
March 11, 2006 13:41 WSPC/IJGMMP-J043 00109

International Journal of Geometric Methods in Modern Physics
Vol. 3, No. 2 (2006) 187–199
c© World Scientific Publishing Company

ON THE RIEMANN HYPOTHESIS AND TACHYONS
IN DUAL STRING SCATTERING AMPLITUDES

CARLOS CASTRO

Center for Theoretical Studies of Physical Systems
Clark Atlanta University, Atlanta, GA, USA

castro@ctsps.cau.edu

Received 12 August 2005
Accepted 15 November 2005

It is the purpose of this work to pursue a novel physical interpretation of the nontrivial
Riemann zeta zeros and prove why the location of these zeros zn = 1/2 + iλn corresponds
physically to tachyonic-resonances/tachyonic-condensates, originating from the scatter-
ing of two on-shell tachyons in bosonic string theory. Namely, we prove that if there were
nontrivial zeta zeros (violating the Riemann hypothesis) outside the critical line Real
z = 1/2 (but inside the critical strip), these putative zeros do not correspond to any
poles of the bosonic open string scattering (Veneziano) amplitude A(s, t, u). The physical
relevance of tachyonic-resonances/tachyonic-condensates in bosonic string theory, estab-
lishes an important connection between string theory and the Riemann Hypothesis. In
addition, one has also a geometrical interpretation of the zeta zeros in the critical line
in terms of very special (degenerate) triangular configurations in the upper-part of the
complex plane.
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1. Introduction

The Riemann’s hypothesis (RH) [1,2] states that the nontrivial zeros of the Riemann
zeta-function are of the form zn = 1/2 + iλn. Trivial zeta zeros exist at zn = −2n,
for n = integer. Most recently a Fractal Supersymmetric Quantum Mechanical
(SUSY-QM) model implementing the Hilbert–Polya proposal to prove the RH has
been constructed [3]. We provided a Hermitian operator that reproduces all the λn

for its spectrum based on quantum inverse scattering methods that were related
to a fractal potential given by a Weierstrass function (continuous but nowhere
differentiable) and applied to the fractal analog of the Comtet–Bandrauk–Campbell
(CBC) formula in SUSY QM. It required using suitable fractal derivatives and
integrals of irrational order, whose parameter β is one-half the fractal dimension
(D = 1.5) of the Weierstrass function, which is the fractal dimensions that furnishes
a 1/f noise in the power spectrum. For previous work related to [3] see [4, 5, 19].
We refer to the number theory website [6] for numerous articles related to the zeta
function.
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The QM of a particle moving in the hyperbolic plane was studied in 1975 [7],
and the scattering matrix s-wave amplitudes for scattering in the Poincaré disk
could be expressed in the form [8]:

S =
c(k)

c(−k)
=

ζ(ik)ζ(1 − ik)
ζ(1 + ik)ζ(−ik)

= ei2δ0(k) (1)

where c(k) are the Harish-Chandra c-functions (Jost functions). The Jost functions
are defined whether the space is symmetric or not, and whether a suitable potential
is introduced or not. One may notice that when k is real-valued the numerator of
Eq. (1) is the complex conjugate of the denominator and for this reason one can
write S(k) as a pure phase factor as indicated in the r.h.s. However, when k is
complex-valued this is no longer the case and S(k) is no longer given by a pure
phase factor. For example, the complex poles of S(k) correspond to the zeros of
the zeta functions in the denominator and to their poles in the numerator. s-wave
scattering by a potential with a cutoff have been recently studied in [9], where the
complex zeros of the Jost functions yield the complex poles of the S-matrix that are
located on a horizontal line (below the real axis) and which can be mapped into the
critical line of zeros of the Riemann zeta function. They represent resonances. For
example, in the case of s-wave scattering in the hyperbolic plane (Poincaré disk)
one can show that the complex-poles of the S-matrix correspond to the nontrivial
zeros when,

kn = i(1/2 + iλn). (2)

Hence, a Wick rotation of the Riemann critical line yields the complex momenta
associated with the double poles of the S-matrix above; i.e. the double zeros of the
denominator. If one could find a physical reason why the complex double poles of
the S-matrix should always occur in complex–conjugate pairs:

−ikn = (1 + ikn)∗ = 1 − ik∗n ⇒ kn = i(1/2 + iλn). (3)

this result (3) would automatically imply that the poles of S are just the Wick-
rotations of the nontrivial Riemann zeta zeros. Therefore, one would have found a
physical proof of the RH by establishing a one-to-one correspondence between the
poles of the S matrix and the nontrivial zeta zeros via the Wick-rotation described
by Eq. (3): the poles are just i times the nontrivial zeta zeros. Notice that the poles
of S in Eq. (1) are kn = i(1/2 + λn) and their complex conjugates while the zeros
are kn = −i(1/2 + λn) and their complex conjugates.

Complex extensions of QM have captured a lot of attention recently [10] in
particular PT-pseudo QM involving non-Hermitian Hamiltonians with the most
salient feature that the energy eigenvalues are still real or they must appear in
complex–conjugate pairs. This latter feature will be the sought-after requirement
behind Eq. (3) leading to a physical proof of the RH.

Another interesting feature of the unitarity condition of the S matrix
[11] S(k)[S(k∗)]∗ = 1 is that it must remain invariant under CPT discrete
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transformations. Equation (1) clearly obeys the unitarity condition that within
the context of the RH would imply that the charge conjugation C operation cor-
responds to the complex conjugation k goes to k∗. The parity P operation now
corresponds to the reflection symmetry with respect to the center of symmetry
1/2 + i0 of the Riemann fundamental function Z(s) ≡ π−s/2Γ( s

2 )ζ(s), which obeys
the functional relation Z(s) = Z(1−s). And, finally, the time reversal operation T ,
corresponds to a mirror symmetry w.r.t. the critical line of nontrivial zeta zeros
1/2 + iλ.

Pigli [12] has discussed why scattering theory on real and p-adic systems involv-
ing the Riemann zeta function belong to a wide class of integrable models that can
be unified into an Adelic integrable systems whose S-matrix involves the Dirichlet,
Langlands, Shimura, and L-functions.

Motivated by the fact that the trivial zeta zeros lie in the negative even real axis,
−2n, and that there are physical poles of the Veneziano amplitude in the negative
real axis (at −n, twice as many poles than trivial zeta zeros), it raises the question
whether the location of the nontrivial zeta zeros along the critical line bear a similar
physical significance. It is the purpose of this work to prove why the location of
the nontrivial zeta zeros correspond physically to tachyonic resonances (tachyonic
condensates) associated with bosonic string scattering amplitudes. We also prove
that if there were zeta zeros which violate the RH, outside the critical line Real
z = 1/2 but inside the critical strip, these putative zeros do not correspond to any
poles of the bosonic string scattering amplitude A(s, t, u). In addition, we also have a
geometrical interpretation of the zeta zeros in the critical line in terms of very special
(degenerate) triangular configurations in the upper-part of the complex plane.

2. The Physical Interpretation of the Nontrivial Zeta Zeros
in Terms of Tachyonic String Poles

The four-point dual string amplitude obtained by Veneziano [13, 14] was

A4 = A(s, t) + A(t, s) + A(u, s) =
∫

R

dx|x|α−1|1 − x|β−1 = B(α, β). (4)

where the Regge trajectories in the respective s, t, u channels are:

−α(s) = 1 +
1
2
s, −β(t) = 1 +

1
2
t, −γ(u) = 1 +

1
2
u. (5)

The conservation of the energy-momentum yields:

k1 + k2 = k3 + k4 ⇒ k1 + k2 − k3 − k4 = 0. (6)

In our notation, we define the different channels as:

s = (k1 + k2)2, t = (k2 − k3)2, u = (k1 − k3)2. (7)



March 11, 2006 13:41 WSPC/IJGMMP-J043 00109

190 C. Castro

Next we will prove that the sum

s + t + u = 2(k2
1 + k2

2 + k2
3) + 2(k1 · k2 − k2 · k3 − k1 · k3) = −8 (8)

in mass units of mPlanck = 1, when all the four particles are tachyons one has the
on-shell condition:

k2
1 = k2

2 = k2
3 = m2 = −2m2

Planck = −2 (9)

in the natural units � = c = G = 1 ⇒ LPlanck = 1 such that the string slope
parameter in those units is given by α′ = (1/2)L2

Planck = 1/2 and the string mass
spectrum is quantized in multiples of the Planck mass mPlanck = 1.

From the conservation of energy-momentum (6) and the tachyon on-shell con-
dition Eq. (9) one can deduce that:

(k1 + k2)2 = (k3 + k4)2 ⇒ k1 · k2 = k3 · k4. (10)

Therefore, from Eqs. (8)–(10) it is straightforward to show:

s + t + u = 2(−2 − 2 − 2) + 2(k1·k2 − k3·(k1 + k2))

= −12 + 2(k1·k2 − k3·(k3 + k4) = −12 + 2(k1·k2 − k3·k4 − k3·k3)

= −12 − 2k3·k3 = −12 + 4 = −8. (11)

This relationship among s + t + u = 4m2 = −8 will be crucial in what follows
next. From Eqs. (5), (8), and (11) we learn that:

α + β + γ = 1. (12)

The relationship given by Eq. (12) can also be understood geometrically as the
sums of the angles, in units of π, of an Euclidean triangle found in [15] where new
relations among analyticity, Regge trajectories, the Veneziano string amplitudes,
and Moebius transformations were studied. Note that the author [15] uses a different
convention for α, β and γ than ours.

There exists a well-known relation [13] among the Γ functions in terms of ζ

functions appearing in the expression for A(s, t, u) when α, β fall inside the critical
strip. In this case, the integration region in the real line that defines A(s, t, u) in
Eq. (4) can be divided into three parts and leads to the very important identity

A(s, t, u) = B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

+
Γ(α)Γ(γ)
Γ(α + γ)

+
Γ(γ)Γ(β)
Γ(γ + β)

=
ζ(1 − α)

ζ(α)
ζ(1 − β)

ζ(β)
ζ(1 − γ)

ζ(γ)
(13)

where α + β + γ = 1 and α, β are confined to the interior of the critical strip.
The derivation behind Eq. (13) relies on the condition α + β + γ = 1 Eq. (12)

and the identities

sin π(α + β) + sinπ(α + γ) + sin π(β + γ) = 4 cos
πα

2
cos

πβ

2
cos

πγ

2
, (14a)

Γ(γ) = Γ(1 − α − β) =
1

Γ(α + β)
π

sin π(α + β)
(14b)
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plus the remaining cyclic permutations from which one can infer

Γ(α)Γ(β)
Γ(α + β)

= Γ(α)Γ(β)Γ(γ)
sin π(α + β)

π
(14c)

Γ(α)Γ(γ)
Γ(α + γ)

= Γ(α)Γ(β)Γ(γ)
sin π(α + γ)

π
(14d)

Γ(β)Γ(γ)
Γ(β + γ)

= Γ(α)Γ(β)Γ(γ)
sin π(β + γ)

π
. (14e)

Therefore, Eq. (14) allow us to recast the l.h.s. of (13) as

A(s, t, u) = B(α, β) =
4
π

cos
πα

2
cos

πβ

2
cos

πγ

2
Γ(α)Γ(β)Γ(γ). (15a)

And, finally, the known functional relation

(2π)zζ(1 − z) = 2 cos
πz

2
Γ(z)ζ(z) (15b)

in conjunction with the condition α + β + γ = 1 such that (2π)α+β+γ = 2π is what
establishes the important identity (13) expressing explicitly the string amplitude
A(s, t, u) either in terms of zeta functions or in terms of Γ functions.

We will prove below why the location of the Riemann critical line of zeta zeros
given by the complex numbers α = 1/2+iλ does correspond to a real-valued pole of
the scattering amplitude A(s, t, u) if one permits complex-valued energy-momenta
and angular-momenta. It is well known that the imaginary parts of the energies
in scattering theory corresponds to the inverse lifetime of particle-resonances. The
resonance-width is the inverse of the lifetime.

We will show in the appendix that by cyclic symmetry one may take the case
α = 0, which corresponds to a tachyonic pole in the s-channel, such that s = −2
and β = γ∗ = 1/2+ iλ. One can always choose k1, k2 to be real-valued and obeying
the standard tachyonic on-shell condition (k1)2 = (k2)2 = −2 (associated with the
ground state of bosonic open strings). Once a tachyon is produced in the s-channel,
resulting from the scatttering of two incoming tachyons, it decays afterwards into
the tachyonic condensate state made out of two tachyonic-resonances associated
with |k3 >, k4 >, respectively, obeying k3 = k∗

4 (a complex–conjugate pair of
values).

It is straightforward to show (see appendix) that k3, k4 obey indeed the
tachyonic-resonance conditions Re(k3)2 = Re(k4)2 < 0 and the “particle-
antiparticle” tachyonic-condensate condition associated with the imaginary parts
Im(k3)2 = −Im(k4)2. This tachyonic condensate (a “particle-antiparticle” pair of
tachyonic resonances) can in fact be produced after the scattering of two on-shell
ordinary tachyons.

Tachyonic-resonances and/or tachyonic-condensates posses deep physical prop-
erties, have profound consequences, and have been studied by numerous authors in
the past and today. See, for example, the work in [5, 16, 17]. Similar arguments can
be made in the closed bosonic string case since Eq. (13) also applies to the closed
bosonic string [18].
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It is well known that the bosonic string spectrum is related to poles of A(s, t, u)
in the diverse channels. For example, by duality one can write the A(s, t, u) as
an infinite sum over poles in the s channel or an infinite sum over the poles in
the t-channel leading to the ordinary Regge trajectories with real-valued energies
and angular-momenta. For example, when α = −n for n > 0, the leading Regge
trajectory in the s-channel is given by J = −α(s) = n = 1 + 1

2s. The open-bosonic
string ground state is tachyonic since it corresponds to s = −2, J = 0.

There is however, a very special case when the values of α, β, γ are complex-
valued, in particular, the cases Re(α+β) = 1 (or any cyclic permutation in α, β, γ)
that has not been studied before (to our knowledge) leading to very specific poles
of A(s, t, u), which are associated with the nontrivial zeta zeros. It is the most
interesting case that we shall study next when α, β are confined to the critical
strip: 0 ≤ Re z ≤ 1.

Having reviewed the main formulae for the four-point dual-string scattering
amplitude associated with four tachyons in terms of ζ functions, we shall find a
physical interpretation of the location of the Riemann critical line 1/2 + iλ of the
complex plane in terms of a real-valued pole of A(s, t, u) in the tachyonic u-channel
u = (k1 − k3)2 = −2. In order to show this, one needs to relax the condition
imposed on each of the individual energy-momentum variables k2

i = −2, i = 1, 2,
3, 4, while still maintaining the crucial relation s+ t+u = −8 intact at the expense
of performing an analytical continuation in the energy-momentum and angular-
momentum; i.e., our energy-momentum and angular-momentum variables are now
complex-valued.

We will focus next on the very special case α + β = 1 for α, β complex-valued,
and confined to the critical strip, that furnishes a very special class of poles of
the string scattering amplitudes A(s, t, u), which are related to the nontrivial zeta
zeros. When α + β = 1 ⇒ β = 1 − α, it leads to:

α + β + γ = 1 + γ = 1 ⇒ γ = 0 (16)

and shall allow to show there is a real-valued pole of the amplitude A(s, t, u) resulting
from an explicit cancellation of certain numerators with the denominators in the
products of the ζ’s in the r.h.s. of Eq. (13), yielding one remaining ζ factor involving
γ = 0:

A(s, t, u) =
ζ(1 − α)

ζ(α)
ζ(α)

ζ(1 − α)
ζ(1 − γ)

ζ(γ)
=

ζ(1 − γ)
ζ(γ)

=
ζ(1)
ζ(0)

= −∞ (17)

since ζ(0) = −1/2.
If the −∞ pole of the r.h.s. of A(s, t, u) in Eqs. (13) and (17) corresponds to

the poles of the Γ factors in the l.h.s. of Eqs. (13) and (17), we must choose the
value of Γ(0) to be Γ(0) = −∞ and disregard the other value Γ(0) = +∞ since the
Γ function has a discontinuity at the poles, there is a jump from +∞ to −∞ and
vice versa when one hits a pole of the Γ function located at negative integers −n.

We shall show next why in the case α + β = 1, for those values of α, β lying
inside the critical strip, there is a real valued pole of A(s, t, u) in the u-channel if
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and only if α = 1/2 + iλ. Notice that due to a cyclic symmetry of A(s, t, u) in the
s, t, u variables, one could have taken instead the condition β + γ = 1 ⇒ α = 0
and arrive at a pole in the s-channel instead of a pole in the u-channel. Similarly,
we could have imposed α + γ = 1 ⇒ β = 0 and arrive at a pole in the t-channel
instead. Hence, for example, by choosing α + β = 1, γ = 0 in Eq. (13) it leads to

A(s, t, u) =
Γ(α)Γ(1 − α)

Γ(1)
+ Γ(γ) + Γ(γ) =

ζ(1 − γ)
ζ(γ)

. (18)

If there is a real-valued pole in the u-channel (when γ = 0) of the dual string
amplitude A(s, t, u) given by ζ(1−γ)/ζ(γ) = ζ(1)/ζ(0) = −∞, then we must have:

A(s, t, u) =
Γ(α)Γ(1 − α)

Γ(1)
+ 2Γ(0) =

Γ(α)Γ(1 − α)
Γ(1)

−∞ =
ζ(1)
ζ(0)

= −∞. (19)

Due to the fact that the values of α, β are confined to live inside the critical,
one arrives at the conditions

Γ(α)Γ(1 − α)
Γ(1)

=
π

sin(πα)
= real, finite and positive definite (20a)

therefore, Eq. (20a) cannot be negative, in particular it cannot be equal to −∞.
Since the pole in the r.h.s. of (19) is real-valued, we can infer that the l.h.s. of (19)
must be real-valued (and −∞) as well.

Upon using the real, finite, and positive-definiteness conditions of Eq. (20a), one
concludes that the only nontrivial values of α, confined to the interior of the critical
strip) obeying Eqs. (19) and (20a), must be of the form

α =
1
2

+ iλ, β = 1 − α =
1
2
− iλ, γ = 0. (20b)

which is the desired sought-after result, and not just a plain remark. Concluding,
the values of α must live in the Riemman critical line.

In deriving Eq. (20b) from the conditions of Eq. (20a), we have used α =
αx + iαy in the identity

Γ(α)Γ(1 − α)
Γ(1)

=
π

sin (πα)
=

π

sin (παx + iπαy)

=
π

sin (παx) cosh (παy) + i cos (παx) sinh (παy)
(20c)

and

cos (iπαy) = cosh (παy). sin (iπαy) = i sinh (παy). (20d)

The finiteness condition of Eq. (20a) is due to the fact that α is located inside
the critical strip and this will exclude solutions like α = ±n, n > 1 generating
unwanted poles in Eq. (20a). Naturally, there are trivial solutions to Eq. (20c)
given by αy = 0 ⇒ α = real, which can be disregarded since we know that there
are no real-valued zeta zeros inside the critical strip. There are trivial real-valued
zeta zeros only at −2n, for n = integer. Furthermore, the Hadamard-Valle de la
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Poussin theorem excludes zeros in the boundaries of the critical strip α = 0 + iλ

and α = 1 + iλ.
The value

−γ = 0 =
(

1 +
1
2
u

)
= 1 +

1
2
(k1 − k3)2 = 0 (21)

is associated with a unique real-valued pole of A(s, t, u) that corresponds to a
tachyon exchanged in the u-channel:

u = (k1 − k3)2 = −2m2
Planck = −2 (22)

with a zero angular momentum −J = γ = 0.
Concluding, in the very special case α + β = 1, for those values of α, β

lying inside the critical strip, we have found that there is a single real-valued
pole A(s, t, u) = −∞ of the four-point open bosonic string amplitude A(s, t, u)
that is associated with a tachyon exchanged in the u-channel u = (k1 − k3)2 =
−2m2

Planck = −2, with zero angular-momentum J = −γ = 0, if, and only if, the
values of α are α = 1/2 + iλ (the location of the Riemann critical line of nontrivial
zeta zeros). Therefore, one has found a physical interpretation of the location of the
nontrivial zeta zeros as those values of α inside the critical strip that generate poles
of the open bosonic four-point string scattering amplitude A(s, t, u). By cyclic sym-
metry, the same results hold, had we set β + γ = 1, α = 0 (pole in the s-channel),
or α + γ = 1, β = 0 (pole in the t-channel).

Are these solutions unique? We shall see next that other values of α lying in
the critical strip (hypothetical nontrivial zeta zeros) do not correspond to poles of
A(s, t, u). Hence, the values α = 1/2+ iλ are indeed very special since these are the
only values inside the critical strip, which yield poles of A(s, t, u).

Let us identify the four hypothetical nontrivial zeta zeros lying inside the critical
strip (0 < Re z < 1) at

αn, βn = α∗
n. 1 − αn, 1 − βn = 1 − α∗

n (23)

respectively, such that

ζ(αn) = ζ(βn) = ζ(1 − αn) = ζ(1 − βn) = 0. 2 > αn + βn > 1, −1 < γn < 0.

(24)

The r.h.s. of (13) does not have poles by inspection:

A(s, t, u) =
ζ(1 − αn)

ζ(αn)
ζ(1 − βn)

ζ(βn)
ζ(1 − γn)

ζ(γn)
=

ζ(1 − αn)
ζ(αn)

ζ(1 − α∗
n)

ζ(α∗
n)

ζ(1 − γn)
ζ(γn)

=
∥∥∥∥ζ(1 − αn)

ζ(αn)

∥∥∥∥
2

ζ(1 − γn)
ζ(γn)

= Cn
ζ(1 − γn)

ζ(γn)
= real and finite (25)

when −1 < γn < 0. The real constants Cn = ‖ζ(1 − αn)/ζ(αn)‖2 = 0/0 are finite
because there are no poles in the l.h.s. of Eq. (13) by inspection of the arguments
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of the Γ functions when the parameters α, β, γ are restricted by the conditions
described above in Eq. (24).

What we have shown in Eq. (25) is that if there were nontrivial zeta zeros
outside the critical Riemann line these zeros do not correspond to poles of A(s, t, u).
However, this fact alone does not necessarily mean that these zeros do not exist,
but only that if they existed they do not have a physical interpretation in terms of
the poles of A(s, t, u).

Identical conclusions follow if one had the values of α = β∗ lying to the left of
the Riemman critical line Real (z) < 1/2 since in this case we have

0 < α + β < 1; 1 > γ > 0 (26)

in this case, α, β, γ are all confined to the critical strip, and there is no pole in
ζ(1 − γn)/ζ(γn).

Once again we reiterate that there are no poles in the l.h.s. of Eq. (13) by
inspection of the arguments of the Γ functions when α = β∗ and α, β are confined
to the interior of the critical strip obeying 2 > α + β > 1 and −1 < γ < 0, or the
conditions 0 < α + β < 1 and 1 > γ > 0, respectively. The latter conditions imply
that α, β, γ are all confined to the interior of the critical strip and validates the
use of Eq. (13) as indicated by [13]. In this case, the fact that there are no poles in
the l.h.s. of Eq. (13) ensures us that the real constants Cn in Eq. (25) are finite.

Furthemore, we will see that the solutions α = 1/2 + iλ have also a clear
definite geometrical interpretation when the Euclidean triangle with three vertices
degenerates into a vertical strip in the upper complex plane comprising one vertex
located at infinity (with zero angle) and the other two vertices (with angle π/2)
located on the real-axis and separated by a distance, see [15]:

d =
Γ(α)Γ(1 − α)

Γ(1)
=

π

sin (πα)
=

π

sin (π/2 + iπλ)
=

π

cos (iπλ)
=

π

cosh πλ
. (27)

Once again we must remind the reader that our notation for α, β, γ differs from [15].
Despite the fact that α, β = α∗ are complex-valued their sum α + β = 1 = real,

thus the sum of the three angles of the triangle is still π(α +β + γ) = π. Therefore,
the discrete number of the imaginary parts of the nontrivial zeta zeros λn are
associated with a discrete number of possible distances between the two variable
vertices of the triangles situated in the real-axis of the complex plane and given
by dn = π/ cosh(πλn). Physical systems with this type of hyperbolic spectrum of
scales dn are interesting in their own right, because the values dn in Eq. (27) can
be thought of the regularized values of A(s, t, u) by extracting their finite parts in
Eq. (19) by means of Eq. (20a). This deserves further investigation.

Concluding, motivated by the fact that the trivial zeta zeros lie in the neg-
ative even real-axis, −2n, and that there are physical poles of the Veneziano
amplitude in the negative real-axis (at −n, twice as many poles than trivial zeta
zeros), it raises the question whether the location of the nontrivial zeta zeros
along the critical line bear a similar physical significance. The answer is yes: we
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have provided a novel physical interpretation (to our knowledge) of the RH based
on the existence of a special type of poles of the open bosonic string scattering
(Veneziano) amplitude A(s, t, u); namely, that the location of the nontrivial zeta
zeros, Re z = 1/2, have a unique correspondence to a tachyonic pole in the u-
channel of mass-squared −2m2

Planck = −2, with zero angular-momentum J = 0, if
and only if, α = β∗ = 1/2 + iλ and γ = 0.

By cyclic symmetry, the same argument applies to the s, t channels. The case
α = 0 (corresponding to a tachyonic pole s = −2 in the s-channel, studied in detail
in the appendix below) yields the solutions β = γ∗ = 1/2 + iλ (which agree with
the location of the zeta zeros in the critical line) and are associated with a pair of
tachyonic-resonances (tachyonic-condensates) originating from the scattering of two
incoming tachyons, obeying the on-shell condition (k1)2 = (k2)2 = −2. Therefore,
an important connection between string theory and the RH exists within the context
of establishing the correspondence among the zeta zeros and poles of the string
scattering amplitudes A(s, t, u). We found that if there were zeta zeros that violated
the RH, these zeros do not correspond to any poles of the Veneziano amplitudes
A(s, t, u); i.e., these zeros would be very anomalous in this respect.

Appendix. On Tachyonic Resonances/Tachyonic Condensates
and the Riemann Hypothesis

We shall derive the tachyonic resonances/tachyonic condensate conditions that
describe the location of the nontrivial zeta zeros in the Riemann critical line. When
α = 0, one has that β = γ∗ = 1

2 + iλ so there is a tachyon in the s-channel
s = (k1 + k2)2 = −2 and J = 1 + 1

2s = 0 that decays into the tachyonic-condensate
comprising of a pair of tachyonic-resonances (“particle-antiparticle” pair) obeying
k3 = k∗

4 and Re k2
3 = Re k2

4 < 0; along with Im k2
3 = −Im k2

4 .
From the energy-momentum conservation law, k1+k2 = k3+k4, one can rewrite

s = (k1 + k2)2, t = (k2 − k3)2 = (k1 − k4)2, u = (k1 − k3)2. (A.1)

Given β = γ∗ = 1/2 + iλ it yields

−β = 1 +
1
2
t, −γ = 1 +

1
2
u. ⇒ t = u∗ = −3 − 2iλ. (A.2)

The conservation of energy-momentum and the complex–conjugate pair condi-
tion k3 = k∗

4 combined with the conservation of angular-momentum and the Regge
trajectory conditions

J(s = −2) = 1+
1
2
s = 0. Jk3 = 1+

1
2
(k3)2. Jk4 = J∗

k3
. J = Jk3+Jk4 = 0 (A.3)

leads to

k2
3 = −2 + 2iξ(λ), k2

4 = −2 − 2iξ(λ) (A.4)
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that satisfy the conditions

J = 1 +
1
2
k2 ⇒ Jk3 = 0 + iξ, Jk4 = J∗

k3
= 0 − iξ (A.5)

J = Jk3 + Jk4 = 0; |k1 + k2; J = 0〉 → |k3; J = 0 + iξ〉 ⊕ |k4; J = 0 − iξ〉
(A.6)

From s + t + u = −8 and the above equations, one learns

−1 = k1 · (k3 + k4) and 1 + 2i(ξ − λ) = −2k1 · k4 ⇒ 2i(ξ − λ)

= k1 · (k3 − k4) = k1 · (k3 − k∗
3) ⇒ ξ − λ

= k1 · Im(k3) ⇒ ξ − λ = E1E3 − p1π3 = −E1E4 + p1π4 (A.7)

where we have defined

k3 = (E3 + iE3, p3 + iπ3), k4 = (E4 + iE4, p4 + iπ4), k3 = k∗
4

⇒ E3 = E4, E3 = −E4, p3 = p4, π3 = −π4. (A.8)

This last condition (A.8) in conjunction with

k2
3 = −2 + 2iξ = (E3 + iE3)2 − (p3 + iπ3)2 (A.9)

implies

−2 = E2
3 − E2

3 − p2
3 + π2

3 (A.10)

2ξ = 2E3E3 − 2p3π3. (A.11)

where

k1 + k2 = k3 + k4 ⇒ 2E3 = E1 + E2. 2p3 = p1 + p2. (A.12)

The five equations present in (A.7), (A.10), (A.11), and (A.12) with five
unknowns E3, E3, p3, π3, ξ have explicit solutions in terms of λ, E1, p1, E2, p2

given by

E3 =
−2ξp1 + (ξ − λ)(p1 + p2)

E1(p1 + p2) − (E1 + E2)p1
(A.13)

π3 =
−2ξE1 + (ξ − λ)(E1 + E2)
E1(p1 + p2) − (E1 + E2)p1

(A.14)

where ξ is explicitly given by

ξ(λ, E1, E2, p1, p2) = ±1
2

√
3(E1p2 − E2p1)2 + 4λ2(E1E2 − p1p2 − 2)

2 + E1E2 − p1p2
(A.15)

which is symmetric under the exchange 1 ↔ 2. The positive sign of the square root
ξ > 0 corresponds to k2

3 = −2+2iξ and the negative sign to the complex conjugate
solution k2

4 = −2 − 2iξ.
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Given

s = (k1 + k2)2 = −2 = k2
1 + k2

2 + 2k1 · k2 = −2− 2 + 2k1 · k2 ⇒ k1 · k2 = 1 (A.16)

so that the denominator in (A.15) is

2 + E1E2 − p1p2 = 2 + k1 · k2 = 2 + 1 = 3 (A.17)

and Eq. (A.15) is finally

ξ(λ, E1, E2, p1, p2) = ±1
2

√
3(E1p2 − E2p1)2 − 4λ2

3
(A.18)

where the terms inside the square root must be positive-definite to ensure that
the solutions are real-valued and not imaginary. The geometrical interpretation of
Eq. (A.8) is such that the area in energy-momentum space is bounded by those
values determined by λ. When ξ = 0 one recovers the ordinary tachyonic solutions
in Eq. (A.4).

It is straightforward to verify that the term E1p2 − E2p1 in (A.18) is Lorentz
invariant, as it should. This can easily be checked by writing the Lorentz boosts
transformations in term of the boost parameter ω

E′ = E cosh (ω) + p sinh (ω), p′ = p cosh (ω) + E sinh (ω),

E2 − p2 = invariant (A.19)

and using them in

E′
1p

′
2 − E′

2p
′
1 = (E1 cosh (ω) + p1 sinh (ω))(p2 cosh (ω) + E2 sinh (ω))

− (E2 cosh (ω) + p2 sinh (ω))(p1 cosh (ω) + E1 sinh (ω))

= (E1p2 − E2p1)(cosh2(ω) − sinh2(ω)) = (E1p2 − E2p1) = invariant (A.20)

as a result of the identity cosh2(ω) − sinh2(ω) = 1.
Concluding, in this appendix we have shown that the system of four rela-

tions given in Eqs. (A.12)–(A.14) and the relation in Eq. (A.18) furnishes a one-
parameter family of solutions (parametrized by λ) for the five unknowns E3, E3, p3,
π3, ξ, corresponding to the production of a pair of tachyonic-resonances (tachyonic-
condensates) resulting from the scattering of two incoming on-shell tachyons that
are associated with the location of the nontrivial Riemann zeta zeros in the
critical line.

Therefore, we have found a physical interpretation of the location of these non-
trivial zeros, in the same vein that the location of the trivial zeta zeros (negative
even integers) along the negative real-axis also correspond to poles of the Veneziano
amplitude. If there were zeros that violated the RH these zeros would be very
anomalous in the sense they do not correspond to any poles, whatsoever, of the
string scattering amplitude!
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[11] J. F. González, private communication.
[12] M. Pigli. Adelic integrable systems. arXiv:hep-th/9507031.
[13] V. Vladimorov, I. Volovich and E. Zelenov, p-Adic Analysis in Mathematical Physics

(World Scientific, Singapore, 1992).
[14] M. Green, J. Schwarz and E. Witten, Superstring Theory, Vols. 1, 2 (Cambridge

Univeristy Press, Cambridge, 1986).
[15] A. Choudhary, New relations between analyticity, Regge trajectories, Veneziano

amplitude and Mobius transformations, hep-th/0102019.
[16] R. Jaffe and F. Wilczek, A perspective of pentaquarks hep-ph/0401034 (see also

A. M. Gleeson, M. G. Gundzik and E. C. G. Sudarshan, Phys. Rev. D 6 (1972) 807;
B. A. Logan and A. Ljublic, Am. J. Phys. 44 (1976) 789).

[17] A. Sen, Tachyon condensation on the brane antibrane system hep-th/9805170. (see
also W. Huang, On tachyon condensation of intersecting noncommuttaive branes
in M(atrix) theory; H. Yang and B. Zwiebach, A closed string tachyon vacuum?
hep-th/0506077.

[18] A. Khodolenko, New strings from old Veneziano amplitudes, J. Geom Phys. (2005),
in press.

[19] M. Pitkänen, A further step in the proof of Riemann hypothesis, arXiv:gen-
math/0109072. See also http://www.physics.helsinki.fi/˜matpitka/.




