PROOF WITHOUT WORDS:
 THE EXPANSION OF $\left(1+x+x^{2}+\cdots+x^{n}\right)^{3}$

HIDEYUKI OHTSUKA

Abstract. In this paper, we show a geometry approach to the expansion of $\left(1+x+x^{2}+\cdots+x^{n}\right)^{3}$. This proof is a "Proof Without Words".

Theorem. Let n be a positive integer and let T_{n} denote the nth triangular number. Then the coefficient of x^{k} for the expansion of $\left(1+x+x^{2}+\cdots+x^{n}\right)^{3}$ is decided as follows.

$$
\begin{cases}T_{k+1} & (0 \leq k \leq n) \tag{0.1}\\ T_{k+1}-3 T_{k-n} & (n+1 \leq k \leq 2 n-1) \\ T_{3 n-k+1} & (2 n \leq k \leq 3 n)\end{cases}
$$

Proof.

$$
\left(\sum_{i=0}^{n} x^{i}\right)^{3}=\sum_{s=0}^{n} \sum_{t=0}^{n} \sum_{u=0}^{n} x^{s+t+u}
$$

$\mathrm{k}=\mathrm{s}^{+\mathrm{t}}+\mathrm{u}$

$k=n+1$
$k=n+2$ to $k=2 n-1$

Bunkyo University High School, 1191-7, Kami, Ageo-city, Saitama Pref., 362-0001, JAPAN,

E-mail address: otsukahideyuki@gmail.com

