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                                                Abstract  

  Motivated  by  Hilbert `s  sixth  problem  on  axiomatization  of  physics , the  author  is  proposing  a  rather  

provocative  abstract  axiomatic  framework  called  S - formalization , where  S  is  an  arbitrary  physical  

system .The proposal  is  an  attempt  to  provide  a  general  axiomatic framework , from  which  mathematical  

frameworks  of  new  physical  theories  can  be  formulated  on  firm  axiomatic  basis  and  the  mathematical  

frameworks  of  subjects  such  as  standard (nonrelativistic) quantum  mechanics  are  naturally  derived  as  

special  cases  of  this  general  axiomatic  framework.                                                 Introduction     
   
  Quantum  mechanics  is  without  doubts  a very  successful  subject  in  its  own  right , its predictions  have  

been  successfully  consistent  with  experimental  data  over  a  vast  number  of  observed  phenomenon  in  the  

last  87  years. Quantum  mechanics  had  also  some  impact   in  the  development  of   mathematics  in   20
th

  

century , new  mathematical  theories  such  as  operator  algebra  theory  were  born  as  a  consequence  of   the  

need  of  new  mathematical  tools  to  deal  with   the  subject . 

 Yet  decades  after  the  first  axiomatization  of  quantum  mechanics  due  to  von Neumann , the  foundations  

of  the  subject  still  somehow  puzzling  and  obscure ! In  fact , von  Neumann  himself   was  not  completely  

convinced  about  his  axiomatization  as   he  famously  wrote  “ I would  like  to  make  a  confession  which 

may  seem  immoral : I do not believe  absolutely  in  Hilbert  space  any  more  “. So  he  spent  some  time  

looking  for  a  more  general  alternative  to  the  Hilbert  space  approach !  

 The  reader  may  now  ask , how  come  the  foundations  of  quantum  mechanics  is  obscure  and  puzzling  

despite  the  powerful  experimental  support  of  the  subject ? 

There  are  quite  few  possible  answers  to  the  question , but  I  will  just  consider  the  following  one : 

 

• Prior  to  quantum  mechanics , from Newton  to  Einstein , a fundamental  physical  theory  has  always  

evolved  from  simple  and  intuitive  physical  principles. Take  for  example  Newton`s  principle  “ An  object  

remains  at  rest  or  uniform  motion  unless  acted  upon  by  an  external  force  “  or  Einstein`s  principle  “  

The  speed  of  light  is  the  same  in  all  inertial  frames  “. With  these  simple  principles , both  physicists  

were  able  to  successfully  derive  the  mathematical  frameworks  of   their  respective  theories. On  the  other  

hand , quantum  mechanics   as  formulated   by  the  likes  of  Heisenberg , Schrodinger , Dirac  and  von  

Neumann , does  not  provide  any  physical  principle  that  justifies  the  use  of  its  abstract  mathematical  

framework. In  fact , many  attempts  have  been  made  to  find  the  physical  principles  ( if  there  is  any ! ) 

underlying  the  abstract  mathematical  framework  of  the  subject ,  but  so  far  none  of   the  attempts  have  

gained  a  universal  acceptance  in  the  physics  community. 

  As  far  as  S - formalization  is  concerned ,  the  reader   may   ask , why  do  we  need  to  add  more  

abstraction  to  the  already  abstract  mathematical  framework ? I  will  answer  the  question  as  follows ; 

 

 • First  in  my  view , quantum  mechanics   is  just  a  very  special  case  of  a  general   axiomatic  scheme  

that  hasn`t  been  yet  clarified  or  fully  understood  by  physicists ! This  axiomatic  scheme  is  abstract  by  

nature , it  often  lacks   the  so  called  “ physical  principles “ , but  nonetheless  it  has  an  astonishing   power  

of  prediction. Second , I  think   abstraction  is  the  only  way   to  clarify  and  give  this  scheme  a  firm  

foundations. In  this  regard , let  us  take  the  example  of  classical  probability  theory. Before  Kolmogorov , 

the  foundations  of  the  subject  was  very  obscure , indeed  some  thought  it  would  remain  obscure  forever 

! However , after  Kolmogorov  came  along  with  his  abstract  axiomatic  treatment  of  the  subject , the  

nature  of  the  subject  become  more  clear  and  all  the  mysteries  vanished ! I  intend  to  follow  the  

example  of  Kolmogorov , and  although  I  don`t  claim  to  solve  or  clarify  all  the  mysteries  that surrounds  

quantum  mechanics , I  hope  the  axiomatic  framework  presented   in  this  manuscript  will  provide  a  better  

understanding   of  the  subject  and  its   relationship  with  other  subjects   such  as  classical  mechanics. I  

also  hope  the  framework  will  provide  a  new  insight  on  Hilbert`s  sixth   problem , especially  in  regard  

to  mechanics. 



   I  will  finish  the  introduction  with  the  following  quote :  
“  If geometry  is  to  serve  as  a model  for  the  treatment  of  physical  axioms, we  shall try  first  by  a  small  

number  of  axioms  to include as large  a class  as possible of  physical  phenomena, and  then  by  adjoining  

new axioms  to  arrive  gradually  at  the  more  special  theories.…. The  mathematician  will  have  also  to  

take  into  account not  only of  those theories  coming  near  reality, but  also , as  in  geometry, of  all  logically  

possible theories. He  must  be  always  alert  to  obtain  a  complete  survey  off  all  conclusions  derivable  

from  the  system  of  axioms  assumed.“ David  Hilbert. 

  Why  Set  Theory  In  Foundations  Of  Physics  ? 

 Set  theory ( ZFC )  has  without  doubts  established  itself  at  the  centre  of   modern  mathematics. It  is  

widely  used  as  the  starting  point  for  the  axiomatic   foundations  of   subjects  such  as  abstract  algebra , 

topology , mathematical  analysis ,.....etc. The  various  mathematical  structures  encountered  in  these  

subjects  are  formally  defined  within  the  language  of  set  theory.  

 The  mathematical  frameworks  of  our  best  physical  theories  are  formulated   around  mathematical  

structures  such  as  manifolds , vector  spaces , …etc. For  instance , the  mathematical  framework  of  

Classical  mechanics  is  formulated  around  a  very  special  type  of  manifold ( symplectic  manifold )  and  

the  mathematical  framework   of  standard  Quantum  mechanics  is  formulated  around  a  very  special  type  

of  vector  space  ( Hilbert  space ).All  these  mathematical  structures  have  the  set  structure  underlying  

them. So  it  seems obvious  ( at  least  to  me )  that ,  if  one  wishes  to  construct  a  general  axiomatic  

framework , from  which  the  mathematical  frameworks  of  physical  theories   that   rely  on  particular  

mathematical  structures  are  to  be  derived  as  special  cases , then  a  natural  starting  point  to  construct  

such  a  general  framework  must   be  set  theory ! Therefore in  my  view , set  theory  can  provide  a  good  

axiomatic  foundations  for  theoretical  physics , just  as  it  did  for  mathematics  in  the  20
th

  century ! 

 In  recent  years ,  there  has  been  a  lot  of enthusiasm  around  category  theory  in  both  mathematics  and  

physics , a  lot  of  attempts  have  been  made  to  apply  categorical  concepts  to  physics  ( quantum  

mechanics  in  particular ). Although  I am  not  enthusiastic  about  category  theory , the  axiomatic  

framework  we  develop  in  this  paper  is  my  in  my  opinion  flexible  enough   for  a  generalization   to  

categories , so  that  one  may  talk  about   S - formalization  on  an  abstract  category  C !   
Convention    

• ∅  will  denote  the  empty  set.  
• Given  two  sets  X1  and  X2  , their  union  will  be  written   X1 ∪ X2   as  usual  and  their   intersection written  X1  ∩ X2  as  usual. In particular  X1 ⊆ X2   means   “  X1 is  contained  in  X2 “  and  Map( X1 , X2 )  denotes  the  

set  of  all  maps  f  :  X1  →  X2 . 
• Given  a  finite  sequence  of nonempty  sets  X1 , .....…, Xn   , � X� �i = 1  =   X1 ×  .........× Xn   denotes  their  standard   

Cartesian  product.     
• ℝ  denotes  the  set  of  real  numbers  and  ℂ  denotes  the  set  of  complex  numbers. 
• M will  denote  a  symplectic  manifold  and  C!( M )  will  denote  the  set  of   all  real  valued  smooth  

maps  f  :  M  →  ℝ. C!( M )  has  a  natural  structure  of   a  Poisson  algebra. 
•  ℋ  will  denote  a  separable  complex   Hilbert  space  and  #( ℋ ) will  denote  the  set  of  all  self - adjoint  

operators  on  ℋ. Also  B( ℋ )  denotes  the  set  of  all  bounded  operators  on  ℋ. 
• A*  will  denote  a  unital  ℂ*-  algebra  and  F1( A*, ℂ )  will  denote  the  set  of  all  positive  linear  
functionals  2 :  A* → ℂ . Also  #(  A* )  will  denote  the  set  of  all  self - adjoint  elements  in  A*.  
• h = 

345 , where  3 denotes  the  Planck`s  constant .We shall  set  h = 1  whenever  convenient  to  do  so. 



1  The  Mathematical  Frameworks  of  Classical  and  Quantum  mechanics 
 

 The  Classical  and  quantum  mechanical frameworks  for  describing   a  physical  system  S  consist  in  the  

following  two  schemes  :  

1. Classical  mechanics. We  first  identify  a  symplectic  manifold  M ( phase space ) , then  we  identify  the  

states  of  our  system  S  with  points  in  M and  the  observables  of  S  with  real  valued  smooth maps  on  M 

, i.e. elements  of  C∞(M).The  dynamics  of  the  system  is  given by the  flow  generated  by  the  Hamiltonian  

vector  field  on M. This  scheme  works  so  well  in  describing  macroscopic  objects  such  as  nasa  rockets  

and  baseballs , however  the  scheme  fails  to  describe  subatomic  objects  such  as  electrons ! 

2. Quantum  mechanics ( Hilbert  space  approach ).We  first  identify  a  separable  complex  Hilbert  space  ℋ, then  we  identify  the  states  of  our  system  S  with  vectors ( but sometimes  with  rays )  in  ℋ and  the  

observables  of   S  with  self - adjoint  operators  on  ℋ.Now  in  respect  to  the  dynamics , there  are  two  

pictures  :  the  Schrodinger  picture  where  the  state  vectors  evolve  in “ time “ according  to  the  so - called  

Schrodinger  equation , and  the  Heisenberg  picture  where  the  observables  evolve  according  to  

Heisenberg`s  equations . The  abstract  Hilbert  space  approach  to  quantum  mechanics  was  due  to  von 

Neumann , when  he  realized  that  the  two  versions  of  quantum  mechanics , namely  Heisenberg’s  matrix  

mechanics  and  Schrodinger’s  wave mechanics  had  something  very  deep  in  common. That  deep  thing  

was  the  mathematical  structure  of  Hilbert  space  that  nobody  had  yet  defined ! More  precisely , 

Heisenberg  was  using  the  space  67
  of  square - summable sequences of  complex numbers  while  

Schrodinger  was  using  the  space  L7(  ℝ9 )  of  square  integrable  complex  functions , so  interestingly  both  

physicists  were  already  working  with  Hilbert  spaces   without  being  aware  of  it !  

Another  approach  to  quantum  mechanics , is  the  algebraic  approach. In  this  approach , we  indentify  a 

unital  ℂ*
- algebra  A

*, then  we  associate  the  states  of  our  system  S  with  positive  linear  functional  on  

A
*  and  the  observables  with  the  self - adjoint  elements  of  A

*.   
 1.1 The  relationship  between  the  Classical   and  Quantum  mathematical  frameworks 

 

  As  we  can  see  from  above ,  the  language  of  the mathematical  framework  of  classical  mechanics  is  

symplectic  geometry , while  the  language  of  quantum  framework  is  basically  linear  algebra ( with  some 

sophisticated  analysis ). However , according  to  a  certain  physicists  convention , if  ψ ∈  ℋ  is  a vector  

representing  some  state  of   system  S  and  β ∈ ℂ is  non zero , then βψ  represents  the  same  state  as  ψ ! If  

we  accept  this  convention , then  the quantum  mechanical  state  space  of  S  is  actually  the  projective  

Hilbert  space  ℙℋ , i.e. ℙℋ = ℋ − > 0 @  ∼B  , where  ∼  is  the  equivalence  relation ψC ∼ ψ7 iff  there  

exists  a  non  zero β ∈ ℂ  such  that  ψC = βψ2 .Hence  the  states  of  S  are  actually  represented  by  rays ( , 

i.e.  equivalence classes ). 

 Now  the  projective  space  ℙℋ   has  obviously  very  interesting   geometrical  properties , for instance  it  

can  be  made into  a  Kahler  manifold. Indeed  many  attempts  have  been  made  to  geometrize  quantum  

mechanics  via  the  projective  Hilbert  spaces  of  the  systems  under  consideration , however  all  the  

attempts  are  undermined  by  the  lack  of  another  physicists  convention , namely  the  superposition  

principle , which  is  a  central  conceptual  tool  for  very  important  practical  applications  of  quantum   

mechanics. Because  of  this  obstacle , some  argue that  the  superposition  principle  should  be  generalized  

in  a  non trivial  geometrical  fashion , while  others  argue  that  the  principle  is  not  essential  and  so  not  

necessary  at  all ! Anyway  for  most  practical  applications  of  quantum  mechanics , the  linear  algebraic 

structure  of  the  Hilbert  space is  more  predominant  than  the  projective  structure  of  the  Hilbert  itself. 

 

Quantization. Given  the  differences  between  the  classical  and  quantum  mathematical  frameworks , an  

attempt  known  as  quantization  was  introduced  in  the  literature. Roughly  speaking , the  goal  of  

quantization  is  to  find  a  general  procedure  that  produces  a  quantum  mechanical  description   of  a  

system  S  from  its   classical  description. Roughly  speaking , given  a  system  S  and  its  classical  phase  



space M  with  symplectic  form  D , one  can  view  quantization ( in  a  naive Dirac  sense )  as  a  procedure  E  satisfying  conditions  such  as  the  following  : 

 

• E ( M ) = ℋF , where  ℋF  is  a  certain  separable  complex  Hilbert  space.    

 

• E ( f ) ∈ # (  ℋF ) , where  f  ∈  C!( M )  represents  some  observable   of  system  S. 

• E ( β 
. 
f  )  = β 

.
 E ( f )  ∀ f  ∈  C∞( M ) and ∀ β ∈ ℝ. 

• E ( fC + f7 ) = E ( fC )  +  E (  f7 )  ∀ fC, f7 ∈  C∞( M ). 

• E ( > fC , f7 @  ) = iℏ K E ( fC )  , E (  f7 ) L , where  >  , @  is  the  standard  Poisson  bracket defined  as  > f1 , f2 @ = ω (  XN1  , XN2 ) and  K  , L  is  the  standard  commutator  of  operators  given  as  K E ( fC )  , E (  f7 ) L  = E ( fC ) E (  f7 ) − E (  f7 )E ( fC ).   

• E ( idC∞( M ) ) = IℋM , where  idC∞( M ) is  the  identity in  C!( M )  and  IℋM is  the  identity  

operator  in  ℋF.  

 Unfortunately  there  isn`t   a general  ( and physically  plausible ) quantization  procedure  on  phase  spaces  

of  arbitrary  physical  systems. In  fact  there  are   the  so -  called   “ No  go  theorems “  against  the  

possibility  of  a  mathematically  and  physically  plausible  general  quantization  procedure  over certain phase 

spaces including the standard  phase  space ℝ2n ! Geometric quantization  and deformation quantization , are 

currently  very  popular  approaches  amongst  mathematicians  and  mathematical  physicists. 

 From a foundational point  of  view , our  goal  is  to  make  the  S - formalization   framework   a  common  

ground  for  both  classical  and  quantum  mathematical  frameworks   as  illustrated  in  the  following  

diagram  : 

 

    
 

  The  easiest  and  obvious  way  of  uniting  the  classical  and  quantum  mathematical  frameworks  into  a  

single  general  axiomatic  framework  , is  to  first  indentify  the  fundamental  notions  that  are  essential  in   

both  mathematical  frameworks , then  to  formulate  the  general  axiomatic framework  around   these  

fundamental  notions.This  is  indeed  my  general  strategy  towards  the  S - formalization framework. In  

particular , the  notions  of  “ state  and  observable “   are  in  my  view  the  most  fundamental  notions  of  

both  classical  and  quantum  mathematical  frameworks ! Therefore , the  S - formalization  framework  will  

be  formulated  around  these  two  central   notions  of  both  classical  and  quantum  mathematical  

frameworks. 

S - formalization 

Classical  mechanical 
description  of  S

Quantum mechanical 
( Hilbert  space ) 
description  of   S

Algebraic  
description  of  S



2   Mathematical  concepts  towards  the  general   axiomatic  framework          
Definition 2. Let  X1  and  X7  be  sets. A  bridge  from  X1   to   X7  is  a  pair  written  ( XC  , Å( XC , X7 ) )  such  

that  Å( XC, X7 ) ⊆ Map( XC , X7).  
  

 The subset  Å( XC  , X7 ) is  called a bridge support.When  X7 ⊆ XC then ( XC  , Å( XC , X7 ) )  is  called  an  auto - 

bridge  on  X1 . For  our  purpose  in  this  paper , XC and  X7  are  either  mathematical  structures  or  contained  

in  some  mathematical  structure.We  can  make  a  lot  of  interesting  constructions  with  bridges , but  in  this  

manuscript  we  shall  just   focus  on  setting  the  general  framework  rather  than  mathematical  constructions 

, however  a  patient  reader  is  encouraged  to  do  so ! Hopefully  there  will  be  a  follow  up  of  this  

manuscript  in  future  that  will  give  more  emphasis  on  mathematical  constructions.  A  category  theorist  

can  obviously  define  the  notion  of  bridge  as  follows : let  XC  and  X7   be  objects  in  a  category  C ,  a 

bridge  from  X1    to   X7  is  a  pair  written  ( XC , Å( XC  , X7 ) )  such  that  Å( XC, X7 ) ⊆ HomU( XC , X7) ( the  

set  of  all  morphisms  from  X1    to   X7   ).Thus  one  may  recover  the  notion  of  bridge  on  sets  by  putting  

C = Sets ( category  of  sets  ). 

 The  set  of  all  bridges  from  X1   to   X7  is  ℬ( X1, X2 ) = > ( X1 , Å( X1 , X2 ) ) ∶  Å( X1, X2 ) ⊆ HomU( X1 , X2)  @. A  category  theorist  is  invited  to  have  some  fun  with  ℬ( X1, X2 ) ! 
Some  Some  Some  Some      interesting  interesting  interesting  interesting      eeeexamplexamplexamplexamplessss         • For  XC = M , X7 = ℝ  and  Å( M , ℝ ) = C!( M ) , one  obtains  the  bridge ( M ,  C!( M )  ).  • For  XC =  X7 = ℋ and  Å( ℋ , ℋ) = #( ℋ ) , one  obtains  the  bridge  ( ℋ , #( ℋ ) ).This  is   of  

course  an  auto - bridge  on  ℋ. • For  XC= A∗ , X7 = ℂ  and  Å( A∗, ℂ )  =  F1( A* , ℂ  ) , one  obtains  ( A* , F1( A* , ℂ  ) ). 
• Let  ℳC and  ℳ2  be  smooth  manifolds. Now  let  Diff( ℳC, ℳ7) denote  the  set  of  all  the  

diffeomorphisms from  ℳC  to  ℳ7.  Now  for   XC = ℳC ,  X7 = ℳ7  and  Å( ℳC, ℳ7) = Diff( ℳC, ℳ7 ) , one  

obtains  the  bridge  ( ℳ,  Diff( ℳC, ℳ7) ). 
• Let  Τ  be  a  topological  space  and  let  Path ( Τ )  be  the  set  of  all  paths  in  Τ. If  we  set   XC= K0 , 1L ,  X7 = Τ   and  Å( K0 , 1L , Τ ) = Path ( Τ ) , then  one  obtains  the  bridge  ( K0 , 1L , Path ( Τ ) ).  
Definition 2.1. Let ( XC  , Å( XC , X7  ) )  be  a  bridge  and  let  X9  be  a  nonempty  set. An  extension  of  ( XC , Å( XC , X7 ) )  on  X9  is  defined  as  ( XC , Å( XC  , X7 ) ∪ X9 ). 
Some  examples 
• For  ( XC , Å( XC , X7 ) )  = ( M , C!( M )  )   and  X9 = ℝ , one  obtains  ( M ,  C!( M ) ∪ ℝ  ). 
• For ( XC , Å( XC , X7 ) ) = ( ℋ , #( ℋ ) )  and  X3 = ℝ , one  obtains  ( ℋ , #( ℋ ) ∪ ℝ ).  • For  ( XC , Å( XC , X7 ) )  = ( A* , F1( A* , ℂ  ) )  and  X3 = #(  A* ) , one  obtains  ( A* , F1( A* , ℂ  ) ∪  #(  A* ) ).   
Definition 2.2. ( XC , Å( XC , X7 ) ∪ X3 )  is  a  proper  extension  if  Å( XC  , X7 ) ∩  X9 = ∅  , otherwise  it’s  called  an  improper  extension. 
Obviously if  X9 ⊆ Å( XC , X7 ) , then  ( XC , Å( XC , X7 ) ∪ X9 )  is  an  improper  extension. Hence  a  bridge  ( XC , Å( XC , X7 ) )  can  always  be  seen  as  an  improper  extension  by  assuming  X9 ⊆ Å( XC , X7  ) ! For instance if  ( XC , Å( XC , X7 ) ) = ( ℋ , #( ℋ ) )  and  X9  ⊆ #( ℋ ) , then  ( ℋ , #( ℋ ) ∪ X3 ) = ( ℋ , #( ℋ ) ). 



 Observe  that  for  a  Hilbert  space  ℋ , ( ℋ , #( ℋ ) ∪ ℝ )  is  a  proper  extension  iff  dim ℋ ≥ 2 , this  is  

because  self  - adjoint  operators   of  one  dimensional   Hilbert  spaces  are  real  numbers  and  so   we  

obviously  can`t  have  #( ℋ )  ∩  ℝ = ∅  if  dim ℋ = 1. In  fact  for  our  purpose  in  this  manuscript , the  

Hilbert  spaces  will  be  assumed  to  be  of  dimension  two  or  greater. The  concept  of  bridge  extension  is 

indeed , the  mathematical  tool  from which  the  S - formalization  framework  will  be  elaborated. 

3   Towards  the  axiomatic  formalization  of  physical  systems     

    

  In  this  section , we  shall  use  bridge  extensions  to  introduce  the  notion  of  formalization   of  a  physical  

system .The  generalization  to  joint  systems  is  straightforward  and  it  will  be  done  through  sections  6  

and 7. 

 Before  we  start  with  our  axiomatic  framework , let  us  review  four  of  the  fundamental  postulates  of  

quantum  mechanics  ( Schrodinger  picture )  as  normally  presented  in  standard  textbooks   : 

Postulate 1. At  a  given  “ time “  t , the  state  of  a  physical  system  S is  represented  by  a 

normalized  vector  ψt ∈  ℋ called  state  vector , where  ℋ is  a  separable  complex  Hilbert  space. 

Postulate 2.An  observable  a  is  represented  by  a  self -  adjoint  operator  written  g h  and  acting  

on  the  Hilbert  space  ℋ. 

Postulate 3.A  state  vector  ψt satisfies  the  Schrodinger  equation  iℏ 
i ij ψj = h kψj , where  h k  is  

the  self - adjoint  operator  representing  the  Hamiltonian  ( i.e. total  energy )  of  S. 

Postulate 4. If  an  observable a  is  represented  by  a  self - adjoint  operator  g h   and  a  state  is  

represented  by  ψt ∈  ℋ , then  the  expectation  value  of  measurement  a  is  l ψt , g h ψtm , where l. , . m is  the  inner  product  in  ℋ. 

 The  above  are  the  fundamental  postulates  of  quantum  mechanics , physicists  have  learned  how  to  use  

them  to  make  some  of   the  most  fantastic  predictions  in  mankind  history. However , as  far  as  the  

postulates  are  concerned , it`s  not  an  exaggeration  to  say  that  the  physics  community  is  currently    

divided  in  two  groups  : 

• Shut  up  and calculate  group.In  this  group , the  general  attitude  is  to  not  be  worried  or  ask  about  

the  meaning  of  the  postulates  above , but  to  just  use  them  to  calculate  until  there  is  a  strong  

experimental  evidence  that  the predictions  generated  by  the  calculations  are  wrong ! 

• I am not convinced  group. Here , the  general  attitude  is  to  not  take  the  postulates  seriously  until  

their  physical  meaning  is  found ! In  particular , one  must  find  clear  answers  for  questions  such  as  :  “ 

why  Hilbert  spaces  “ , “  what  is  state  vector  ? does  it  tell  us  something  about  reality  ? “ , “ why  self -  

adjoint  operators  ? “ , “ why  Schrodinger  equation ? “. 

  I  sympathize  with  the  latter  group , however  as  already  stated  in  the  introduction , my  view  is  that  

quantum  mechanics  is  just  a  special  case  of  a  general  abstract  mathematical  scheme  that  hasn`t  been  

yet  clarified  or  fully  understood  by  physicists ! In  particular , my  view  is  that  abstraction  is  the  only  

viable  option  to  clarify  and  give  this  abstract  scheme  a  clear  foundations. This  is  in  contrast  to  most 

research  projects  on  quantum  foundations , where  there  is  more  focus  on  finding  meaningful  physical  

principles  ( if  there  is  any ! ) underlying  the  mathematical  frameworks  of  the  subject , just  like  Einstein 

found  the  physical  principles  underlying  the  Lorentz  transformations  that  already  existed  before  special  

relativity ! 



  Now  the  reader  may  genuinely  ask , if  there  are  “ meaningful  “ physical  principles  from  which  the  

mathematical  framework  of  quantum  mechanics  can  be  derived  , why  is  it  taking  so  long  to  find  such  

principles ? One  possible  answer  is  that , perhaps  there  isn`t  any  “  meaningful  “  physical  principle  

underlying  the  quantum  mathematical  framework. Another  possible  answer  is  that , there  are  “ 

meaningful “ physical  principles  right  under  our  nose , but  we  are  not  sufficiently  clever  to  realize  that ! 

 In  recent  years , there  have  been  a  huge  interest  in  applying  information  theoretic  methods  to  quantum  

foundations , this  leads  to  the  so - called  quantum  information  theory. However  the  big  issues  on  

quantum  foundations , still  remain  big  issues ! 

Convention 

• For  any  physical  system  S , E( S ) denotes  the  set  of  all  states  of  S and  κ( S ) denotes  the  set  of  all  

observables  of  S. E( S ) is  called  the  state  set  of  S  and  κ( S )  is  the  observable`s  set.  

 The  starting  point  towards  our  axiomatic  approach  is  to  not  assume  any  particular  mathematical  

structure  on  E( S ) and  κ( S ) , but  to  just  view  the  two  as  abstract  sets ! 

Definition 3. Let ( XC , Å( XC , X7 ) ∪ X3 ) be  a  bridge  extension  and  let  S  be  a  physical  system. A  S - 

formalization  on  ( XC  , Å( XC , X7  ) ∪ X3 )  is  a  quadruple  ( n( S ) , κo( S ) , ΓC , Γ7  )  satisfying  the  

following   axioms  :   
 (i) n( S ) ⊆ E( S ).   

(ii)  κo( S ) ⊆ κ( S ) such  that  h ∈ κo( S ) , where  h  is  the  Hamiltonian  of  S. 
(iii)  ΓC ∈ Map ( n( S ) , XC)  and  Γ7 ∈ Map (  κo( S ) , Å( XC , X7 ) ∪ X3 ).   
Remarks  : 

• the  subsets n( S )  and  κo( S )  are  called  formalization  supports  for  system  S. 

• the  maps  ΓC and  Γ7  are  called  formal preparation  maps  for  system  S. 

• ∀α ∈ n( S ) , ΓC( α ) is  called  a formal  state  of  S  and ∀a ∈ κo( S ) ,  Γ7 ( a )  is  called  formal  

observable  of   S. Consequently  as  we  shall  see ,“ state  vectors “   are  special  cases  of  “ formal  states  “ . 

• For  notational  convenience , we  shall  write  Σ( S ) instead  of  ( n( S ) , κo( S ) , ΓC , Γ7  ). 
 The  maps  ΓC and  Γ7  are  formalization  of  the  daily  operational procedure  that  working  physicists  take  

to  associate  the  physical  concepts  of  “ state  and  observable “  with  mathematical entities  such  as  for  

example  “  vector , ray  or  linear  operators  in  a  Hilbert space  “ ! This  means  that , physicists  are  already  

using  S - formalization  in  daily  basis  without  being  aware  of  it ! Just  like  Schrodinger  and  Heisenberg  

were  already  using  Hilbert  spaces  before  its  formal  definition. Right  now , our  setting  is  too  general  for  

us  to  construct  an  interesting  example  of  a  S - formalization , but  we  shall  construct  an  interesting  

example  shortly  in  the  next  section. 

 As  far  as  ΓC( α )  and  Γ7 ( a )  are  concerned , my personal view is that , ΓC( α ) and  Γ7 ( a )  are  just  

abstract  tools  of   obtaining  some  knowledge ( information )  about  our  system  S  under  consideration ! 

Consequently  in  my  personal  view , the  state  vectors  in  standard  quantum  mechanics  are  just  abstract  

tools  to  obtain  some  knowledge  about   physical  systems ! 
 

Definition 3.1. An  observable  a ∈ κo( S )  is  called  a  functional  observable  if  Γ7 ( a ) ∈ Å( XC , X7 ) , 
otherwise  it`s  called  a  non - functional  observable. 



 The  main  motivation  for  the  definition  above  is  the  following  : there  are  observables  in  nonrelativistic  

quantum  mechanics  that  are  not  represented  by  operators ( functions ) ! For  instance , the  mass  of  a  

nonrelativistic  particle moving  in  line  is  not  represented  by  an  operator .On the other hand , the  position  

and  the  Hamiltonian  of  the  particle  are  represented  by  operators  on  the  relevant  Hilbert  space  of  the  

particle. 

 Also  in  classical  mechanics , the  mass  of  the  particle  is  not  represented  by  a  real  valued  smooth  map  

on  the  phase   space , it  appears  instead   as  a  structural  quantity. However  the  position  and  the  

Hamiltonian  of  the  particle  are  represented  by  real  valued  smooth  maps  on  the  phase  space.                                     

 Hence  in  our  abstract  language , the  mass  of  a  nonrelativistic  particle  is  a  non - functional  observable , 

while  the  position  and  the  Hamiltonian of  the  particle  are  functional  observables !   

Remark. We  shall  now  adopt  the  following  change  of  notation  : 

• we  shall  write  ΓC( α )  as  ψα ( or  sometimes  as  ψ when  α  is   evident  from  the  context ). 
• we  shall  write  Γ7 ( a )  as   go  if  Γ7 ( a ) ∈ Å( XC , X7 ). 
Definition 3.2. Let  Σ( S )  be  a  S - formalization. Σ( S )  is  called  an  ideal  S - formalization  if  the  

Hamiltonian  h is  a functional  observable , i.e. Γ7 ( h ) ∈ Å( XC  , X7 ). 
  Ideal  S - formalizations  are  very  interesting , because  as  we  shall  see  next , both  the  classical  and  

quantum  mathematical  frameworks  are  special  cases  of  ideal  S -  formalization. 

4  Classical  formalization  and  von  4eumann  formalization   

  In  this  section  we  shall  formally  derive  the  kinematical  structure  of  classical  and  quantum mechanics. 

 

Definition 4. Let  Σ( S )  be  an  ideal  S - formalization. Σ( S ) is  called  a  classical  formalization  if  the  

following  inclusions  hold  : (i)  XC ⊆ M  and  X7  ⊆  ℝ , where  M  is  a  certain  symplectic  manifold  called  phase  space. 
(ii)  Å( X1 , X2 ) ⊆ C!( M ). 
 Thus , the  definition  above  implies  the  following  :   

• ψα
 ∈ M  ∀ α ∈ n( S ) , i.e. the formal  states  are  points  in  the  symplectic  manifold  M. 

 

• go ∈ C∞( M )  ∀ go , i.e. the formal observables  of  the functional  observables  are  real  valued  smooth  maps 

on M.Therefore  hr ∈ C!( M ). 
 Hence  we  have  derived  the  kinematical  structure  of  classical  mechanics ! Since  our  main  focus  is  

quantum  mechanics , we  shall  leave  the  classical  formalization  for  now. However  the  reader  is  

encouraged  to  reconstruct  other  features  of  classical  mechanics  such  as  the  classical  dynamics ! 

 

Definition 4.1. Let  Σ( S )  be  an  ideal  S - formalization. Σ( S )  is  called  a von  Neumann  formalization  if  

the  following   inclusions  hold  : (i)  X7 ⊆ XC ⊆  ℋ, where  ℋ  is  a  certain  separable  complex  Hilbert  space  called  von  Neumann  state  

space.  (ii)  Å( XC , X7 ) ⊆  #( ℋ ). 
Thus , the  definition  above  implies  the  following  :  

• ψα
 ∈ ℋ ∀ α ∈ n( S ) , i.e. the  formal  states  are  members  of  the  separable  Hilbert  space  ℋ. 

• go ∈ #( ℋ ) ∀ go , i.e. the  formal  observables  of  the  functional  observables  are  self - adjoint  operators  

on  ℋ.Therefore  hr ∈ #( ℋ ). 
 Hence  we  have   derived  the  kinematical  structure  of  standard  quantum  mechanics ! Now  we  just  need  

to  derive  the  dynamics  and  the  other  essential  features ! 



Simple  example  of  von  4eumann  formalization 
  

 Let  the  system  S  be  an  electron  in  a  magnetic  field. We  may  construct  a  von  Neumann formalization  

Σ( S )  as  follows  : 

• Let  n( S ) = >α↑, α↓@ , where  α↑  is  the  state  “ spin  up “  of  the  electron  and  α↓  is  the  state “ spin  

down “  ! Now  let  κo( S ) = u Sx ,  Sy , Sz , h w , where  Sx  is  the  spin  along  x ; Sy the  spin  along  y ;  Sz the  spin  along  z  and  h  is  the  Hamiltonian.   

 If    we  now  consider  the  improper  extension  ( XC , Å( XC , X7 ) ∪ X9 ) = ( ℂ7 × C  , #(ℂ7 × C  ) ) , 

where  ℂ7 × C  is  the  two  dimensional  Hilbert  space of  column  matrices  over  ℂ , then  we  can  construct  

the  maps  ΓC and  Γ7  as  follows :  
 

•  ΓC( α↑) = ψ{↑ = | 1 0 }  and  ΓC( α↓ ) =  ψ {↓ = | 0 1 }.    
 

• Γ7 (  Sx )  = Srx = ~0           ℏ7ℏ7         0    �  ; Γ7 (  Sy )  = Sry = ~ 0          −i ℏ7i ℏ7         0   � ;  

Γ7 ( Sz )  = Srz =  ~ℏ7           0
0       − ℏ7

  �  ;  Γ7 ( h )  = hr = ~  ℏDz 7          ℏDx � �ℏDy7ℏDx 1 �ℏDy7         − ℏDz 7
  � where  Dx , Dy , Dz  are   

certain  real  numbers  associated  with  the  magnetic  field  along  the  axis x , y and  z  respectively.  

 

Definition 4.2. Let  Σ( S )  be  a  von  Neumann  formalization. For  all  go   and  ψα
 ∈ D( go ) , we 

define  the  fraction  gol ψα m = l ψα, go ψαm �ψα�7� , where  l. , . m is  the  inner  product  in  ℋ ; � . � 

is  the  norm induced  by  the  inner  product  l. , . m and D( go )  is  the  domain  of  go. 
 gol ψα m is  called  the  expectation  value  of   go   over  ψα

. Now  since  go  is  a self - adjoint  operator 

, then  obviously  gol ψα m  ∈ ℝ  ∀ ψα
 ∈ D( go ). 

Example 

Taking  the  example  of  the  electron  above , one  can  compute  the  following  : 

• If   go = Srz = ~ℏ7           0
0       − ℏ7

  � and  ψα
 = ψ{↑ = | 1 0 }  then  Srzl ψα↑m =  ℏ7 .  

• If   go = Srz = ~ℏ7           0
0       − ℏ7

  �  and  ψα
 = ψ {↓ = | 0 1 } then  Srzl ψ α↓m = −  ℏ

2 . 

ψ{↑
 and  ψ {↓

are obviously  eigenvectors  of  Srz with  eigenvalues  
ℏ7  and  − ℏ7  respectively. In  fact ,  

the  formal  states  ψα↑
and ψα↓

 form  an  orthonormal  basis  in  ℂ7 × C  . 
Definition 4.3. We  shall define  ∆( go ,ψα ) = �go 7l ψαm  −  gol ψα m 7 for  all  go  and  ψα

 ∈ D( go ). 

The  number  ∆( go ,ψα ) is  called  von Neumann’s  dispersion  of  go  on  ψα. Obviously  we  have  

that  ∆( go ,ψα) = 0 iff  ψα  is  an  eigenvector  of   go. Thus  if  we  consider  the  previous  example , 



then  we  have  ∆( Srz ,ψα↑) = ∆( Srz , ψα↓) = 0 ! Now  given  two  formal  observables  go1 , go2  such  

that ψα
 ∈ D( go1)  and  ψα

 ∈ D( go2)  , we  have  that  ∆( go1 ,ψα )∆( go2 ,ψα ) ≥ 
C7 �K go1, go2 Ll ψαm � , this  

is  what  physicists  call  generalized  uncertainty relation. When  go1  and  go2   are  position  and  

momentum  operators  respectively , one  has  the  so  called  Heisenberg  uncertainty  relation ! 

 5  Unitary  States  and  Schrodinger  formalization    

    According  to  a  postulate  in  quantum  mechanics  ( Schrodinger  picture ) , at  given  “ time “  t , a  state  

vector  ψt satisfies  the  Schrodinger  equation  iℏ 
i ij ψj = hrψj.The  formal  solution  of  this  equation  is  of 

course  ψt = exp(  
−ithr

ℏ   )ψ0 , where  ψ0 is  the  initial  state vector. Our  goal  in  this  section  is  to  find  an 

abstract  and  natural  derivation  of   Schrodinger  picture  within  our  axiomatic  scheme. This  also  means  

that , we  shall  find  an  abstract  and  natural  derivation  of   “ time  “  within  our  axiomatic  scheme !  

Definition 5. Let  Σ( S ) be  a  S - formalization  and  let  Ω  be a  nonempty set. Σ( S ) is  called  a  

state  index  formalization  on  base   Ω  if  the  subset  n( S ) is  indexed  by  a  subset  T ⊆ Ω , i.e. 

n( S ) = > αt @t ∈ T ⊆ Ω   . 
 The  index  t  is  called   Ω - state  index ( or  just  state  index ). As  obvious , we  shall  also  write  

ψα�   to  denote   ΓC( αt ). Now  Ω  doesn`t  have  to  be  just  a  set , we  may  require  Ω  to  be  a  

mathematical  structure  or  contained  in  some  mathematical  structure. For  instance  Ω  can  be  an  

ordinary  space - time  manifold  or  contained  on  it ! 

Definition 5.1. Σ( S )  is  called  a  classical  state  index  formalization  if  Ω ⊆ ℝ. 

 When  Σ( S )  is  a classical  state  index  formalization , the  state  index  t  is  then  renamed  as  “ classical  

time “  index !  Recall  that  in  quantum  mechanics  ( Schrodinger  picture ) , “  time  “  appears  as  an  

external  label  attached  to  the  formal  states  ( state  vectors ) of  the  system  under  consideration. 

 

Definition 5.2.Let Σ( S )  be  a  classical  state  index  formalization. Σ( S ) is  a  von Neumann  state  

index  formalization  if  it  is  also  a  von  Neumann  formalization. 

 

Definition 5.3. Let  Σ( S )  be  a  von Neumann  state  index  formalization. A  formal  state  ψα�   is  
called  unitary  state  if  the  following  two  conditions  hold : 

(i) ψα�  ∈ D( hr ) , where  D( hr )  is  the  domain  of  hr.   

(ii)  There  exists  a  formal  state  ψα�`� ∈ D( hr ) such that  ψα� = exp(  
−ithr

ℏ   )ψα�`� . 

The  formal  state ψα�`�  is  called  an  initial  state  to  ψα�.Obviously  ψα�  satisfies  the Schrodinger  

equation  iℏ 
i ij ψα�  = hrψαt .However  please  observe  that , there  may  be  formal  states  that  are  

not  unitary  and  thus  don`t  satisfy  the  Schrodinger  equation ! These  kind  of  formal  states  may  

naturally  arise  when  for  instance  hr is  an  unbounded  operator  ( i.e. not  defined  for  every  

vector  on  von  Neumann state  space  ℋ ) ! For  practical  and esthetical  reasons , a  physicist  

would  rather  have  all  the  formal  states  satisfying  the  Schrodinger  equation , indeed  this  is  the  

motivation  for  definition 5.4 below.    



Definition 5.4. Let  Σ( S )  be  a  von Neumann  state  index  formalization. Σ( S ) is  a  Schrodinger  

formalization  if  every  formal  state  is  unitary , i.e. every  formal  state  satisfies  the  Schrodinger  

equation.  

 Hence  Schrodinger  formalization  ⇔ Standard  quantum  mechanics ( Schrodinger  picture ) , and  

so  we’ve  derived  the  whole  standard  quantum  mechanics  from  our  general  scheme ! 

 Although  a  little  bit  tricky , the  Heisenberg  picture  can  also  be  derived  by  indexing  the  

subset  κo( S ) with  the  real  numbers ! In  fact , indexing  the  subset  κo( S ) with  points  of  a 

manifold  ( say  space-time  manifold )  may  be  a  natural  starting  point  to  bring  field  theory  into  

our  scheme ! Please  see Appendix A  for  the  derivation  of  the  Algebraic  approach. 

  

6  Towards  an  Axiomatic   Formalization  of  Joint  Physical  Systems  

  The  description  of  Joint  Physical  Systems  in  Classical  and  Quantum  mechanics  

  As  we  already  know , in  classical  mechanics  the  formal  states  of  a  physical  systems  S  are  points  in  a  

symplectic  manifold  M  and  the  formal  ( functional ) observables  are  real  valued  smooth  maps  on  M. In  

standard  quantum  mechanics  on  the  other hand , the  formal  states  are  vectors  ( but  sometimes  rays )  in  

a  separable  Hilbert  space  ℋ and  the  formal ( functional )  observables  are  self - adjoint  operators  in  ℋ. 

Now  given  a  finite  sequence  of  physical  systems  SC,.……, S� , the  standard  frameworks  of  classical  and  

quantum  mechanics  tell  us  the  following  respectively  :  

• If  MC........,M�  are  state  spaces  of   the  respective  systems , then  the  state  space  of  the  joint  system  is  

the  standard  Cartesian  product  � M��i = 1   of  the  respective  state  spaces. 

• If  ℋC,........, ℋ�  are  Hilbert  spaces  of  the  respective  systems , then  the  Hilbert  space  of  the  joint  

system  is  the  standard  tensor  product  ℋC⨂........⨂ℋ�  of  the  respective  Hilbert  spaces. 

Convention 

• For  a  finite  sequence  of  physical  systems  SC,.……, S� , let  E( Si ) denote  the  set  of  all  states  

of  S�  and  let  κ( Si )  denote  the  set  of  all  observables  of  S� . Also  here , we  shall  not  assume  

any  particular  mathematical  structure  on  the  sets  E( Si )  and  κ( Si ) ,  we  shall  just  view  the  

two  as  abstract  sets ! 

• E( S1,…...., S� ) = � E( S� )  �i = 1 and  κ( SC,…....., S� ) = � κ( S� ) �i = 1 .The  sets  E( S1,…...., S� ) and   

κ( S1,…...., S� )  are  called  Cartesian  composition  of  the  systems  SC,.……, S�. 

 

• We  define the  n - tupple  α( 1 , n )  = ( α( 1 ) ,........, α( n )  ) ∈ E( S1,…...., S� ) , where  α( i ) ∈ E( Si )  

for  all 1  ≤  i ≤ n . α( 1, n )  is  called  a  Cartesian  state  of   the  systems  SC,…...... S�.  

• We  now  define  the  n -  tupple  a( 1, n ) = ( g( 1 ) ,......., g( n )  ) ∈ κ( S1,…....., S� ) , where  

obviously  g( i ) ∈ κ( Si )  for  all 1 ≤  i ≤ n.The n - tupple  a( 1, n ) is  called  Cartesian  observable  

of  the  systems  SC,…......, S�. 

There  is  a  special  Cartesian  observable  of  the  systems  called  Cartesian  Hamiltonian  and  it`s  

obviously  written  as  h( 1 , n ) = ( �( 1 ) ,........, �( n )  ) , where  �( i ) denotes  the Hamiltonian  of   

system  S� . 



Definition 6. A  joint  Cartesian  formalization  of  systems  SC,.……., S� on  a  bridge  extension ( XC , Å( XC , X7 ) ∪ X9 )  is  a quadruple  ( n( S1,…….., S� ) , κo( S1,……, S� ) , Γ1, Γ2  ) satisfying  

the  following  axioms  :  

(i) n( SC,…....., S� ) ⊆ E( S1,….....,S� ). 

(ii) κo( S1,……., S� ) ⊆ κ( S1,……., S� )  such  that  h( 1 , n ) ∈ κo( S1,…….., S� ). 

(iii) ΓC ∈ Map ( n( SC,……...,S� ) , XC ) and  Γ7 ∈ Map (  κo( S1,……, S� ) , Å( XC , X7 ) ∪ X9 ). 
  

Remarks  : 

• the subsets  n( SC,…......, S� ) and  κo( S1,…….., S� ) are  called  formalization  supports  of  the  

systems  SC,.…….., S�. 

• the  maps  ΓC and  Γ7  are  called  formal  preparation  maps  for  the  joint  system. 

• ∀ α( 1 , n )  ∈  n( SC,…....., S� ) ,  ΓC( α( 1 , n ) )  is  called  a  formal  state  of  the  joint  system and ∀a( 1 , n ) ∈  κo( S1,…….., S� ) , Γ7( a( 1, n ) )  is  called  formal  observable  of  the  joint  system. 

• we  shall  write  Σ( S1,…….., S� ) instead  of  ( n( S1,…….., S� ) , κo( S1,…….., S� ) , Γ1 ,  Γ2  ). 

Definition 6.1. A  Cartesian  observable  a( 1 , n ) ∈ κo( S1,……., S� ) is  called  functional  

observable  if  Γ7( a( 1 , n ) )  ∈ Å( XC , X7 ) , otherwise  it`s  a  non - functional observable. 

Remark. We  shall  now  adopt  the  following  change  of  notation  :  
• we  shall  write  ΓC( α( 1, n ) )  as  ψ( 1 ,   n ).   
• we  shall write  Γ7( a( 1 , n ) )  as   ao( 1 , n )  when  Γ7( a( 1, n ) )  ∈  Å( XC , X7 ). 
Definition 6.2. Let  Σ( S1,……., S� ) be  a  joint  Cartesian  formalization. Σ( S1,…….., S� ) is  an  

ideal formalization  if  h( 1 , n )  is  a  functional  observable , i.e.  Γ7( h( 1 , n ) ) ∈  Å( X1 , X2 ). 
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  In  this  section , we  shall  naturally  derive  the  kinematical  structures  of  classical  and  quantum  

mechanical  framework  for  joint  systems  SC,.……..., S� within  our  axiomatic  scheme.   

Definition 7. Let  Σ( S1,……., S� ) be  an  ideal  formalization. Σ( S1,……., S� )  is  a  classical  

formalization  if  the  following  inclusions  hold  : 

(i)  XC ⊆ M  and  X7  ⊆  ℝ  , where  M = � M��i = 1   is  a manifold  product  of  certain  symplectic 

manifolds  MC,..........,M�  called  phase  spaces. 
(ii)  Å( X1 , X2 ) ⊆ C!( M ). 



Thus , the  definition  above  implies  the  following  : 

• ψ( 1 ,   n ) ∈ M = � M��i = 1   ∀ α( 1, n )  ∈ n( S1,…....., S� ) , i.e. the  formal  states  are  points  in  the  

manifold product  M. 

 

• ao( 1, n ) ∈ C!( M )  ∀ ao ( 1, n ) , i.e. the  formal observables  of  the  functional  observables  are  real  valued  

smooth  maps  on  the  manifold  product M. Therefore  hr( 1, n ) ∈ C!( M ). 
 Hence  we`ve  derived  the  classical  kinematical  structure  for  joint  systems  SC,….., S� ! 

Definition 7.1. Let  Σ( S1,……., S� ) be  an  ideal  formalization. Σ( S1,……., S� )  is  a  von  

Neumann  formalization  if  the  following  inclusions  hold : 

 (i)   X7 ⊆ XC ⊆  ℋ, where  ℋ is  a  certain  separable  Hilbert  space  called  von Neumann  state  

space. 

 (ii)  Å( XC , X7 ) ⊆  #( ℋ ). 
As   obvious , the  definition  above  implies  the  following  :  

• ψ( 1 ,   n ) ∈  ℋ  ∀ α( 1 , n )  ∈ n( S1,…......., S� ) , i.e. the  formal  states  are  members   of  the  separable  

Hilbert  space  ℋ. 
 

• ao( 1 , n ) ∈ #( ℋ ) ∀  ao( 1 , n ) , i.e. the  formal  observables  of  the  functional observables  are  self - 

adjoint  operators  on  ℋ.Therefore  hr( 1, n )  ∈ #( ℋ ). 
 Please  observe  that , because  there  is  no  mentioning  of  tensor  products  in  definition  7.1  

above , the  definition  by  itself  is  not  sufficient  to  derive  the  quantum  mechanical  kinematical  

structure  of  the  joint  systems  SC,……..., S� , thus  we  need  to  add  tensor  products  and  this  

motivates  definition 7.2  below ! 

Definition 7.2. Let  Σ( S1,……., S� ) be  a  von Neumann  formalization. Σ( S1,…….,S� ) is  a  tensor  

formalization  if  ℋ = ℋC⨂........⨂ℋ� , where  for  all  1  ≤  i ≤ n , ℋ�  is  a  separable  complex  

Hilbert  space. 

Remarks : 

• A  formal  state  ψ( 1 ,   n ) is  called  a  tensor  state   if  ψ( 1 ,   n ) = vC⨂........⨂vn , where  v� ∈ ℋ�. Otherwise 

ψ( 1 ,   n )  is  called  an  entangled  state. 

Please  observe  that , the  entanglement  of   ψ( 1 ,   n )  depends  on  how  the  map  ΓC is  constructed , the same 

is  true  if  ψ( 1 ,   n )  is  a  tensor  state !  

• The  inner  product  of  two  tensor  states  ψ( 1 ,   n ) = vC⨂........⨂vn and ψ� ( 1 ,   n )
 = wC⨂........⨂wn is  

obviously  defined  as  l v1, w1m ℋ1 ×. . . . .× l vn , wnm ℋn  , where  l , m ℋ� denotes  the  inner  product  in  ℋ� and  ×  is  the  ordinary  multiplication  of  complex  numbers. 

• If  ao( 1, n ) = FC⨂.......⨂Fn , where  F� ∈ #( ℋ� ) and  ψ( 1 ,   n ) = vC ⊗........⨂vn such  that  v�∈ D( F� ) , 
then  ao( 1, n )ψ( 1 ,   n ) = ( F1v1) ⨂ … . . ⨂( F�vn ). 
 Hence  we  have  derived  the  kinematical  structure  of  quantum  mechanical  framework  for  joint  physical  

systems ! Please  see Appendix  B  for  the  dynamics of  joint  systems.When  the  spaces  ℋ�  are  finite  



dimensional  then  ℋ = ℋC⨂........⨂ℋ� is  isomorphic  to  the  space  of  complex  column  matrices  ℂ� × C  , 
where  k = � dim ℋ� n� �C .So  it  may  be  better  sometimes  to  just  use  ℂ� × C  directly  for  the  sake  of  

simplicity ! 

Simple  Simple  Simple  Simple      example example example example         of  of  of  of      tensor   formalization    tensor   formalization    tensor   formalization    tensor   formalization        
Let  SC  and  S7  be  spin  C7  -  particles  ( say   two  electrons  in  a  magnetic   field ). If   we  now  chose  the  improper  extension  ( XC , Å( XC  , X7 ) ∪ X9 ) = ( ℂ7 × C  ⨂ ℂ7 × C  , #(ℂ7 × C  ⨂ ℂ7 × C  ) ) , then  we  

may  construct  a  tensor  formalization  Σ( S1, S7 ) of  the  two  joint   systems  as  follows  : 

• Let  n( SC, S7 )  = >α( 1, 2 ) = ( α( 1 )↑ , α( 2 ) ↓  ) @ , where α( 1 )↑ is  the  state  “ spin  up  “  of  particle 1 

and  α( 2 ) ↓  is  the  state  “  spin  down  “  of  particle 2. 

• Let κo( S1, S� ) = > a( 1 , 2 ) = ( Sz( 1 ) , Sx( 2 )  ) , h( 1, 2 ) =  ( h( 1 ) , h( 2 )  ) @ , where  Sz( 1 )  is  spin  

component  of  particle 1 along  the  z  axis ;  Sx( 2 )  is  the  spin  component  of  particle  2  along  the x  axis  

; h( 1 ) is  the  Hamiltonian  associated  to  particle  1 and  h( 2 ) is  the  Hamiltonian  associated  with  particle  

2. We  may  now  construct  the  formalization  support  maps  ΓC and   Γ7  as  follows ; 

•  ΓC( α( 1, 2 )  ) = ψ( 1 ,2 )  = | 1 0 } ⨂ | 0 1 }. 

•   Γ7 ( a( 1 , 2 ) )  = so( 1, 2 ) =  ~ℏ7           0
0       − ℏ7

  � ⨂ ~0           ℏ7ℏ7         0    �  ;  Γ7 ( h( 1, 2 ) )  = hr( 1, 2 ) = 

~ ℏDz 7          0
0         − ℏDz 7

 � ⨂ ~ ℏDz 7          0
0         − ℏDz 7

 �  , where  Dz ∈ ℝ  is  a  certain   parameter  associated  with  the  

magnetic  field  along  the  z  axis. 

  

 Closing   Remarks 

 With  elementary  set  theory , one  was  able  to  construct   a  general  axiomatic  framework , then  one  was  

able  to  naturally  derive  the  standard  mathematical  frameworks   of   classical  and  quantum  mechanics  as  

special  cases   of  this  general  framework. Because  the general  framework  was  elaborated  around  sets , 

one  is  then  free  to  model  the  state  space  of   a  physical  system  S  with  any  desired  mathematical  

structure , and  so  one  is  not  just  limited  to  manifolds  or  vector  spaces ( Hilbert  spaces  in  particular ). 
 Apart  from  providing  a  new  insight  on  foundations  of  quantum  mechanics , I  hope  that  the  S - 

formalization  framework  will  provide  the  starting  point  to  construct  the  mathematical  frameworks  of  

new physical  theories  and  also  provide  a  starting  point  for  a  better  mathematical  foundations  of  other  

well  known  physical  theories  such  as  relativistic  quantum  field  theory !  

 Finally , I  would  like  to  challenge  quantum  gravity  theorists  to  construct  the  mathematical  framework 

of  their  subject  within  our  axiomatic   framework ! I  am  quite  convinced  that  within  our   abstract  

axiomatic  framework , the  “ correct  “  mathematical  framework   for   quantum  gravity  falls  into  the  

category  of   von  Neumann  formalization , i.e. the  kinematical  structure  is  built  around  a  separable  

Hilbert  space  and  self - adjoint  operators  on  this  space. However  because  of  the  issue  of   “ time  “ ,  I  

doubt  the  “ correct  “  mathematical  framework  for  quantum  gravity  will  ever  fall  into  the  category  of  

Schrodinger  formalization , i.e. the  “ correct  “  dynamics  given  by  the  Schrodinger  equation ! 
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Appendix A. Algebraic  formalization     

Definition 1 A. Let  Σ( S )  be  a  S - formalization. Σ( S )  is  called  a  proper  formalization  if  ( XC , Å( XC ,  X7  ) ∪ X3 ) is  a  proper  extension , i.e.  Å( XC , X7 ) ∩  X9 = ∅.  
 

Definition 2 A. Let  Σ( S )  be  a  proper  formalization. Σ( S ) is  called  an  anti - ideal  formalization  

if  Γ7 ( a ) ∈ X9 ∀a ∈ κo( S ). 

 This  implies  that , all  the  observables  are  non - functional , i.e.  Γ7 ( a ) ∉  Å( XC , X7 ) ∀a ∈ κo( S ) ! 

Definition 3 A. Let  Σ( S )  be  an  anti -  ideal  formalization. Σ( S ) is  called  an  algebraic   

formalization  if  the  following  inclusions  hold : 

(i)  X7 ⊆ XC ⊆ F1( A*, ℂ ) , where  A*   is  a  certain  unital  ℂ* -  algebra  called  the formal  algebraic  space  

of  S.  (ii)  X9 ⊆ #(  A* ). 
Thus , the  definition  above  implies  the  following  : 

• ψα
 ∈ F1( A*, ℂ ) ∀ α ∈ n( S ) , i.e. the  formal  states  are  positive  linear  functional  on  A*. 

 

• go ∈ #(  A* ) ∀ go , i.e. the  formal  observables  are  self - adjoint  elements  of  A* . Therefore  we 

have  hr ∈ #(  A* ).  
 Hence  we`ve  derived  the  kinematics  of  the  algebraic  approach  to  quantum  mechanics.  Obviously , one  

can  use  the  GNS  construction  to  establish  a  relationship  between  the  algebraic   formalization  and  the  

von  Neumann  formalization. 
Appendix B  Unitary  States  and  Schrodinger  formalization    

Definition 1 B. Let  Σ( S1,….., S� ) be  a  Cartesian formalization  and  let  Ω  be  a  nonempty  set. 

Σ( S1,……., S� ) is  a  state  index  formalization  on  base  Ω  if   the  subset  n( SC,……., S� ) is  

indexed  by  a  subset T ⊆ Ω , i.e. n( SC, … … . , S� )  = u α( 1 , n )j wj ∈ � ⊆ Ω . 

 The  index  t  is  called  Ω - state  index ( or  just   state  index ). As  obvious , one  shall  write 

ψ( 1 ,   n )�   to  denote  ΓC( α( 1 , n )j  ) ).Obviously  Ω  doesn`t  have  to  be  just  a  set  , we  may  require   

Ω   to  be   a  mathematical  structure  or  contained  in  some  mathematical  structure. For  instance  

Ω  can  be  an  ordinary  space - time  manifold  or  contained  on  it ! 

Definition 2 B. Σ( S1,……., S� ) is  a  classical  state  index  formalization  if   Ω ⊆ ℝ. 

Definition 3 B. Let  Σ( SC,.…...., S� )  be  a  classical  state  index  formalization. Σ( SC,…....., S� ) is  

a  von Neumann  state  index  formalization  if  it  is  also  a  von  Neumann  formalization. 

Definition 4 B. Let  Σ( SC,……., S� )  be  a  von Neumann state  index  formalization. A  formal   

state  ψ( 1 ,   n )t  is  a  unitary  state  if  the  following  conditions  hold :  

 (i)  ψ( 1 ,   n )� ∈ D( hr( 1, n ) ) , where  D( hr( 1, n ) ) is  the  domain  of  hr( 1, n ). 
 



 (ii)  There  exists  a  formal  state  ψ� ( 1 ,   n )�`  ∈ D( hr( 1, n ) ) such that ψ( 1 ,   n )�  = exp(− ihr( 1, n )t ℏB  )ψ� ( 1 ,   n )�`. 
 

 ψ� ( 1 ,   n )�`   is  called  an  initial  state  to  ψ( 1 ,   n )� .The  formal  state  ψ( 1 ,   n )�  clearly  satisfies  the  Schrodinger  

equation  iℏ 
i  ij ψ( 1 ,   n )�  =  hr( 1 , n )ψ( 1 ,   n )� . However , there  may  be  formal  states  that  are  not  unitary  

and  hence  don`t  satisfy  the  Schrodinger  equation ! This  may  naturally  happen  if  for  example  hr( 1, n ) 
is  an unbounded  operator. 
 For  practical  and  esthetical  reasons , a  physicist  would  rather  have   all  the formal  states  satisfying  the  

Schrodinger  equation , this  is  indeed  the  motivation  for  the  definition  below. 

 

Definition 5  B. Let  Σ( SC,……., S� ) be  a von Neumann  state  index   formalization. Σ( SC,…....., S� )  

is  a  Schrodinger  formalization  if  every  formal  state  is  unitary , i.e. every  formal  state  satisfies  

the  Schrodinger  equation. 

 

 Hence , we  have  formulated  a  Schrodinger  picture  for  joint  physical  systems  in  a  very  natural  

way ! Interesting  situation  arises  when  Σ( SC,……., S� )  is  also  a  tensor  formalization  and  

ψ( 1 ,   n )�  is  a  tensor  state ! 

Appendix  C. On  collapse  postulate 

 From  all  the  standard  postulates  of  quantum  mechanics , the  only  one  left  out  of  our  

axiomatic  scheme  is  the  collapse  postulate ! One  reason  for  this  is  that , I  didn`t  find  a  way   

of  formally  deriving  the  postulate  within  our  axiomatic  scheme. Another  reason  is  that  , as  far  

as  I  know  from  physicists , the  collapse  has  never  been  observed  in  nature ,i.e. there  is  no  

experimental  support  that  the  collapse  occurs  in  nature ! 
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