To the memory of Daihachiro SATO

A NEW FORMULA FOR THE SUM OF THE SIXTH POWERS OF FIBONACCI NUMBERS

HIDEYUKI OHTSUKA AND SHIGERU NAKAMURA

Abstract

Sloane's On-Line Encyclopedia of Integer Sequences incorrectly states a lengthy formula for the sum of the sixth powers of the first n Fibonacci numbers. In this paper we prove a more succinct formulation. We also provide an analogue for the Lucas numbers. Finally, we prove a divisibility result for the sum of certain even powers of the first n Fibonacci numbers.

Sloane's On-Line Encyclopedia of Integer Sequences records, as A098532;
$\sum_{k=1}^{n} F_{k}^{6}=(1 / 500) \times$
$\left(F_{6 n+1}+3 F_{6 n+2}-(-1)^{n}\left(16 F_{4 n+1}+8 F_{4 n+2}\right)\right)-60 F_{2 n+1}+120 F_{2 n+2}-(-1)^{n} \times 40$.
But this is incorrect. The correct formula should be;

$$
\begin{aligned}
& \sum_{k=1}^{n} F_{k}^{6}=(1 / 500) \times \\
& \left(F_{6 n+1}+3 F_{6 n+2}-(-1)^{n}\left(16 F_{4 n+1}+8 F_{4 n+2}\right)-60 F_{2 n+1}+120 F_{2 n+2}-(-1)^{n} \times 40\right) .
\end{aligned}
$$

Because this is rather lengthy we were motivated to find a simpler elegant formulation. Our formulation is given in Theorem 1. Theorem 2 gives an analogous result for the Lucas numbers. Since its proof is analogous to the proof of Theorem 1, we state Theorem 2 without proof. Finally we prove Theorem 3, in which we give divisibility results for $\sum_{k=1}^{n} F_{k}^{4 p-2}$, where p is a positive integer.

Theorem 1.

$$
\sum_{k=1}^{n} F_{k}^{6}=\frac{F_{n}^{5} F_{n+3}+F_{2 n}}{4}
$$

Proof. We have

$$
\begin{aligned}
0 & =\sum_{k=0}^{n} F_{k-2} F_{k-1} F_{k} F_{k+1} F_{k+2} F_{k+3}-\sum_{k=1}^{n+1} F_{k-3} F_{k-2} F_{k-1} F_{k} F_{k+1} F_{k+2} \\
& =\sum_{k=1}^{n} F_{k-2} F_{k-1} F_{k} F_{k+1} F_{k+2}\left(F_{k+3}-F_{k-3}\right)-F_{n-2} F_{n-1} F_{n} F_{n+1} F_{n+2} F_{n+3} \\
& =4 \sum_{k=1}^{n} F_{k}^{2}\left(F_{k}^{2}+(-1)^{k}\right)\left(F_{k}^{2}+(-1)^{k-1}\right)-F_{n} F_{n+3}\left(F_{n}^{2}+(-1)^{n}\right)\left(F_{n}^{2}+(-1)^{n-1}\right) \\
& =4 \sum_{k=1}^{n}\left(F_{k}^{6}-F_{k}^{2}\right)-F_{n} F_{n+3}\left(F_{n}^{4}-1\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{k=1}^{n} F_{k}^{6} & =\frac{F_{n} F_{n+3}\left(F_{n}^{4}-1\right)}{4}+\sum_{k=1}^{n} F_{k}^{2} \\
& =\frac{F_{n}^{5} F_{n+3}-F_{n} F_{n+3}}{4}+F_{n} F_{n+1} \\
& =\frac{F_{n}^{5} F_{n+3}-F_{n}\left(F_{n+2}+F_{n+1}\right)+4 F_{n} F_{n+1}}{4} \\
& =\frac{F_{n}^{5} F_{n+3}+F_{n}\left(3 F_{n+1}-F_{n+2}\right)}{4}
\end{aligned}
$$

Finally, Theorem 1 follows from the identity

$$
3 F_{n+1}-F_{n+2}=2 F_{n+1}-F_{n}=F_{n+1}+F_{n-1}=L_{n} .
$$

Similarly, we have the following 6th power sum formula for the Lucas numbers.

Theorem 2.

$$
\sum_{k=1}^{n} L_{k}^{6}=\frac{L_{n}^{5} L_{n+3}+125 F_{2 n}}{4}-32
$$

Theorem 3. Let $S=\sum_{k=1}^{n} F_{k}^{4 p-2}$ for a positive integer p. Then,

$$
\begin{array}{ll}
\text { (1) } F_{n+1} \mid S & \text { if } n \text { is even; } \\
\text { (2) } F_{n} \mid S & \text { if } n \text { is odd, respectively. }
\end{array}
$$

Proof. We will use the following identity,

$$
F_{k}^{2}+F_{2 m-k+1}^{2}=F_{k}^{2}+F_{2 m-2 k+1} F_{2 m+1}+(-1)^{2 m-2 k+1} F_{k}^{2}=F_{2 m-2 k+1} F_{2 m+1}
$$

This identity can be obtained from identities from [1] and [2].

(1) The case n even.

Put $n=2 m$, and we have

$$
\begin{aligned}
S & =\sum_{k=1}^{2 m} F_{k}^{4 p-2}=\sum_{k=1}^{m}\left(F_{k}^{4 p-2}+F_{2 m-k+1}^{4 p-2}\right) \\
& =\sum_{k=1}^{m}\left\{\left(F_{k}^{2}+F_{2 m-k+1}^{2}\right) \sum_{i=0}^{2 p-2}(-1)^{i} F_{k}^{4 p-2 i-4} F_{2 m-k+1}^{2 i}\right\} \\
& =F_{2 m+1} \sum_{k=1}^{m}\left(F_{2 m-2 k+1} \sum_{i=0}^{2 p-2}(-1)^{i} F_{k}^{4 p-2 i-4} F_{2 m-k+1}^{2 i}\right) .
\end{aligned}
$$

Thus $F_{2 m+1} \mid S$.

(2) The case n odd.

Put $n=2 m+1$, and we have

$$
\begin{aligned}
& \qquad S=\sum_{k=1}^{2 m+1} F_{k}^{4 p-2}=\sum_{k=1}^{2 m} F_{k}^{4 p-2}+F_{2 m+1}^{4 p-2} \\
& \text { Ву }(1), F_{2 m+1} \mid \sum_{k=1}^{2 m} F_{k}^{4 p-2}
\end{aligned}
$$

ACKNOWLEDGMENT We greatly appreciate the referee and Florian Luca for suggesting improvements on an earlier version of our paper, and for informing us about references.

References

[1] F. T. Howard, The sum of the Squares of Two Generalized Fibonacci numbers, The Fibonacci Quarterly, 41.1 (2003), 80-84.
[2] R. S. Melham, Families of Identities Involving Sums of Powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, $\mathbf{3 7 . 4}$ (1999), 315-319.

AMS Mathematics Classification numbers: 11B39
Bunkyo University High School, 1191-7, Kami, Ageo-city, Saitama Pref., 362-0001, JAPAN,

E-mail address: otsukahideyuki@gmail.com
Prof. emeritus, Tokyo University of marine science and engineering, 3-29-5, Sakuradai, Nerimaku, Tokyo, 176-0002, JAPAN

E-mail address: shigeru-nn@jcom.home.ne.jp

