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Abstract  
Following Hestenes and others we explore the possibility that the electron is a (sort 
of) bound electromagnetic wave.  
To do this a waveguide analogy is considered. The E, H field components in 
waveguide satisfy the second order Klein Gordon equation. The question is if a (first 
order) Dirac equation is involved. 
Making use of Clifford Algebra, by first it is shown that a spinor ψ satisfying Dirac 
equation describes, trough the relativistic energy impulse four vector, the energy 
propagation of the electromagnetic field into a waveguide and in free space. At the 
same time ψ  automatically describes TE and TM modes (TEM in free space), each 
with Right or Left polarization.  
It is shown that this description with Dirac equation has been implicit in the 
waveguide theory all the time. The equivalence is embedded in the usual V and I 
mode description. 
The Dirac equation for TE, TM modes opens new interesting interpretations. For 
example the effect on ψ  of a gauge transformation with the electromagnetic gauge 
group generator ( 3σi  in the Hestenes notation) is readily interpreted as a modification 
of the TE, TM group velocity. This acts as the electromagnetic force on a charge, and 
requires two opposite sign of (fictitious) charges for TE or TM. 
Obviously this suggest an analogy with electron, positron and possibly neutrino for 
the TEM. 
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Clifford Algebra and Dirac equation for TE, TM in w aveguide. 
 
Introduction 
 
Following Hestenes and others we explore the possibility that the electron is a (sort 
of) bound electromagnetic wave.  
To do this a waveguide analogy is considered. The E, H field components in 
waveguide, taking into account only the dependence from propagation coordinate, 
obey to a second order equation which mathematically speaking is the Klein Gordon 
equation, as for a relativistic particle.  
Since this is a relativistic equation of 2nd order one wonders if there are, and what are 
the corresponding relativistic equations of 1st order.  
In the electromagnetic theory or in the theory of waveguides such kind of equations 
for TE, TM modes do not exist. We have Maxwell equations of course, but they give 
the second order wave equation and not the Klein Gordon equation.  
In analogy with the electron we suppose that such equations are the Dirac equations.  
This is, in fact, true.  
To show this, Clifford Algebra is employed.  
(Note: useful references (electromagnetism, Clifford Algebra etc.) are in [1]...... [7], 
and in [8]......[14] for electron models, Dirac equation and so on). 
It is also shown that this description with Dirac equation has been implicit in the 
waveguide theory all the time. The equivalence is embedded in the usual (see for 
example [7]) V and I mode description.  
A Dirac spinor ψ  describes TE, TM modes in such a way that only global 
characteristics are accounted, I mean energy, impulse and polarization. 
Practically the action of  ψ  is to give the relativistic energy impulse four vector of the 
mode (the total energy-momentum vector), and also polarization. 
The ψ  solutions for TE, TM (and TEM) modes corresponds to the electron, positron 
(and neutrino) plane wave solutions of the Dirac equations. 
But obviously the Dirac equation for TE, TM modes opens new interesting 
interpretations. For example the effect on ψ  of a gauge transformation with the 
electromagnetic gauge group generator (3σi  in the Hestenes notation [12]) is readily 
interpreted as a modification of the TE, TM group velocity. This acts as the 
electromagnetic force on a charge, and requires two opposite sign of (fictitious) 
charges for TE or TM. 
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Maxwell equations with Clifford Algebra  
 
Maxwell equations are obtained introducing the Clifford number (see A4) or “even 
number”: 
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Equations (4) coincide with the Maxwell equations for *F  (basically changing the 
sign for y,z components of F ). 
Note that this corresponds to the usual property of the plane analytic functions: the 
analyticity condition 0* =∂ f  means the field equations for a field having the 
conjugate components *f . 
From a different point of view the analyticity for F  means also the analyticity of iFˆ , 
who has the physical components of E

r
, H

r
. We have: 

 
(6)         0ˆ* =∂ iF  
 
where: 
 
(7)         ( )kHjHiHjikEjEiEiF zyxzyx

ˆˆˆˆˆˆˆ ++Τ+++= → HjiEiF
rr

Τ+=ˆ  

 
so that in (7) y e z components are not the same as (5), but the same with change of 
sign. 
In (7) I also posed 0=τE  e 0=τH  in order to have Maxwell equations in empty 

space. (Note: really HE
rr

,  are “time-like bivectors” (Hestenes, [3]), so we should 
consider TiF ˆˆ , not iFˆ , but for the present scope (7) is enough). 
Is immediate and very smart from (7) to derive the Maxwell's equations with div and 
rot. See Appendix 11.  
From the even number F  we may form several "squares" for example, from 

jiHEF Τ+= : 
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invariant under Lorentz transformations and  "Lagrangian density" of the 
electromagnetic field.  
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Another interesting “square” is:  
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which further develops: 
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This is the fourth row of the energy momentum tensor and provides energy 
momentum density.  
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Dirac equation with Clifford algebra  
 
The Dirac equation is obtained by introducing an 8-component "even number" 
structured exactly as (1), unless the different notations for the components. Let: 
 
(12)     4321 ψψψψψ Τ+Τ++= jj  
 
where 4321 ψψψψ  are number with indexes 1,i . The Dirac equation is: 
 
(13)    Τ−=∂ ˆˆ* imi ψψ  
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Developing and equating the components we obtain the Dirac equation in extended 
form:  
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A comparison with (4) putting m=0, neutrino equations 
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provides the formal identification: 
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From the even number ψ  may form several "squares" for example the modulus: 
(19)                *ψψ  
 
or the four velocity û  (see.A3)  
 
(20)    ûˆ * =Τψψ         1ˆ 2 −=u  
 
true if ψ  is unitary, i.e. if ψ  is a “rotor”: 
 
(21)     R=ψ    → 1* =RR  
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Conditions of relativistic invariance for 13), i.e. invariance with respect to spacetime 

rotations of an angle ϕ , make that ψ transforms with half angle 2
ϕ . This implies (the 

fact is a consequence of the other and vice versa) all quantities like *ˆψψΤ  transform 
like vectors (see.A6). Particularly if ψ  is unitary the quantities: 

 
               1

* ˆˆ ei =ψψ  
 
               2

* ˆˆ ej =ψψ            
(22) 
               3

* ˆˆ ek =ψψ  
 
               ue ˆˆˆ

0
* ==Τψψ  

 
form a set of axes rotated with respect to Tkji ˆ,ˆ,ˆ,ˆ . 
This establishes a relationship with the relativistic kinematics of a small rigid body 
(Hestenes).  
If ψ  is a function of time such including a term: 
 

titji ee ωω =ˆ̂  
 
(rotation according the bivector ji ˆ̂ ) then (22) determine position and movement of an 
axis system µe  rotating with respect to fixed axis î  ĵ  k̂  Τ̂ , where ue ˆˆˆ

0
* ==Τψψ  is the 

four velocity and sek ˆˆˆ
3

* ==ψψ  is the spin. 
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The energy – momentum four vector 
 
The mathematical physical keystone of the whole affair is as follows. An object that 
has mass has a momentum  in the language of relativity (tensors, four-vectors, etc.) 
which holds:  
 
(23)      ii mup =  
 
where m  is the rest mass and iu  the four velocity. m  is a scalar and iu , ip  transform 
like four vectors.  
In simple with this description the object is treated as a whole, its internal structure is 
ignored, and is described by the energy momentum ip . a four-vector.  
Even a radar pulse or a wave packet that propagates into a waveguide is in its way an 
object that propagates with momentum and energy as a whole. Therefore we can 
propose to represent it as an object which its external characteristics, ignoring the 
internal structure and complexity, describing it as a whole with a four vector.  

Now *ˆ
2

1
FTF  is or would be strong candidate to represent this, except that  is not a 

four-vector but is a line of energy momentum density tensor, i.e. does not change 
how (and is not) a four-vector. 
Of course *ˆFFΤ e *ˆψψΤ  are noticeably similar both in form and substance and if ψ is 
a spinor *ˆψψΤ  transforms like a four vector (see A6).  
Therefore a quantity structured as *ˆψψΤ  is a good candidate to represent the total 
momentum and energy of the electromagnetic field considered as a whole, ignoring 
its internal structure. 

*ˆ
2

1
FFΤ  does the same thing but giving an internal description point by point, what 

we are assuming foreclosed.  
 

Note however that the volume integral of *ˆ
2

1
FFΤ  gives the total energy momentum 

of the field, and they form a four vector (Wolfgang Pauli, [5]).  
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V and I in waveguide  

In the theory of waveguides is introduced with a certain degree of arbitrariness which 
remains available, a set of quantities V and I, voltage and current, although precisely 
(Franceschetti) "in the “not TEM” modes is no longer immediate the identification of 
V and I ". 
We pose with regard to transverse fields: 
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(Note: unfortunately I have not in this moment the references of the beautiful book of 
Franceschetti). 
The physical meaning of (24) is that in V and I deliberately ignores the detailed 
features in the transverse plane, putting it equal to constant.  
The meaning of (25) is that it requires however that the magnitudes V and I correctly 
reproduce the value of the total energy that propagates. 
Place 
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The new choice does not affect both the value of the transverse fields and the value of 
the energy that propagates, which have a physical meaning independent of any 
breakdown.  
Different choices would depend on the definition, arbitrary, of the impedance .I

V  
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Comparison of equations for V and the Dirac equation 
 
We can now to compare the equations of V and I with the equations between two 
individual components of the Dirac ψ .  
For example, the equations for a TE, with the sign convention IEEE tie ω+ , are:  
 

                         Ii
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dV ωµ−=  
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We look for a plane wave solution of Dirac equation with the dependence tie ω+  and 
for propagation along z. We also seek the solution in the form 0, 42 =ψψ  and with 
only 3ψ  and 1ψ  different from zero. Equations (16) provide (assuming c = 1 and 

m=0ω ): 
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We try a solution in the form:  
 
           zikti zAe −= ωψ 3  
(32)  
          zikti zBe −= ωψ 1  
 
Substituting in (31) yelds: 
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which with a little steps is necessary:  
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and finally (A arbitrary, A = 1):  
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               zikti ze −= ωψ 3  
(35)  
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k −

+
= ω
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This is in quantum mechanics the classical solution for the positron (positron = tie ω+  
with the sign convention of quantum mechanics).  
The solutions of V and I (30) for the TE mode do not appear these, but it is easy to 
show that in fact these are, the apparent diversity only depends on an arbitrary 
definition of voltage and current and impedance according to (27) (29 ).  
For those familiar with the transmission lines can help a digression of Electrical 
Engineering, who does not wish he could jump directly to (41).  
Equations (30) can be thought of as those of the propagation in a dispersive line with 
cut off 0ω . 
The equations of the line are: 
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is equal to the mode impedance TEZ  ("choice of Schelkunoff"):  
 

(39)       TEZ
Z

=

−
2

2
0

0

1
ω
ω

 



 14 

The line has equivalent Z and Y this way: 

 
The line is dispersive because the characteristic impedance (38) is not constant but 
depends on the frequency. The line resonates to:  
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Substituting into (30) we have: 
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So equations for voltage and current are actually the Dirac equation for 3ψ and 1ψ . 

Note: correctly equation holds for 'Iµ  and 'Vε , being 3ψ and 1ψ  without 
dimension.. 
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Not yet shown that V and I can form a complete 8 components spinor ψ , or a 4 
complex components 4321 ψψψψ  spinor, but it is easily feasible and is done in the 
Appendix. We anticipate some conclusions.  
Begin to consider the solution for the positron at rest than for (35) is tie ωψ +=3 , 01 =ψ . 
For the line, this means that there is voltage V and no current I, but with reference to 
the original meaning of V and I in (24) we can also say that there is no transverse 
magnetic field and there is transverse electric field.  
In these conditions, the quantities V and I or transverse electric field and transverse 
magnetic field describe what you can say an equivalent plane wave, not propagating, 
being zero the Poynting vector (* see note).  
We can give an electrical interpretation of ψ  explicitly linking to it an electric field  
vector ieiE ti

t
ˆˆ ωψ ==

r
, "fictitious" as defined by the same degree of arbitrariness with 

which V was defined.  
The electric field rotates on the transverse plane with tie ω+ . 
But now tie ω+  takes on real meaning of physical rotation and informs us that the 
transverse electric field is rotating in a precise sense.  
In this case, then what was the original solution of the line with " complex V " is 
enriched by an information of polarization. Now the Dirac equation has 2 distinct 
solutions for the positron at rest, solutions which are with opposite spin: 
 
-only 03 ≠ψ  
-only 04 ≠ψ  
 
and these corresponds to a TE right and a TE left.  
If you repeat the discussion done here with that of the line equivalent to the TM 
modes, one find  a solution at rest with only transverse rotating magnetic field. In 
conclusion we find that the Dirac equation has 4 distinct solutions at rest:  
-only 01 ≠ψ  
-only 02 ≠ψ  
-only 03 ≠ψ  
-only 04 ≠ψ  
and these provide TE and TM in opposite polarizations (fig. 1):  
 
       (fig. 1) 
TE in opposite polarizations 
 
 
 
 
TM in opposite polarizations 
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The description of the electromagnetic field with a spinor ψ  so not only is shown to 
be equivalent to the description with complex V and I, but is enriched with a precise 
physical meaning due to Clifford algebra.  
In essence, the conventional writing V and I with exponential ( tie ω+  for example, with 
the conventions of IEEE) becomes in itself a representation of a rotating physical 
thing or physical field.  
V (Volt) becomes (Volt/meter) and I (Ampere) becomes (Ampere/meter) and the 
equivalent line becomes an equivalent medium in which an equivalent plane wave 
propagates, but traveling in a dispersive medium.  
If we consider this spinor generalization is only a “small” variation from the 
Schroedinger point of view, but the variant takes account of polarization, and is 
relativistic ......(not for nothing are the Dirac equation)  
 
 
* Note: while at rest the correspondence V→ tE

r
→TE is physically reasonable, the 

correspondence TE ↔positron ↔ ( )03 ≠ψ  is ambiguous because it depends on the 
conventions on exponential that are (.........of course) opposed.  
For IEEE positive frequencies are tie ω+  while in quantum mechanics positive energies 
(frequencies) are tie ω− .  If the mathematics of the positron become the mathematics of 
the electron the TE-at rest would be represented by ( )01 ≠ψ , more like pleasantly the 
formal identification (18).  
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Radar polarization 
 
Notations of radar polarization propose, for example, a write of the electric field with 
the Jones vector: 
 

(44)    
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i.e. (note by the usual convention tie ω+ of the IEEE):  
 
(45)  ( )[ ] ( )[ ] y
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from which the ellipse of polarization depicted in Figure 2.  

 
 
We will show that the polarization is represented in Clifford algebra with the number 
(4 components "Clifford number" ijji ,,,1 )  
 

(46)       ti
j

ji eeee ω
π

τψ −−Φ−= 4  
 
A similar notation appears in the texts on the radar polarization, with the Pauli 
matrices with exponent, but ... difference is that here (46) is a spinor solution of Dirac 
equation at rest, then be able to completely describe the four-vector of the 
electromagnetic field in all conditions of motion.  

τ 

Ф 

yâ  

xâ  

Figura 2 
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More if you calculate the rotated position of the unit vector k̂  i.e. following Hestenes 
the unit spin vector *ˆˆ3 ψψke = , we see that 3ê  has a position in space in a way that 
reproduces the Poincaré sphere.  
The demonstrations were quickly made.  
The fact that (46) is a spinor solution of Dirac equation at rest (16) is shown in the 
following paragraphs and in any case is directly verified by substitution.  
To associate an electric field, for reasons that will be justified later, use the following 
rule. First separates ψ  in "spin up" and "spin down" components:  
 
(47)        −+ += ψψψ   
 
where: 
 

        ( )iiψψψ −=+ 2

1  

(48) 

        ( )iiψψψ +=− 2

1  

 
(This of course introduces a further resemblance between (46) and a wave function, 
all to appreciate and interpret. From a purely mathematical point of view, the (48) 
separating the components, respectively, with commute and anticommute with i ). 
Next associate with ψ  an electric field (or in general electromagnetic) with:  
 
(49)     ( )ijiE ˆˆ −+= −+ ψψ

r
                       (49bis)   ( )ijiHjiE ˆˆ −+=Τ+ −+ ψψ

rr
 

 
And now verify that (46) and provides a full expression of the polarization. If you in 
fact develop further (45) yields: 
 
(51)    ( ) ( ) yx attattE ˆsinsincoscoscossinˆsinsinsincoscoscos ωτωτωτωτ Φ−Φ+Φ+Φ=

r
 

 
whereas if it develops (46) with (49) is obtained after several passages  
 
(52)   ( ) ( ) jttittE ˆsinsincoscoscossin2ˆsinsinsincoscoscos2 ωτωτωτωτ Φ−Φ+Φ+Φ=

r
 

 
i.e. the same as (51) (except for a 2  different normalization).  
Clearly we've reproduced the physics of the elliptical motion  so we have reproduced 
the ellipse and the conventions of figure 2.  
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Same spinor ψ  carries a position of 3ê  in physical space x, y, z.  
And in fact:  
 
(53)         *ˆˆ3 ψψke =  
 
with some step from which we obtain:  
 
(54)    ( ) ( ) ( )kjike ˆ2sinˆ2cos2sinˆ2cos2cos*ˆˆ3 τττψψ +Φ+Φ==  

 
Is mentioned here the Stokes vector of components 321 ggg .But here 321 ggg  is not an 

abstract space but is a physical space, that of the position of *ˆˆ3 ψψke =  which is 

nothing but k̂  rotated through ψ  or following Hestenes the axis of rotation of the 
rigid body.  
These aspects are all to appreciate and understand.  
We can follow the explicit steps leading k̂  to 3ê   through successive rotations.  
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The last step rotate î of an angle τ2  towards k̂ , and the whole is then rotated Φ2

towards ĵ .(Note the differences which ĵ  and j , since kij ˆˆ= ). 
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The mapping between spinors and plane waves 

We noted that according to (24) with the "complex" quantities V and I (indices 1, i) 
we introduce complex quantities (1, i) that are in fact fields. Transversal fields, 
respectively electric and magnetic fields, namely constant field in x, y and a function 
only of z. Fields are "fictitious" at least as are the quantities V, I, but still adequate to 
describe correctly the transport of energy in waveguide. 
 
It happens that at rest V, or E, has two solutions (1, i) corresponding to the two 
circular polarizations of a TE.  
Two other solutions are there for TM, for a total of two electric and two magnetic 
solutions, in all 4 solutions (1, i).  
It remains to determine how to associate these 4 components (1, i) to the components 

4321 ψψψψ  of a spinor ψ . 
In other words, the question is what in ψ  is "electric" and what is "magnetic".  
In a previous section I noted that "the correspondence TE↔positron↔ ( )03 ≠ψ  is 
ambiguous and that" if the mathematics of the positron become the mathematics of 
the electron the TE at rest would be represented by ( )01 ≠ψ , more like pleasantly to 
formal identification (18)”.  
To follow the formal identification (18) assume that the components ijji ,,,1  of ψ  
correspond to electric fields.  
At this point it presents a second difficulty. 
The Dirac equation for plane wave at rest has the following 4 solutions  
 
             tie ωψ −=             01 ≠ψ ,  electron 
 
             tije ωψ −=            02 ≠ψ ,  electron 
(56) 
             tijie ωψ +Τ=          03 ≠ψ ,  positron 
 
             )( tijeji ωψ +Τ=      04 ≠ψ ,  positron 
 
Note that jiΤ   
 
(57)      Τ=Τ ˆˆˆ̂kjiji  
 
is the "imaginary of spacetime", squared (-1) 1)( 2 −=Τji  and commute with all 
elements jijiijji ΤΤΤΤ ,,,,,,,1  of even algebra. Is sometimes referred to as "i ” in the 
notation of Hestenes or Cambridge.  
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Take the two solutions "electron"  
 
             tie ωψ −=             01 ≠ψ ,  elettrone 
(58) 
             tije ωψ −=            02 ≠ψ ,  elettrone 
 
The two solutions have components ijji ,,,1 . 
The first of the two components i,1  is interpreted in a natural way as transverse 
electric field, just ask ieiE ti

t
ˆˆ ωψ −==

r
. 

For the second component ijj,  you can not have an interpretation as a transverse 
field. They do not see a reason.  
Moreover certainly in quantum mechanics it represents the solution “electron” with 
opposite spin. In order to have i,1  components and rotate in the opposite direction 
multiply j−  from right. The final formula is (49).  
 
Therefore the mapping that we have established with the (47) .. (49) between the 
even number ψ  and the vector E

r
 is so done, that the positions ijj,  are still related to 

transverse components i,1 , but rotating in opposite directions.  
The same applies to the ψ  components having jiΤ  in front, which have the same 
meaning but are magnetic components.  
As saying that the mapping (49) holds even if  ψ  is 8 components, and this provides 
not only E

r
 but also H

r
 in the form  

 
 
(49bis)              ( )ijiHjiE ˆˆ −+=Τ+ −+ ψψ

rr
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Summary  

We can now take stock and to go back over the progress made.  
Starting this time from the Dirac equation we arrive in a few moments to the 
complete representation of the electromagnetic field in various TE and TM modes 
and in various polarizations.  

tie ωψ −=  and tije ωψ −=  are solutions of the Dirac equation for plane wave at rest. 
(Note: the same is repeated with the same solution with jiΤ  in front).  
Therefore it is also solution  
 
(59)      ( )titi jee ωω ρρψ −− += sincos  
 
or any other linear combination of the type ( 1* =ψψ ): 
 
(60)    ( )tiitii jeeee ωω ρρψ −Φ−−Φ− += sincos  
 
which is a linear combination of the two basic solutions that appear in (59) and, for 
convenience, normalized to 1.  
The (60) can be rewritten either:  
            ( ) tijitii eeeeje ωρωρρψ −Φ−−Φ− =+= sincos   
 
or:  

(61)                  ti
j

ji eeee ω
π

τψ −−Φ−= 4  
 
just to put  

(62)           
4

πτρ +−=  

 
Apart from the irrelevance of the notations (use ρ  or τ  means having, for example, 

the circular tie ω−  for 0=ρ  or 
4

πτ = ) the (60) thus contains the polarization term used 

in the theory of polarization radar that is to say (“dropping the propagation factor "as 
they say in books) the factor:  

(63)      4

π
τ j

ji eee −Φ−  
 
However now (63) has very different meanings.  
By a factor of propagation tie ω−  becomes the solution of the Dirac equation (61) for 
an electric field in elliptical polarization, at rest.  
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By a factor of propagation tie ω+  and jiΤ  
 

(64)         ti
j

ji eeejie ω
π

τψ +−Φ−Τ= 4  
 
becomes the solution of the Dirac equation for a magnetic field in elliptical 
polarization, at rest.  
By a factor of propagation (see A5)  
 

(65)    ( ) zikti
j

ji zeeeej +−−Φ−Τ+= ω
π

τψ 41  
 

becomes "a polarization ti
j

ji eeee ω
π

τ −−Φ− 4  at the speed of light”. In short in terms of 
quantum mechanics, a neutrino or rather a collection of neutrinos. In terms of 
electromagnetic field a TEM that propagates in the positive z direction.  
Thus summing up the same factor of polarization (63) appears in all the formulas (61) 
(64) (65) except that now we are no longer in the presence of conventional scriptures 
of polarization but solutions of the Dirac equation.  
 
(From a radar point of view (63) can be considered the baseband signal after purified 
by "coho").  
(61) and (64) can "get moving" at speed v remaining solutions of Dirac equation, 
whereas (65) has no reference at rest, as it inevitably is moving with speed c.  
If you remain in circular base is immediate in each case derive the electromagnetic 
field in the usual form E

r
 andH

r
. 

For example from (61) occurs in sequence: 
 
(66)    jeeeeeee tiitiitiji ωωωρ ρρψ +Φ−−Φ−−Φ− +== sincos  
 
from wich is easy to recognize the components (respectively), with commute and 
anticommute with i . 
 
              tii ee ωρψ −Φ−

+ = cos  
(67)        
              jee tii ωρψ +Φ−

− = sin  
 
and then with ( )ijiHjiE ˆˆ −+=Τ+ −+ ψψ

rr
  

 
(68)       tiitii eeieeiE ωω ρρ −Φ++Φ+ += ˆsinˆcos

r
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Are clearly highlighted two opposing circular polarizations starting for 0,0 =Φ=t  
from the î  axis, while for 0≠Φ  starting from Φieî . 
 

 
 

 
Let's look instead (65), for example the case of pure circular polarization 
 
(69)   ( ) zikti zej +−Τ+= ωψ 1  

 

Ф 

ĵ  

î  

Figura 4 

Φieî  

 
ρcosî  

ĵ  

î  

Figura 3 

ρsinî  
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and then with a few quick moves (is +≡ψψ  because it commutes with i ) 
 
(70)      ( ) jjieieijeeiHjiE ziktiziktiziktizikti zzzz ˆˆˆˆ +−+−+−+−

+ Τ+=Τ+==Τ+ ωωωωψ
rr

  
 
Here are two vectors, electric and magnetic vectors of equal magnitude and 
corotating, but for t = 0 z = 0 the electric one start from î  and the other from ĵ . 
The situation then is that which is represented by a plane wave with Poynting vector 
directed according to the positive z direction and right rotation (R) in the IEEE 
conventions.  
 

 
 
 

 H
r

 

ĵ  

î 

Figura 5 

E
r
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Conclusions  

As I mentioned in the introduction to interest me in particular philosophical 
considerations. To be more explicit, not being able to show that the electron is an 
electromagnetic field, I set out to demonstrate that an electromagnetic field can be 
described as the electron with the Dirac equation.  
The polarization radar is reinterpreted with possible consequences theoretical or 
practical, Clifford algebra has here one of the applications in which they can better 
appreciate the geometrical meaning (for further considerations see A9, A10).  
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A1 
 
Without losing the physical meaning of the unambiguous application of the Dirac 
equation for a spinor characterizing TEM TE and TM, I can not say whether it has 
some basis the analogy TE ↔ electron and / or TM ↔ positron. It is possible that the 
analogy means that at rest for a TE or TM  
 
(71)         22* HE −=ψψ  
 
So for a TE or TM where there was only E or only H:  
 
(72)        0* 2 >= Eψψ  
 
(73)         0* 2 <−= Hψψ  
 
Since *ψψ  is invariant under Lorentz transformations, this value at rest is valid 
forever. Therefore (72) and (73) inform us that there are two different entities of this 
kind.  
Another reason for the analogy might lie in the "charge" positive or negative we must 
assign to TE and TM to describe their behavior when they are accelerated or slowed.  
This analogy (see below, A8) seems to depend on the opposite sign of ω  in tie ω .  
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A2 
 
It is interesting to note that î ĵ  k̂  are isomorphic with the Pauli matrices  
 

(74)     







=

01

10
xσ        







 −
=

0

0

i

i
yσ        









−
=

10

01
zσ  

 
In fact:  
 
(75)   12 =µσ              ikki σσσσ −=            zyx iσσσ =  

 
and they coincide exactly with the formulas (see below, A4)  
 
(76)         1ˆ2 =i    1ˆ 2 =j     1ˆ2 =k       jiij ˆˆˆˆ −=   etc 
               kji ˆˆ̂ Ι=         with kji ˆˆ̂=Ι  
  
Note that kji ˆˆ̂=Ι  play a role of the imaginary in the î ĵ  k̂  algebra because commute 
and has square -1.  
So too are isomorphic with the Pauli matrices:  
 
(77)        Τ̂î              Τ̂ĵ              Τ̂k̂  
 
Instead are isomorphic with the symbols of Hamilton, see (88) (89), then 

jidjciba +++1 is a quaternion of Hamilton.  
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A3 
 
I remember that the time axis Τ̂  rotated through a Lorentz transformation becomes 
the four-velocity û  ( 1ˆ 2 −=Τ , 1ˆ 2 −=u ). 
Indeed let for example:  
 

(78)         2
ˆˆ ϕ
Τ−

=
k

eR  
 
and rotate Τ̂  doing  
 

(79)     2
ˆˆ

2
ˆˆ

ˆ*ˆ
ϕϕ

ΤΤ−
Τ=Τ

kk
eeRR = ϕΤΤ ˆˆˆ ke  

 
But it is developing the exponential  
 

(80)    





















−

Τ+

−

Τ=Τ Τ

2

2

2

2

ˆˆ

1

ˆˆ

1

1ˆˆ

c

v

c

v

k

c

v
ek ϕ  

 
where  
 

(81)          
c

v
arcth=ϕ  

 
for which  

(82)      





















−

+

−

Τ=Τ= Τ

2

2

2

2

ˆˆ

1

ˆ

1

ˆ
ˆˆ

c

v

c

v

k

c

v
eu k ϕ  

 
is the four-velocity of the body. Its square is ( )1−  for any velocity v. In the case of 
(82) motion is the Z axis having been made a Lorentz transformation (rotation) 
according to the bivector Τ̂k̂  normal to the plane ( )τ,z . 
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A4 
 
Algebra here is based on 4 elements î  ĵ  k̂  Τ̂ , unit vectors in spacetime (sometimes 
referred to the authors 0321 ,,, eeee ). They have the following properties:  
 
(83)     1ˆ2 =i    1ˆ 2 =j     1ˆ2 =k     1ˆ 2 −=Τ   jiij ˆˆˆˆ −=   etc 
 
and I use the symbols i  j  Τ  to generalize the usual imaginary unit i  of the xy plane 
 
(84)      jii ˆ̂=    kij ˆˆ=    Τ=Τ ˆî  
 
All this, combined with the rule concerning the conjugates  
 
(85)        ( ) *** ABAB =  
 
generates all properties of interest.  
In fact is enough to admit that fact î  ĵ  k̂  do not change by conjugation (as it is 
intuitive that it should be) to derive for example, or rediscover, the usual rule for the 
conjugate *i :  
 
(86)        ( ) ijiijijjii −=−==== ˆˆˆˆˆˆˆ̂ ****  
 
and so is obtained  
 
(87)       jj −=*       Τ−=Τ*  
 
Apply, as a consequence of (83) and (84),  
 
(88)       12 −=i    12 −=j    12 =Τ  
 
(89)       jiij −=    ii Τ−=Τ    jj Τ−=Τ  
 
The 16 elements algebra  
 
1,      î  ĵ  k̂  Τ̂  (4 elements),    ji ˆ̂   Τ̂î  etc.  (6 elements),  kji ˆˆ̂  etc.  (4 elements),     Τ̂ˆˆ̂kji  
 
contains a subalgebra of 8 elements ( "even subalgebra of a Clifford algebra”, 
Hestenes)  
                   1,          ji ˆ̂   Τ̂î  etc.  (6 elements),          Τ̂ˆˆ̂kji  
 
rewritten at will as consisting of all possible products between  
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                  jijiijji ΤΤΤΤ ,,,,,,,1  
Element jiΤ  hence the previous property benefits of:  
 
(90)           ( ) jiji Τ=Τ *  
 
(91)            ( ) 12 −=Τji  
 
The complex  
 
(92)      iyxz +=     ( jyixzix ˆˆˆ +==r ) 
 
generalizes in spacetime with  
 
(93)      τΤ+++= jziyxz     ( Τ+++== ˆˆˆˆˆ τkzjyixzix

r ) 
 
(not confuse z in first and second member, sorry).  
We have 
 
(94)    2222* τ−++= zyxzz      ( *2 zzxxx == rrr ) 
 
On xy plane symbols or operators  
 

 (95)     
y

i
x ∂

∂−
∂
∂=∂  

 

        
y

i
x ∂

∂+
∂
∂=∂*  

 
are, respectively, to express the derivative and the Cauchy Riemann conditions. 
These are generalized in  
 
(96)    

τ∂
∂Τ−

∂
∂−

∂
∂−

∂
∂=∂

z
j

y
i

x
 

 

        
τ∂
∂Τ+

∂
∂+

∂
∂+

∂
∂=∂

z
j

y
i

x
*  

 
and the property is  
 

(97)        
2

2

2

2

2

2

2

2
**

τ∂
∂−

∂
∂+

∂
∂+

∂
∂=∂∂=∂∂

zyx
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Alternatively to the symbol or operator *∂  used to express the analyticity one can use 
the operator that is obtained by multiplying by î  from left  
(Note: if 0* =∂ f  also 0ˆ * =∂ fi  and vice versa).  
The operator thus obtained  
 

(98)     Vk
z

j
y

i
x

i ∂=Τ
∂
∂+

∂
∂+

∂
∂+

∂
∂=∂

r
ˆˆˆˆˆ *

τ
 

 
is formally a four-vector, as x

r . 
So on.  
This algebra differs from the STA for the choice of the base with the properties (83). 
The STA choice is for spacelike unit vectors )3,2,1( =kkγ  having square (-1). Thus 
there is a basis in spacetime that instead of (83) has the properties: 
 
(99)     1,1 2

0
2 =−= γγ k  

 
So doing to obtain a unit vector basis x, y, z  in space should be defined three 
bivectors (Hestenes, [3]): 
 
(100)    0γγσ kk =  
 
Hestenes note explicitly the opportunities of either choice ([3], p.25):  
“If instead we had chosen 1,1 2

0
2 −== γγ k  we could entertain the solution kk γσ = , 

which may seem more natural, because...”,  
because vectors in spacetime would also be vectors in space.  
I prefer to keep this option best suits to engineers (unit vectors î  ĵ  k̂  with square +1, 
imaginary unit i , complex number iyx + , etc.).  
Plus (Doran, [2]) for any of the two choices the even algebras are isomorphic, so 
working in even algebra there is no change in anything.  
I should also note that all the conditions that I used as a vector, complex number, 
imaginary unit and so on recall mnemonically concepts of the past and we can 
sometimes help but are materially misleading. All the entities we have introduced are 
simply numbers, and we can correctly call "Clifford numbers", simple underlying 
rules, sum product and division, of the Clifford algebra. The same goes for symbols 
such as asterisk or the arrow for vectors etc., here have the sole function of 
mnemonic recall. What matters are only the properties of algebra I have briefly 
summarized.  
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A5 
 
Spinorial solutions on TEM have some special properties which should be 
considered. We have seen that for the TE TM (with m=0ω  cut off frequency of the 
mode) the equation holds:  
 
(101)        Τ−=∂ ˆˆ* imi ψψ  
 
and for TEM  
 
(102)         0* =∂ ψ  
 
 
A solution of (102) is for example  
 
(103)       ( ) zikti zeTj +−+= ωψ 1  
 
who is "what becomes the polarization tie ω−  reaching the speed of light". In terms of 
spinors a neutrino, in terms of the em field the spinor describing a TEM.  
Note that formally the equation for ψ  is the same as for the electromagnetic field F , 
but it is obviously different the rule for the Lorentz transformation. The plane wave, 
fictitious, equivalent to the spinor ψ , is obtained from  
 
(104)     ( )ijiHjiE ˆˆ −+=Τ+ −+ ψψ

rr
 

 
while if it were a em field would be achieved by  
 
(105)             ( )kHjHiHjikEjEiEiF zyxzyx

ˆˆˆˆˆˆˆ ++Τ+++=  

 
(the situation is not very different from that in plane admits as analytic functions z  
and z ). 
The presence of the term  
 
(106)   ( ) ( )TkTj ˆˆ11 +=+  
 
in (103) gives rise to some special properties such  
 
(107)               Tk ˆˆψψ ≡  
 
 
Computing the four-velocity and spin through the usual relations:  
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(108)         *ˆˆ ψψTu =         *ˆˆ ψψks =  
 
we find using (107)  
 
(109)           su ˆˆ −=  
 
We can calculate explicitly the four-velocity that corresponds to the signal (103). In 
this case the normalization 1* =ψψ  is not possible because 0* =ψψ , but use an 
arbitrary normalization of ψ  with 2 . Thus we have  
 
(110)       =*ˆψψT 21 ( ) zikti zeTj +−+ ω1 T̂ zikti ze −+ ω ( )Tj−1 = 21 ( )Tj+1 T̂ ( )Tj−1  
 
and finally using (106)  
 
(111)       =*ˆψψT kTu ˆˆˆ −=  
 
The module of the four-velocity is zero and its correct meaning is  
(energy) = (momentum).  
The spin for the (109) is  
 
(112)        Tks ˆˆˆ −=  
 
a four-vector with 0ˆ2 =s .  
Consider the other solution with opposite spin  
The solution of (102) with 2ψ  and 4ψ  nonzero provides:  
 
(114)      Tk ˆˆψψ −≡  
 
This is "what becomes the polarization tije ω−  at velocity c ".  
This time is instead of (107)  
 
(114)      Tk ˆˆψψ −≡  
 
Similar calculations as the previous one lead to 
 
(115)       su ˆˆ =  
 
(116)       kTu ˆˆˆ −=  
 
(117)       kTs ˆˆˆ −=  
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The result is quite logical because the four-velocity can not be different from before 
(always the impulse is traveling toward the positive z). Instead we get a meaningful 
information about polarization that is that the spin in the two cases is opposite.  
We can identify the components of ŝ  with the 4 components of the Stokes vector of 
the radar polarization for which  
 
(118)     2

3
2
2

2
1

2
0 gggg ++=  
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A6 
 
Review the meaning of wanting to describe a four vector by a spinor associated with 
it.  
Let’s start from the study of a plane motion with complex numbers, rather than 
through the velocity vector tangent to the trajectory. Placing  

iev i ˆϕρ=  
instead of the analysis in terms of velocity vector  

v  
leads to the study of complex number  

ϕρ iez =  
We can say (after Hestenes) that the operation that has made here introduced a 
Clifford algebra constructed on the basis of the two unit vector of the plane:  

ji ˆ,ˆ  
and having identified as "imaginary" the bivector  

jii ˆˆ=  
The space of complex numbers z is thus identified as "even subalgebra of a Clifford 
algebra” of components, so if you want to call it, "real" 1 and "imaginary" i . The 
essential thing is that everything is clear, all roles, including geometric, are clarified. 
The word "complex" or "imaginary" is essentially useless or misleading.  
Let us now jump next to move from 2D to 3D space. Everything is repeated  with the 
added fact that I consider irrelevant even if it is necessary, that now the complex 
number must be applied half right and half left. All of this is known.  
The number now has 4 components and is called quaternion.  
With the usual language and the clarity of clarification we owe to David Hestenes 
(although my symbols) we can say that this introduces an "even subalgebra of a 
Clifford algebra” constructed on a 3 unit vector space:  

kji ˆ,ˆ,ˆ  
The components of quaternions are precisely the components "even" of algebra  

kjkiji ˆˆ,ˆˆ,ˆ̂,1  
The last and decisive step is to pass in 4D, i.e. the study of a vector in spacetime or 
four-vector with a complex number, according to the usual technique that we have 
seen in 2D and 3D space.  
It is necessary (and sufficient) to introduce a Clifford algebra on a basis of 3 unit 
vectors spacelike and one timelike:  

Tkji ˆ,ˆ,ˆ,ˆ  
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and this identifies a "even subalgebra of a Clifford algebra" to 8 components  
 

TkjiTkTjTikjkiji ˆˆˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,1  
 
Complex numbers ψ  are now Dirac spinors with the exception of details and / or 
notations. Even now, the complex number must be applied half right and half left. For 

example, if P
r

 is an energy momentum vector then *ˆψψTP =
r

 as with the quaternions 

(except here the use of T̂ ) and so on. The essential thing is that everything is clear, 
all roles, including geometric, are clarified.  

Note that the sub-case with components kjkiji ˆˆ,ˆˆ,ˆˆ,1  provides the aforementioned 

quaternions in 3D space while the components jiˆˆ,1  give the ordinary complex 
numbers in the 2D xy plane. 
Among the various consequences of the rotation in spacetime there is one now eg. a 

four-velocity can be rotated with a bivector like ji ˆˆ  and then rotate on ji ˆ,ˆ  plane, 

but also with a bivector like Ti ˆˆ  and then rotate on Ti ˆ,ˆ  plane or speeds up or 
slows down.  
The law of transformation "single-sidedly" of spinors is summarized effectively by 
Doran et. al. (see, for example. "States and operators in the Spacetime Algebra", 
Found. Phys. 23 (9), 1993).  
If a vector such  
 
(119)    *ˆˆ ψψks =  
 
is rotated through '*(_)' RR , the result of the rotation is  
 
(120)    '*ˆ''ˆ RsRs =  
 
then the corresponding spinor  must transform  
 
(121)    ψψ '' R=  
 
“We use the term spinor to denote any object wich transforms single–sidedly under a 
rotor R” (Doran).  
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A7 
 
We show that the equations of transmission lines for TE and TM modes in waveguide 
are the Dirac equations. 
The treatment of TM along with TE leads to these equations (e.g. by Franceschetti or 
[6], [7]): 
 
                              Ii

dz

dV ωµ−=  

TE                         Vi
dz

dI













−−=

2

2
01

ω
ωωε  

(122) 

TM                        Ii
dz

dV













−−=

2

2
01

ω
ωωµ  

                              Vi
dz

dI ωε−=  

 
Let in (27) with respect to TM  
 

(123)                  
0ωω

ωα
+

=  

 
and so you get a new set of equations for the TM similar to (41) for the TE.  
By grouping all  
 
                         ( ) 0'

'
0 =++ Iii

dz

dV µωω  

TE               

                         ( ) 0'
'

0 =−+ Vii
dz

dI εωω   

(124) 

                         ( ) 0'
'

0 =−+ Iii
dz

dV µωω  

TM               

                         ( ) 0'
'

0 =++ Vii
dz

dI εωω  

 
Conventions in use (eg Ramo) assumed an exponential dependence tie ω+  hence ωi  

comes from a derivative 
t∂

∂  and therefore we can rewrite the formulas for what they 

really mean (pitch for simplicity a system with V, I equidimensional, c = 1)  
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                         0'
'

0 =






 +
∂
∂+ Ii

dz

dV ω
τ

 

TE               

                         0'
'

0 =






 −
∂
∂+ Vi

dz

dI ω
τ

  

(125) 

                         0'
'

0 =






 −
∂
∂+ Ii

dz

dV ω
τ

 

TM               

                         0'
'

0 =






 +
∂
∂+ Vi

dz

dI ω
τ

 

 
Recalling (24) we can explain the various V (z) and I (z) in their sense of complex 
quantities ( )i,1  representatives of constant transverse fields, respectively TE and TM  

 

                         00 =






 +
∂
∂+ TE

TE Hi
dz

dE ω
τ

 

TE               

                         00 =






 −
∂
∂+ TE

TE Ei
dz

dH ω
τ

  

(126) 

                         00 =






 −
∂
∂+ TM

TM Hi
dz

dE ω
τ

 

TM               

                         00 =






 +
∂
∂+ TM

TM Ei
dz

dH ω
τ

 

 
The Dirac equation for a plane wave in z are  
 

                  013 =






 +
∂
∂+

∂
∂ ψ

τ
ψ im

z
 

 

               024 =






 +
∂
∂+

∂
∂− ψ

τ
ψ im

z
 

(127) 

                 031 =






 −
∂
∂+

∂
∂ ψ

τ
ψ im

z
               

 

              042 =






 −
∂
∂+

∂
∂− ψ

τ
ψ im

z
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How are grouped 4 complex quantities ( )i,1  TMTMTETE EHEH  in a Dirac spinor 

4321 ψψψψψ Τ+Τ++= jj  where 4321 ψψψψ  are number ( )i,1 ? Use for this the 
correspondence (49bis) already established between spinors and fields I remember 
here and then developed in full. We have: 
 
(128)         ( )ijiHjiE ˆˆ −+=Τ+ −+ ψψ

rr
 

 
and being  
 
(129)       4321 ψψψψψ Τ+Τ++= jj    
 
is obtained from (48)  
 
(130)                 ( )31 ψψψ jΤ+=+  
(131)                 ( )42 ψψψ Τ+=− j    
 
from which  
 
(132)   ( ) ( )ijjjjijiHjiE ˆ)()(ˆˆ

4231 −Τ+−+Τ+=−+=Τ+ −+ ψψψψψψ
rr

 
 
This can also explicitly write with the fields that correspond to +ψ and −ψ  
 
(133)             ( )ijiHEjiHEiFHjiE ˆˆ

−−++ Τ++Τ+==Τ+
rr

 
 
Given the significance of the various terms you'll find that it is written the spinor ψ  
differently. For comparison:  
 
(134)                  1ψ=+E        
                      3ψjjiH Τ=Τ +     
                           ( )jjE −=− 2ψ  
                       ( )jjiH −Τ=Τ − 4ψ  
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Obtaining 4321 ψψψψ  and replacing in the Dirac equation (127) it comes with a long 
but easy steps  
 

                         00 =






 +
∂
∂+ +

+ Ei
dz

diH ω
τ

 

              

                         00 =






 −
∂
∂+ −

− Ei
dz

diH ω
τ

  

(135) 

                         00 =






 −
∂
∂+ +

+ iHi
dz

dE ω
τ

 

               

                         00 =






 +
∂
∂+ −

− iHi
dz

dE ω
τ

 

 
which are precisely the equations (126) in waveguides by Franceschetti - Ramo but 
also the Dirac equation where it is simply done the following name change in ψ  
components: 
 

(136)             



















=



















−

+

−

+

jijH

iH

jjE

E

4

3

2

1

ψ
ψ
ψ
ψ
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A8 
 
We start from the Dirac equation (127) for free particle with the components 1ψ  and 

3ψ : 
 

(137)       013 =






 +
∂
∂+

∂
∂ ψ

τ
ψ im

z
 

 

             031 =






 −
∂
∂+

∂
∂ ψ

τ
ψ im

z
 

 
These may be a TE or a TM depending on if resolved at rest with 01 ≠ψ  or with 

03 ≠ψ . 
The Dirac equation in the presence of potential energy U for an electron becomes  
 

(138)           013 =






 ++
∂
∂+

∂
∂ ψ

τ
ψ imiU

z
 

 

                   031 =






 −+
∂
∂+

∂
∂ ψ

τ
ψ imiU

z
 

 
 
These resolved with 01 ≠ψ  at rest  provide (placing 0ω→m ) 
 

(139)     zikti ze +−= ωψ 1        zikti zBe +−= ωψ 3            
( )
( ) 0

0

ωω
ωω

+−
−−

=
U

U
B  

(140)      ( ) 2
0

22 ωω −−= Uk z  

 

mezzo1 mezzo 2 

U 
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Formula (140) for zk  allows the calculation of speed in medium 2 and therefore also 
allows an analogy with the propagation of TE in a waveguide 2 with a different cutoff 
frequency (or size 2d ). 

 
 

For this we use the formula 
z

g dk

d
v

ω= for the group velocity in a waveguide. 

From (140) is obtained 
 

(141)        ( ) 2
0

2 ωω −−= Uk z       so 

 

(142)         
2

2
2,01

ω
ωω −==

z
g dk

d
v         where  

 

(143)         

ω

ωω
U−

=
1

0
2,0  

 
The (143) implicitly provides the size of the waveguide 2 with respect to the 
waveguide 1. Conversely given a transition between a guide 1 of size 1d  and a second 
guide of size 2d  the (143) gives the value of U to be included in the Dirac equation to 
represent this transition between waveguides.  
The analogy provides useful information for the interpretation of the "Klein paradox".  
In short for  0ωω −=U  the (143) provides 2,0ωω ≡  i.e. waveguide 2 is at cutoff and 

the wave becomes evanescent. If U increases further, for ω=U  waveguide 2 closes 
completely and a further growth of U has no physical sense. Explicitly 12 )1( dUd ω−=  

and thus if ω≥U  the size of the second waveguide was negative i.e. the equation 
(138) is no longer representative of the phenomenon.  
Now suppose that the same transition between waveguides of the previous case 
interests instead of a TE a TM.  

guida 1 

01,ωd  

guida  2 

2,02 ,ωd  
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From the electromagnetic point of view with the same parameters 0,ωω  and size of 
the waveguide 2 makes no difference whether it is a TM or a TE in the sense that the 
final velocity of the field in medium 2 is the same. However to achieve this is 
necessary as we will take hours instead of (138) other equations in which the 
potential energy is changed in sign, as happens with the change of sign of electric 
charge ( eVU ±= ) in the Dirac equation.  
Precisely the equations must be like those of the positron  
 

(144)         013 =






 +−
∂
∂+

∂
∂ ψ

τ
ψ imiU

z
 

 

                   031 =






 −−
∂
∂+

∂
∂ ψ

τ
ψ imiU

z
 

 
They actually have solutions  
 

(145)     zikti ze −+= ωψ 3        zikti zBe −+= ωψ 1            
( )
( ) 0

0

ωω
ωω

+−
−−

=
U

U
B  

             ( ) 2
0

22 ωω −−= Uk z  
 
From these derive the same formulas (141) (142) (143) and the same speed in the 
guide 2, which would have a TE.  
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A9 
 
In summary, if one describe an electromagnetic field as a whole without looking 
inside, you find that it is described by a Dirac spinor and the Dirac equation for the 
electron.  
The simple mechanism, and the reason why this happens is as follows:  
describing a given electromagnetic field through total energy momentum vector (ie 
the volume integral of density given by the energy and momentum tensor) they form 
a four vector.  
At this point the game is done because, as shown in STA or Space Time Algebra 
(Hestenes, Doran etc.) to give a four vector you must (or can) give a Dirac spinor.  
From here, a lot of consequences and reflections in various directions.  
One, for example, clarifying the role of 'entity' spinor. Consider the quaternions that 
one right and one left, describing a 3D vector. Well as you can see with the 
mathematics of the STA the Dirac spinors, one operating from the right and one left, 
are used to give a four vector, 4D (relativistic).  
(the game so he did appear spinors and Dirac equation is exactly what you want to 
describe the electromagnetic field with a given four vector, with the volume integral 
of energy momentum density, i.e. as a whole, i.e. without looking inside).  
More, the Dirac equation, which underlie the spinors, we find very elegant and 
nothing but the equation, relativistic and written in terms STA, of the usual equations 
of EM fields in waveguide written in terms of V and I.  
There are several other consequences. He recalls a few.  
Chosen as em field a field in waveguide that will also travel to velocity v different 
from c, the spinor has been provided without the required two distinct types of field, 
which turns out to be the TE and TM each in right or left polarization, for a total of 4 
possible solutions. At the speed of light instead they are provided only 2 (logical, 
because a TE at this point is indistinct from a TM). 
We now want to give our electric field the ability to go faster or slower?  
In the Dirac equation, which underlie the spinors, we must introduce a coupling 
parameter formally identical to the electric charge, after which widen or tighten the 
guide (ie, vary the speed of the field) appear in the equation with a scalar electric 
potential similar to the electrical potential "phi".  
So also it appears likely the opportunity to clarify some things about our methods.  
Example, the Dirac equation, which is still subject of debate and discussion (see ex. 
[8 ],.....[ 12] or [13] D. Hestenes, "Mysteries and Insights of Dirac's Theory"), 
provides in automatic dual possibility of particle / antiparticle and a double spin state.  
Now it is certainly significant that with only the mathematical condition to describe a 
four vector with the spinor associated with it, for an  electromagnetic field 
automatically follows a double possibility of state TE / TM in a double state of 
circular polarization.  
I.e. a complete analogy exists and is not the only one. It follows that the Dirac 
equation lends itself to be investigated in this case than in the case, less "accessible", 
the electron. 
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A10 
 
Among the various consequences, I think (and this is one of the many reasons for this 
paper) that the study of radar scattering from a target, with the notations of Clifford 
algebra we can draw a parallel to the interactions between signal-to-target and 
electroweak interactions.  
Notations of Clifford algebra are not obviously essential but to create a parallel could 
be extremely educational and physical.  
Perhaps we could deepen, with a concrete example, which is visible, that is ... the 
example of scattering from a radar target, what are the various conventions, 
methodology, rules, particles, interactions and so on and so forth that appear in the 
Standard Model.  
I go into some detail.  
The basic observation from which to start is as follows.  
We have seen that ψ  was ultimately responsible for providing the four-vector *ˆψψΤ . 
It is assigned a spinor with 8 parameters while 4 are enough to assign a four vector. 
So there is a fourfold arbitrariness in ψ  (Hestenes, [11], [14]), which is represented 
by the 4 parameters transformation:  
 
(146)    ρνβψψ jiijjie +Φ−+Τ→'  
 
It is indeed significant that an arbitrary transformation of this kind leaves *ˆψψΤ  
unchanged.  
Now the group ρνβ jiijjie +Φ−+Τ  is the group ( ) ( )12 USU ⊗  ( ijji ,,  is )2(SU ). It follows that in 
the description of the electromagnetic field with a four-vector *ˆψψΤ  you can submit 
ψ  to a transformation ( ) ( )12 USU ⊗  without altering the energy momentum vector. 

( ) ( )12 USU ⊗ therefore acts as an "internal symmetry".  
We may then assume with a little imagination  
a) that the (146) is accepted as a legitimate global transformation into a new equation 
that can accept it ("a modification of the Dirac equation to accommodate the larger 
gauge group", Hestenes [11]).  
The Dirac equation (13) as it is formulated only accepts the 'electromagnetic gauge 
group " Φ−ie . 
The new equation ..... could be (?) the equation of a neutrino or from a radar point of 
view a TEM namely:  
 
(147)      0* =∂ ψ ; 
 
b) that in the new equation the transformation from global to local gives, following 
the usual techniques of the gauge fields, the various electroweak forces acting on a 
TEM / neutrino and / or TE / TM, but this time it is clearly visible meanings.  
Let's stop here with the imagination.  
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In the words of Hestenes to finish one of his most imaginative articles:  
"That's enough speculation for one paper!"  
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A11 
 
From:  
 
(7)     ( )kHjHiHjikEjEiEiF zyxzyx

ˆˆˆˆˆˆˆ ++Τ+++= → HjiEiF
rr

Τ+=ˆ  

 
is immediate and very elegant derive Maxwell's equations with div and rot.  
Here is a (long) introduction on a property of the product in Clifford algebra, 
properties that I don’t mentioned in A4.  
In Clifford algebra arises naturally a product that incorporates scalar product and 
vector product.  
It starts from the obvious equality:  

(147)        ( ) ( )baabbaabab −++=
2

1

2

1  

 
This truism becomes a raison d'etre for the fact that there are elements of Clifford 
Algebra which anticommute, so it makes sense to speak of ba  distinct from ab . 
They are also potentially opposite.  
An analysis of (147) with some examples immediately shows that 
 

(148)         ( ) babaab •=+
2

1  

 
is the usual inner product between vectors and is a scalar, while what should be called 
exterior product:  
 

(149)         ( ) babaab ∧=−
2

1  

 
remember, but do not call it that, the vector product ba × . 
For if a and b  are vectors ba ∧  is a bivector, while ba ×  is a vector.  
Between the two the formula holds:  
 
(150)        ( )( )bakjiba ×=∧ ˆˆ̂  
 
you can also use reversed  
 
(151)      ( )( )bakjiba ∧−=× ˆˆ̂  
 
The (151) is not necessary to send her to mind because it is easily remembered by the 
example:  
 
(152)        ( )kkjiji ˆˆˆˆˆ̂ =  
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that relates the bivector ji ˆ̂  with the associate vector kji ˆˆˆ =×  .  
(Note: this involved the faults and merits of Gibbs. He took the blame and the credit 
to understand that ba ∧ , born as bivector, was a vector, and as such he is in fact ba ×  
and so the engineers deal with for example HE

rr
× , as a vector.  

This hides the true quality of the product of two orthogonal vectors, which are those 
of an entity bivector. However (151) make things right).  
We extend the (151) to vector operator V∂

r
 (3D):  

 

(98)     Vk
z

j
y

i
x

∂=
∂
∂+

∂
∂+

∂
∂ r

ˆˆˆ  

 
From (147 )...( 150) we have successively  
 
(152)       ( )( )akjiaaaa VVVVV ×∂+•∂=∧∂+•∂=∂

rrrrr
ˆˆ̂  

 
and therefore the operators div and rot are "embedded" in the 'Clifford algebra 
through the relation:  
 
(153)       ( )( )rotakjidivaaV

ˆˆˆ+=∂
r

 
 
 
Then immediately derive Maxwell's equations with div and rot.  
From:  
 
(6)            0ˆ* =∂ iF → 0ˆˆ * =∂ iFi  
(7)           ( )kHjHiHjikEjEiEiF zyxzyx

ˆˆˆˆˆˆˆ ++Τ+++= → HjiEiF
rr

Τ+=ˆ  

 
immediately:  
 

(154)       ( ) 0ˆˆˆˆ)ˆ())(ˆˆˆˆ( =+
∂
∂+∂=+

∂
∂+

∂
∂+

∂
∂+

∂
∂

HTkjiETHTjiETk
z

j
y

i
x V

rrrrr

ττ
 

 
Development and separation of the indices comes quickly:  
 

(155)     0,0,, ==
∂
∂=

∂
∂−= HdivEdiv

E
Hrot

H
Erot

rr
r

r
r

r

ττ
 

 
which are the Maxwell equations.  
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