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Abstract

This paper examines the difference between infinite and finite do-

mains of a Stefan Problem. It is pointed out that attributes of solutions

to the Diffusion Equation suggest assumptions of an infinite domain

are invalid during initial times for finite domain Stefan Problems. The

paper provides a solution for initial and early times from an analytical

approach using a perturbation. This solution can then easily be applied

to numerical models for later times. The differences of the two domains

are examined and discussed.

1 History of the Problem

1.1 Origins and Previous Work

Free boundary problems can be traced back to the design of artillery shells by
Sir Isaac Newton in the 1600’s [9]. However the Stefan problem began to take
a more definitive shape when in 1831, Clapeyron and Lamé [7] examinied the
problem of a ball of water freezing and derived the well-known square root of
time law for interface motion between the two phases of liquid water and solid
ice.

A major breakthrough in the problem occured in 1861 by Franz Neumann
[8] who found a closed form solution for infinite and semi-infinite media. This
is found in his class notes of the time.
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In 1889, J. Stefan [15], whose name is attached to the problem, wrote
four papers on the subject. In these papers he derived a large latent heat
approximation and extended this approximation to include a time dependent
surface temperature of the interface.

A very good collection of similarity solutions and references is to be found
in Carslaw and Jaeger’s 1959 book, Conduction of Heat in Solids [3]. Another
very good book on the subject is by John Crank [8] in his definitive text Free
and Moving Boundary Problems of 1984. In this book he states [8, page 101]:

“Very few analytical solutions are available in closed form. They
are mainly for the one-dimensional cases of an infinite or semi-
infinite region with simple initial and boundary conditions and
constant thermal properties. These exact solutions usually take
the form of functions of the single variable x/t

1

2 and are known as
similarity solutions. Corresponding solutions which are functions
of r/t

1

2 only are available in cylindrical and spherical coordinates.”

Some modern papers quote Ivantsov’s work [10] on chrystal growth in 1947,
particulary Pelcé and Pomeau [12] in their paper on dendrites in 1986. And
in 1990 Kim [11] described an application of a Stefan problem in the analytic
valuations of American put options.

The late 1990’s appear to have an upsurge in work on this problem. Chen,
Merriman, Osher & Smereka [6] outline an attack to the problem using level
sets in 1997 which shows great promise in understanding Stefan problems of
higher dimension. In 1998 Riccardo Fazio [9] wrote a survey of similarity
approaches to free boundary problems and concluded that some classes of
these problems can be transformed to initial value problems. Fazio goes on
to show that free boundary problems arize via a similarity analysis of moving
hyperbolic problems and they can be obtained as approximations of boundary
valued problems defined on infinite intervals. Also in 1998, Yi and Shih [16]
proved the existence of a weak solution and uniqueness. They also obtained
an error estimate for the approximating process.

In 1999 Rodrigues and Urbano [13] developed solutions to Stefan problems
with convection in one of the phases. Charach and Fife [4] showed, also in
1999, thermodynamic consistency for diffuse interactions and implications for
interface conditions in the associated sharp interface theories. Again in 1999
Elena Bonetti [2] established the existence and uniqueness of the solution to
a diffusive phase transition problem for an integrodifferential energy balance
equation of hyperbolic type. The related limiting case of the hyperbolic Stefan
problem with memory was also examined.
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In 2000, Beckett, Mackenzie and Robertson [1] developed a moving mesh fi-
nite element method for the solution of two-dimensional Stefan problems. This
method involves the numerical solution of an enthalpy formulation. Again
in 2000, Chen and Fife [5] continued their work on the thermodynamics of
phase interfaces and derived relations of the Gibbs-Thomson type which en-
tails surface tension at the interface. In their paper they suggest the use of
perturbations to solve the Stefan problem, which we do here.

1.2 Motivation

This work stems from measurements of the diffusion coefficient of carbon diox-
ide into bitumen by Schmidt et al [14] which utilized a diffusion cell filled with
bitumen coming into contact with carbon dioxide gas. The diffusion cell was a
1.6 cm wide tube, about 30 cm long, which was sectioned off into 10 sections
at the end of the experiment. The concentration of carbon dioxide was mea-
sured in each section and a concentration profile for the tube of bitumen was
interpolated and a diffusion coefficient then calculated. A phenomenon noted
at the end of the experiment was that the bitumen had swollen about half an
inch up the diffusion tube and it was concluded the experiment consisted of a
one-dimensional Stefan problem in diffusion.

The question then arose that since the diffusion cell was a finite length,
are we permitted to assume it is infinite for short times and utilise the exact
solution derived by Franz Neumann in 1861 or does the back wall of the cell
influence the diffusion process even during short times and thereby alter the
measurement of diffusion coefficients. Since the speed of propogation of the
diffusion process is infinite there exists a suspicion that there would be some
difference between a diffusion process in a finite domain as opposed to a semi-
infinite domain. To answer this question we have used a perturbation approach
for a finite but long one-dimensional domain of solvent having length ”L”
and Stefan number 1/α with saturation concentration at the solvent-solute
interface ψ∗, a constant. Here ψ(t, x) is the concentration of solute measured
as a weight fraction and R(t) is the position of the gas-liquid interface which
moves to the right.

It has been well established that a finite amount of solvent will eventually
become saturated with solute and only swell a finite distance. Hence the
classic square-root of time solution cannot be used over extended times for
finite solvent domains since it predicts that the solvent-solute interface will
swell an infinite distance. An analytic solution for such a situation has not yet
been found and numeric models have been used extensively for investigations
into this and similar phenomena. This is noted for example in the work of
Schmidt et al and of Beckett et al [14] [1] There is, however, a problem with
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sharp initial interfaces in numerical models where the Neumann solution has
been assumed for short times in order to initialise simulations. We present
here a different solution for finite domains for short times.

As a result of our calculations we have found that it makes a difference in
interface behaviour whether the media is semi-infinite or finite (even though
the media is very large or we are considering only very short times). This
difference becomes infinite as ψ∗ approaches 1 if the solute is conserved.

2 Perturbation Solution with Neumann Bound-

ary Conditions.

The diffusion equation:
∂ψ

∂t
=
∂2ψ

∂x2
(1)

at the left boundary where x = 0 . . .

∂ψ

∂x
= 0 (2)

initial conditions . . .
ψ(0, x) = 0 (3)

R(0) = L (4)

where L is the length of the solvent.

Conditions at the right moving boundary are . . .

ψ = ψ∗, x = R(t) (5)

α
dR

dt
=
∂ψ

∂x
, x = R(t) (6)

where ψ∗ is a constant (the saturation level of the solution).

Nondimensionalizing with new variables:

x̄ = (x− L)/L (7)

R̄ = (R − L)/L (8)

ψ̄(t, x̄) = ψ(t, x) (9)

Substitution yields . . .
∂ψ̄

∂t
=

1

L2

∂2ψ̄

∂x̄2
(10)
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att = 0, ψ̄ = 0 (11)

atx̄ = R̄(t), α
dR̄

dt
=

1

L2

∂ψ̄

∂x̄
(12)

atx̄ = −1,
∂ψ̄

∂x̄
= 0 (13)

We now bring in a perturbation in the differential equation. Let

ε =
1

L2
(14)

∂ψ̄

∂t
= ε

∂2ψ̄

∂x̄2
(15)

Outer solution . . .

⇒ ∂ψ̄
∂t

= 0
⇒ ψ̄ = g(x̄)
⇒ ψ̄ = 0, (initial conditions)

Set up a boundary layer at the gas-liquid interface.

x̃ =
x̄− R̄(t)

εγ
(16)

∂ψ̄

∂t
=
∂ψ̃

∂x̃

∂x̃

∂t
+
∂ψ̃

∂t
(17)

∂ψ̄

∂x
=

1

εγ
∂ψ̃

∂x
(18)

Using the boundary layer variables . . .

−R̄tε
−γψ̃x̃ + ψ̃t = ε1−2γψ̃x̃x̃ (19)

αR̄t = ε1−γψ̃x̃ (20)

Combining 19 and 20 to eliminate R̄(t) yields . . .

ψ̃t =
ε1−2γ

α
ψ̃2
x̃ + ε1−2γψ̃x̃x̃ (21)

Boundary conditions:

at x̃ = 0
ψ̃ = ψ∗ (22)

ψ̃ → 0, asx̃→ −∞ (23)
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and matching yields γ = 1/2
Dropping the tilde notation we have the PDE . . .

ψt =
ψ2
x

α
+ ψxx (24)

Using a similarity solution . . .

ψ = f(x/tβ) (25)

ψt = −
xβ

tβ+1
f ′ (26)

ψx =
1

tβ
f ′ (27)

ψxx =
1

t2β
f ′′ (28)

Hence . . .

−
xβ

tβ+1
f ′ =

1

αt2β
(f ′)2 +

1

t2β
f ′′ (29)

From which we obtain
β = 1/2 (30)

Letting
z = x/

√
t (31)

and substituting back we have the ODE . . .

f ′′ +
(f ′)2

α
+
z

2
f ′ = 0 (32)

Let
v = f ′ (33)

Then

v′ +
v2

α
+
z

2
v = 0 (34)

Using the transformation . . .

v = e−z
2/4w (35)

along with . . .

v′ = (
−z

2
w + w′)e−z

2/4 (36)
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we obtain . . .

(
−z

2
w + w′)e−z

2/4 +
w2

α
e−z

2/2 +
z

2
we−z

2/4 = 0 (37)

Simplifying . . .
αw′ + w2e−z

2/4 = 0 (38)

Rearranging . . .
w′

w2
=

−e−z
2/4

α
(39)

Integrating both sides . . .

−
1

w
= −

1

α

∫

e−z
2/4dz + C (40)

w =
α

2 erf(z/2) + C
(41)

Solving for v we have

v(z) =
αe−z

2/4

2 erf(z/2) + C
(42)

and
f ′ = v (43)

Solving for f we have . . .

f =

∫ z

0

v(σ)dσ + C2 (44)

As z → −∞, v → 0 so . . .

C2 =

∫ 0

−∞
v(σ)dσ (45)

Combining the two

f =

∫ z

−∞
v(σ)dσ (46)

and

ψ∗ = f(0) = α

∫ 0

−∞

e−z
2/4

2 erf(z/2) + C
dz (47)

From which we can find the value of C.

Substituting back we have . . .

ψ̃ =
α
√
π

2
ln

(2 erf( x̃
2
√
t
) + C

C − 2

)

(48)
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giving . . .

dR̄

dt
=

√
εe

−x̃
2

4t

√
t(2 erf( x̃

2
√
t
) + C)

(49)

Setting
x̃ = 0 (50)

we have

R̄ = 2

√
εt

C
(51)

where

C =
2e2ψ

∗/(α
√
π)

e2ψ∗/(α
√
π) − 1

(52)

This approximation is valid for times up to O(1/ε) or O(L2).

3 Simplified Neumann Solution for Semi-infinite

Domain

Here everything is the same as in the previous chapter except that at x =
−∞, ∂ψ

∂x
= 0. Or, to write out the equations for a semi-infinite domain:

The diffusion equation:
∂ψ

∂t
=
∂2ψ

∂x2
(53)

At the left boundary . . .
∂ψ

∂x
= 0 at x = −∞ (54)

Initial conditions . . .
ψ(0, x) = 0 (55)

R(0) = 0 (56)

Conditions at the right moving boundary are . . .

ψ = ψ∗ at x = R(t) (57)

α
dR

dt
=
∂ψ

∂x
at x = R(t) (58)

Using the Boltzmann substitution we have a solution of:

ψ = θ(1 + erf(
x

2
√
t
)) (59)
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and
R(t) = φ∞

√
t (60)

Where it can be shown that . . .

φ∞ =
ψ∗2e−φ

2
∞
/4

α
√
π(1 + erf(φ∞/2)

(61)

and φ∞ can be found through an iterative search and . . .

θ =
ψ∗

1 + erf(φ∞/2)
(62)

For our following observation we consider the solute to be conserved through-
out the disolving process. In this case we have

α = 1 − ψ∗ (63)

Now it becomes possible to compare the behaviour of interface motions for
short times between finite and semi-infinite domains for conservation of solute.
Using the FZERO function of Matlab it is seen that φ∞ tends to ∞ as ψ∗ tends
to 1. This means the semi-infinite domain blows up with very high saturation
concentrations. In the extreme case of the interface being completely saturated
with solute the interface moves to the right an infinite distance with an infinite
speed.

Consider the finite domain. Here C tends to 2 as ψ∗ tends to 1 (or α
tends to 0). In which case the interface moves as the square root of time,
or R(t) = L +

√
t. In other words, the interface does not blow up and its

position has finite values over time. Therefore the difference between the
interface positions for finite and semi-infinite domains increases with ψ∗ until
the difference is infinite.

Further investigation shows that the two situations, finite and semi-infinite,
become identical for lower saturation concentrations. Various figures are in-
cluded to demonstrate this.
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Figure 1: Comparison of interface motion versus time for saturation levels
ψ∗ = 0.2 for the upper figure and below that, ψ∗ = 0.9. At a smaller satura-
tion level we see the two interface behaviours are nearly identical while at a
saturation level of 0.9 the semi-infinite domain has an interface motion about
twice as fast as the finite domain over short times.

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
Motion constant C for semi−infinite domains, various saturation levels

C

Ψ∗ 

Figure 2: Graph showing the blowup of C where R∞(t) = C
√
t as ψ∗ → 1. We

see that R(t) is well-behaved for most values of ψ∗ but increases drastically
should there be close to total saturation levels at the interface.
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