, being in-
V1—v2/c?

determinate like %, are non-zero. Photons, having zero rest-mass, bear

non-zero relativistic masses and energies. Along isotropic trajectories the
space-time interval is zero ds =0, but the time interval as well as the three-
dimensional interval are non-zero. Because ds? =0 there, the space-time
interval ds cannot be used as a parameter for differentiation along isotropic
trajectories. For this reason one of two other parameters may be used there
[39, 40, 41], which are an interval of physical observable time d7 and an
observable interval of three-dimensional length do. The quantities d7 and
do are defined in the reference frame of an observer who accompanies his
references, as projections of the increment of four-dimensional coordinates
dz® on the observer’s time line and the spatial section

Gos

1 )
dr = = bodz® = \/goo dt + dz*, (2.18)
c € +/900
do? = (—gap + babp) dz®dzP = (gik + 9(;‘90k> dedz", (2.19)
00

where b* is the projection operator on the observer’s time line, hog=
= —gap + babs is the projection operator on his spatial section [39, 40,
41]. The world-vector b* is actually the four-dimensional velocity of the
observer with respect to his references; b* = 0 in the accompanying refer-
ence frame considered. As a result the space-time interval is

2
ds? = babp dz®dzP — hopdz®*dzP = 2dr? — do? = c*dr? (1 - Zz) (2.20)

As soon as v=c, ds?=c?dr? —do? =0. Thus a massless particle moving
along a isotropic trajectory has the four-dimensional impulse vector P%,
taken by the non-zero parameter cdr = do, so the vector takes the non-
zero form

[e3 o o
po om0 & 42 (2.21)

ds /1_L2Cd77' do '’
C2

while its square as well as the square of any isotropic vector is zero

dz®dzP ,ds?

PuP® = m2gppr M _ 2%
mgﬁdcr do md02

(2.22)

Non-isotropic imaginary trajectories lie “outside” the light hyper-cone.
Along such trajectories the square of the space-time interval is ds? <0, so
the ds is imaginary. These are trajectories of super-light tachyon particles
(from the Greek tachus — speedy), and they have imaginary relativistic
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’imo
Vvi/c? —1
four-dimensional impulse vector P%, which having the same form as that

of the impulse vector P* = mo% of a regular sub-light particle, takes

imaginary numerical values. Its square is also P,P* = m2 = const.

masses m = [42, 43]. Each tachyon is characterized by its own

We collect the main characteristics of each kind of trajectory and the
associated particles altogether into Table 1.

From these three kinds of mass-bearing particles those moving at sub-
light velocities and the massless light-like particles (photons) moving at
the velocity of light form everyday reality. Super-light moving particles
(tachyons) have never been observed.

The theory of physical observable quantities [39, 40] section of the
General Theory of Relativity, shows that super-light moving tachyons are
unobservable from the viewpoint of the regular observer located in sub-
light regions.

Numerous researchers, beginning with Paul Dirac, have predicted that
particles bearing masses and energies inhabit a mirror Universe, as the
antipode to our Universe. That is because relativistic masses of particles in
our Universe are positive, whereas particles in the mirror Universe must
evidently be negative.

Joseph Weber [44] wrote that neither Newton’s law of gravitation nor
the relativistic theory of gravitation rule out the existence of negative
masses, but our empirical experience has not found them. Both the New-
tonian theory of gravitation and Einstein’s General Theory of Relativity
predict the behavior of negative masses as totally different from what
electrodynamics prescribes for negative charges. For two bodies, one of
which bears positive mass and the other bearing a negative one, but equal
to the first one in absolute value, it would be expected that positive mass
will attract the negative one, while the negative mass will repel the positive
one, so that one will chase the other! If motion occurs along a line which
links the centers of the two bodies, such a system will move with a constant
acceleration. This problem had been studied by Bondi [45]. Assuming the
gravitational mass of the positron to be negative (observations show that
its inertial mass is positive) and using the methods of Quantum Electro-
dynamics, Schiff found that there is a difference between the inertial mass
of the positron and its gravitational mass. The difference proved to be much
greater than the margin of error in well-known E6tvos’ experiment, which
showed equality of gravitational and inertial masses [46]. Consequently,
Schiff concluded that a negative gravitational mass for the positron cannot
exist (see Chapter 1 of Weber’s book [44]).

Besides, “co-habitation” of positive and negative masses in the same
space-time region would cause ongoing annihilation. Possible consequences
of particles of a “mixed” kind, which bear both positive and negative
masses, were also studied by Terletski [47, 48].

Anyway, from the purely mathematical viewpoint, all three standard
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Table 2: Additional kinds of world-trajectories
located in Einstein’s basic space-time.

Kind Trajectory kind Region Particle kind

Non-isotropic sub-
I/II | light/isotropic ds? =undef
light-like trajectories

Real mass-bearing/massless
light-like particles

Isotropic light-
II/III | like/non-isotropic ds? =undef
super-light trajectories

Massless light-like/imaginary
mass-bearing particles

kinds of trajectories/particles given in Table 1 are surely present in Ein-
stein’s basic space-time — a four-dimensional pseudo-Riemannian space.
So in looking at Table 1 we can ask the question:

Question 1 Is this list of trajectory/particle types complete for Einstein’s
basic space-time, or not?

In answering this question we should take into account that Riemannian
spaces have the property of continuity by definition. For this reason any
pseudo-Riemannian space, being a specific case of Riemannian spaces, is
continuous.

Answer The Neutrosophic method, considering the Einstein basic space-
time continuous, answers the question thus — no, this list is in-
complete. Besides the standard three kinds of trajectories/particles
two additional “intermediate” kinds should exist: “non-isotropic/iso-
tropic” trajectories of the I/II kind, common to sub-light mass-
bearing particles and light-like massless particles (photons), and also
“isotropic/non-isotropic” trajectories of the II/III kind common to
light-like massless photons and super-light mass-bearing tachyons.

Non-isotropic/isotropic trajectories of the I/II kind, in which the square
of the space-time interval may take numerical values ds? > 0. Such trajec-
tories, having common properties for sub-light and light-like trajectories,
are partially non-isotropic and isotropic. So particles moving along such
trajectories should be of a mixed “real-mass/light-like” kind possessing
properties partially of sub-light (real) mass-bearing particles and also of
light-like massless particles (photons).

Isotropic/non-isotropic trajectories of the II/III kind, in which the square
of the space-time interval may take numerical values ds? < 0. Such trajec-
tories, having common properties for light-like and super-light trajectories,
are partially isotropic and non-isotropic. So particles moving along such
trajectories should be of a mixed “light-like/tachyon” kind possessing prop-
erties partially of light-like massless particles (photons) and of super-light
mass-bearing tachyons.
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Surely trajectories of such “mixed” kinds should exist, because any
four-dimensional pseudo-Riemannian space is continuous everywhere.
From this two questions arise:

Question 2 What are particles of the mixed I/II kind, possessing common
properties of sub-light mass-bearing particles and light-like particles
like photons?

Question 3 What are particles of the mixed II/III kind, possessing com-
mon properties of light-like particles (like photons) and super-light
mass-bearing tachyons?

In relation to the Question 2 and Question 3 let us recall that each
particle moving along a world-trajectory is characterized by its own four-
dimensional vector, which actually is a vector Q¢ tangential to the tra-
jectory. Its absolute derivative is the vector N® normal to the trajectory.
Setting N® = 0 gives the equations of geodesic motion; if N* # 0 the motion
is non-geodesic (the right side contains a deviating “non-geodesic” force).
So the vectors @ and N together define all the properties of the particle
and its motion in the space-time in which it is located.

Therefore, looking at Questions 2 and 3 from purely mathematical
perspective, we can reformulate them together in the another way:

Question 4 What are the tangential vector Q% and the normal vector N¢
to trajectories of “mixed” non-isotropic/isotropic kinds?

Such trajectories, which we have herein predicted through a neutro-
sophic method, were unknown until now. Answering Question 4 in the next
paragraph, we will see that trajectories and particles of the mixed kind
I/II surely exist in theory. They were merely unconsidered heretofore.
Moreover, as we will see in final paragraphs of this Chapter, particles
moving along trajectories of these kinds can be observable in experiments.

2.3 Itroducing trajectories of mixed isotropic/non-isotropic kind

In this paragraph we are going to answer Question 4: what are the tan-
gential vector Q¢ and the normal vector N¢ to trajectories of “mixed”
non-isotropic/isotropic kinds located in Einstein basic space-time? To ans-
wer this question it is actually required to find:

(1) The mathematical definition of such “mixed” trajectories;
(2) Specific properties of particles moving in such “mixed” trajectories.

Here we will study only one kind of “mixed” trajectory. We are going
to study trajectories of the mixed I/II kind (see Table 2 on page 27) —
non-isotropic/isotropic trajectories, which are common for mass-bearing
particles moving at sub-light velocities and also light-like massless particles
(photons).

It is first required to introduce such mixed trajectories. We will do this
one by one. So let us get started. Here is the first question:
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Question 5 Can a non-isotropic trajectory and an isotropic trajectory
intersect, so that they can have a common point?

To answer this question, let us refer to §6 in Chapter I of Synge’s
well-known book Relativity: the General Theory. Therein Synge wrote,
“Isotropic geodesics play a very important part in the General Theory
of Relativity, because most astronomical data are obtained using optical
observations, so they are obtained by received photons while photon is
moving along isotropic geodesic lines in the space-time. ..

Let C; and C> be time-like (sub-light-speed) arcs in the space-time, not
necessarily geodesics although they could be geodesics. Suppose the arcs
show motions of an observer and of a source of light. Let P; be a point on
the arc C;. The total sum of isotropic geodesics transecting the arc in the
point P, is an isotropic cone. There are two areas: one of them is known
as the past area, the other — the future area. Here we consider only the
past area. The other arc C, transects this area in a point P, so we can
say that the isotropic cone maps the P; into the P,. Thus the whole arc
C; is mapped into the curve C; meaning that every point located in C is
mapped into a point located in C5, and vice versa. .. The total sum of those
isotropic geodesics builds a two-dimensional space, defined by the arcs Cj
and C,” [49].

So here is the answer:

Answer Yes, a non-isotropic trajectory can be intersected by an isotropic
trajectory, so they can have a common point.

We will also take into account a “theorem on a geodesic trajectory
passing through a point in a given direction”, see §6 in Petrov’s book
Einstein Spaces [50]:

Theorem For any given point there is only one geodesic trajectory passing
through this point in a given direction.

From this we now formulate a set of theorems that we will call “the-
orems on intersections between non-isotropic and isotropic trajectories in
a pseudo-Riemannian space”. Here and below, just as it was considered
by Synge, non-isotropic and isotropic trajectories are not necessarily geo-
desics, although they could be geodesics.

A Set of Theorems about Intersections between Non-Isotropic and
Isotropic Trajectories in a Pseudo-Riemannian Space

Theorem 1 Given a non-isotropic trajectory, each point located on it is
passed by at least one isotropic trajectory. So this point of intersec-
tion is common for the non-isotropic and isotropic trajectories.

Theorem 2 An isotropic trajectory meets infinitely many non-isotropic
trajectories, having at least one common point of intersection with
each of them.
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Theorem 3 Given a surface, whose elements are non-isotropic trajectories,
each point located on it is passed by at least one isotropic trajectory.
So this point of intersection is common for the non-isotropic surface
and the isotropic trajectory.

Theorem 4 An isotropic trajectory meets infinitely many non-isotropic
surfaces, having at least one common point of intersection with each
of them.

Theorem 5 Given a sub-space, whose elements are non-isotropic trajec-
tories and surfaces, each point located in it is passed by at least one
isotropic trajectory. So this point of intersection is common for the
non-isotropic sub-space and the isotropic trajectory.

Theorem 6 An isotropic trajectory meets infinitely many non-isotropic
sub-spaces, having at least one common point of intersection with
each of them.

If only one of these theorems was false, the space would have at least
one omitted point, so that the continuity property would be broken, and
therefore the space would not be continuous.

Thus, with Theorems 1-6 as a basis, we continue this set of theorems
with:

Theorem 7 Given a non-isotropic surface, whose elements are non-
isotropic trajectories, each line located on it is passed by at least
one isotropic surface, whose elements are isotropic trajectories. So
this line of intersection is common for the non-isotropic surface and
the isotropic surface.

Theorem 8 An isotropic surface (two-dimensional isotropic space) meets
infinitely many non-isotropic surfaces (two-dimensional non-isotropic
spaces), having at least one common line of intersection with each of
them.

Taking the previous theorems into account, we finish our set of the-
orems with:

Theorem 9 Given any point in a pseudo-Riemannian space there is a
common trajectory for the non-isotropic sub-space and an isotropic
sub-space that can be chosen.

Theorem 10 Given any point in a pseudo-Riemannian space there are
infinitely many common trajectories for the non-isotropic and iso-
tropic sub-spaces, passing through this point.

Thus trajectories of the mixed isotropic/non-isotropic kind are intro-
duced by the set of Theorems 1-10. If no such trajectories existed, the
pseudo-Riemannian space would not be continuous.

It should be noted that the foregoing is specific for only pseudo-
Riemannian spaces, owing to their sign-alternating metrics. In a Riemann-
ian space whose metric is sign-definite, no isotropic lines, surfaces, or
subspaces exist, and so the set of theorems would be senseless.
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However they are all true in pseudo-Riemannian spaces. In particular,
it is true in the four-dimensional pseudo-Riemannian space at the base
of the General Theory of Relativity. Therefore we shall continue to study
trajectories of the isotropic/non-isotropic kind.

2.4 Particles moving along mixed isotropic/non-isotropic trajectories

We are going to find physical characteristics of particles moving along
mixed non-isotropic/isotropic trajectories, so we will study the tangential
vector and the normal vector to the trajectory of such particles.

Non-isotropic trajectories are occupied by mass-bearing particles; their
rest-masses mg # 0 and relativistic masses m # 0. Isotropic trajectories
are occupied by massless light-like particles — photons, their rest-masses
mo = 0 while their relativistic masses m # 0.

Question 6 What properties could be attributed to particles moving along
mixed non-isotropic/isotropic trajectories? What common properties
of mass-bearing particles and massless light-like particles could there
be from the purely geometrical viewpoint?

To answer this question let us consider the vector tangential to the
trajectory of a particle.

As mentioned in paragraph 2.3, according to today’s physical concepts a
particle located in a four-dimensional pseudo-Riemannian space (the basic
space-time of the General Theory of Relativity) is characterized by it own
four-dimensional vector impulse P®, which is tangential to the particle’s
trajectory at every point. This vector for a mass-bearing particle (mg # 0,
m # 0) is

(2.23)

while for a massless light-like particle (mg = 0, m # 0) this vector takes
the form
dz®
P*=m——.
do
Here, along non-isotropic trajectories (mass-bearing particles), the
space-time interval ds # 0 is used as a differential parameter, while along
isotropic trajectories (massless particles) ds = 0 so the differential para-
meter is the three-dimensional observable interval do # 0. For a mass-
bearing particle moving along both geodesic (shortest) and non-geodesic
trajectories the square of the particle impulse vector P% is non-zero

(2.24)

P,P%* = g, P*PP = m? = const # 0, (2.25)

so in this case P® is non-isotropic vector. This fact is independent of the
particle’s trajectory being geodesic (the normal vector is zero N® = 0) or
non-geodesic (N* # 0). The square of the impulse vector of a massless
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light-like particle is zero, so its impulse vector P% is isotropic

Jop dzdzP ds?
m _

P, P = go3 P*PP = =m——
« Jop do? ™ 402

=0 (2.26)
independent of the light-like particle’s motion being along a geodesic tra-
jectory (N = 0) or a non-isotropic one (N< # 0).

Calculation of contravariant (upper-index) components of the particle’s
impulse vector P* gives

dt
P’ =m— 2.27
mo_, (2.27)
) dz? 1 )
pr=""3 (2.28)
c dr c

The formula 2 can be obtained from the square of the four-dimensional

velocity vector of a particle U%, which for sub-light speed, light speed and
super-light speed is, respectively

dz® 2
GapUUP = +1, U= % ds = cdri/1— Z—z (2.29)

dz®
UeUf =0 U= -
Jop ) do

dz® v2
JapUUP = —1, Ue = 1ds] |ds| = cdn/g —1. (2.31)

Let us substitute into these formulae the space self-rotation three-
dimensional velocity v; and the particle’s three-dimensional velocity v¢,
defined in the reference frame of an observer who accompanies his refer-
ences [39, 40, 41] as follows

ds=0, do=cdr, (2.30)

i . da’
v; = —¢C g0 vi= 2 (2.32)

N dr

and also the formula for the observable metric tensor, defined in the same
observer’s reference frame,

1
hik = —gik + — Vilk - (2.33)
c

Using these definitions in each formula for gos U*UP we obtain three
quadratic equations with respect to %— They are the same for sub-light,

light-like and super-light velocities

dt\? 2uvt dt 1 1 .
By AWV F 2 ([ CgumvivE 1) =0, (2.34)
dr Cz(l_ﬂ)dT 1 w2 \ c*
=) (1-3)
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This quadratic equation has the two solutions

dt 1 1 .
() - ( vVt + 1> . (2.35)
dr ), 1_ W \c?
) 02
dt

The function ar allows us to define what direction in time the particle

takes. If % > 0 then the temporal coordinate t increases, i.e. the particle

moves from the past into the future (direct flow of time). If at < 0 then
temporal coordinate decreases, i. e. the particle moves from the future into
the past (reverse flow of time).

The quantity 1—(% = ,/goo > 0, because the other cases ,/gopg = 0
and ,/goo < 0 contradict the signature condition (+-—--). Therefore the

coordinate time ¢ stops, 5—5_ =0, provided

vVt = —c?, vt = 42, (2.36)

The coordinate time t has direct flow, %_ > 0, if in the first and in the

second solutions, respectively

1 . 1 )

C—QUivl+l>0, C—2vivl—1>0. (2.37)
The coordinate time ¢ has reverse flow, g—f_ < 0, when

1 i 1 i

c—2v¢v +1<0, gviv —-1<0. (2.38)

For sub-light speed particles v;v¢ < c? is always true. Hence direct flow
of time for regularly observed mass-bearing particles takes place under
the first condition (2.37) while reverse flow of time takes place under the
second condition (2.38).

It is to be noted that we looked at the problem of the direction of
coordinate time t assuming that physical observable time is d7 > 0 always.

Now, using above formulae, we calculate the covariant (lower-index)
component P; as well as the projection of the four-dimensional impulse
vector P% on the time line

P, = —% (v; £ v;), (2.39)

R
1/ goo

where the relativistic mass +m takes a place in observation of a particle
that moves into the future (the direct flow of time), while the value —m
takes a place in observation of a particle moving into the past (the reverse
flow of time).

= 4m, (2.40)
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We can show the same in representing a particle as a wave of inherent
frequence w (see [37], for instance). In such an approach each massless
particle could be represented by its own four-dimensional wave vector,
tangential to the trajectory.

Ko - @92% (2.41)
c do

Its square is zero, because it is an isotropic vector, tangential to an
isotropic trajectory

w? gopdz®dzf W ds®
2

_ B _— -7
KoK* = goup K*KP = E 107 = 2 0. (2.42)
We can write K% down as
o wdz® kdz®
== —— 2.43
c do cdr’ ( )
where k:% is the wave number. From this formula we can see that

physical observable time 7 can be used instead of the three-dimensional
observable interval o as the differential parameter.
Calculating the contravariant component of the wave vector K¢ gives

go_ % g ka1, (2.44)
dr c dr c

where kv® is the three-dimensional wave vector of the massless particle.

(%_, we obtain the com-

ponent K; and the projection of the four-dimensional wave vector K% on
time

Substituting the formula obtained earlier for

k
Ki = —E(Vi:l:’ui), (245)

= +k, (2.46)

where +k takes a place in observation of a light-like particle moving into
the future (the direct flow of time), while —k would be observed when a
light-like particle moves into the past (the reverse flow of time).

As it easy to see, this gives the same effect as that resulting from the
four-dimensional impulse vector of both mass-bearing and massless light-
like particles.

Therefore, physical observable quantities, in terms of the observed

four-dimensional impulse vector, are: relativistic mass +m and the three-

dimensional value %mv’, where p* = mv® is the three-dimensional vector

of observable impulse (for massless light-like particles p* = mc?, where c'
is the three-dimensional vector of the light velocity).
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Conclusion Particles having properties “between” mass-bearing particles
and massless particles should be of zero relativistic mass m = 0,
because only in the particular case m = 0 can mass-bearing particles
and massless particles have a common nature. Given that, whether
the motion is geodesic or non-geodesic does not effect this peculiarity.

We have thus obtained the answer to Question 6, as follows:

Answer A particle moving along trajectories of the common isotropic/non-
isotropic kind could be of zero rest-mass my = 0 and also zero relativ-
istic mass m = 0 while its four-dimensional impulse vector, tangential
to the trajectory, should be strictly non-zero P® # 0. The vector N¢
normal to the trajectory of a such particle could be both zero (geodesic
motion) and non-zero (non-geodesic motion).

For this reason properties of particles moving along common isotropic/
non-isotropic trajectories in comparison to properties of regular mass-
bearing and massless particles should be as follows — see Table 3.

2.5 S-denying the signature conditions. Classification of the expanded
spaces

In a four-dimensional pseudo-Riemannian space of signature (+——-) or
(—+++) there are four signature conditions which define this space as
pseudo-Riemannian. The higher the dimension of a space the more sign-
ature conditions there are. So the basic space-time of the General Theory
of Relativity, being such a space, is defined by the aforementioned four
signature conditions.

Here is a question:

Question 7 What happens if we S-deny one of the four signature cond-
itions in the basic space-time of the General Theory of Relativity?
What happens if we postulate that one of the signature conditions is
to be denied in two ways, or, alternatively, to be true and false?

We will S-deny every signature condition one by one. We consider first
the space where the 1st signature condition is S-denied; then the space
where the 2nd signature condition is S-denied, and so on. So we study four
cases; in each of them one of the four signature conditions will be S-denied.

Looking at the foundations of Smarandache geometries where S-
denying* was introduced (see [7]-[13] for references), here is the solution:

Answer If we S-deny one of the four signature conditions in the basic
space-time of the General Theory of Relativity, we obtain a new basic
space-time of an expanded kind. Such a space-time will be partially
Riemannian and partially not. There are four main kinds of such
expanded spaces, due to four possible cases where one of the signature
conditions is S-denied. The other kinds of such expanded spaces are
“mixtures” between the four main ones.

*Smarandachely denying.
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Following this logical procedure, resulting from a purely mathematical
viewpoint of the basic space-time, more queries arise:

Question 8 What happens if we S-deny all four signature conditions in
the basic space-time of the General Theory of Relativity?

Answer We obtain the fifth kind of an expanded space-time for the
General Theory of Relativity. Such a space-time will also be partially
Riemannian and partially not.

Here we are going to consider each of the five kinds of expanded spaces.

Starting from a pure mathematical viewpoint, the signature conditions
in a four-dimensional pseudo-Riemannian space are derived from the fund-
amental metric tensor g.g of this space, namely from the sign-alternation
in its diagonal terms goo, 911, 922, 933 in the matrix

goo Go1 Go2 Jos
gio G111 Gi12 Gi3

Jap = : (2.47)
G20 G21 Gg22 G23

g30 G931 G32 G33

From a physical perspective, the signature conditions are derived from
the fact that the three-dimensional (spatial) observable interval

do? = hij dz*dz” (2.48)
must be strictly positive. Hence the three-dimensional observable metric

tensor
JoiJok

hik = =gk + ——, (2.49)
goo
being the three-dimensional matrix
hi1 hiz his
hitk = | har hae hos (2.50)
hai1 hzz has

defined in an observer’s reference system accompanying its physical refer-
ences (reference body), must satisfy three evident conditions

det || ha1l| = h11 > 0, (2.51)
hi1  hi2 )
det = hyy hyy — b2, >0, (2.52)
ha1  hao
hi1 hiz hisz
det | ha1 hop hos || >0, (2.53)

hz1 h3y has
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see §84 in The Classical Theory of Fields [37] for details.

From these conditions we obtain the signature conditions in the fund-
amental metric tensor’s matrix (2.47). Therefore, in a space of signature
(+——-), the first signature condition is

det || goo|l = goo >0, (2.54)

the second signature condition is

Goo 9o )
det = 900911 — 901 <0, (2.55)
gio 9g11
the third signature condition is
goo Joi o2
det | g10 911 912 || >0, (2.56)
G20 921 G922

and, at last, the fourth signature condition is

goo Ggo1 9go2 Go3

gio G911 9g12 413
g = det || gogl| = det <0. (2.57)

G20 G211 G22 G23

g3 G931 932 g33

An expanded basic space-time of kind I

In such a space-time the first signature condition goo > 0 (2.54) is S-denied,
while the other signature conditions (2.55, 2.56, 2.57) remain unchanged.
Namely, given the expanded space-time of kind I, the first signature cond-
ition is S-denied in the following form

det || goo|| = goo = 0, (2.58)
which includes two particular cases
goo >0, goo =0, (2.59)

or the initial first signature condition ggo > 0 (2.54) is partially true and
partially not at any point of such space, in other words the first signature
condition is true for some points (ggoo > 0) and false for others (goo = 0).
What is the space-time from a physical viewpoint? Landau and Lifshitz
in their The Classical Theory of Fields wrote, “nonfulfilling of the condition
goo > 0 would only mean that the corresponding system of reference cannot
be accomplished with real bodies; if the condition on the principal values
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is fulfilled, then a suitable transformation of the coordinates can make ggo
positive (an example of such a system is given by the rotating system of
coordinates)” [37].

The General Theory of Relativity defines gravitational potential as
follows [39, 40, 41]:

w=c?(1—-+/900)- (2.60)
Let us begin with this well-known definition. Then the first signature

condition in its S-denied form goo > 0 (2.58) has the physical sense that in
such a space-time two different physical states occur

1-2 >0, 1-—2-=0, (2.61)
C C
or, in other words
w < c?, w=c?. (2.62)

The first one corresponds to the regular space-time state, where the
first signature condition is ggp > 0. The second corresponds to a special
state of the space-time, where the first signature condition is simply denied
goo = 0. Because we have both conditions together in the same expanded
space-time of kind I, we call equation

w < c? (2.63)

the physical condition of S-denying the first signature condition.

From this we get that, when in an expanded space of kind I the first
signature condition gog > 0 is broken, i.e. goo = 0, the space-time is in a
state where the condition

w=c? (2.64)

is true. The equality w = c? is the well-known condition under which

gravitational collapse occurs (called the collapse condition). So we come to
the following conclusion for expanded spaces of kind I:

Conclusion on expanded spaces of kind I: An expanded space-time of
kind I (goo = 0) is merely the generalization of the basic space-time of
the General Theory of Relativity (goo > 0), including regions where
this space-time is in with the collapse state (goo = 0).

An expanded basic space-time of kind II

In such a space-time the second signature condition (2.55) is S-denied,
the other signature conditions (2.54, 2.56, 2.57) remain unchanged. Thus,
given the expanded space-time of kind II, the second signature condition
is S-denied in the following form

Goo 9oi
gio g11

det

| = 900911 — 901 <0, (2.65)
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which includes two different cases

900 911 — 981 <0, 900911 — 9(2)1 =0, (2.66)

whence the second initial signature condition g,09;; — g2; < 0 (2.55) is
partially true and partially not at each point of the space.

Let’s consider the second signature condition S-denied in the form
900 911 — 941 < 0 (2.65) from a physical viewpoint.

The component gog is defined by gravitational potential w = ¢*(1—,/goo)-
The component go; is defined by the space rotation linear velocity (see
[39, 40, 41] for details)

v; = 7cj;;707 v = —cg% /900, v; = higv". (2.67)

The component g;x can be obtained from the representation of the

fundamental metric tensor in basis vectors in the fashion described below.

We are going to use a local geodesic frame of reference. The funda-

mental metric tensor within infinitesimal vicinities of any point of such a
frame is

o~
guu :guu"_% (32"%;‘7) (;’f;p_:zzp) (:’f:ff _1;0)—1—... , (2.68)
i.e. the values of its components in the vicinities of a point are different
from those of this point itself, which are only different by factors of 2nd
order of smallness, which can be neglected. Therefore at any point of the
local geodesic frame of reference the fundamental metric tensor (up to
2nd order) is a constant, while the first derivatives of the metric, i.e. the
Christoffel symbols, are zero [39].

Certainly, within infinitesimal vicinities of any point of a Riemannian
space, a local geodesic frame of reference can be defined. Subsequently, at
any point of the local geodesic frame of reference a tangential flat space
can be defined so the local geodesic frame of reference of the Riemannian
space is a global geodesic one for that flat space. Because the metric tensor
is constant in a flat space, in the vicinities of a point of the Riemannian
space the values §,, converge to values of that tensor g,, in the tangential
flat space. That means that in the tangential flat space we can build a
system of basic vectors €() tangential to the curved coordinate lines of the
Riemannian space. Because coordinate lines of any Riemannian space can
be generally curved and in a non-holonomic space are not even orthogonal
to each other, the lengths of the basis vectors are sometimes substantially
different from unity.

Let dr be a four-dimensional infinitesimal displacement vector dr =
= (dz°,dz', dz?, dz?). Then dF = €(4)dz®, where the components are

g(O) = (6?0),0,0,0), 6(1) = (0,6%1),0,0), (2.69)
6(2) = (0)0)6?2)’0)1 5(3) = (0,0,0,6?3)).
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The scalar product of the vector d7 with itself gives drdr=ds?, i.e. the
square of the four-dimensional interval. On the other hand ds?= gag dz®dzh.

Hence oL 3
Jap = €(a)€(B) = €(a)e(g) Ccos (z*;27), (2.70)

which facilitates a better understanding of the geometric structure of
different regions within the Riemannian space and even beyond. Since
according to the formula

oo = e?o) ) (2.71)

and on the other hand ,/gopo=1— c%’ the length of the time basis vector
€(0) tangential to the time coordinate line z0=ct is

w
e = +v9goo =1-— = (2.72)

and is smaller than unity as the greater is the gravitational potential w. In
the case of collapse (w = c?) the length of the time basis vector €(0) becomes
Zero.

Then according to general formula (2.70) we have finally

gir = e(iye(r) cos (% %), (2.73)
that gives the required formula for gi;
g11 = e(ye() cos (z'; zt) = 5?1) . (2.74)

Looking back at the second signature condition in its S-denied form
(2.65) we see that the condition can be written as follows

1
9oo (911 - c2vf> <0. (2.75)

If the first signature condition is not denied, so ggo > 0 is true, the
second signature condition in its S-denied form is

1
gnfc—gvf <0, (2.76)

having two particular cases
L oo L oo
gu— 7 v <0, gu— 5z v =0. (2.77)

To better see the physical sense of the condition (2.76), we take a case
where g1; = e?l) is close to —1.* Then, denoting v! = v, we obtain

1 1
-1-5v*<0, -1-5v*=0, (2.78)
C C

*Because if we consider the signature (+——-) we have g11 = —1.
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which actually means

v? > —c?, v? = —c?. (2.79)

The first condition v2 > —c? is true in the regular basic space-time.
Because the velocities v and c take positive numerical values, this condition
uses the well-known fact that positive numbers are greater than negative
ones.

The second condition v? = —c? has no place in the basic space-time; it is
true as a particular case of the common condition v2 > —c® in the expanded
spaces of kind II. This condition means that as soon as the linear velocity
of the space rotation reaches light velocity, the space signature changes
its own kind from (+---) to (—+++). That is, given an expanded space-
time of kind II, the transit from a non-isotropic sub-light region into an
isotropic light-like region implies change of signs in the space signature —
the time axis and the three-dimensional space inerchange. So we conclude
for expanded spaces of kind II:

Conclusion on expanded spaces of kind II: An expanded space-time of
kind II (v? > —c?) is the generalization of the basic space-time of the
General Theory of Relativity (v? > —c?) which permits the peculiarity
that the space-time changes signs in its own signature as soon as we,
reaching the light velocity of the space rotation, encounter a light-like
isotropic region.

An expanded basic space-time of kind III

In this space-time the third signature condition (2.56) is S-denied, the
other signature conditions (2.54, 2.55, 2.57) remain unchanged. So, given
the expanded space-time of kind III, the third signature condition is S-
denied in the following form

Goo 9go1 Jo2
det| g10 911 912 || >0, (2.80)
G20 G21 G22

which, taking the other form of the third signature condition (2.52) into
account, can be transformed into the formula

hi1 hi )
det =hqy hoy — hi; 20, (2.81)
ha1  haa
that includes two different cases
hi1 hoy —hi; >0, hiy hoy —hi; = 0. (2.82)

Thus the third initial signature condition (2.56) is partially true and
partially not at any point of such a space.
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This condition is not clear, because many free parameters are present.
Unfortunately, we cannot conclude anything definite about specific pecu-
liarities of expanded spaces of kind III. Future research is required.

An expanded basic space-time of kind IV

In this space-time the fourth signature condition (2.57) is S-denied, the
other signature conditions (2.54, 2.55, 2.56) remain unchanged. So, given
the expanded space-time of kind IV, the fourth signature condition is S-
denied in the following form

goo Go1 Go2 GJos

g0 9g11 G112 G13
g = det || gopl| = det <0, (2.83)

g20 G21 Q22 G23

g3 G931 932 g33
that includes two different cases
g =det| gapll <0,  g=det|gagll=0. (2.84)

Thus the fourth initial signature condition g < 0 (2.57) is partially true
and partially not at any point of such a space. The initial condition g < 0
is true in the basic space-time. The second condition g = 0, being the
particular case of the common condition g < 0, could only be true in the
expanded spaces of kind IV.

Because the determinant g of the fundamental metric tensor g,g, being
taken in the reference frame of an observer who accompanies his refer-
ences, depends on the determinant of the observable metric tensor h;; as
follows [39, 40, 41]

h=-9 (2.85)

the equality g = 0, as a degeneration of the fundamental metric tensor,
implies degeneration of the observable metric tensor A = 0. So an expanded
space-time of kind IV includes regions where the space-time metric is fully
degenerate. Such a region will be referred to as a degenerate space-time.

In such fully degenerate areas the space-time interval ds? = gag dz®dzh,
the spatial observable interval do? = h dztdz* and the observable time
interval become zero*

ds? = c2dr? —do® =0, c2dr? =do? =0. (2.86)

The condition d72 = 0 means that physical observable time 7 has the
same value along the entire trajectory. The condition do? = 0 means that

*It should be noted that ds? =0 is true not only at c?d7? = do? = 0, but also when
c?dt? = do? # 0 is true in the basic space-time in light-like (isotropic) region, where light
propagates.
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all three-dimensional trajectories have zero length. Taking into account
the definitions of dr and do? (2.18, 2.19) in the accompanying observer’s
reference frame

dr = \/goo dt + g(zoo dz, (2.87)
do’ = (_gik + g‘;i‘”“) dz'dz®, (2.88)

and also the fact that in the accompanying reference frame we have hgg = 0,
ho; = 0, we write the conditions d72 = 0 and do? =0 as

1 .
cdr = [1 - = (W—l—viuz)} cdt=0, dt #0, (2.89)
c
do? = hidz'dz® =0, (2.90)
where u* = dd—mtz is the three-dimensional coordinate velocity of a particle,
_ dz’

which is different from its physical observable velocity v: = ar
Substituting h;x = —gix + C%vivk into (2.89) and dividing it by dt? we
obtain the physical conditions of degeneration (2.89) and (2.90) in the final

form ‘
w + viut = 2, (2.91)

) 2
girutu® = ¢ (l — Ez) , (2.92)
c
where v;u? is the scalar product of the space rotation linear velocity v; and
the coordinate velocity of the particle u’.
Finally, we come to a conclusion on expanded spaces of kind IV:

Conclusion on expanded spaces of kind IV: An expanded space-time of
kind IV (g <0) is the generalization of the basic space-time of General
Relativity (g <0) including regions where this space-time is in a fully
degenerate state (g =0). Looking at such fully degenerate regions from
the viewpoint of a regular observer we see that time intervals between
any events inside the area are zero, and spatial intervals are zero.
Thus, all the regions are actually a point.

An expanded basic space-time of kind V

In this space-time all four signature conditions (2.54, 2.55, 2.56, 2.57) are
S-denied, therefore given the expanded space-time of kind V all signature
conditions are S-denied as follows:

det || gool| = goo = 0, (2.93)
Goo 9oi )
det = 900911 — 901 <0, (2.94)
g0 911
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goo goi1 9oz
det|| 910 911 912

WV
o

(2.95)
g20 G211 G22

goo go1 YGo2 Go3

gio 911 G12 13
g = det || gogl| = det <0, (2.96)

g20 G211 G22 G23
g3 G931 932 g33

so all four signature conditions are partially true and partially not at each
point of the expanded space-time.

It is obvious that an expanded space of kind V contains expanded spaces
of kind I, II, III, and IV as particular cases, being a common space for all
of them. Taking their properties into account, we come to a conclusion on
expanded spaces of kind V:

Conclusion on expanded spaces of kind V: An expanded space-time of
kind V, being the common space for expanded spaces of kinds I, II,
III, and IV, is the generalization of the basic space-time of General
Relativity that: (1) permits its collapse, (2) has the peculiarity that its
signature changes signs as soon as we, reaching the light velocity of
the space rotation, encounter a light-like isotropic region, (3) permits
full degeneration of the metric, when all degenerate regions become
points, where all motions are instantaneous, and (4) has some other
peculiarities, linked to the third signature condition (the meaning of
which is not yet clear).

Negative S-denying expanded spaces and the mixed kinds

We could also S-deny the signatures with the possibility that say goo > 0 for
kind I, but this means that the gravitational potential would be imaginary,
etc., or, even take into account the “mixed” cases of kind I/II, etc. But
most of them are senseless from the geometrical viewpoint. Hence we have
only included five main kinds in our discussion.

2.6 More on an expanded space-time of kind IV

Here we are going to consider the detailed structure of an expanded space-
time of kind IV, which, being the generalization of the basic space-time of
General Relativity (where the metric tensor g.g is strictly non-degenerate
g < 0), includes regions where this space-time is in a fully degenerate state
(g = 0, a zero-space). Let us consider the conditions, which are true there

ds? =c2dr? —do® =0, c2dr? =do? =0. (2.97)
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The condition d72=0 implies that, from the viewpoint of a regular
observer, the observable time 7 has the same value along the entire tra-
jectory inside the zero-space. The condition do?=0 implies that all the
observable spatial trajectories inside the zero-space have zero length.
Taking into account the definitions of dr (2.18) and of do?=h;,dz'dz"
(2.19), we can write down the conditions d72 =0 and do? =0 in the form

1 .
dr = |1— = (w+wvu')|dt =0, dt #0, (2.98)
[

do? = hedztdz® =0, (2.99)

where the three-dimensional coordinate velocity u® = dz%/dt of a particle is
not the same as its physical observable velocity v¢ =dz*/dr.

As is known, the necessary and sufficient condition of full degeneration
of a quadratic metric form is equality to zero of the determinant of its metric
tensor. For degeneration of the three-dimensional observable metric form
do? = h;pdztdz® this condition is h =det ||h;|| =0. The determinant of the
observable metric tensor h;; has the form [39, 40]

h=-2 .  g=det|lgapll, (2.100)

so if the three-dimensional form do? is degenerate, h=0, then the four-
dimensional form ds? is also degenerate, g=0. Hence a four-dimensional
space-time, where conditions (2.98) and (2.99) are true, is a fully degenerate
space-time.

Taking into account formula (2.98), the observable metric tensor in an
accompanying frame of reference is

1
hix = —gix + bibx = —gix + 3 Vit (2.101)
and we arrive at the conditions (2.98) and (2.99) in the final form
. _ 2
W+ v;ut = c?, girutu® = c? (1 — %) , (2.102)
c

where v;u’ is the scalar product of the velocity of rotation of space v; and
the coordinate velocity u® of a particle located in it. We will refer to the
conditions (2.102) as the physical conditions of degeneration of space.

If a space under the conditions of degeneration does not rotates v; =0,
then the 1st condition becomes w=c?, so v/900 =0. This implies that the
gravitational potential w of the body of reference w is strong enough to
make the reference space twice degenerate in the zero-space.

Using the 1st condition of degeneration in the form (2.98) we obtain
the relationship between the observable velocity v* of a particle in the
zero-space and its coordinate velocity u® there

7
vi= ¢ (2.103)

1—C%(W+vku’°)’
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so we can express the space-time interval ds? in a form to have the
conditions of degeneration presented

) 2
ds® = dr? — hipdzidz® = c2dr? <1 - Zz) =

) 5 ) (2.104)
= 2dt? { {1 -2 (W+Ukuk):| — ’u,} .

c2

In a four-dimensional pseudo-Riemannian space (g < 0) this metric be-
comes the regular space-time of General Relativity. Under the conditions
of degeneration, the metric becomes the zero-space metric, which is fully
degenerate (g =0). For these reasons we can accept metric (2.104) as the
metric of a four-dimensional generalized space-time (g <0), consisting of
the pseudo-Riemannian space and the zero-space as well.

Let us turn to the geometrical interpretation of the conditions of de-
generation we have obtained. Substituting the formula for h;; (2.101) into
do? =0, we obtain the four-dimensional metric inside the zero-space

2 X
ds? = (1 . le) 2dt? + g daidz® =0, (2.105)

so in the zero-space the three-dimensional space does not rotate, while
the rotation of the zero-space as a whole is present with the time term
of its metric, where w=c? —v;u’ in accordance with the 1st condition of
degeneration (2.102).

Under gravitational collapse (w=c?) the metric inside the zero-space
(2.105) becomes

ds? = gypdztdz® =0, det || gix|| = 0, (2.106)

i.e. it becomes purely spatial. The fact that the quadratic form g;pdz'dz" is
sign-definite leads to the fact that g;zdz*dz* can only become zero provided
the determinant of the metric tensor g;; becomes zero. Therefore under
collapse in the zero-space its three-dimensional space becomes degenerate.

Because in the 1st condition of degeneration w+ v;u’=c? the value
v;u* =vucos (v;; ut) is the scalar product of the velocity of space rotation
and the coordinate velocity of a particle, we see the three particular cases
of gravitational fields allowable in the zero-space:

e If we have v;u*>0, then the angle between v; and ut is within
37" <a< 7. Because the 2nd condition of degeneration implies that
u=c,/goo, then gravitational potential is w < ¢? (a regular gravitational
field);

e If we have v;u’ <0, then o is within g <a< 37" and w>c? (a super-
strong gravitational field);

e The condition v;u*=0 is only true when a=72 or 3% or under the

2 27
condition w = c? (gravitational collapse).
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Let us express the conditions of degeneration with the basis vectors
€(q) taken in a flat space tangential to the given space at a given point.
The basis vectors €(,) are tangential to the curved coordinate lines of the
given space. It is evident that the tangential flat space could be placed at
each point of the given space [39, 40]. Then, because ds* = gng dz®dzP is the
scalar product of two vectors of an infinitesimal displacement dr'= €()dz®,
we have

9B = €(a)€(B) = €(a)€(g) COs (T7; zf), (2.107)
w=c*(1- R U; = —Ce(j) Cos (2% z%), (2.108)

and the 1st condition of degeneration w -+ v;u’ = c? becomes
cep) = —e(i)ui cos (2% z*). (2.109)

In this formula the time basis vector €q) is linearly dependent on from
all the spatial basis vectors €(;). This means degeneration of the space-time,
so formula (2.109) is the geometrical condition of degeneration. Under
gravitational collapse (w = c?) the length €(0) = 4/goo of the time basis vector
€(0) becomes zero e(g) = 0. In the absence of gravitational fields the length is
e) = 1. In intermediate cases the value e(g) becomes shorter as the acting
gravitational field becomes stronger.

As is known, at any point of a four-dimensional pseudo-Riemannian
space there exists a hyper-surface, the equation of which is gag dz®dzP =0.
This is a space-time region that hosts light-like particles. Because in this
region ds? =0, all those directions located inside it are equivalent, so the
directions are isotropic. Therefore the region is commonly referred to as
the isotropic cone or the light cone.

Because the metric inside the zero-space is actually zero (2.105), an
isotropic cone can be set at any of its points. However, although having the
equation

W2 ,

— (1 — ?) c2dt? + ggpdztdz® =0, (2.110)
it is not a light cone. The difference between this isotropic cone and the light
cone is that the first term here, derived from the condition of degeneration
w + v;ut = c?, is only typical for the zero-space. Therefore we will call it the
degenerate isotropic cone. Note that because the specific term is the direct
function of rotation of space, the degenerate isotropic cone is a cone of
rotation. Under gravitational collapse the term is zero, while the remaining
equation

gixdztdz® =0 (2.111)

describes the three-dimensional degenerate hyper-surface. If we have
w=0, then v;u*=c? and the equation of the degenerate isotropic cone
(2.111) becomes

—c?dt? + girdz’de® =0, (2.112)
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i. e. coordinate time flows evenly. The greater the gravitational potential w
the “closer” the degenerate cone is to the spatial section. In the ultimate
case, when w = c?, the degenerate cone becomes flattened over the three-
dimensional space (collapses). The degenerate cone in the absence of grav-
itational fields (w =0) is the most “distant” one from the spatial section.

As it is easy to see, being represented by the ratio w and c? the metric
in a regular pseudo-Riemannian space

ds? = (1 — g)z c2dt? — 2 (1 — Zv—z) vidztdt + gg dztdz®, (2.113)
under gravitational collapse takes the form g;x dzidz* =0, analogous to the
collapsed metric of the zero-space (2.111). However it is not the same,
because the additional condition w -+ v;u®=c? typical for the zero-space
takes no place in a pseudo-Riemannian space. The only conclusion is that
the zero-space observed by a regular observer is the same as that of
a doubly degenerate regular space from the viewpoint of a hypothetical
observer located in the zero-space.

Assuming these we can conclude that the isotropic light cone
9ap dz®dzP = 0 contains the degenerate isotropic cone (2.110) as the ultimate
case, which in its turn contains the collapsed degenerated isotropic cone
(2.111) filled with degenerate matter inside the zero-space. This is an
illustration of the fractal structure of the world presented here as a system
of isotropic cones found inside each other.

As is well known, any particle in a space-time corresponds to its own
world line, which sets spatial coordinates of the particle at any given
moment of time. With a single mass-bearing particle of a rest-mass mg
there is present its own four-dimensional impulse vector P%*, while a mass-
less particle of frequency w is present with its own four-dimensional wave
vector K¢

dz® o« wdz®
% ds cdo’
where a differential parameter along an isotropic world line of the massless
particle is the non-zero observable spatial interval do? #0, because ds? =0
there. However the vectors cannot describe a particle located in the zero-
space, because both the differential parameters become zero.

To characterize a particle located in a generalized space-time (g <0),
consisting of a pseudo-Riemannian space and a fully degenerate space-time
(the zero-space), let us express the impulse vector P* in a form whereby
the condition of degeneration is represented by

P*=m (2.114)

da* Mo
ds ¢ dt'’
mo

\/{1—1(W+vkuk)r—zc‘22 |

c2

P* =m, (2.115)

M =

(2.116)
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where the mass M containing the 1st condition of degeneration depends
not only upon the three-dimensional velocity of the particle, but upon
gravitational potential w and upon the velocity of rotation v, of space. The
formula so obtained shows that a differential parameter along world lines
in the generalized space-time is coordinate time ¢.

We can also write down the mass M (2.116) in the form

m

1-— C% (W + vsut)

M =

(2.117)

which is a ratio between two values, each one equal to zero under the
conditions of degeneration, however the ratio itself is not zero M # 0. This
fact is not a surprise. The same is true for a relativistic mass m at the light
velocity, when the mass is m # 0 being a ratio between the zero rest-mass
mo = 0 and the zero relativistic root. Therefore light-like (massless) particles
are the ultimate case of mass-bearing ones at v=c, while zero-particles
can be regarded the ultimate case of light-like ones at the conditions
of degeneration. As a result two ultimate transitions are possible in the
generalized space-time:

e the light barrier, to overcome which a particle should exceed the
speed of light;
e the zero-transition for which a particle should be in a state defined
by the conditions of degeneration.
Chronometrically invariant projections of the vector P% (2.115) in the
frame of reference of a regular observer are

Py 1 ;
=M|l1- = (w+uyu')| =m, (2.118)
\/% c2 ( ? )
M. .
pr= i =y (2.119)
c c
while the remaining components are
Po=M=—F m . (2.120)
1-— g (W + 'U'iul)
M 1
Po=——|w+v—- 5 (w -+ veub) | . (2.121)

In the zero-space, where the conditions of degeneration (2.102) prevail,
the components become

u’, (2.122)

P° =M, Pi:—?ui, (2.123)
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i.e. zero-particles bearing zero rest-mass and zero relativistic mass, bear
the non-zero mass M (2.117).

Now let us consider a single particle in the generalized space-time within
the wave-particle duality. In other words, we will consider the particle as
a wave in terms of the geometrical optics approximation. Because the four-
dimensional wave vector of a massless particle in the geometrical optics
approximation is [37]

Y

fze’
where v is the wave phase (eikonal), we write the four-dimensional impulse
vector P® in a similar way

Ko = (2.124)

h 0o
P, = ,i’ (2.125)
c 0z>
where £ is Planck’s constant. Its chronometrically invariant projections in
the generalized space-time are

Py h *oy . h 0%
= —— P'=——h"— 2.126
Voo 2 ot c Oz ( )
while the other components are
h(*0y 1 >0y
P = oy , 2.12
c <69:1 ot > (2.127)
P’ = h (*2;& —vi*aalf) ) (2.128)
€“+/goo z

From these the following two formulae can be obtained. The first one
(2.129) links the mass M to its corresponding total energy E. The second
one (2.130) links the spatial generalized impulse Mu* to change of the wave
phase ¢

1 8
Mc? = | L =hQ=E, (2.129)
1-— = (w4 vud) Ot
) . *O
k
Mu' = —hh' 5k (2.130)

where €2 is the generalized frequency and w is the regular frequency

Q= d w = oy

= 1 —~
1—6—2(W+v¢u) ot

. (2.131)

The condition P,P*=const in the geometrical optics approximation
is known as the eikonal equation. For the impulse vector located in the
generalized space-time (2.125) the eikonal equation becomes

E? E2

= - M =
c2 2’

(2.132)
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where E =mc? and Eg =mgc?. Using the relationship (2.131) we write the
impulse vector P% (2.125) in the wave-like form

*61/)
(o3 h (o3
pa _ @ddﬁ _ : ot _ =% (2.133)
c t c3 [1 -3 (w+ viuz)} ot
h2Q? 1 1P w?
P,P% = " [1 -2 (W—i—uiu )} —z( (2.134)

which includes the conditions of degeneration. For a particle located in
zero-space the condition P,P%=0 is true. So, from the viewpoint of a
regular observer, the square of the four-dimensional impulse vector pre-
senting a zero-particle remains unchanged.

Taking the condition P, P =0 for the wave form of the four-dimensional
impulse vector, after substituting w =0 that is typical in the zero-space,
we conclude, from the viewpoint of a regular observer, that the eikonal
equation for a zero-particle is a standing wave equation

. *aw *8,(,0
R = 2.1
ozt ook O (2.135)

In other words, a regular observer looking at zero-particles sees them
as light-like standing waves; that is, as light-like holograms.

2.7 An expanded space-time of kind IV: a home space for virtual pho-
tons

We are now going to consider one of the advantages obtained from consider-
ing rather than a four-dimensional pseudo-Riemannian space, but its ge-
neralization, that is, an expanded space-time of kind IV. Recall that an ex-
panded space-time of kind IV, in contrast to the basic pseudo-Riemannian
space-time which is strictly non-degenerate (the determinant of the funda-
mental metric tensor is strictly less that zero g < 0), permits the space-time
metric to be fully degenerate (g = 0). So the metric of an expanded space-
time of kind IV can be non-degenerate and degenerate so that the condition
g < 0 is true therein.

It is known that Feynman diagrams clearly show that the actual carriers
of interactions between elementary particles are virtual particles — almost
all the processes rely upon emission and absorption of virtual particles.
Quantum Electrodynamics considers virtual particles also as particles for
which, contrary to regular ones the energy/impulse relationship

E? - *p* = EZ, (2.136)

2 2

where E =mc?, p? =m?v2, By =mgc?, is not true. In other words, for virtual
particles E? —c?p? # E2. In pseudo-Riemannian space the relationship
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(2.136), derived from the condition P,P% = const along world line

dz® dzf
P, P~ :gaﬁPaPﬁ :mggaﬁgg :mg, (2.137)

has the same representation as (2.136), where p*=mv® is the observable
impulse vector of the particle and its square is p? = h;, p'p" (see [39, 40]).
So E? — c?p? # E2 implies that the square of the four-dimensional impulse of
a virtual particle does not conserve P, P%; P, P* # const in parallel transfer.

As previously mentioned, for a particle located in zero-space the con-
dition P,P% =0 is true. Thus, from the viewpoint of a regular observer
the square of the four-dimensional impulse vector representing a zero-
particle remains unchanged. However from the viewpoint of an inner
observer located inside the zero-space this is not true. The reason is that the
metric of the zero-space observed by him, du? = g;; dz*dz®, is not invariant,
because formula (2.110) of the four-dimensional metric of the zero-space
gives

. 2
du? = g deidz® = (1 - %) 2dt? + inv. (2.138)

Thus, from the viewpoint of the inner observer, the square of the four-
dimensional velocity of a zero-particle, becoming the spatial one,

. 2
U U® = gipuiu® = (1 _ %) 2 # const, (2.139)
C

is not conserved. This fact leads us to the conclusion that virtual particles
can be equated to zero-particles in generalized space-time (g <0), which
permits degeneration of its own metric.

Now we are going to see what kinds of particles inhabit the zero-space.
First we look at the conditions of degeneration (2.102) in the absence of
gravitational fields (w =0). These are

viut = e, gikuiuk =c?, (2.140)

so in the absence of gravitation a zero-particle travels at the coordinate
velocity, the value of which is equal to the speed of the light

u = +/gipuiuk =c. (2.141)
The first condition of degeneration
vu' = vucos (v;u') = 2, (2.142)

including u =c, is true if the vectors v; and u® are co-directed. Hence in the
absence of gravitational fields a zero-particle moves with a forward velocity
equal to the speed of the light, and at the same time rotates at light speed as
well. We will refer to such particles as virtual photons. From the viewpoint
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of an inner observer located inside the zero-space, the zero-space metric
along their trajectories is

du? = gy dzide® = 2dt®> #£0, (2.143)

similar to the metric do? =c?d72# 0 along the trajectories of regular photons
in a pseudo-Riemannian space.

In general, when gravitational fields are present (w #0), the conditions
of degeneration (2.102) become

. . dxt
viul =, Wl = d: b= (1 - :’7) ¢ (2.144)
5 ik dz* dzk 5
Uy = Gik Uy Uy = Gik dt. dt. c’, (2.145)

i.e. the zero-particles rotate and move inside zero-space with a velocity
equal to the velocity of light. Hence, they are virtual photons as well.
Note that considering virtual mass-bearing particles is senseless, be-
cause all particles in the zero-space possess zero rest-mass by definition.
Therefore only virtual photons and their varieties are virtual particles.
Virtual particles in the state of collapse (w=c?) will be referred as
virtual collapsars. For them the conditions of degeneration (2.102) become

vut =0, girdzidz® =0, (2.146)

which could manifest in two particular cases: (1) zero-collapsars either at
rest with respect to the observer located in the zero-space, so that the
world around him collapses into a point — all the dz*=0; (2) the three-
dimensional metric inside the zero-space degenerates, det ||gix|| =0.

However from perspective of an outside observer, who is a regular
observer located in an Earth-bound laboratory, the observable velocity
v' =dz*/dT of a zero-particle both a virtual photon and a virtual collapsar is
infinite. This is true because the 1st condition of degeneration w + v;u® = c?
turn the observable time interval dr between any two events inside the
zero-space into zero

1 .
dr=|1— = (w4 wvu')| dt =0, dt #0. (2.147)
C

Assuming all the above results, we can conclude that from the viewpoint
of a regular observer that the motion of a zero-particle is perceived as
instant displacement.

Moreover, zero-particles are actually virtual particles transferring in-
teraction instantly between elementary particles of our world. This implies
that the space for virtual particles and virtual interactions supposed by
Quantum Electrodynamics is actually zero-space in General Relativity.

Quantum Electrodynamics contends that all interactions between ele-
mentary particles, including their birth and destruction, rely upon emission
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and absorbtion of virtual particles. Therefore zero-particles can possess the
birth and death processes for particles of our world. Thus, their instant
displacement can realize teleportation. Because zero-particles can be con-
sidered in our world as standing light-like waves (light-like hologram), the
possiblility of teleportation should be linked with the physical conditions to
realize the halting of light.

We have found the place for virtual particles in the General Theory of
Relativity. Actually, this is the way to join the General Theory of Relativity
with Quantum Electrodynamics.

2.8 An expanded space-time of kind IV: non-quantum teleportation of
photons

A second advantage arising from considering instead of a four-dimensional
pseudo-Riemannian space, its generalization in an expanded space-time of
kind IV, is the fact that the velocity of any motions in fully degenerate
regions of the expanded space appears infinite.

As is well known, the basic space-time of the General Theory of Relativ-
ity is a four-dimensional pseudo-Riemannian space, which is, in general,
inhomogeneous, curved, rotating, and deformed. Therein the square of
the space-time interval ds? = gag dz®dzP, being expressed in the terms of
physical observable quantities — chronometric invariants [39, 40], takes the
form

ds? = ?dr? — do?. (2.148)

Here the quantity

dr = (1 - ;“;) dt — cig'uidcci, (2.149)
is an interval of physical observable time, W:cz(l—\/gﬁ) is the gravitational
potential, Ui:—c& is the linear velocity of the space rotation, do?=

V900
= h;, dztdz® is the square of a observable spatial interval, h;x=—g;x+ C% U; Vg
is the observable metric tensor, g;; are spatial components of the fund-
amental metric tensor g,z (space-time indices are Greek o,8=0,1,2,3,
while spatial indices — Roman 1,k =1, 2, 3).
In these terms we consider a particle displaced by ds in the space-time.
We write ds? as follows

2
ds? = c2dr? (1 - "2> , (2.150)
C

_dzt

2= h;pvivk, and v* =g is the three-dimensional observable velo-

where v
city of the particle. So dsis: (1) a substantial quantity under v <c¢; (2) a zero
quantity under v=c; (3) an imaginary quantity under v >c.

Particles of non-zero rest-masses mgo#0 (substance) can be moved:
(1) along real world-trajectories cd7 >do, having real relativistic masses
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imaginary relativistic masses m:ﬁ (tachyons). World-lines of

(2) along imaginary world-trajectories cdt < do, having

both kinds are known as non-isotropic trajectories.

Particles of zero rest-masses mo =0 (massless particles), having non-
zero relativistic masses m # 0, move along world-trajectories of zero four-
dimensional lengths cdT =do at light velocity. They are known as isotropic
trajectories. To massless particles are related light-like particles — quanta
of electromagnetic fields (photons).

A condition under which a particle may realize an instant displacement
(teleportation) is equality to zero of the observable time interval d7 =0 so
that the teleportation condition is

w + vut = c2, (2.151)

) i
where u* = ddlt is its three-dimensional coordinate velocity. From this the
square of that space-time interval this particle instantly traverses takes the

form

2 .
ds? = —do? — (1 - le) 2dt? + gi dz'dz®, (2.152)

L
where in this case 1 — W = Y% , because d7 =0.

2 2

Actually, with the sicgnatui"e (+——-) in the space-time region of a regular
observer, the signature becomes (-+++) in that space-time region where
particles may be teleported. So the terms “time” and “three-dimensional
space” interchange in that region. “Time” of teleporting particles is “space”
of the regular observer, and vice versa “space” of teleporting particles is
“time” of the regular observer.

Let us first consider substantial particles. It easy to see that instant
displacements (teleportation) of such particles manifests along world-
trajectories in which ds?=—do?#0 is true. So the trajectories represented
in the terms of observable quantities are pure spatial lines of imaginary
three-dimensional lengths do, although being expressed in ideal world-
coordinates ¢ and z° the trajectories are four-dimensional. In a particular
case, where the space is free of rotation (v; =0) or its rotation velocity v;
is orthogonal to the particle’s coordinate velocity u* (their scalar product
is v;u = |v;||ut| cos (vs; ut) =0), substantial particles may be teleported only
if gravitational collapse occurs (w=c?). In this case world-trajectories of
teleportation taken in ideal world-coordinates become purely spatial ds? =
= g;pdzidz®.

Second, massless light-like particles (photons) may be teleported along
world-trajectories located in a space of the metric

w

dszz—d02:—<1——
C

2 .
2) 2dt? + gy daide® =0, (2.153)
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because for photons ds? =0 by definition. So the space of photon teleport-
ation characterizes itself by the conditions ds? =0 and do? = c?d72 =0.

The equation obtained is like the “light cone” equation c2dr? —do? =0
(do #0, d1 #0), elements of which are world-trajectories of light-like par-
ticles. But, in contrast to the light cone equation the obtained equation
is built by ideal world-coordinates ¢ and z* — having no representation
in the terms of observable quantities. So teleporting photons move along
trajectories which are elements of the world-cone (like the light cone) in
that space-time region where substantial particles may be teleported (the
metric inside that region has been obtained above).

Considering the photon teleportation cone equation from the viewpoint
of a regular observer, we can see that the spatial observable metric do? =
= h, dz'dz® becomes degenerate, h = det ||k || =0, in the space-time region
of that cone. Taking the relationship g=—hgoo [39, 40] into account, we
conclude that the four-dimensional metric ds?=g,sdz*dz® degenerates
there as well: g=det||gag||=0. The last fact implies that signature con-
ditions defining pseudo-Riemannian spaces are broken, so that photon
teleportation is realized outside the basic space-time of the General Theory
of Relativity. Such fully degenerate space was considered in [41, 51], where
it was referred to as zero-space because, from viewpoint of a regular
observer, all spatial intervals and time intervals are zero there.

At dT =0 and do =0 observable relativistic mass m and the frequency w
become zero. So from viewpoint of a regular observer all particles located
in zero-space (in particular, teleporting photons) having zero rest-masses
mo =0 appear as zero relativistic masses m =0 and the frequencies w =0.
Therefore particles of such a kind may be assumed the ultimate case of
massless light-like particles.

We will refer to all particles located in zero-space as zero-particles.

Within the framework of the particle-wave concept each particle is

described by its own wave world-vector K, = aa—wa, where v is the wave

phase (eikonal). the eikonal equation K,K* =0 [37], sets forth that the
length of the wave vector K remains unchanged®, and for regular massless
light-like particles (regular photons) becomes the travelling wave equation

1 (*6111)2 ik TOW Y
C

ot bz’ bk (2154

that is obtained after taking K,K“ :gaﬁ%% =0 in terms of physical

observable quantities [39, 40], where we formulate regular derivatives
through chronometrically invariant (physical observable) derivatives

*According to Levi-Civita’s rule, in a Riemannian space of n dimensions the length of
any n-dimensional vector Q% remains unchanged in parallel transport, so QoQ% = const, so
it is therefore true for the four-dimensional wave vector K¢ in a four-dimensional pseudo-
Riemannian space — the basic space-time of the General Theory of Relativity. It is well-
known that since along isotropic trajectories ds =0 is true (because cdT =do), the length of
any isotropic vector is zero so that we have Ko K¢ =0.
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Ve =hav', v'=—cg% /g0, 9*=—h"*.
The eikonal equation in zero-space takes the form
ik
: =0 2.155
Ozt dzk ( )
because therein w= g;’b =0, making the equation’s time term zero. It

is a standing wave equation. From viewpoint of a regular observer, in
the framework of the particle-wave concept, all particles located in zero-
space appear as standing light-like waves, so that all zero-space appears
filled with a system of light-like standing waves — a light-like hologram.
This implies that an experiment discovering non-quantum teleportation of
photons should be linked to the halting of light.

There is no problem in photon teleportation being realized along fully
degenerate world-trajectories (g =0) outside the basic pseudo-Riemannian
space (g <0), while teleportation trajectories of substantial particles are
strictly non-degenerate (g < 0) so the trajectories are located in the pseudo-
Riemannian space* This is not a problem because at any point of the
pseudo-Riemannian space we can place a tangential space of g <0 consist-
ing of the regular pseudo-Riemannian space (g <0) and zero-space (g =0)
as two different regions of the same manifold. Such spaces of g <0 will be
a natural generalization of the basic space-time of the General Theory of
Relativity, permitting teleportation of both substantial particles (without
experiment verification as yet) and photons, which has been realized in
experiments.

The only difference is that from the perspective of a regular observer
the square of any parallely transported vector remains unchanged. It is
also an “observable truth” for vectors in zero-space, because the observer
reasons standards of his pseudo-Riemannian space anyway. So that eikonal
equation in zero-space, expressed in his observable world-coordinates, is
K,K*=0. But being taken in ideal world-coordinates ¢ and z!, the metric

2 _
inside zero-space ds? = — (1 — c%) c?dt? + g;rdzidz* =0, degenerates into a

three-dimensional du? which, depending on the gravitational potential w
being uncompensated by something else, is not invariant du? = g;, dz*dz* =

2
= (l — c%) c?dt?#£inv. As a result, within zero-space the square of a trans-

ferred vector, a four-dimensional coordinate velocity vector U for instance,
being degenerated into a three-dimensional U*, does not remain unchanged

. . 2
VUt = g UU* = (1 - g) ¢2  const, (2.156)

*Any space of Riemannian geometry has the strictly non-degenerate metric of g#0
by definition of such metric spaces. Pseudo-Riemannian spaces are a particular case of
Riemannian spaces, where the metric is sign-alternating. So a four-dimensional pseudo-
Riemannian space of the signature (+——-) or (—+++), Einstein laid at the base of the General
Theory of Relativity, is also a strictly non-degenerate metric (g <0).
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so that corresponding to the Riemannian geometry for a regular observer,
the real geometry of zero-space within the space itself is of non-Riemannian
shape.

We conclude that instant displacements of particles are naturally per-
mitted in the space-time of the General Theory of Relativity. As shown
herein, teleportation of substantial particles and photons realizes itself
in different space-time regions. But it would be a mistake to think that
teleportation requires acceleration of a substantial particle to super-light
speeds (the tachyon region), while a photon needs to be accelerated to
infinite speed. No — as it is easy to see from the teleportation condition
w4 v;ut =c?, if gravitational potential is essential and the space rotates
at a speed close to light velocity, substantial particles may be teleported
at regular sub-light speeds. Photons can reach the teleportation condition
easier, because they move at light velocity. From the viewpoint of a regular
observer, as soon as the teleportation condition is realized in the neigh-
bourhood around a moving particle, such a particle “disappears” although it
continues its motion at a sub-light coordinate velocity u® (or at the velocity
of light) in another space-time region invisible for us. Then, having its
velocity reduced, or if something else disrupts the teleportation condition
(reduction of gravitational potential or the space rotation speed), it
“appears” at the same observable moment at another point of our observ-
able space at that distance and in that direction of its u® there.

These results, derived from purely geometrical considerations, verify
the old proposition of the 1970’s that “there is no speed barrier for a
wave phase nor for entangled particles” as given by F.Smarandache, who
worked from a basis in phenomenological analysis and General Relativity
space-time geometry (Einstein-Podolsky-Rosen paradox) taken from the
viewpoint of linear logic (see [52, 53, 54] for details).

2.9 Conclusions

In closing this Chapter we would like to repeat, in brief, the main results
we have obtained.

A four-dimensional pseudo-Riemannian space, the basic space-time of
the General Theory of Relativity, is continuous by definition, so there are
no omitted points, lines, or surfaces therein. Proposing the real space-
time to be continuous, the neutrosophic method predicted that the General
Theory of Relativity should permit trajectories in common for regular
mass-bearing particles that move at sub-light velocities and massless light-
like particles moving at the velocity of light. Particles moving along such
“mixed” trajectories should have properties of both regular mass-bearing
particles and massless light-like particles.

Detailed analysis of this proposition showed that trajectories of such a
‘mixed” kind can exist in a four-dimensional pseudo-Riemannian space,
but particles that move along such trajectories can even move outside
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the pseudo-Riemannian space, outside the basic space-time of the General
Theory of Relativity.

Such trajectories have been found employing S-denying signature con-
ditions in the basic four-dimensional pseudo-Riemannian space (there are
four signature conditions), when a signature condition is partially true
and partially not in the same space. S-denying each of the signature
conditions (or even all the conditions at once) gave an expanded space for
the General Theory of Relativity, which, being an instance of the family of
Smarandache spaces, include the pseudo-Riemannian space as a particular
case. S-denying the 4th signature condition gave an expanded space of kind
IV, which permits full degeneration of its metric.

Particles of the “mixed” mass-bearing/massless kind move along fully
degenerate trajectories in an expanded space of kind IV and are moved
instantly, from the viewpoint of a regular observer located in an Earth-
bound laboratory. But their true motions realise themselves at finite sub-
light velocities up to the light velocity. Such particles were called “virtual
photons”, because the energy-impulse relationship is not valid, in similar
fashion for any virtual photons as predicted by Quantum Electrodynamics.
Such particles were also called “zero-particles”, because their own masses
and frequencies are zero according to a regular observer.

This research currently expounds the sole explanation of virtual par-
ticles and virtual interaction given by the purely geometrical methods of
Einstein’s theory. It is possible that this method will form a link between
Quantum Electrodynamics and the General Theory of Relativity.

Moreover, this research currently gives the sole theoretical explanation
of the well-known phenomenon of photon teleportation in terms of the
General Theory of Relativity.




Chapter 3

ENTANGLED STATES AND QUANTUM
CAUSALITY THRESHOLD

3.1 Disentangled and entangled particles in General Relativity. Prob-
lem statement

In his article of in 2000, dedicated to the 100th anniversary of the dis-
covery of quanta, Belavkin [55] generalizes definitions assumed de facto in
Quantum Mechanics for entangled and disentangled particles. He writes:

“The only distinction of the classical theory from quantum is that the
prior mixed states cannot be dynamically achieved from pure initial
states without a procedure of either statistical or chaotic mixing. In
quantum theory, however, the mixed, or decoherent states can be
dynamically induced on a subsystem from the initial pure disentangled
states of a composed system simply by a unitary transformation.

Motivated by hte Einstein-Podolsky-Rosen paper, in 1935 Schrodin-
ger published a three part essay* on The Present Situation in Quantum
Mechanics. He turns to the EPR paradox and analyses completeness of
the description by the wave function for the entangled parts of the
system. (The word entangled was introduced by Schrédinger for the
description of nonseparable states.) He notes that if one has pure states
(o) and x(v) for each of two completely separated bodies, one has
maximal knowledge, ¥1(0,v)= 9 (o)x(v), for two taken together. But
the converse is not true for the entangled bodies, described by a non-
separable wave function ¥1(o,v)#9(0)x(v): Maximal knowledge of a
total system does not necessary imply maximal knowledge of all its
parts, not even when these are completely separated from one another,
and at the time cannot influence one another at all.”

In other words, because Quantum Mechanics considers particles as
stochastic clouds, there can be entangled particles — particles whose states
are entangled, and they build a whole system so that if the state of one
particle changes the state of the other particles changes immediately alth-
ough they are located far from one another.

In particular, because of the admission of entangled states, Quantum
Mechanics permits quantum teleportation — an experimentally verified
phenomenon. The term “quantum teleportation” had been introduced into
theory in 1993 [56]. The first experiment teleporting massless particles

*Schrodinger E. Naturwissenschaften, 1935, Band 23, 807-812, 823-828, 344-849.
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(quantum teleportation of photons) was performed five years later, in 1998
[57]. Experiments teleporting mass-bearing particles (atoms as a whole)
were done in 2004 by two independent groups of scientists: quantum
teleportation of the an ion of the Calcium atom [58] and of an ion of the
Beryllium atom [59]. There are many followers who continue experiments
with quantum teleportation, see [60]-[70] for instance.

It should be noted that the experimental statement on quantum tele-
portation has two channels in which information (the quantum state) trans-
fers between two entangled particles: the “teleportation channel” where
information is transferred instantly, and the “synchronization channel” —
the classical channel where information is transferred in the regular way,
at or less than the the speed of light (the classical channel is targeted to
inform the receiving particle about the initial state of the first one). After
teleportation the state of the first particle is destroyed, so there is data
transfer (not data copying).

General Relativity draws another picture of data transfer: the particles
are considered as point-masses or waves, not stochastic clouds. This state-
ment is true for both mass-bearing particles and massless ones (photons).
Data transfer between any two particles is realized as well by point-mass
particles, so in General Relativity this process is not of stochastic origin.

In the classical problem statement accepted in General Relativity [71,
38, 37], two mass-bearing particles are considered which are moved along
neighbouring world-lines, and a signal is transferred between them by
a photon. One of the particles radiates the photon to the other, where the
photon is absorbed, realizing data transfer between the particles. Of course,
the signal can as well be carried by a mass-bearing particle.

If there are two free mass-bering particles, they fall freely along neigh-
bouring geodesic lines in a gravitational field. This classical problem has
been developed in Synge’s book [49] where he has deduced the geodesic
lines deviation equation (Synge’s equation, 1950’s). If these are two par-
ticles connected by a non-gravitational force (for instance, by a spring),
they are moved along neighbouring non-geodesic world-lines. This classical
statement was developed a few years later by Weber [44], who obtained
the world-lines deviation equation (Synge-Weber’s equation).

Anyway in this classical problem of General Relativity two interacting
particles moved along both neighbouring geodesic and non-geodesic world-
lines are disentangled. This happens for two reasons:

1. In this problem statement a signal moves between two interacting
particles at a velocity no faster than light, so their states are absolutely
separated — these are disentangled states;

2. Any particle, being considered in General Relativity’s space-time,
has its own four-dimensional trajectory (world-line) which is the
set of the particle’s states from its birth to decay. Two different
particles cannot occupy the same world-line, so they are in absolutely
separated states — they are disentangled particles.
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world-line A world-line B

Fig. 1: Synge-Weber’s statement. Fig. 2: The advanced statement.

The second reason is much stronger than the first. In particular, the
second reason leads to the fact that, in General Relativity, entangled states
are only neighbouring states of the same particle along its own world-line
— its own states separated in time, not in three-dimensional space. No two
different particles could be entangled. Any two different particles, both
mass-bearing and massless ones, are disentangled in General Relativity.

On the other hand, experiments on teleportation indicate that entangle-
ment is really an existing state that occurs with particles if they reach
specific physical conditions. This is the fact that should be taken into
account by General Relativity.

Therefore our task in this research is to introduce entangled states
into General Relativity. Of course, for of the reasons above, two particles
cannot be in an entangled state if they are located in the basic space-time
of General Relativity — that four-dimensional pseudo-Riemannian space
with sign-alternating elements (+——-) or (—+++). Its metric is strictly non-
degenerate as for any space of Riemannian space family, namely, there
the determinant g= det| gag|l of the fundamental metric tensor g.g is
strictly negative g <0. We expand the Synge-Weber problem statement,
considering it in a generalized space-time whose metric can become de-
generate g =0 under specific physical conditions. This space is one of the
Smarandache family of geometric spaces [7, 8, 9, 10, 11, 12, 13], because
its geometry is partially Riemannian, partially not.

It was shown in [51, 41] (Borissova and Rabounski, 2001), when General
Relativity’s basic space-time degenerates, physical conditions can imply
observable teleportation of both a mass-bearing and massless particle — its
instant displacement from one point of the space to another, although it
moves no faster than light in the degenerate space-time region, outside the
basic space-time. In the generalized space-time the Synge-Weber problem
statement about two particles interacting by a signal (see Fig. 1) can be
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reduced to the case where the same particle is located at two different
points A and B of the basic space-time at the same moment of time, so
the states A and B are entangled (see Fig. 2). This particle, being actually
two particles in the entangled states A and B, can interact with itself by
radiating a photon (signal) at the point A and absorbing it at the point B.
That is our goal: to incorporate entangled states into General Relativity.

Moreover, as we will see, under specific physical conditions the entan-
gled particles in General Relativity can reach a state where neither particle
A nor particle B can be the cause of future events. We call this specific state
Quantum Causality Threshold.

3.2 Incorporating entangled states into General Relativity

In the classical problem statement, Synge [49] considered two free-particles
(Fig. 1) moving along neighbouring geodesic world-lines I' (v) and I' (v + dv),
where v is a parameter along the direction orthogonal to the geodesics (it
is taken in the plane normal to the geodesics). There v =const along each
geodesic line. Motion of the particles is determined by the well-known
geodesic equation

au“ dz¥
re u+ =0 3.1
ds Tl ds ’ (-1
which is the actual fact that the absolute differential DU*=dU*+I'j, Utdz"
of a tangential vector U® (the velocity world-vector U* = ‘?—:, in this case),

transferred along that geodesic line to where it is tangential, is zero. Here
s is an invariant parameter along the geodesic (we assume it the space-
time interval), and I'}, are Christoffel’s symbols of the 2nd kind. Greek
a =0,1,2,3 denote four-dimensional (space-time) indices.

The parameter v is different for the neighbouring geodesics, and the
difference is dv. Therefore, in order to study relative displacements of two
geodesics I'(v) and I' (v + dv), we shall study the vector of their infinitesimal
relative displacement
_ 0z~
v

(o3

dv, (3.2)

As Synge had deduced, a deviation of the geodesic line I' (v + dv) from
the geodesic line I'(v) can be found as the solution to his equation

D2,’7a

—a TR UPU =0, (3.3)

that describes relative accelerations of two neighbouring free-particles
(R,O‘ﬁ;/'a is the Riemann-Chrostoffel curvature tensor). This formula is known
as the geodesic lines deviation equation or the Synge equation.

In Weber’s statement [44] the difference is that he considers two par-
ticles connected by a non-gravitational force %, a spring for instance. So
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their world-trajectories are non-geodesic, and they are determined by the
equation
aue dz¥ d«
— 41— = —— 3.4
ds ol ds moc2’ (3.4)
which is different to the geodesic equation in that the right side is not zero.
His improved equation of the world lines deviation

D277a

1 D&«
ds?

R s UPUPyY = —
t e " moc? dv

dv, (3.5)
describes relative accelerations of two particles (of the same rest-mass mg),
connected by a spring. His deviation equation is that of Synge, except for
that non-gravitational force ¢ on the right side. This formula is known as
the Synge-Weber equation. In this case the angle between the vectors U®
and 1% does not remain unchanged along the trajectories

] 1
g(chrf") = ol &an”. (3.6)

Now, proceeding from this problem statement, we are going to introduce
entangled states into General Relativity. At first we determine such states
in the space-time of General Relativity, then we find specific physical
conditions under which two particles reach a state to be entangled.

Definition Two particles A and B, located in the same spatial section* at
the distance dz® # 0 from each other, are in non-separable states if the
observable time interval dr between linked events in the particles! is
zero d7 =0. If only d7 =0, the states become non-separated from one
another, so the particles A and B become entangled.

So we will refer to dT =0 as the entanglement condition in General Rela-
tivity.

Let us consider the entanglement condition d7 =0 in connection with
the world-lines deviation equations.

In General Relativity, the interval of physical observable time dr be-
tween two events separated by the distance dz® is determined through
components of the fundamental metric tensor as

o i
dT = \/goo dt + — dz*, 3.7
900 C\/ﬁ

(see §84 in the well-known The Classical Theory of Fields by Landau and
Lifshitz [37]). The mathematical apparatus of physical observable quantities

*A three-dimensional section of the four-dimensional space-time, placed in a given point
in the time line. In the space-time there are infinitely many spatial sections, one of which is
our three-dimensional space.

TSuch linked events in the particles A and B can be radiation of a signal in one and its
absorbtion in the other, for instance.
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(Zelmanov’s theory of chronometric invariants [39, 40] — see also the brief
account in [41, 51]) transforms this formula to

1 .
dr = (1 _ CL’;) dt — — vida', (3.8)

where w=c?(1—,/goo) is the gravitational potential of an acting gravita-

tional field, and v; =—c-99%_ is the linear velocity of the space rotation.
v/ goo

So, following the theory of physical observable quantities, in real ob-
servations where the observer accompanies his references the space-time
interval ds? = gog dz®dz” is

ds® = 2dr? — d02, (3.9)
where do?= (—gyﬁ- goﬁ‘#) dz'dz® is a three-dimensional (spatial) invariant,
built on the three-dimensional observable metric tensor h;x = —g;x + JoiJok

Joo
This observable metric tensor, in real observations where the observer

accompanies his references, is the same as the analogously constructed
general covariant tensor hqg. So, do? = h;, dztdz® is the spatial observable
interval for any observer who accompanies his references.

As it is easy to see from (3.9), there are two possible cases where the
entanglement condition d7 =0 occurs:

(1) ds=0 and do =0,
(2) ds?=—do?+#0, so do becomes imaginary,

and we will refer to them as the auxiliary entanglement conditions of the
Ist kind and 2nd kind respectively.

Let us get back to the Synge equation and the Synge-Weber equation.

According to Zelmanov’s theory of physical observable quantities [39,
40], if an observer accompanies his references the projection of a general
covariant quantity on the observer’s spatial section is its spatial observable
projection.

In this fashion Borissova has deduced (see eqgs. 7.16-7.28 in [72]) that
the spatial observable projection of the Synge equation is*

d277i
dr?

i - dn®
+2(Dk+Ak.)?:0, (3.10)

*In this formula, according to Zelmanov’s mathematical apparatus of physical observable
* . .

quantities [39, 40], D;x = 170hy =1 Ohix is the three-dimensional symmetric tensor of

2 ot 24/goo Ot

the space deformation observable rate while A;x = 1 (Gvk _ By ) + 1 (Fivk — Fkvi) is the

2\ 8z Ozk 2c2
three-dimensional antisymmetric tensor of the space rotation observable angular velocities,
the indices of which can be raised and lowered by the observable metric tensor so that
D! = k'™ Dy, and Akl =R Ap,,. See a brief account of Zelmanov’s mathematical apparatus
in [41, 72, 73, 74].
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which she called the Synge equation in chronometrically invariant form.
The Weber equation is different in its right side, containing there the non-
gravitational force that connects the particles (of course, the force should
be in the spatially projected form). For this reason, conclusions obtained
for the Synge equation will be the same for the Weber equation.

In order to make the results of General Relativity applicable in practice,
we should consider tensor quantities and equations in chronometrically
invariant form, because in this way they contain only chronometrically
invariant quantities — physical quantities and geometrical properties of
space, measurable in real experiments [39, 40].

Let us consider our problem from this viewpoint.

It easy to see that the Synge equation in its chronometrically invariant
form (3.10) under the entanglement condition d7 =0 becomes nonsense.
The Weber equation becomes nonsense as well. So the classical problem
statement becomes senseless as soon as particles reach entangled states.

At the same time, in their recent theoretical research [51], two authors
of this paper (Borissova and Rabounski, 2005) have found two groups
of physical conditions under which particles can be teleported in a non-
quantum way. They have been called the teleportation conditions:

(1) d7=0 {ds=0, do =0}, the conditions of photon teleportation;

(2) dT =0 {ds? =—do?#0}, the conditions of substantial (mass-bearing)
particles teleportation.

There were also theoretically deduced physical conditions* which should be
achieved in a laboratory in order to teleport particles in the non-quantum
way [51].

It is easy to see the non-quantum teleportation conditions are identical
to those introduced herein as the main entanglement condition d7 =0 in
conjunction with the auxiliary entanglement conditions of the 1st and 2nd
kind!

Taking this one into account, we transform the classical Synge and
Weber problem statement into another. In our statement the world-line of
a particle, being entangled with itself by definition, splits into two different
world-lines under teleportation conditions. In other words, as soon as the
teleportation conditions occur in a research laboratory, the world-line of a
teleported particle breaks in one world-point A and immediately starts in
the other world-point B (Fig. 2). Both particles A and B, being actually two
different states of the same teleported particle at a remote distance from
one another, are in entangled states. So, in this statement, the particles A
and B themselves are entangled.

Of course, this entanglement exists only at the moment of the teleport-
ation when the particle exists in two different states simultaneously. As
soon as the teleportation process has finished, only one particle remains,
so the entanglement disappears.

*A specific correlation between the gravitational potential w, the space rotation linear
velocity v; and the teleported particle’s velocity u®.
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It should be noted that it follows from the entanglement conditions that
only substantial particles can reach entangled states in the basic space-time
of General Relativity — the four-dimensional pseudo-Riemannian space,
not photons. Here is why.

It is known that the interval ds? = gop dz®dzP cannot be fully degenerate
in a Riemannian space*: the condition is that the determinant of the fun-
damental metric tensor gog must be strictly negative g= det||gagl| <0 by
definition of Riemannian spaces. In other words, in the basic space-time
of General Relativity the fundamental metric tensor must be strictly non-
degenerate as g <O0.

The observable three-dimensional (spatial) interval do?= h; dz'dz® is
positive definite [39, 40], proceeding from the physical sense. It fully de-
generates (do?=0) only if the space compresses into a point (a senseless
case) or the determinant of the observable metric tensor becomes zero
h = det H hik” =0.

It was shown by Zelmanov [39, 40] that, in real observations where
an observer accompanies his references, the determinant of the observable
metric tensor is connected with the determinant of the fundamental one by
the relationship h= —ﬁ. From this we see that if the three-dimensional
observable metric fully degenerates h=0, the four-dimensional metric
degenerates as well g=0.

We have obtained that states of two substantial particles can be entan-
gled, if dr =0 {ds? = —do? #0} in the space neighbourhood. So k>0 and
g<0 in the neighbourhood, and hence the four-dimensional pseudo-
Riemannian space is not degenerate.

Conclusion Substantial particles can reach entangled states in the basic
space-time of General Relativity (a four-dimensional pseudo-
Riemannian space) under specific conditions in the neighbourhood.

Although ds? = —do? in the neighbourhood (do should be imaginary),
the substantial particles remain in a regular sub-light region, and they do
not become super-light tachyons. It is easy to see, from the definition of
physical observable time (8), the entanglement condition d7 =0 occurs only
if the specific relationship

W+ vut = c? (3.11)

holds between the gravitational potential w, the space rotation linear velo-
city v; and the particles’ true velocity u* =dz*/dt in the observer’s labora-
tory. For this reason, in the neighbourhood, the space-time metric is

2 .
ds? = —do? = — (1 — Ez) c2dt? + Gik da:zd:rk, (3.12)
c

so the substantial particles can become entangled if the space initial sig-
nature (+—--) becomes inverted (—+++) in the neighbourhood, while the

*It can only be partially degenerate. For instance, a four-dimensional Riemannian space
can degenerate into a three-dimensional one.
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particles’ velocities u* remain no faster than light.

Another case — massless particles (photons). States of two photons can
be entangled in the space neighbourhood only if d7 =0 {ds=0, do =0}. In
this case the determinant of the observable metric tensor becomes h =0,
so the space-time metric as well degenerates g =—ggoh =0. This is not the
four-dimensional pseudo-Riemannian space.

Where is that region? In previous works (Borissova and Rabounski, 2001
[41, 51]) a generalization to the basic space-time of General Relativity was
introduced — that four-dimensional space which, having General Relati-
vity’s sign-alternating label (+-—--), permits the space-time metric to be
fully degenerate, so that g <0 there.

As it was shown in those works, as soon as the specific condition
w + v;u’ = ¢? occurs, the space-time metric becomes fully degenerate: there
areds=0, do =0, dT =0 (it can be easy derived from the above definition for
the quantities) and, hence A =0 and g =0. Therefore, in a space-time where
the degeneration condition w + v;u® = c? is permitted the determinant of the
fundamental metric tensor is g < 0. This case includes both the Riemannian
geometry case g <0 and the non-Riemannian, fully degenerated one g=0.
For this reason such a space is one of Smarandache geometric spaces
(because its geometry is partially Riemannian, partially not*. In the such
generalized space-time the entanglement conditions of the 1st kind d7=0
{ds=0, do =0} (the entanglement conditions for photons) are permitted
in that region where the space metric fully degenerates (there h =0 and,
hence g=0).

Conclusion Massless particles (photons) can reach entangled states only if
the basic space-time fully degenerates g =det || gog|| =0 in the neigh-
bourhood. It is permitted in the generalized four-dimensional space-
time whose metric can be fully degenerated g<O0 in that region
where the degeneration conditions occur. The generalized space-time
is attributed to Smarandache geometry spaces, because its geometry
is partially Riemannian, partially not.

Thus, entangled states have been introduced into General Relativity for
both substantial particles and photons.

3.3 Quantum Causality Threshold in General Relativity

This term was introduced by one of the authors two years ago (Smaran-
dache, 2003) in our common correspondence [75] on the theme:

*In foundations of geometry it is known the S-denying of an axiom [7, 8, 9, 10], i.e. in
the same space an “axiom is false in at least two different ways, or is false and also true.
Such axiom is said to be Smarandachely denied, or S-denied for short” [11]. As a result,
it is possible to introduce geometries, which have common points bearing mixed properties
of Euclidean, Lobachevsky-Bolyai-Gauss, and Riemann geometry at the same time. Such
geometries have been called paradoxist geometries or Smarandache geometries. For instance,
Iseri in his book Smarandache Manifolds [11] and articles [12, 13] introduced manifolds that
support particular cases of such geometries.
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Definition Considering two particles A and B located in the same spatial
section, Quantum Causality Threshold was introduced as a special
state in which neither A nor B can be the cause of events located
“over” the spatial section on the Minkowski diagram.

The term Quantum has been added to the Causality Threshold, because
in this problem statement an interaction is considered between two infini-
tely separated particles (in infinitesimal vicinities of each particle) so this
statement is applicable only to quantum scale interactions that occur in the
scale of elementary particles.

Now, we are going to find physical conditions under which particles can
reach the threshold in the space-time of General Relativity.

Because in this problem statement we look at causal relations in General
Relativity’s space-time from “outside”, it is required to use an “outer view-
point” — a point of view located outside the space-time.

We introduce such a point of outlook in a Euclidean flat space, which
is tangential to our’s at that world-point, where the observer is located.
In this problem statement we have a possibility of comparing the absolute
cause relations in that tangential flat space with those in ours. As a matter
of fact, a tangential Euclidean flat space can be introduced at any point of
the pseudo-Riemannian space.

At the same time, according to Zelmanov [39, 40], within infinitesimal
vicinities of any point located in the pseudo-Riemannian space a locally
geodesic reference frame can be introduced. In such a reference frame,
within infinitesimal vicinities of the point, components of the fundamental
metric tensor (denoted by tilde)

9~

oo = a0+ 5 sy ) (B~ ~2") .. (3.13)
are different from those g,g at the point of reflection to within only the
higher order terms, which can be neglected. So, in a locally geodesic
reference frame the fundamental metric tensor can be taken as constant,
while its first derivatives (Christoffel’s symbols) are zero. The fundamental
metric tensor of a Euclidean space is also a constant, so values of §,,, taken
in the vicinity of a point of the pseudo-Riemannian space, converge to
values of g,, in the flat space tangential at this point. Actually, we have a
system of the flat space’s basis vectors €(,) tangential to curved coordinate
lines of the pseudo-Riemannian space. Coordinate lines in Riemannian
spaces are curved, inhomogeneous, and are not orthogonal to each other
(the latter is true if the space rotates). Therefore the lengths of the basis
vectors may be very different from unity.

Writing the world-vector of an infinitesimal displacement as dr=
= (dz®, dz', dz?, dz?), we obtain dF'=é(4)dz®, where the components of the
basis vectors €(,) tangential to the coordinate lines are é’(o):{e‘()o),0,0,0},

€(1):{O,e%1),0,0}, 5(2):{0,0,652),0}, é’(a):{0,0,0,e%g)}. The scalar product
of d7 with itself is dFd7=ds? or, in another form, ds?=g,gdz*dz”, so
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time line
x!=const

Fig. 3: The spatial section becomes non-
orthogonal to time lines as soon as the
space starts rotating.

spatial section x°=const

9o6 = €(0)€(5)= €(a)€(5)COS (%;27). We obtain
goo = e?o) , Joi = €(0)€(s) COS (2% %), (3.14)
Jik = €(;)€(y) COS (z2%), i,k=1,2,3. (3.15)
Then, substituting ggo and go; from the formulae that determine the
gravitational potential w = c?(1—,/goo) and the space rotation linear velocity

— 9oi :
Vi=—cC , we obtain
¢ v/ 900

v; = —ce;) cos (2% 7%), (3.16)

hik=e;)e(x) cos(z®; z%) cos(z?; z*) — cos(z*; z¥)| . (3.17)

From this we see that if the pseudo-Riemannian space is free of rotation,
cos (z% z%) =0, the observer’s spatial section is strictly orthogonal to time
lines. As soon as the space starts to rotate the cosine becomes different
to zero, so the spatial section becomes non-orthogonal to the time lines
(Fig. 3). By this process the light hypercone inclines with the time line
to the spatial section. In this inclination the light hypercone does not
remain unchanged; it “compresses” because of hyperbolic transformations
in pseudo-Riemannian space. The more the light hypercone inclines, the
more it symmetrically “compresses” because the space-time’s geometrical
structure changes according to the inclination.

In the ultimate case, where the cosine reaches the ultimate value
cos (z°; %) =1, time lines coincide with the spatial section: time “has fallen”
into the three-dimensional space. Of course, in this case the light hypercone
overflows time lines and the spatial section: the light hypercone “has also
fallen” into the three-dimensional space.

It is easy to see from formula (3.16) that this ultimate case occurs as
soon as the space rotation velocity v; reaches light velocity. If particles A
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and B are located in the space entirely in this ultimate state, neither A
nor B can be the cause of events located “over” the spatial section in the
Minkowski diagrams we use in the illustrations. So in this ultimate case
the entire space-time is in a special state called the Quantum Causality
Threshold.

Conclusion Particles located in General Relativity’s space-time reach the
Quantum Causality Threshold as soon as the space rotation reaches
light velocity. Quantum Causality Threshold is impossible if the space
does not rotate (holonomic space), or if it rotates at a sub-light speed.

Thus, the Quantum Causality Threshold has been introduced into General
Relativity.

3.4 Conclusions

We have shown that the Synge-Weber classical problem statement about
two particles interacting by a signal can be reduced to the case where
the same particle is located at two different points A and B of the basic
space-time at the same moment of time (the states A and B are entangled).
This particle, being actually two particles in the entangled states A and B,
can interact with itself by radiating a photon (signal) at the point A and
absorbing it at the point B. That is our goal: to incorporate entangled states
into General Relativity. Under specific physical conditions the entangled
particles in General Relativity can reach a state where neither particle A
nor particle B can be the cause of future events. We call this specific state
Quantum Causality Threshold.

We have found entangled states and Quantum Causality Threshold in
General Relativity, which is standard non-quantum theory. This implies
that entangled particles and long-lang action (teleportation) can be ex-
plained by regular physics, not only by quantum theory.

¢
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