QUANTUM HARDWARE
OF LIVING MATTER

Matti Pitkänen

Köydenpunojankatu D 11, 10900, Hanko, Finland
Preface

This book belongs to a series of online books summarizing the recent state Topological Geometrodynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental interactions but is not the kind of unified theory as so called GUTs constructed by graduate students at seventies and eighties using detailed recipes for how to reduce everything to group theory. Nowadays this activity has been completely computerized and it probably takes only a few hours to print out the predictions of this kind of unified theory as an article in the desired format. TGD is something different and I am not ashamed to confess that I have devoted the last 32 years of my life to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it was October. What I realized was that the representability of physical space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space with some very small compact internal space could resolve the conceptual difficulties of general relativity related to the definition of the notion of energy. This belief was too optimistic and only with the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with particles being represented by space-time surfaces with finite size so that TGD could be also seen as a generalization of the string model. Much later it became clear that this generalization is consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary particle quantum numbers could be possible in this framework: it took two years to find the unique internal space providing this geometrization involving also the realization that family replication phenomenon for fermions has a natural topological explanation in TGD framework and that the symmetries of the standard model symmetries are much more profound than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

- Gravitational energy is well-defined in cosmological models but is not conserved. Hence the conservation of the inertial energy does not seem to be consistent with the Equivalence Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum extremals with respect to the inertial energy. About 25 years was needed to realize that the sign of the inertial energy can be also negative and in cosmological scales the density of inertial energy vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the notion of zero energy ontology which deviates dramatically from the standard ontology being however consistent with the crossing symmetry of quantum field theories. In this framework the quantum numbers are assigned with zero energy states located at the boundaries of so called causal diamonds defined as intersections of future and past directed light-cones. The notion of energy-momentum becomes length scale dependent since one has a scale hierarchy for causal diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro algebras providing also a justification for p-adic thermodynamics.

- From the beginning it was clear that the theory predicts the presence of long ranged classical electro-weak and color gauge fields and that these fields necessarily accompany classical electromagnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields are classical correlates for long range color and weak interactions assignable to dark matter. The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal copies of standard model physics. Also the understanding of electro-weak massivation and screening of weak charges has been a long standing problem, and 32 years was needed to discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of the problem and provides also surprisingly powerful insights to the mathematical structure of quantum TGD.
I started the serious attempts to construct quantum TGD after my thesis around 1982. The original optimistic hope was that path integral formalism or canonical quantization might be enough to construct the quantum theory but the first discovery made already during first year of TGD was that these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy of the theory. This turned out to be the case.

- It took some years to discover that the only working approach is based on the generalization of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional "world of classical worlds" (WCW) identified as 3-dimensional surfaces. Still few years had to pass before I understood that general coordinate invariance leads to a more or less unique solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still a coupled of years and I discovered that quantum states of the Universe can be identified as classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of quantum physics.

- During these years TGD led to a rather profound generalization of the space-time concept. Quite general properties of the theory led to the notion of many-sheeted space-time with sheets representing physical subsystems of various sizes. At the beginning of 90s I became dimly aware of the importance of p-adic number fields and soon ended up with the idea that p-adic thermodynamics for a conformally invariant system allows to understand elementary particle massivation with amazingly few input assumptions. The attempts to understand p-adicity from basic principles led gradually to the vision about physics as a generalized number theory as an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW approach. One of its elements was a generalization of the number concept obtained by fusing real numbers and various p-adic numbers along common rationals. The number theoretical trinity involves besides p-adic number fields also quaternions and octonions and the notion of infinite prime.

- TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book about consciousness. Gradually it became difficult to say where physics ends and consciousness theory begins since consciousness theory could be seen as a generalization of quantum measurement theory by identifying quantum jump as a moment of consciousness and by replacing the observer with the notion of self identified as a system which is conscious as long as it can avoid entanglement with environment. "Everything is conscious and consciousness can be only lost" summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition and intentionality emerged also rather naturally and implies perhaps the most dramatic generalization of the space-time concept in which most points of p-adic space-time sheets are infinite in real sense and the projection to the real imbedding space consists of discrete set of points. One of the most fascinating outcomes was the observation that the entropy based on p-adic norm can be negative. This observation led to the vision that life can be regarded as something in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various positively colored aspects of conscious experience and means also the possibility of strongly correlated states stable under state function reduction and different from the conventional bound states and perhaps playing key role in the energy metabolism of living matter.

- One of the latest threads in the evolution of ideas is only slightly more than six years old. Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical correspondence and the fact that space-time sheets identifiable as quantum coherence regions can have arbitrarily large sizes. During summer 2010 several new insights about the mathematical structure and interpretation of TGD emerged. One of these insights was the realization that the postulated hierarchy of Planck constants might follow from the basic structure of quantum TGD. The point is that due to the extreme non-linearity of the classical action principle the correspondence between canonical momentum densities and time derivatives of the imbedding space coordinates is one-to-many and the natural description of the situation is in terms of local singular covering spaces of the imbedding space. One could speak about effective value of Planck
constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

- With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
 which can be interpreted as a complex square root of density matrix representable as a diagonal
 and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
 energy ontology can be said to define a square root of thermodynamics at least formally.

- A decisive step was the strengthening of the General Coordinate Invariance to the requirement
 that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
 which the induced metric of space-time surfaces changes its signature and in terms of space-like
 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
 surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
 partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
 of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
 the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
 measurement interaction term assigned with light-like 3-surfaces.

- The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
 enormous generalization of the super conformal symmetries of string models. A further general-
 ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
 Yangian symmetry of $\mathcal{N} = 4$ supersymmetric Yang-Mills theories is highly suggestive. Here the
 replacement of point like particles with partonic 2-surfaces means the replacement of conformal
 symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
 metry provides also a further refinement to the notion of conserved quantum numbers allowing
 to define them for bound states using non-local energy conserved currents.

- A further attractive idea is that quantum TGD reduces to almost topological quantum field
 theory. This is possible if the Kähler action for the preferred extremals defining WCW Kähler
 function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
 Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
 duality reduces the Kähler action to Chern-Simons term with the condition that the 3-surfaces
 are extremals of Chern-Simons action subject to the constraint force defined by the weak form
 of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
 theory to a topological quantum field theory. Also the identification of the Kähler function of
 WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
 in terms of braids with interpretation in terms of finite measurement resolution coded to the
 basic structure of the solutions of field equations.

- In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
 beauty of Feynman diagrams is that they realize unitarity automatically via the so called
 Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
 cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
 is however plagued by UV and IR divergences and one must keep mind open for the possibility
 that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like "wormhole throats" suggests that virtual particle do not differ from on mass shell particles only in that the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the wormhole defining virtual particle would contact carry on mass shell quantum numbers but for virtual particles the four-momenta need not be parallel and can also have opposite signs of energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive and reduce the dimension of the sub-space of virtual momenta and if massless particles are not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable that fermionic propagatos are massless propagators but for on mass shell four-momenta. This gives a connection with the twistor approach and inspires the generalization of the Yangian symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and I have left all about applications to the introductions of the books whose purpose is to provide a bird’s eye view about TGD as it is now. This vision is single man’s view and doomed to contain unrealistic elements as I know from experience. My dream is that young critical readers could take this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to develop an alternative based on these or better premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Matti Pitkänen
Hanko,
September 15, 2010

Acknowledgements

Neither TGD nor these books would exist without the help and encouragement of many people. The friendship with Heikki and Raija Haila and their family have been kept me in contact with the everyday world and without this friendship I would not have survived through these lonely 32 years most of which I have remained unemployed as a scientific dissident. I am happy that my children have understood my difficult position and like my friends have believed that what I am doing is something valuable although I have not received any official recognition for it.

During last decade Tapio Tammi has helped me quite concretely by providing the necessary computer facilities and being one of the few persons in Finland with whom to discuss about my work. I have had also stimulating discussions with Samuli Penttinen who has also helped to get through the economical situations in which there seemed to be no hope. The continual updating of fifteen online books means quite a heavy bureaucracy at the level of bits and without a systemization one ends up with endless copying and pasting and internal consistency is soon lost. Pekka Rapinoja has offered his help in this respect and I am especially grateful for him for my Python skills. Also Matti Vallinkoski has helped me in computer related problems.

The collaboration with Lian Sidoroff was extremely fruitful and she also helped me to survive economically through the hardest years. The participation to CASYS conferences in Liege has been an important window to the academic world and I am grateful for Daniel Dubois and Peter Marcer for making this participation possible. The discussions and collaboration with Eduardo de Luna and Istvan Dienes stimulated the hope that the communication of new vision might not be a mission impossible after all. Also blog discussions have been very useful. During these years I have received innumerable email contacts from people around the world. In particular, I am grateful for Mark McWilliams and Ulla Matfolk for providing links to possibly interesting web sites and articles. These contacts have helped me to avoid the depressive feeling of being some kind of Don Quixote of Science and helped me to widen my views: I am grateful for all these people.

In the situation in which the conventional scientific communication channels are strictly closed it is important to have some loop hole through which the information about the work done can at
least in principle leak to the publicity through the iron wall of the academic censorship. Without any exaggeration I can say that without the world wide web I would not have survived as a scientist nor as individual. Homepage and blog are however not enough since only the formally published result is a result in recent day science. Publishing is however impossible without a direct support from power holders- even in archives like arXiv.org.

Situation changed for five years ago as Andrew Adamatsky proposed the writing of a book about TGD when I had already got used to the thought that my work would not be published during my life time. The Prespacetime Journal and two other journals related to quantum biology and consciousness - all of them founded by Huping Hu - have provided this kind of loop holes. In particular, Dainis Zeps, Phil Gibbs, and Arkadiusz Jadczyk deserve my gratitude for their kind help in the preparation of an article series about TGD catalyzing a considerable progress in the understanding of quantum TGD. Also the viXra archive founded by Phil Gibbs and its predecessor Archive Freedom have been of great help: Victor Christianto deserves special thanks for doing the hard work needed to run Archive Freedom. Also the Neuroquantology Journal founded by Sultan Tarlaci deserves a special mention for its publication policy. And last but not least: there are people who experience as a fascinating intellectual challenge to spoil the practical working conditions of a person working with something which might be called unified theory: I am grateful for the people who have helped me to survive through the virus attacks, an activity which has taken roughly one month per year during the last half decade and given a strong hue of grey to my hair.

For a person approaching his sixty year birthday it is somewhat easier to overcome the hard feelings due to the loss of academic human rights than for an inpatient youngster. Unfortunately the economic situation has become increasingly difficult during the twenty years after the economic depression in Finland which in practice meant that Finland ceased to be a constitutional state in the strong sense of the word. It became possible to depose people like me from the society without fear about public reactions and the classification as dropout became a convenient tool of ridicule to circumvent the ethical issues. During last few years when the right wing has held the political power this trend has been steadily strengthening. In this kind of situation the concrete help from individuals has been and will be of utmost importance. Against this background it becomes obvious that this kind of work is not possible without the support from outside and I apologize for not being able to mention all the people who have helped me during these years.

Matti Pitkänen

Hanko,
September 15, 2010
Contents

1 Introduction

1.1 Background .. 1

1.2 Basic Ideas of TGD ... 2

1.2.1 TGD as a Poincare invariant theory of gravitation 2

1.2.2 TGD as a generalization of the hadronic string model ... 2

1.2.3 Fusion of the two approaches via a generalization of the space-time concept ... 2

1.3 The threads in the development of quantum TGD 3

1.3.1 Quantum TGD as spinor geometry of World of Classical Worlds ... 3

1.3.2 TGD as a generalized number theory 5

1.3.3 Hierarchy of Planck constants and dark matter hierarchy ... 8

1.3.4 TGD as a generalization of physics to a theory consciousness ... 9

1.4 Bird’s eye of view about the topics of the book 14

1.5 The contents of the book 16

1.5.1 PART I: BIO-SYSTEMS AS SUPER CONDUCTORS 16

1.5.2 PART II: TOPOLOGICAL LIGHT RAYS AND WORMHOLE MAGNETIC FIELDS 20

1.5.3 PART III: DARK MATTER AND LIVING MATTER 23

1 BIO-SYSTEMS AS SUPER CONDUCTORS

2 Bio-Systems as Super- Conductors: Part I

2.1 Introduction .. 41

2.1.1 General ideas about super-conductivity in many-sheeted space-time 41

2.1.2 TGD inspired model for high T_c superconductivity 43

2.1.3 Empirical evidence for high T_c superconductivity in bio-systems ... 45

2.2 General TGD based view about super-conductivity 45

2.2.1 Basic phenomenology of super-conductivity 45

2.2.2 Universality of the parameters in TGD framework 48

2.2.3 Quantum criticality and super-conductivity 49

2.2.4 Space-time description of the mechanisms of super-conductivity ... 52

2.2.5 Super-conductivity at magnetic flux tubes 54

2.3 TGD based model for high T_c super conductors 56

2.3.1 Some properties of high T_c super conductors 56

2.3.2 TGD inspired vision about high T_c superconductivity ... 58

2.4 Evidence for electronic superconductivity in bio-systems 65

2.4.1 DNA as a conductor? 65

2.4.2 DNA as a super-conductor? 66

2.4.3 Conducting DNA and metabolism 68

2.4.4 Some empirical evidence for super conductivity in bio-systems 69

2.4.5 Microtubular space-time sheets as super conductors? 69

2.4.6 Are living systems high T_c superconductors? 70

2.5 Exotic atoms, wormhole super conductivity and wormhole magnetic fields 71

2.5.1 Exotic atoms ... 71

2.5.2 Mono-atomic elements as dark matter and high T_c super-conductors? 73
4.1.9 MEs and dark matter hierarchy ... 204
4.2 Massless extremals ... 205
4.2.1 Massless extremals as general solutions of field equations 205
4.2.2 About the electro-weak and color fields associated with massless extremals . 206
4.2.3 How massless extremals generate coherent states of photons? 207
4.2.4 Massless extremal is accompanied by a Bose-Einstein condensate of parallel photons .. 208
4.2.5 MEs and exotic representations of p-adic Super Virasoro algebra 209
4.3 Microtubules as quantum antennae ... 209
4.3.1 Linear structures as quantum antennae 209
4.3.2 Are microtubules accompanied by massless extremals? 210
4.3.3 How macroscopic quantum coherence is generated? 211
4.3.4 Are nerve pulse patterns coded into vacuum currents and coherent light? 212
4.4 Masless extremals and information molecules 213
4.4.1 Questions about information molecules 213
4.4.2 A model of biological self-organization based on quantum antenna hypothesis ... 214
4.5 Evidence for quantum antenna hypothesis 215
4.5.1 TGD inspired model for sonoluminescence 215
4.5.2 Stirred and shaken .. 220
4.5.3 Evidence for quantum antenna hypothesis in living systems 221
4.5.4 Biefeld-Brown effect .. 222
4.6 Quantum holography and MEs .. 224
4.6.1 Quantum holography in the sense of quantum gravity theories 224
4.6.2 Generalization of the solution ansatz defining massless extremals (MEs) ... 225
4.6.3 Quantum holography in non-cosmological length scales 228
4.6.4 Super-symplectic representations, quantum holography, and consciousness 229
4.6.5 Quantum holography and quantum information theory 229
4.6.6 MEs and qualia .. 230
4.6.7 Connection with the notion of wave-DNA 231
4.6.8 p-Adic cognition and the existence of double-sheeted MEs and wormhole magnetic fields ... 232
4.6.9 Connection with quantum holography involved with NMR 233
4.6.10 Summary ... 234
4.7 Appendix: A model for the topological condensation of coherent vapor phase photons .. 234
4.7.1 The action ... 235
4.7.2 Coherent state is generated in resonant-like manner for light-like vacuum currents .. 236
4.7.3 Stimulated topological condensation 236

5 Wormhole Magnetic Fields .. 259
5.1 Introduction ... 259
5.2 Basic conceptual framework .. 260
5.2.1 Basic concepts .. 261
5.2.2 Gauge charges and gauge fluxes ... 263
5.2.3 The relationship between inertial gravitational masses 266
5.2.4 Can one regard # resp. #B contacts as particles resp. string like objects? 267
5.2.5 TGD based description of external fields 268
5.2.6 Number theoretical considerations 270
5.3 Model for topologically quantized magnetic field 274
5.3.1 Topological field quantization .. 274
5.3.2 Mind like space-time sheets ... 275
5.3.3 Do mind-like space-time sheets perform simple mimicry? 276
5.3.4 Model for wormhole flux tube as a hollow cylinder 277
5.3.5 Wormhole flux tubes need not be closed in ordinary sense 277
5.3.6 Wormhole flux tubes form a macroscopic quantum system 278
5.3.7 The interaction of coherent light with wormhole flux tubes 279
5.3.8 Quantum antenna hypothesis and wormholes 279
5.3.9 Phantom DNA effect, Comorosan effect, DNA as a conductor, ORMEs: four peculiar effects with a common explanation .. 279
5.4 Comorosan effect, phantom DNA effect and homeopathy .. 280
 5.4.1 Comorosan effect .. 280
 5.4.2 Phantom DNA effect .. 284
 5.4.3 Mind-like space-time sheets, mimicry and homeopathy .. 285
5.5 Subcellular control and wormhole flux tubes .. 287
 5.5.1 Intracellular bio-control and memory .. 287
 5.5.2 Coding of genetic information to topologically quantized fields? .. 287
 5.5.3 Are magnetic and wormhole magnetic fields involved with the control of gene expression? .. 287
 5.5.4 Wormhole flux tubes as templates of bio-structures .. 288
5.6 TGD inspired models for psychokinesis .. 289
 5.6.1 Wormhole magnetic fields and psychokinesis .. 289
 5.6.2 Alternative models of psychokinesis .. 292
 5.6.3 Experimental tests .. 293

III DARK MATTER AND LIVING MATTER 317
6 Dark Nuclear Physics and Condensed Matter .. 319
 6.1 Introduction .. 319
 6.1.1 Dark rules .. 319
 6.1.2 Some implications .. 323
 6.2 A generalization of the notion of imbedding space as a realization of the hierarchy of Planck constants .. 324
 6.2.1 Hierarchy of Planck constants and the generalization of the notion of imbedding space .. 324
 6.2.2 Could the dynamics of Kähler action predict the hierarchy of Planck constants? .. 330
 6.3 General ideas about dark matter .. 333
 6.3.1 How the scaling of \(\hbar \) affects physics and how to detect dark matter? .. 333
 6.3.2 General view about dark matter hierarchy and interactions between relatively dark matters .. 333
 6.3.3 How dark matter and visible matter interact? .. 335
 6.3.4 Could one demonstrate the existence of large Planck constant photons using ordinary camera or even bare eyes? .. 336
 6.3.5 Dark matter and exotic color and electro-weak interactions .. 339
 6.3.6 Anti-matter and dark matter .. 341
 6.4 Dark variants of nuclear physics .. 342
 6.4.1 Constraints from the nuclear string model .. 342
 6.4.2 Constraints from the anomalous behavior of water .. 343
 6.4.3 Exotic chemistries and electromagnetic nuclear darkness .. 344
 6.5 Has dark matter been observed? .. 346
 6.5.1 Optical rotation of a laser beam in a magnetic field .. 346
 6.5.2 Do nuclear reaction rates depend on environment? .. 347
 6.6 Water and new physics .. 350
 6.6.1 The 41 anomalies of water .. 350
 6.6.2 The model .. 354
 6.6.3 Further comments on 41 anomalies .. 360
 6.6.4 Genes and water memory .. 361
 6.6.5 Burning water and photosynthesis .. 365
 6.7 Connection with mono-atomic elements, cold fusion, and sono-luminescence? .. 368
 6.7.1 Mono-atomic elements as dark matter and high \(T_c \) super-conductors? .. 369
 6.7.2 Connection with cold fusion? .. 374
 6.7.3 Does Rossi’s reactor give rise to cold fusion? .. 377
 6.7.4 Sono-luminescence, classical \(Z^0 \) force, and hydrodynamic hierarchy of p-adic length scales .. 380
6.8 Dark atomic physics ... 383
6.8.1 Dark atoms and dark cyclotron states 383
6.8.2 Could q-Laguerre equation relate to the claimed fractionation of the principal quantum number for hydrogen atom? 384
6.8.3 Shy positrons ... 390

7 Dark Forces and Living Matter ... 417
7.1 Introduction ... 417
7.1.1 Evidence for long range weak forces and new nuclear physics ... 417
7.1.2 Dark rules .. 419
7.1.3 Weak form of electric magnetic duality, screening of weak charges, and color confinement? 421
7.1.4 Dark weak forces and almost vacuum extremals 422
7.2 Weak form electric-magnetic duality and color and weak forces ... 423
7.2.1 Could a weak form of electric-magnetic duality hold true? ... 424
7.2.2 Magnetic confinement, the short range of weak forces, and color confinement ... 429
7.3 Dark matter hierarchy, genetic machinery, and the un-reasonable selectivity of bio-catalysis ... 431
7.3.1 Dark atoms and dark cyclotron states ... 431
7.3.2 Spontaneous decay and completion of dark fractional atoms as a basic mechanisms of bio-chemistry? 433
7.3.3 The new view about hydrogen bond and water .. 434
7.4 TGD based model for cell membrane as sensory receptor ... 438
7.4.1 Could cell correspond to almost vacuum extremal? 438
7.4.2 General model for qualia and sensory receptor 444
7.4.3 Some implications of the model of cell membrane as sensory receptor ... 445
7.4.4 A general model of qualia and sensory receptor 446
7.4.5 Detailed model for the qualia ... 448
7.4.6 Overall view about qualia ... 450
7.4.7 About detailed identification of the qualia 451

8 About the New Physics Behind Qualia 479
8.1 Introduction .. 479
8.1.1 Living matter and dark matter ... 479
8.1.2 Macroscopic quantum phases in many-sheeted space-time ... 480
8.1.3 Mind like space-time sheets as massless extremals 480
8.1.4 Classical color and electro-weak fields in macroscopic length scales .. 480
8.1.5 Mersenne hypothesis ... 481
8.1.6 p-Adic-to-real transitions as transformation of intentions to actions .. 481
8.1.7 Exotic super-Virasoro representations 482
8.2 Dark matter and living matter ... 483
8.2.1 Hierarchy of Planck constants and the generalization of the notion of imbedding space ... 483
8.2.2 Could the dynamics of Kähler action predict the hierarchy of Planck constants? .. 488
8.2.3 Dark atoms and dark cyclotron states 491
8.2.4 Dark matter and mind: general ideas 492
8.2.5 Dark matter hierarchy, sensory representations, and motor action .. 496
8.3 MEs and mes .. 498
8.3.1 Massless extremals .. 499
8.3.2 About the electro-weak and color fields associated with massless extremals ... 503
8.3.3 MEs as absorbing and emitting quantum antennae 503
8.3.4 Quantum holography and quantum information theory ... 505
8.3.5 MEs and quantum control .. 511
8.3.6 Experimental evidence for MEs 517
8.4 Bio-systems as superconductors .. 518
8.4.1 General mechanisms for superconductivity 518
8.4.2 Superconductivity at magnetic flux quanta in astrophysical length scales ... 519
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.3 Fractal hierarchy of EEGs and ZEGs</td>
<td>519</td>
</tr>
<tr>
<td>8.4.4 TGD assigns 10 Hz biorhythm to electron as an intrinsic frequency scale</td>
<td>520</td>
</tr>
<tr>
<td>8.5 Many-sheeted space-time, universal metabolic quanta, and plasmoids as primitive life forms</td>
<td>522</td>
</tr>
<tr>
<td>8.5.1 Evidence for many-sheeted space-time</td>
<td>522</td>
</tr>
<tr>
<td>8.5.2 Laboratory evidence for plasmoids as life forms</td>
<td>525</td>
</tr>
<tr>
<td>8.5.3 Universal metabolic quanta</td>
<td>527</td>
</tr>
<tr>
<td>8.5.4 Life as a symbiosis of plasmoids and biological life</td>
<td>536</td>
</tr>
<tr>
<td>8.6 Exotic color and electro-weak interactions</td>
<td>538</td>
</tr>
<tr>
<td>8.6.1 Long range classical weak and color gauge fields as correlates for dark massless weak bosons</td>
<td>539</td>
</tr>
<tr>
<td>8.6.2 Dark color force as a space-time correlate for the strong nuclear force?</td>
<td>540</td>
</tr>
<tr>
<td>8.6.3 How brain could deduce the position and velocity of an object of perceptive field?</td>
<td>542</td>
</tr>
<tr>
<td>8.7 Exotic representations of super-symplectic algebra</td>
<td>544</td>
</tr>
<tr>
<td>8.7.1 Exotic p-adic representations as representations for which states are almost p-adic fractals</td>
<td>545</td>
</tr>
<tr>
<td>8.7.2 Mersenne primes and Gaussian Mersennes are special</td>
<td>546</td>
</tr>
<tr>
<td>8.7.3 The huge degeneracies of the exotic states make them ideal for representational purposes</td>
<td>547</td>
</tr>
<tr>
<td>8.7.4 Could one assign life-forms to the exotic Super-Virasoro representations?</td>
<td>548</td>
</tr>
<tr>
<td>1 Appendix</td>
<td>585</td>
</tr>
<tr>
<td>A-1 Basic properties of CP^2</td>
<td>585</td>
</tr>
<tr>
<td>A-1.1 CP^2 as a manifold</td>
<td>585</td>
</tr>
<tr>
<td>A-1.2 Metric and Kähler structure of CP^2</td>
<td>585</td>
</tr>
<tr>
<td>A-1.3 Spinors in CP^2</td>
<td>588</td>
</tr>
<tr>
<td>A-1.4 Geodesic sub-manifolds of CP^2</td>
<td>588</td>
</tr>
<tr>
<td>A-2 CP^2 geometry and standard model symmetries</td>
<td>589</td>
</tr>
<tr>
<td>A-2.1 Identification of the electro-weak couplings</td>
<td>589</td>
</tr>
<tr>
<td>A-2.2 Discrete symmetries</td>
<td>592</td>
</tr>
<tr>
<td>A-3 Basic facts about induced gauge fields</td>
<td>593</td>
</tr>
<tr>
<td>A-3.1 Induced gauge fields for space-times for which CP^2 projection is a geodesic sphere</td>
<td>593</td>
</tr>
<tr>
<td>A-3.2 Space-time surfaces with vanishing em, Z^0, or Kähler fields</td>
<td>593</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Topological field quantization for magnetic field replaces flux lines with flux tubes having outer boundary as 3-surfaces.</td>
<td>275</td>
</tr>
<tr>
<td>5.2</td>
<td>Two-dimensional visualization of wormhole</td>
<td>276</td>
</tr>
<tr>
<td>5.3</td>
<td>a) Wormhole flux tube consists of two hollow cylinders on parallel space-time sheets connected by wormholes. b) Negatively and positively charged rotating wormholes.</td>
<td>278</td>
</tr>
<tr>
<td>5.4</td>
<td>The interaction with laser light is assumed to induce the transformation of annulus configuration of wormhole flux tube to twisted annulus and creation of at least one wormhole pair with opposite charges.</td>
<td>282</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

T(gological) G(eometry)D(ynamics) is one of the many attempts to find a unified description of basic interactions. The development of the basic ideas of TGD to a relatively stable form took time of about half decade [2]. The great challenge is to construct a mathematical theory around these physically very attractive ideas and I have devoted the last twenty-three years for the realization of this dream and this has resulted in seven online books about TGD and eight online books about TGD inspired theory of consciousness and of quantum biology.

Quantum T(gological) G(eometry)D(ynamics) as a classical spinor geometry for infinite-dimensional configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness and of quantum biology have been for last decade of the second millenium the basic three strongly interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the name 'TGD as a generalized number theory'. The basic observation was that classical number fields might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the basic views about what the final form and physical content of quantum TGD might be. Together with the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads fused to the "physics as generalized number theory" thread.

A further thread emerged from the realization that by quantum classical correspondence TGD predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynamical quantized Planck constant might be necessary and certainly possible in TGD framework. The identification of hierarchy of Planck constants whose values TGD "predicts" in terms of dark matter hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the representation reflects my bird's eye of view as it is at the moment of updating. At this time I realized that the chronology based identification of the threads is quite natural but not logical and it is much more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes as sub-threads of a thread which might be called "physics as a generalized number theory". In the following I adopt this view. This reduces the number of threads to four! I am not even sure about the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics of cognitive representations. The seven online books [83, 62, 50, 46, 63, 72, 69] about TGD and eight online books about TGD inspired theory of consciousness and of quantum biology [76, 11, 56, 9, 31].
Chapter 1. Introduction

\[4S \] are warmly recommended to the interested reader.

1.2 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches: namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the old-fashioned string model.

1.2.1 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation. Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is regarded as a surface in the 8-dimensional space \(H = M^4 \times CP_2 \), where \(M^4 \) denotes Minkowski space and \(CP_2 = SU(3)/U(2) \) is the complex projective space of two complex dimensions [9, 3, 7, 2].

The identification of the space-time as a submanifold of \(M^4 \times CP_2 \) leads to an exact Poincare invariance and solves the conceptual difficulties related to the definition of the energy-momentum in General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the geometrization of the elementary particle quantum numbers is achieved. The geometry of \(CP_2 \) explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The projections of the \(CP_2 \) spinor connection, Killing vector fields of \(CP_2 \) and of \(M^4 \)-metric to four-surface define classical electro-weak, color gauge fields and metric in \(X^4 \).

1.2.2 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-surfaces correspond to free particles and the boundaries of the 3-surface correspond to partons in the sense that the quantum numbers of the elementary particles reside on the boundaries. Various boundary topologies (number of handles) correspond to various fermion families so that one obtains an explanation for the known elementary particle quantum numbers. This approach leads also to a natural topological description of the particle reactions as topology changes: for instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of string models. Indeed, the important difference between TGD and string models is that the analogs of string world sheet diagrams do not describe particle decays but the propagation of particles via different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.2.3 Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically trivial macroscopic space-time of General Relativity. The unification of these approaches forces a considerable generalization of the conventional space-time concept. First, the topologically trivial 3-space of General Relativity is replaced with a ”topological condensate” containing matter as particle like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological condensate” there could be ”vapor phase” that is a ”gas” of particle like 3-surfaces (counterpart of the ”baby universes” of GRT) and the nonconservation of energy in GRT corresponds to the transfer of energy between the topological condensate and vapor phase.
1.3. The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following these threads are briefly described.

1.3.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new approach have served as the basic philosophy for the attempt to construct Quantum TGD since then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in H. "All possible" means that surfaces with arbitrary many disjoint components and with arbitrary internal topology and also singular surfaces topologically intermediate between two different manifold topologies are included. Particle reactions are identified as topology changes \mathcal{S}. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay $A \rightarrow B + C$. Classically this corresponds to a path of configuration space leading from 1-particle sector.
to 2-particle sector. At quantum level this corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling constants should result as predictions of the theory since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not anymore quite equivalent with the original insight. In particular, the space-time correlates of Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form of General Coordinate Invariance has led to a rather detailed and in many respects un-expected visions. This picture forces to give up the idea about smooth space-time surfaces and replace space-time surface with a generalization of Feynman diagram in which vertices represent the failure of manifold property. I have also startd introduced the word ”world of classical worlds” (WCW) instead of rather formal ”configuration space”. I hope that ”WCW” does not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric related differential operators, say Dirac operator, appearing in the field equations of the theory. The most ambitious dream is that zero energy states correspond to a complete solution basis for the Dirac operator of WCW so that this classical free field theory would dictate M-matrices which form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity of the complex square roots of density matrices commuting with S-matrix means that they span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum TGD would reduce to group theory in well-defined sense: its own symmetries would define the symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to the second quantization of the induced spinor fields at space-time surface. The basic action is so called modified Dirac action in which gamma matrices are replaced with the modified gamma matrices defined as contractions of the canonical momentum currents with the imbedding space gamma matrices. In this manner one achieves super-conformal symmetry and conservation of fermionic currents among other things and consistent Dirac equation. This modified gamma matrices define as anticommutators effective metric, which might provide geometrization for some basic observables of condensed matter physics. The conjecture is that Dirac determinant for the modified Dirac action gives the exponent of Kähler action for a preferred extremal as vacuum functional so that one might talk about bosonic emergence in accordance with the prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time (recall the notion of causal diamond \((CD)\)) and with the light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
1.3. The threads in the development of quantum TGD

Euclidian regions would give at wormhole throats the same contribution apart from coefficients and in Minkowskian regions the \(\sqrt{g} \) factor would be imaginary so that one would obtain sum of real term identifiable as Kähler function and imaginary term identifiable as the ordinary action giving rise to interference effects and stationary phase approximation central in both classical and quantum field theory. Imaginary contribution - the presence of which I realized only after 33 years of TGD - could also have topological interpretation as a Morse function. On physical side the emergence of Euclidian space-time regions is something completely new and leads to a dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulombic contribution to Kähler action is required and is true for all known extremals if one makes a general ansatz about the form of classical conserved currents. The so called weak form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total area of Minkowskian string world sheets and a real tem proportional to the total area of partonic 2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would realize a duality between these two kinds of objects. String world sheets indeed emerge naturally for the proposed ansatz defining preferred extremals. Therefore Kähler action would have very stringy character apart from effects due to the failure of the strict determinism meaning that radiative corrections break the effective 2-dimensionality.

1.3.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD. The fourth thread deserves the name 'TGD as a generalized number theory’. It involves three separate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified as sub-spaces of complexified classical number fields with Minkowskian signature of the metric defined by the complexified inner product, and the notion of infinite prime.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Although the details of the calculations have varied from year to year, it was clear that p-adic physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary particle mass scales, to number theory if one assumes that primes near prime powers of two are in a physically favored position. Why this is the case, became one of the key puzzle and led to a number of arguments with a common gist: evolution is present already at the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic length scales varying to even cosmological length scales. The idea about the connection of p-adics with cognition motivated already the first attempts to understand the role of the p-adics and inspired ‘Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It became however
obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive representations for real regions had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic topology only serve as an effective topology? If p-adic physics is direct image of real physics, how the mapping relating them is constructed so that it respects various symmetries? Is the basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both, how should one glue the physics in different number field together to get The Physics? Should one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly the p-adicization at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic definite integral which is a crucial element of any variational principle based formulation of the field equations. Here the frustration was not due to the lack of solution but due to the too large number of solutions to the problem, a clear symptom for the sad fact that clever inventions rather than real discoveries might be in question. Quite recently I however learned that the problem of making sense about p-adic integration has been for decades central problem in the frontier of mathematics and a lot of profound work has been done along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic continuation from the world of rationals belonging to the intersection of real world and various p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic physics grewed steadily and the applications turned out to be relatively stable so that it was clear that the solution to these problems must exist. It became only gradually clear that the solution of the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures. This has inspired a proposal for a generalization of the notion of number field by fusing real numbers and various p-adic number fields and their extensions along rationals and possible common algebraic numbers. This leads to a generalization of the notions of imbedding space and space-time concept and one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that it allows quantum transitions transforming space-time sheets belonging to different number fields to each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various number fields can be obtained as completion of rational number based physics to various number fields. Rational number based physics would in turn describe physics in finite measurement resolution and cognitive resolution. The notion of finite measurement resolution has become one of the basic principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and inclusions of hyper-finite factors as a representation for finite measurement resolution.

The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic compactification stating that space-time surfaces can be regarded as surfaces of either M^8 or $M^4 \times CP^2$. As surfaces of M^8 identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative or co-associative. This means that their tangent space is either hyper-quaternionic plane of M^8 or an orthogonal complement of such a plane. These surface can be mapped in natural manner to surfaces in $M^4 \times CP^2$ provided one can assign to each point of tangent space a hyper-complex plane $M^4(x) \subset M^4$. One can also speak about $M^8 - H$ duality.
This vision has very strong predictive power. It predicts that the extremals of Kähler action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign to tangent space at each point of space-time surface a hyper-complex plane $M^2(x) \subset M^4$. As a consequence, the M^4 projection of space-time surface at each point contains $M^2(x)$ and its orthogonal complement. These distributions are integrable implying that space-time surface allows dual slicings defined by string world sheets Y^2 and partonic 2-surfaces X^2. The existence of this kind of slicing was earlier deduced from the study of extremals of Kähler action and christened as Hamilton-Jacobi structure. The physical interpretation of $M^2(x)$ is as the space of non-physical polarizations and the plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the understanding of quantum TGD that has emerged during last years. This includes the realization of Equivalence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise identification of preferred extremals of Kähler action as extremals for which second variation vanishes (at least for deformations representing dynamical symmetries) and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynamics of Kähler action and crucial for precise construction of quantum TGD as almost-topological QFT, the construction of configuration space metric and spinor structure in terms of second quantized induced spinor fields with modified Dirac action defined by Kähler action realizing automatically the notion of finite measurement resolution and a connection with inclusions of hyper-finite factors of type II_1 about which Clifford algebra of configuration space represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of Kähler action. The general idea is that classical dynamics for the preferred extremals of Kähler action should reduce to number theory: space-time surfaces should be either associative or co-associative in some sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces are quaternionic in some sense and thus associative. This can be formulated in terms of octonionic representation of the imbedding space gamma matrices possible in dimension $D = 8$ and states that induced gamma matrices generate quaternionic sub-algebra at each space-time point. It seems that induced rather than modified gamma matrices must be in question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In octonionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity would be defined in an obvious manner. Octonionic real analytic functions form a function field closed also with respect to the composition of functions. Space-time surfaces would form the analog of function field with the composition of functions with all operations realized as algebraic operations for space-time surfaces. Co-associativity could be perhaps seen as an additional feature making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics as various completions of the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic, topological and dimensional democracy would characterize the theory.
What is especially satisfying is that p-adic and real regions of the space-time surface could emerge automatically as solutions of the field equations. In the space-time regions where the solutions of field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-adic differential equations suggests strongly that p-adic regions correspond to ‘mind stuff’, the regions of space-time where cognitive representations reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive information about the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.3.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions. Hence the fact that they have all possible size scales more or less unavoidably implies that Planck constant must be quantized and have arbitrarily large values. If one accepts this then also the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large \hbar phase

D. Da Rocha and Laurent Nottale \cite{4} have proposed that Schrödinger equation with Planck constant \hbar replaced with what might be called gravitational Planck constant $\hbar_{gr} = \frac{G m M}{v_0} (h = c = 1)$. v_0 is a velocity parameter having the value $v_0 = 144.7 \pm 7$ km/s giving $v_0/c = 4.6 \times 10^{-4}$. This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v_0 seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics. Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR catastrophe) problem encountered at the classical level. The resolution of the problem inspired by TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which is quantum coherent in the required time scale \cite{66}.

TGD predicts correctly the value of the parameter v_0 assuming that cosmic strings and their decay remnants are responsible for the dark matter. The harmonics of v_0 can be understood as corresponding to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes n^2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. $1/n$-sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also a model for the formation of planetary system as a condensation of ordinary matter around quantum coherent dark matter emerges \cite{66}.

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension would give rise to negative "pressure" forcing accelerate cosmological expansion. This leads to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5 times that of Earth for biologically important ions have physiological effects and affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies for the photons of ELF em fields are extremely low - about 10^{-10} times lower than thermal energy
at physiological temperatures—so that quantal effects are impossible in the framework of standard quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant that the energy of photons is above the thermal energy. The proposed interpretation was as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-standard value of Planck constant. If only particles with the same value of Planck constant can appear in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark relative to each other. The phase transitions changing Planck constant can however make possible interactions between phases with different Planck constant but these interactions do not manifest themselves in particle physics. Also the interactions mediated by classical fields should be possible. Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants is postulated to come as integer multiples of the standard value of Planck constant. Given integer multiple \(\hbar = n\hbar_0\) of the ordinary Planck constant \(\hbar_0\) is assigned with a multiple singular covering of the imbedding space [25]. One ends up to an identification of dark matter as phases with non-standard value of Planck constant having geometric interpretation in terms of these coverings providing generalized imbedding space with a book like structure with pages labelled by Planck constants or integers characterizing Planck constant. The phase transitions changing the value of Planck constant would correspond to leakage between different sectors of the extended imbedding space. The question is whether these coverings must be postulated separately or whether they are only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge vacuum degeneracy of Kähler action implies that the relationship between gradients of the imbedding space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to give up all the standard quantization recipes and leading to the idea about physics as geometry of the “world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the same values of the canonical momentum currents are present, one obtains effectively many-sheeted covering of the imbedding space and the contributions from sheets to the Kähler action are identical. If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time at future and past boundaries of causal diamond containing the space-time surface, various branches co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The identification explains chiral selection in living matter and unbroken \(U(2)_{ew}\) invariance and free color in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear physics. A possible solution of the matter antimatter asymmetry is based on the identification of also antimatter as dark matter.

1.3.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between entire deterministic quantum histories rather than time=constant snapshots of single history. The new view about quantum jump forces a generalization of quantum measurement theory such that
observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable outcome. This theory is developed in detail in the books [76, 111, 11, 9, 31, 38, 42, 68].

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum jump involves the steps

$$\Psi_i \rightarrow U \Psi_i \rightarrow \Psi_f,$$

where U is informational "time development" operator, which is unitary like the S-matrix characterizing the unitary time evolution of quantum mechanics. U is however only formally analogous to Schrödinger time evolution of infinite duration although there is no real time evolution involved. It is not however clear whether one should regard U-matrix and S-matrix as two different things or not: U-matrix is a completely universal object characterizing the dynamics of evolution by self-organization whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field theories where it at least formally represents unitary time translation operator at the limit of an infinitely long interaction time. The S-matrix understood in the spirit of superstring models is however something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field theories implies that each quantum jump involves localization in zero modes which parameterize also the possible choices of the quantization axes. Thus the selection of the quantization axes performed by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply that the final states of quantum jump correspond to quantum superpositions of space-time surfaces which are macroscopically equivalent. Hence the world of conscious experience looks classical. At least formally quantum jump can be interpreted also as a quantum computation in which matrix U represents unitary quantum computation which is however not identifiable as unitary translation in time direction and cannot be 'engineered'.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the sequential informational 'time evolutions' U. Exactly vanishing entanglement is practically impossible in ordinary quantum mechanics and it might be that 'vanishing entanglement' in the condition for self-property should be replaced with 'subcritical entanglement'. On the other hand, if space-time decomposes into p-adic and real regions, and if entanglement between regions representing physics in different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last 'wake-up' sum up to single average experience. This means that subjective memory is identifiable as conscious, immediate short term memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also interpreted as mental images: our mental images are selves having mental images and also we represent mental images of a higher level self. A natural hypothesis is that self S experiences the experiences of its subselves as kind of abstracted experience: the experiences of subselves S_i are not experienced as such but represent kind of averages $\langle S_{ij} \rangle$ of sub-sub-selves S_{ij}. Entanglement between selves, most naturally realized by the formation of join along boundaries bonds between cognitive or material space-time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the fusion of the mental images representing separate right and left visual fields to single visual field) and forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps is enough. CDs would serve as imbedding space correlates of selves and quantum jumps would be followed by cascades of state function reductions beginning from given CD and proceeding downwards to the smaller scales (smaller CDs). State function reduction cascades could also take place in parallel branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric time is induced from that of subjective time defined by the experiences induced by the sequences of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
localization of the contents of sensory experience and cognition to the upper boundaries of CD could take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory. The assumption that localization occurs in zero modes in each quantum jump implies that the world of conscious experience looks classical. It also implies the state function reduction of the standard quantum measurement theory as the following arguments demonstrate (it took incredibly long time to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain with the measurement apparatus. If this interaction corresponds to entanglement between microscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M characterizing the reading of the measurement apparatus coded to brain state, then the reduction of this entanglement in quantum jump reproduces standard quantum measurement theory provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and correlates completely some orthonormal basis of configuration space spinor fields in non-zero modes with the values of the zero modes. The flow property guarantees that the localization is consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables (say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface (shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees of freedom and are the TGD counterpart of the degrees of freedom M representing the reading of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes and zero modes is the TGD counterpart for the $m-M$ entanglement. Therefore the localization in zero modes is equivalent with a quantum jump leading to a final state where the measurement apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential. Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.

Standard quantum measurement theory involves also the notion of state preparation which reduces to the notion of self measurement. Each localization in zero modes is followed by a cascade of self measurements leading to a product state. This process is obviously equivalent with the state preparation process. Self measurement is governed by the so called Negentropy Maximization Principle (NMP) stating that the information content of conscious experience is maximized. In the self measurement the density matrix of some subsystem of a given self localized in zero modes (after ordinary quantum measurement) is measured. The self measurement takes place for that subsystem of self for which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context NMP can be regarded as the variational principle defining the dynamics of cognition. In real context self measurement could be seen as a repair mechanism allowing the system to fight against quantum thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum jump as the basic step of self-organization [64]. Quantum entanglement gives rise to the generation of long range order and the emergence of longer p-adic length scales corresponds to the emergence of larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization. Zero modes represent fundamental order parameters and localization in zero modes implies that the sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical theory of self organization applies almost as such. Spin glass analogy is a further important element:
self-organization of self leads to some characteristic pattern selected by dissipation as some valley of the "energy" landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipation terms to the reversible fundamental dynamical equations derivable from an action principle can be understood as a phenomenological description replacing in a well defined sense the series of reversible quantum histories with its envelope.

Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time surface decomposes into maximal deterministic regions and their temporal sequences have interpretation a space-time correlate for a sequence of quantum states defined by the initial (or final) states of quantum jumps. This is consistent with the fact that the variational principle selects preferred extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as volitional non-determinism associated with our choices. Association sequences relate closely with the cognitive space-time sheets defined as space-time sheets having finite time duration and psychological time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes into regions obeying real and p-adic topologies labelled by primes $p = 2, 3, 5, ...$. p-Adic regions obey the same field equations as the real regions but are characterized by p-adic non-determinism since the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant functions. Pseudo constants depend on a finite number of positive binary digits of arguments just like numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time regions are obtained by gluing together regions for which integration constants are genuine constants. The natural interpretation of the p-adic regions is as cognitive representations of real physics. The freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and make possible for the Universe to form cognitive representations about itself. p-Adic physics space-time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic extensions among common algebraic numbers). This picture is discussed in [74]. The application this notion at the level of the imbedding space implies that imbedding space has a book like structure with various variants of the imbedding space glued together along common rationals (algebraics). The implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and intentionality are almost completely outside the real cosmos and touch it at a discrete set of points only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing long range real physics and provides an explanation for p-adic length scale hypothesis stating that the primes $p \simeq 2^k$, k integer are especially interesting. It also explains the long range correlations and short term chaos characterizing intentional behavior and explains why the physical realizations of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete quantum model for how intentions are transformed to actions emerges.
1.3. The threads in the development of quantum TGD

The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the $p = 2^k - n$ pinary digits represent a Boolean logic B^k with k elementary statements (the points of the k-element set in the set theoretic realization) with n taboos which are constrained to be identically true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in principle appear as arbitrarily large scaled up copies (Compton length scales as \hbar). The phase transition to this kind of phase implies that space-time sheets of particles overlap and this makes possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated with EEG turns out to be above thermal energy at room temperature for the level of dark matter hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale of Earth and a successful quantitative model for EEG results [22].

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several testable predictions [22]. The general prediction is that Universe is a kind of inverted Mandelbrot fractal for which each bird’s eye of view reveals new structures in long length and time scales representing scaled down copies of standard physics and their dark variants. These structures would correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly the band structure and even individual resonance bands and also generalizing the notion of EEG [22]. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the standard dogma [10, 22]. A particularly fascinating implication is the possibility to identify great leaps in evolution as phase transitions in which new higher level of dark matter emerges [22].

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That this explanation is consistent with the explanation based on spin glass degeneracy is suggested by following observations. First, the argument supporting spin glass degeneracy as an explanation of the macro-temporal quantum coherence does not involve the value of \hbar at all. Secondly, the failure of the perturbation theory assumed to lead to the increase of Planck constant and formation of macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and hierarchy of moments of consciousness [21, 22]. The larger the value of Planck constant, the longer the subjectively experienced duration and the average geometric duration $T(k) \propto \hbar$ of the quantum jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric durations of quantum jumps scale like \hbar. Dark matter hierarchy suggests also a slight modification of the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and single moment of consciousness would be experienced as a history of events. The quantum parallel dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire life cycle could be regarded as a single quantum jump at the highest level so that consciousness would not be completely lost even during deep sleep. This would allow to understand why we seem to know directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corresponds at the highest dark matter level to single moment of consciousness. Self would experience the average over the sequence of moments of consciousness associated with each sub-self but there would be no averaging over the separate mental images of this kind, be their parallel or serial. These mental images correspond to sub-selves having shorter wake-up periods than self and would be experienced as being time ordered. Hence the digits in the phone number are experienced as separate mental images and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump measured naturally as the size scale of the space-time region about which quantum jump gives conscious information. This scale is naturally the size scale in which the non-determinism of quantum jump is localized. During years I have made several guesses about this time scales but zero energy ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale τ for the space-time region about which the consciousness experience is about. The temporal distances between the tips of CD as come as integer multiples of CP_2 length scales and for prime multiples correspond to what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic time scales are selected during evolution and the primes near powers of two are especially favored. For electron, which corresponds to Mersenne prime $M_{127} = 2^{127} - 1$ this scale corresponds to .1 seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm). The unexpected prediction is that all elementary particles correspond to time scales possibly relevant to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy τ is scaled up by h_0/h_0. One could understand evolutionary leaps as the emergence of higher levels at the level of individual organism making possible intentionality and memory in the time scale defined τ.

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in the hierarchy of consciousness and the typical duration of life cycle would give an idea about the level in question. The level would determine also the time span of long term memories as discussed in [22]. The emergence of these levels must have meant evolutionary leap since long term memory is also accompanied by ability to anticipate future in the same time scale. This picture would suggest that the basic difference between us and our cousins is not at the level of genome as it is usually understood but at the level of the hierarchy of magnetic bodies [10] [22]. In fact, higher levels of dark matter hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would result from the fusion of genomes of different organisms and collective levels of consciousness would express themselves via hyper-genome and make possible social rules and moral.

1.4 Bird’s eye of view about the topics of the book

In this book I will discuss in detail the view about the quantum hardware of living systems taking seriously the new physics predicted by TGD. Since the vision is bound to be look highly speculative, it is good to emphasize that the most important predictions follow almost without any reference to the classical field equations using only quantum classical correspondence.
1.4. Bird’s eye of view about the topics of the book

1. The implications deriving from the topology of space-time surface and from the properties of induced gauge fields

Quantum classical correspondence and the properties of the simplest extremals of Kähler action have served as the basic guideline in the attempts to understand the new physics predicted by TGD. The most dramatic predictions follow without even considering field equations in detail by using only quantum classical correspondence. These predictions form the backbone of TGD and TGD inspired theory of living matter.

The notions of many-sheeted space-time, topological field quantization and the notion of field/magnetic body, follow from simple topological considerations. The observation that space-time sheets can have arbitrarily large sizes and their interpretation as quantum coherence regions forces to conclude that in TGD Universe macroscopic and macro-temporal quantum coherence are possible in arbitrarily long scales. It took a relatively long time to realize that perhaps the only manner to understand this is a generalization of the quantum theory itself by allowing Planck constant to be dynamical and quantized. TGD leads indeed to a “prediction” for the spectrum of Planck constants and macroscopic quantum phases with large value of Planck constant allow an identification as a dark matter hierarchy.

Also long ranged classical color and electro-weak fields are an unavoidable prediction and it took a considerable time to make the obvious conclusion: TGD Universe is fractal containing fractal copies of standard model physics at various space-time sheets and labeled by the collection of p-adic primes assignable to elementary particles and by the level of dark matter hierarchy characterized partially by the value of Planck constant labeling the pages of the book like structure formed by singular covering spaces of the imbedding space $M^4 \times CP_2$ glued together along a four-dimensional back. Particles at different pages are dark relative to each other since purely local interactions defined in terms of the vertices of Feynman diagram involve only particles at the same page.

The new view about energy and time finding a rigorous formulation in terms of zero energy ontology means that the sign of inertial energy depends on the time orientation of the space-time sheet and that negative energy space-time sheets serve as correlates for communications to the geometric past. This alone leads to profoundly new views about metabolism, long term memory, and realization of intentional action.

2. Vacuum degeneracy of Kähler action as a correlate for quantum criticality and 4-dimensional spin glass degeneracy

The general properties of Kähler action, in particular its vacuum degeneracy and the failure of the classical determinism in the conventional sense, have also very profound implications. Space-time surface as a generalization of Bohr orbit provides not only a representation for quantum state but also for sequences of quantum jumps and thus contents of consciousness. Vacuum degeneracy implies spin glass degeneracy in 4-D sense reflecting quantum criticality which is the fundamental characteristic of TGD Universe.

3. The simplest extremals of Kähler action as correlates for asymptotic self organization patterns

The detailed study of the simplest extremals of Kähler action interpreted as correlates for asymptotic self organization patterns provides additional insights [7]. CP_2 type extremals representing elementary particles, cosmic strings, vacuum extremals, topological light rays (”massless extremal”, ME), flux quanta of magnetic and electric fields represent the basic extremals. Pairs of wormhole throats identifiable as parton pairs define a completely new kind of particle carrying only color quantum numbers in ideal case and I have proposed their interpretation as quantum correlates for Boolean cognition. MEs and flux quanta of magnetic and electric fields are of special importance in living matter.

Topological light rays have interpretation as space-time correlates of ”laser beams” of ordinary or dark photons or their electro-weak and gluonic counterparts. Neutral MEs carrying em and Z^0 fields are ideal for communication purposes and charged W MEs ideal for quantum control. Magnetic flux quanta containing dark matter are identified as intentional agents quantum controlling the behavior of the corresponding biological body parts utilizing negative energy W MEs. Bio-system in turn is populated by electrets identifiable as electric flux quanta.

4. Topics discussed in the book

1. Three chapters of this book are devoted to the model of high T_c super-conductivity relying
strongly on the notions of quantum criticality and dark matter.

2. Two chapters discuss quantum antenna hypothesis inspired by MEs and the notion of wormhole magnetic fields. Notice that the notion of wormhole magnetic field was introduced much before the hypothesis that bosons have a natural identification as wormhole contacts emerged.

3. Two chapters are devoted to the possible biological implications of the hypothesis that dark matter corresponds to macroscopic quantum phases characterized by a large value of Planck constant and is the key actor in living matter.

4. A possible identification of quantum correlates of sensory qualia is discussed assuming that qualia are in one-one correspondence with the increments of quantum numbers in quantum jump. Also a simple model for sensory receptor is introduced.

I must apologize the fact the implications of the dark matter revolution have not been thoroughly considered in this book. Same applies to the implications of zero energy ontology.

The seven online books about TGD [83, 62, 63, 72, 50, 46, 69] and eight online books about TGD inspired theory of consciousness and quantum biology [76, 11, 56, 9, 31, 38, 42, 68] are warmly recommended for the reader willing to get overall view about what is involved.

1.5 The contents of the book

1.5.1 PART I: BIO-SYSTEMS AS SUPER CONDUCTORS

Bio-Systems as Super-Conductors: Part I

In this chapter various TGD based ideas related to the role of super-conductivity in bio-systems are studied. TGD inspired theory of consciousness provides several motivations for this.

1. Empirical evidence for high T_c superconductivity in bio-systems

There is evidence for super-conductivity in bio-systems. DNA should be insulator but under some circumstances it becomes conductor and perhaps even high T_c quantum critical super-conductor. Also evidence for Josephson effect has been reported. The so called ORMEs patented by Hudson are claimed to behave like superconductors: unfortunately the academic world has not taken these claims seriously enough to test them. The claimed properties of ORMEs conform with high quantum critical T_c super-conductivity and superfluidity. The strange findings about the strange quantal behavior of ionic currents through cell membranes suggest the presence of ionic supra currents.

2. Model for high T_c superconductivity

A model for high T_c super-conductivity as quantum critical phenomenon is developed. The relies on the notions of quantum criticality, dynamical quantized Planck constant requiring a generalization of the 8-D imbedding space to a book like structure, and many-sheeted space-time. In particular, the notion of magnetic flux tube as a carrier of supra current of central concept.

With a sufficient amount of twisting and weaving these basic ideas one ends up to concrete model for high T_c superconductors as quantum critical superconductors consistent with the qualitative facts that I am personally aware. The following minimal model looks the most realistic option found hitherto.

1. The general idea is that magnetic flux tubes are carriers of supra currents. In anti-ferromagnetic phases these flux tube structures form small closed loops so that the system behaves as an insulator. Some mechanism leading to a formation of long flux tubes must exist. Doping creates holes located around stripes, which become positively charged and attract electrons to the flux tubes.

2. The higher critical temperature T_{c1} corresponds to a formation local configurations of parallel spins assigned to the holes of stripes giving rise to a local dipole fields with size scale of the order of the length of the stripe. Conducting electrons form Cooper pairs at the magnetic flux tube structures associated with these dipole fields. The elongated structure of the dipoles favors angular momentum $L = 2$ for the pairs. The presence of magnetic field favors Cooper pairs with spin $S = 1$.
3. Stripes can be seen as 1-D metals with delocalized electrons. The interaction responsible for the energy gap corresponds to the transversal oscillations of the magnetic flux tubes inducing oscillations of the nuclei of the stripe. These transverse phonons have spin and their exchange is a good candidate for the interaction giving rise to a mass gap. This could explain the BCS type aspects of high T_c super-conductivity.

4. Above T_c supra currents are possible only in the length scale of the flux tubes of the dipoles which is of the order of stripe length. The reconnections between neighboring flux tube structures induced by the transverse fluctuations give rise to longer flux tubes structures making possible finite conductivity. These occur with certain temperature dependent probability $p(T,L)$ depending on temperature and distance L between the stripes. By criticality $p(T,L)$ depends on the dimensionless variable $x = TL/h$ only: $p = p(x)$. At critical temperature T_c transverse fluctuations have large amplitude and makes $p(x)$ so large that very long flux tubes are created and supra currents can run. The phenomenon is completely analogous to percolation.

5. The critical temperature $T_c = x_c h/L$ is predicted to be proportional to h and inversely proportional to L, which is indeed to be the case. If flux tubes correspond to a large value of h, one can understand the high value of T_c. Both Cooper pairs and magnetic flux tube structures represent dark matter in TGD sense.

6. The model allows to interpret the characteristic spectral lines in terms of the excitation energy of the transversal fluctuations and gap energy of the Cooper pair. The observed 50 meV threshold for the onset of photon absorption suggests that below T_c also $S = 0$ Cooper pairs are possible and have gap energy about 9 meV whereas $S = 1$ Cooper pairs would have gap energy about 27 meV. The flux tube model indeed predicts that $S = 0$ Cooper pairs become stable below T_c since they cannot anymore transform to $S = 1$ pairs. Their presence could explain the BCS type aspects of high T_c super-conductivity. The estimate for $h/h_0 = r$ from critical temperature T_{c1} is about $r = 3$ contrary to the original expectations inspired by the model of of living system as a super-conductor suggesting much higher value. An unexpected prediction is that coherence length is actually r times longer than the coherence length predicted by conventional theory so that type I super-conductor could be in question with stripes serving as duals for the defects of type I super-conductor in nearly critical magnetic field replaced now by ferromagnetic phase.

7. TGD suggests preferred values for $r = h/h_0$. For the most general option the values of h are products and ratios of two integers n_a and n_b. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases $exp(2\pi i/n_i)$, $i \in \{a,b\}$, in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors powers of two as values of r. The hypothesis that Merseen primes $M_k = 2^k - 1$, $k \in \{89, 107, 127\}$, and Gaussian Merseenes $M_{G,k} = (1+i)k - 1$, $k \in \{113, 151, 157, 163, 167, 239, 241\}$ (the number theoretical miracle is that all the four p-adic length scales sith $k \in \{151, 157, 163, 167\}$ are in the biologically highly interesting range 10 nm-2.5 μm) define scaled up copies of electro-weak and QCD type physics with ordinary value of h and that these physics are induced by dark variants of each other leads to a prediction for the preferred values of $r = 2^{k_d}$, $k_d = k_i - k_j$, and the resulting picture finds support from the ensuing models for biological evolution and for EEG.

At qualitative level the model explains various strange features of high T_c superconductors. One can understand the high value of T_c and ambivalent character of high T_c super conductors, the existence of pseudogap and scalings laws for observables above T_c, the role of stripes and doping and the existence of a critical doping, etc...

3. The model for superconductivity in living matter

The model for high T_c superconductivity was inspired by the model of bio-superconductivity in which the flux tubes of magnetic fields are carriers of supra currents and the large value of Planck constant guarantees that gap energy and critical temperature are high enough. The transversal fluctuations of flux tubes provide the counterpart of phonons generating energy gap. Besides dark
Cooper pairs also the Bose-Einstein condensates of dark bosonic ions define candidates for superconducting phases provided that the gap energies in longitudinal and transversal magnetic degrees of freedom are high enough. High enough values of Planck constant can guarantee this.

Bio-Systems as Super-Conductors: Part II

This chapter is devoted to further applications of the theory of high T_c superconductors as quantum critical superconductors involving dark matter hierarchy and large values of \hbar. A new element is the model of cell membrane as almost vacuum extremal acting as Josephson junction. The theory is applied to explain the strange findings about ionic currents through cell membrane, and the possibility that superconductivity and Bose-Einstein condensates are involved with atmospheric phenomena is considered.

1. **Strange behavior of cellular water and quantal ionic currents through cell membrane**

 The fact that cellular water does not leak out of cell in a centrifugal force suggests that some fraction of water inside cell is in different phase. One explanation is that the nuclei of water inside cell are in doubly dark phase whereas electrons are in singly dark phase (having Compton length of 5 nm and perhaps directly "visible" using day technology!) as indeed predicted by the model of high T_c superconductivity. This conceptual framework could explain various findings challenging the notions of ionic pumps.

 The empirical findings challenging the notions of ionic pumps and channels, nicely summarized by G. Pollack in his book, provide a strong support for the notions of many-sheeted space-time and ionic super-conductivity.

1. The selectivity of the cell membrane implies that channels cannot be simple sieves and there must be complex information processing involved.

2. The needed number of pumps specialized to particular ions is astronomical and the first question is where to put all these channels and pumps. On the other hand, if the cell constructs the pump or channel specialized to a given molecule only when needed, how does it know what the pump looks like if it has never seen the molecule? The needed metabolic energy to achieve all the pumping and channelling is huge. Strangely enough, pumping does not stop when cell metabolism stops.

3. One can also wonder why the ionic currents through cell membrane look quantal and are same through cell membrane and silicon rubber membrane.

 These observations suggest strongly the presence non-dissipative ionic currents and quantum self-organization. The TGD based explanation would be in terms of high T_c electronic and possibly even ionic superconductivity associated with cell membrane made possible by the large \hbar phase for nuclei and electrons in the interior of cell. It however seems that thermal stability conditions allow only protonic Cooper pairs in the model of ionic Cooper pairs based on direct generalization of the model of high T_c electronic super conductivity. This does not however mean that quantal ionic currents would be absent. This empirical input also supports a view about homeostasis as a many-sheeted ionic flow equilibrium controlled by larger space-time sheets with the mediation of massless extremals (MEs) serving as space-time correlates for Bose-Einstein condensates of massless bosons (also of scaled down dark electro-weak bosons and gluons).

 In the proposed picture one can understand how extremely low densities of ions and their supra currents can control much higher ion densities at the atomic space-time sheets. The liquid crystal nature of the bio-matter is crucial for the model. This vision allows also much better understanding of the effects of ELF em fields on bio-matter. Also the effects of homeopathic remedies and acupuncture known to crucially involve electromagnetic frequency signatures of chemicals can be understood if homeostasis is based on many-sheeted ionic flow equilibrium.

2. **Cell membrane space-time sheet almost vacuum extremal?**

 It has been clear from the beginning that the nearly vacuum extremals of Kähler action could play key role key role in living systems. The reason is their criticality making them ideal systems for sensory perception. These extremals carry classical em and Z^0 fields related to each other by a constant factor
and this could explain the large parity breaking effects characterizing living matter. The assumption
that cell membranes are nearly vacuum extremals and that nuclei can feed their Z^0 charges to this
kind of space-time-sheets (not true for atomic electrons) in living matter leads to a modification of
the model for the cell membrane as Josephson junction. Also a model of photoreceptors explaining
the frequencies of peak sensitivity as ionic Josephson frequencies and allowing the dual identifications
Josephson radiation as biophotons (energies) and EEG radiation (frequencies) emerge since the values
of Planck constant can be very large. The value of the Weinberg angle in this phase is fixed to
$\sin^2(\theta_W) = .0295$, whereas in standard phase the value is given by $\sin^2(\theta_W) = .23$. The significance
of this quantitative success for TGD and TGD inspired quantum biology cannot be over-estimated.
It seems that membrane like structures near vacuum extremals analogous to cell membrane could
provide a general approach to various anomalous phenomena involving plasma phase and luminous
phenomena.

3. Fractal hierarchy of magnetic flux sheets and the hierarchy of genomes

The notion of magnetic body is central in the TGD inspired theory of living matter. Every system
possesses magnetic body and there are strong reasons to believe that the magnetic body associated
with human body is of order Earth size and that there could be an entire hierarchy of these bodies
with even much larger sizes. Therefore the question arises what one can assume about these magnetic
bodies. The quantization of magnetic flux suggests an answer to this question.

1. The quantization condition for magnetic flux reads in the most general form as $\oint (p-\epsilon A) \cdot dl = nh$.
 If supra currents flowing at the boundaries of the flux tube are absent one obtains $\epsilon \oint B \cdot dS = nh$,
 which requires that the scaling of the Planck constant scales up the flux tube thickness by r^2 and scaling of B
 by $1/r$. If one assumes that the radii of flux tubes do not depend on the value of r, magnetic flux is compensated by the contribution of the supra current flowing around the flux tube: $\oint (p-\epsilon A) \cdot dl = 0$. The supra currents would be present inside living organism but in the faraway region where flux quanta from organism fuse together, the quantization conditions
 $\epsilon \oint B \cdot dS = nh$ would be satisfied.

2. From the point of view of EEG especially interesting are the flux sheets which have thickness
 $L(151) = 10 \text{ nm}$ (the thickness of cell membrane) carrying magnetic field having strength of endogenous magnetic field. In absence of supra currents these flux sheets have very large total transversal length proportional to r^2. The condition that the values of cycloctron energies are above thermal energy implies that the value of r is of order 2^{k_d}, $k_d = 44$. Strongly folded flux sheets of this thickness might be associated with living matter and connect their DNAs to single coherent structure. One can of course assume the presence of supra currents but outside the organism the flux sheet should fuse to form very long flux sheets.

3. Suppose that the magnetic flux flows in head to tail direction so that the magnetic flux arrives
to the human body through a layer of cortical neurons. Assume that the flux sheets traverse through the uppermost layer of neurons and also lower layers and that DNA of each neuronal nuclei define a transversal sections organized along flux sheet like text lines of a book page. The total length of DNA in single human cell is about one meter. It seems that single organism cannot provide the needed total length of DNA if DNA dominates the contribution. This if of course not at all necessarily since supra currents are possible and outside the organism the flux sheets can fuse together. This implies however correlations between genomes of different cells and even different organisms.

These observations inspire the notion of super- and hyper genes. As a matter fact, entire hierarchy
of genomes is predicted. Super genes consist of genes in different cell nuclei arranged to threads
along magnetic flux sheets like text lines on the page of book whereas hyper genes traverse through genomes of different organisms. Super and hyper genes provide an enormous representative capacity and together with the dark matter hierarchy allows to resolve the paradox created by the observation that human genome does not differ appreciably in size from that of wheat.

4. Bose-Einstein condensates at magnetic flux quanta in astrophysical length scales

The model for the topological condensation at magnetic flux quanta of endogenous magnetic field $B_{ext} = .2 \text{ Gauss}$ is based on the dark matter hierarchy with levels characterized by the values of Planck
constant. The hypothesis for the preferred values of Planck constants allows to build quantitative model for the Bose-Einstein condensation at magnetic flux quanta assuming that the value of B_{end} scales like $1/\hbar$. A justification for this hypothesis comes from flux quantization conditions and from the similar scaling of Josephson frequencies.

1. There are several levels of dynamics. In topological condensation the internal dynamics of ions is unaffected and \hbar has the ordinary value. For instance, the formation of Cooper pairs involves dynamics at $k_d = 24 = 151 - 127$ level of dark matter hierarchy if one assumes that electrons and Cooper pairs have size given by the cell membrane thickness $L(151)$. Also the dynamics of ionic Cooper pairs remains unaffected in the topological condensation to magnetic flux quanta obeying $k_d > 24$ dynamics.

2. Cyclotron energies scale as as \hbar so that for a sufficiently high value of k_d thermal stability of cyclotron states at room temperature is achieved for a fixed value of B. Same applies to spin flip transitions in the recent scenario. The model for EEG based on dark matter hierarchy involves the hypothesis that EEG quanta correspond to Josephson radiation with energies in the visible and UV range and that they produce in the decay to ordinary photons either bunches of EEG photons or visible/UV photons. This identification allows to deduce the value of k_d when the frequency of the dark photon is fixed. The Mersenne hypothesis for the preferred p-adic length scales and values of Planck constants leads to very precise predictions.

3. Cyclotron energies $E = (\hbar/2\pi) \times ZeB/Am_p$ are scaled up by a factor $r = 2^{k_d}$ from their ordinary values and for 10 Hz cyclotron frequency are in the range of energies of visible light for $k_d = 46$.

5. Atmospheric phenomena and superconductivity

There is a considerable evidence that various electromagnetic time scales associated with the atmospheric phenomena correspond to those associated with brain functioning. If magnetic sensory canvas hypothesis holds true, this is just what is expected. In this section these phenomena are considered in more detail with the aim being to build as concrete as possible vision about the dynamics involving the dark matter Bose-Einstein condensates at super-conducting magnetic magnetic flux quanta. A new element is the assumed presence of cell membrane like structures near vacuum extremals. If the potentials differences involved are same order of magnitude as in the case of cell membrane, the luminous phenomena can be understood in terms of effects caused by Josephson radiation at visible and UV frequencies.

Tornadoes and hurricanes provide the first example of self-organizing systems for which Bose-Einstein condensates of dark matter at magnetic and Z_0 magnetic flux quanta might be of relevance. Auroras represent a second phenomenon possibly involving supra currents of Cooper pairs and of exotic ions. Lightnings, sprites and elves might also involve higher levels of dark matter hierarchy. p-Adic length scale hypothesis and the hierarchy of Planck constants provide a strong grasp to these far from well-understood phenomena and allow to build rather detailed models for them as well as to gain concrete understanding about how dark matter hierarchy manifests itself in the electromagnetic phenomena at the level of atmosphere.

1.5.2 PART II: TOPOLOGICAL LIGHT RAYS AND WORMHOLE MAGNETIC FIELDS

Quantum Antenna Hypothesis

So called massless extremals are nonvacuum extremals of both Kähler action and the EYM action serving as effective action of the theory. These extremals have cylindrical geometry and are carriers of purely classical vacuum currents and Einstein tensor, which are both light like. These vacuum currents generate coherent states of photons and gravitons with frequencies coming as multiples of the basic frequency determined by the length of the microtubule. It is proposed that microtubules and other linear structures could act as quantum antennae so that coherent light is for brain same as radio waves for us. Massless extremals associated with axonal microtubules or axons themselves could serve as waveguides for the photons of coherent light and realize the notion of neural window abstracted from the paradigm of holographic brain. Vacuum currents could be also behind the ability of the biosystems to form representations of the external world.
There is indeed evidence for the quantum antenna hypothesis: some monocellulars are known to possess primitive microtubular vision, biophotons of Popp could be generated by massless extremals and the observations of Callahan support the view that odour perception of insects relies on maserlike emissions by the odour molecules. The coherent light emitted in sonoluminescence could be generated by lightlike vacuum currents associated with regions with size given roughly by the diameter of microtubule when vapour-to-liquid phase transition occurs at the final stage of the bubble collapse. Also the observed direct transformation of kinetic energy of fluid motion to chemical energy could involve generation of massless extremals.

The lightlike boundaries of MEs have the same miraculous conformal properties as the boundary of future lightcone and MEs also allow holography in the sense of quantum gravity and string models and there are good hopes to generalize the construction of the configuration space geometry and quantum TGD to take into account the classical non-determinism of Kähler action. MEs provide a justification for the intuition that the supercanonical and superconformal symmetries of the lightcone boundary \(\delta M^4_4 \times CP_2 \), which are cosmological symmetries, generalize to approximate macroscopic symmetries acting on the lightlike boundaries of the spacetime sheets inside future lightcone and broken only by quantum gravity. Supercanonical symmetries almost-commute with Poincare symmetries and the gigantic almost-degenerate supercanonical multiplets defined by genuinely quantum gravitational state functionals in the ‘world of worlds’ correspond in a well-defined sense to higher abstraction level expected to be crucial for understanding consciousness. MEs are also taylor-made for quantum holography and teleportation. Quantum holography conceptualization inspires much more detailed views about how biosystems process information and how this information becomes conscious.

Wormhole Magnetic Fields

It is argued that two purely TGD based concepts: topological field quantization and wormhole BE condensate are fundamental for the understanding of biosystems.
Chapter 1. Introduction

1. Basic concepts

Quantum classical correspondence suggests that gauge charges and p-adic coupling constant should have space-time counterparts. The first problem is to define precisely the concepts like classical gauge charge, gauge flux, topological condensation and evaporation. The crucial ingredients in the model are so called CP_2 type extremals. The realization that $\#$ contacts (topological sum contacts and $\#_B$ contacts (join along boundaries bonds) are accompanied by causal horizons which carry quantum numbers and allow identification as partons leads to a solution of this problem.

The partons associated with topologically condensed CP_2 type extremals carry elementary particle vacuum numbers whereas the parton pairs associated with $\#$ contacts connecting two space-time sheets with Minkowskian signature of induced metric define parton pairs. These parton pairs do not correspond to ordinary elementary particles. Gauge fluxes through $\#$ contacts can be identified as gauge charges of the partons. Gauge fluxes between space-time sheets can be transferred through $\#$ and $\#_B$ contacts concentrated near the boundaries of the smaller space-time sheet.

2. Model for topologically quantized magnetic fields

Topological field quantization replaces classical magnetic fields with bundles of flux tubes parallel to the field lines; flux tubes are cylindrical 3-surfaces with outer boundary. In particular, ”wormhole magnetic fields” having charged wormholes situated at the boundaries of the flux tubes as their sources, are possible and are vacuum configurations in the sense that they do not contain ordinary matter at all. Since wormholes are very light particles, they suffer BE condensation, and the resulting structure is macroscopic quantum system.

If the space-time sheets associated with the wormhole magnetic field have opposite time orientation, the structure can have vanishing net energy and is thus an ideal candidate for a mindlike space-time sheet (or pair of these). These structures can be glued to the boundary of material space-time sheet and they form a cognitive local representation for the classical fields at the material space-time sheets by a direct mimicry! Thus wormhole magnetic fields and more general structures of the same kind could realize quantum physicist’s version about the computer scientist’s dream about universe consisting of Turing machines emulating each other.

3. Models for Comorosan effect, phantom DNA effect, and homeopathy

It is shown that the concept of wormhole magnetic field leads to a rather detailed understanding of Comorosan effect and phantom DNA effect. Homeopathy could be explained in terms of the mindlike space-time sheets mimicking the properties of the drug and left to the solution in the repeated dilution of the drug. Wormhole magnetic fields provide a quantum mechanism of control from distance, say of the control of the behavior of cell organelles by cell nucleus as well as a model for the memory of bio-system in terms of integer valued winding numbers identifiable as quantized momenta of wormhole supra currents. Wormhole magnetic fields can also represent defects of electron and neutrino super conductors and serve as a templates for the topological condensation of ordinary matter. The fact that wormhole flux tubes are hollow cylinders, is in nice accordance with this idea (microtubules, axonal membranes, etc. are hollow cylinders).

4. TGD inspired model for psychokinesis

A model of psychokinesis (PK) based on the concept of wormhole magnetic field is proposed. The basic philosophy is that PK is not just some isolated exotic phenomenon but only a special case of the voluntary control of bodily motions, which we all routinely perform. The only difference is that the range of voluntary control extends over the boundaries of the body in case of PK. The conclusion is that PK phenomena must involve classical long range fields, which give for bio-systems spatial extension larger than what is visible (that is hands with which to grasp on external object!). According to TGD inspired theory of consciousness, cell, and even DNA can be conscious, and perform choices. Thus the model should also provide understanding about small scale bio-control such as the (possibly voluntary!) control of the motion of cell organelles performed by cell nucleus. There is also alternative approach to the understanding of psychokinesis based on the possibility of creation of space-time sheets having negative time orientation and negative classical energy density and one could consider the possibility that poltergeist effects could involve this mechanism. Many-sheeted space-time concept makes possible also psychokinesis based on levitation: what is needed that subsystem is able to topologically condense to a sufficiently large space-time sheet carrying very weak gravitational
1.5. The contents of the book

1.5.3 PART III: DARK MATTER AND LIVING MATTER

Dark Nuclear Physics and Condensed Matter

In this chapter the possible effects of dark matter in nuclear physics and condensed matter physics are considered. The spirit of the discussion is necessarily rather speculative since the vision about the hierarchy of Planck constants is only 5 years old. The most general form of the hierarchy would involve both singular coverings and factors spaces of CD (causal diamond of M^4) defined as intersection of future and past directed light-cones) and CP_2. There are grave objections against the allowance of factor spaces. In this case Planck constant could be smaller than its standard value and there are very few experimental indications for this. Quite recently came the realization that the hierarchy of Planck constants might emerge from the basic quantum TGD as a consequence of the extreme non-linearity of field equations implying that the correspondence between the derivatives of imbedding space coordinates and canonical momentum is many-to-one. This makes natural to the introduction of covering spaces of CD and CP_2. Planck constant would be effectively replaced with a multiple of ordinary Planck constant defined by the number of the sheets of the covering. The space-like 3-surfaces at the ends of the causal diamond and light-like 3-surfaces defined by wormhole throats carrying elementary particle quantum numbers would be quantum critical in the sense of being unstable against decay to many-sheeted structures. Charge fractionization could be understood in this scenario. Biological evolution would have the increase of the Planck constant as as one aspect. The crucial scaling of the size of CD by Planck constant can be justified by a simple argument. Note that primary p-adic length scales would scale as \sqrt{h} rather than h as assumed in the original model.

1. What darkness means?

Dark matter is identified as matter with non-standard value of Planck constant. The weak form of darkness states that only some field bodies of the particle consisting of flux quanta mediating bound state interactions between particles become dark. One can assign to each interaction a field body (em, Z^0, W, gluonic, gravitational) and p-adic prime and the value of Planck constant characterize the size of the particular field body. One might even think that particle mass can be assigned with its em field body and that Compton length of particle corresponds to the size scale of em field body.

Nuclear string model suggests that the sizes of color flux tubes and weak flux quanta associated with nuclei can become dark in this sense and have size of order atomic radius so that dark nuclear physics would have a direct relevance for condensed matter physics. If this happens, it becomes impossible to make a reductionistic separation between nuclear physics and condensed matter physics and chemistry anymore.

2. What dark nucleons are?

The basic hypothesis is that nuclei can make a phase transition to dark phase in which the size of both quarks and nuclei is measured in Angstroms. For the less radical option this transition could happen only for the color, weak, and em field bodies. Proton connected by dark color bonds super-nuclei with inter-nucleon distance of order atomic radius might be crucial for understanding the properties of water and perhaps even the properties of ordinary condensed matter. Large h phase for weak field body of D and Pd nuclei with size scale of atom would explain selection rules of cold fusion.

3. Anomalous properties of water and dark nuclear physics

A direct support for partial darkness of water comes from the $H_1.5O$ chemical formula supported by neutron and electron diffraction in attosecond time scale. The explanation could be that one fourth of protons combine to form super-nuclei with protons connected by color bonds and having distance sufficiently larger than atomic radius.

The crucial property of water is the presence of molecular clusters. Tetrahedral clusters allow an interpretation in terms of magic $Z=8$ protonic dark nuclei. The icosahedral clusters consisting of 20 tetrahedral clusters in turn have interpretation as magic dark dark nuclei: the presence of the dark dark matter explains large portion of the anomalies associated with water and explains the unique role of water in biology. In living matter also higher levels of dark matter hierarchy are predicted to be present. The observed nuclear transmutation suggest that also light weak bosons are present.
4. Implications of the partial darkness of condensed matter

The model for partially dark condensed matter inspired by nuclear string model and the model of cold fusion inspired by it allows to understand the low compressibility of the condensed matter as being due to the repulsive weak force between exotic quarks, explains large parity breaking effects in living matter, and suggests a profound modification of the notion of chemical bond having most important implications for bio-chemistry and understanding of bio-chemical evolution.

Dark Forces and Living Matter

The unavoidable presence of classical long ranged weak (and also color) gauge fields in TGD Universe has been a continual source of worries for more than two decades. The basic question has been whether Z^0 charges of elementary particles are screened in electro-weak length scale or not. Same question must be raised in the case of color charges. For a long time the hypothesis was that the charges are fed to larger space-time sheets in this length scale rather than screened by vacuum charges so that an effective screening results in electro-weak length scale. This hypothesis turned out to be a failure and was replaced with the idea that the non-linearity of field equations (only topological half of Maxwell’s equations holds true) implies the generation of vacuum charge densities responsible for the screening.

The weak form of electric-magnetic duality led to the identification of the long sought for mechanism causing the weak screening in electroweak scales. The basic implication of the duality is that Kähler electric charges of wormhole throats representing particles are proportional to Kähler magnetic charges so that the CP_2 projections of the wormhole throats are homologically non-trivial. The Kähler magnetic charges do not create long range monopole fields if they are neutralized by wormhole throats carrying opposite monopole charges and weak isospin neutralizing the axial isospin of the particle’s wormhole throat. One could speak of confinement of weak isospin. The weak field bodies of elementary fermions would be replaced with stringlike objects with a length of order W boson Compton length. Electro-magnetic flux would be fed to electromagentic field body where it would be feeded to larger space-time sheets. Similar mechanism could apply in the case of color quantum numbers. Weak charges would be therefore screened for ordinary matter in electro-weak length scale but dark electro-weak bosons correspond to much longer symmetry breaking length scale for weak field body. Large values of Planck constant would make it possible to zoom up elementary particles and study their internal structure without any need for gigantic accelerators.

In this chapter possible implications of the dark weak force for the understanding of living matter are discussed. The basic question is how classical Z^0 fields could make itself visible. Large parity breaking effects in living matter suggests which direction one should look for the answer to the question. One possible answer is based on the observation that for vacuum extremals classical electromagnetic and Z^0 fields are proportional to each other and this means that the electromagnetic charges of dark fermions standard are replaced with effective couplings in which the contribution of classical Z^0 force dominates. This modifies dramatically the model for the cell membrane as a Josephson junction and raises the scale of Josephson energies from IR range just above thermal threshold to visible and ultraviolet. The amazing finding is that the Josephson energies for biologically important ions correspond to the energies assigned to the peak frequencies in the biological activity spectrum of photoreceptors in retina suggesting. This suggests that almost vacuum extremals and thus also classical Z^0 fields are in a central role in the understanding of the functioning of the cell membrane and of sensory qualia. This would also explain the large parity breaking effects in living matter.

A further conjecture is that EEG and its predicted fractally scaled variants which same energies in visible and UV range but different scales of Josephson frequencies correspond to Josephson photons with various values of Planck constant. The decay of dark ELF photons with energies of visible photons would give rise to bunches of ordinary ELF photons. Biophotons in turn could correspond to ordinary visible photons resulting in the phase transition of these photons to photons with ordinary value of Planck constant. This leads to a very detailed view about the role of dark electromagnetic radiation in biomatter and also to a model for how sensory qualia are realized. The general conclusion might be that most effects due to the dark weak force are associated with almost vacuum extremals.
1.5. The contents of the book

About the New Physics Behind Qualia

This chapter was originally about the new physics behind qualia. The model of qualia indeed involves a lot of new physics: many-sheeted space-time; massless extremals; exotic Super Virasoro representations associated with discrete qualia; magnetic and cyclotron phase transitions associated with quantum critical quantum spin glass phases of exotic super conductors at cellular space-time sheets; classical color and electro-weak gauge fields in macroscopic length scales, to name the most important ingredients. Gradually the chapter however expanded so that it touches practically all new physics possibly relevant to TGD inspired quantum biology. Various physical mechanisms are discussed in exploratory spirit rather than restricting the consideration to those ideas which seem to be the final word about quantum biology or qualia just at this moment.
Books related to TGD

28 BOOKS RELATED TO TGD

30 BOOKS RELATED TO TGD

Mathematics

Cosmology and Astro-Physics

Neuroscience and Consciousness

Part I

BIO-SYSTEMS AS SUPER CONDUCTORS
Chapter 2

Bio-Systems as Super-Conductors:
Part I

2.1 Introduction

In this chapter various TGD based ideas related to high T_c superconductivity and to the role of super-conductivity in bio-systems are studied. TGD inspired theory of consciousness provides several motivations for this.

1. Supra currents and Josephson currents provide excellent tools of bio-control allowing large space-time sheets to control the smaller space-time sheets. The predicted hierarchy of dark matter phases characterized by a large value of \hbar and thus possessing scaled up Compton and de Broglie wavelengths allows to have quantum control of short scales by long scales utilizing de-coherence phase transition. Quantum criticality is the basic property of TGD Universe and quantum critical super-conductivity is therefore especially natural in TGD framework. The competing phases could be ordinary and large \hbar phases and supra currents would flow along the boundary between the two phases.

2. It is possible to make a tentative identification of the quantum correlates of the sensory qualia quantum number increments associated with the quantum phase transitions of various macroscopic quantum systems [30] and various kind of Bose-Einstein condensates and super-conductors are the most relevant ones in this respect.

3. The state basis for the fermionic Fock space spanned by N creation operators can be regarded as a Boolean algebra consisting of statements about N basic statements. Hence fermionic degrees of freedom could correspond to the Boolean mind whereas bosonic degrees of freedom would correspond to sensory experiencing and emotions. The integer valued magnetic quantum numbers (a purely TGD based effect) associated with the defect regions of super conductors of type I provide a very robust information storage mechanism and in defect regions fermionic Fock basis is natural. Hence not only fermionic super-conductors but also their defects are biologically interesting [32, 57, 22].

2.1.1 General ideas about super-conductivity in many-sheeted space-time

The notion of many-sheeted space-time alone provides a strong motivation for developing TGD based view about superconductivity and I have developed various ideas about high T_c super-conductivity [19] in parallel with ideas about living matter as a macroscopic quantum system. A further motivation and a hope for more quantitative modelling comes from the discovery of various non-orthodox super-conductors including high T_c superconductors [19, 65, 6], heavy fermion super-conductors [42, 41, 27]. The standard BCS theory does not work for these super-conductors and the mechanism for the formation of Cooper pairs is not understood. There is experimental evidence that quantum criticality [62] is a key feature of many non-orthodox super-conductors. TGD provides a conceptual framework and bundle of ideas making it possible to develop models for non-orthodox superconductors.

41
Quantum criticality, hierarchy of dark matters, and dynamical h

Quantum criticality is the basic characteristic of TGD Universe and quantum critical superconductors provide an excellent test bed to develop the ideas related to quantum criticality into a more concrete form. The hypothesis that Planck constants in CD (causal diamond defined as the intersection of the future and past directed lightcones of M^4) and CP^2 degrees of freedom are dynamical possessing quantized spectrum given as rational multiples of minimum value of Planck constant [24, 25] adds further content to the notion of quantum criticality.

The value of h is in the general case given by $h = x_a x_b h_0$ (as it became clear after few guesses). a refers to CD and b to CP^2, $x_i = n_i$ holds true for singular coverings and $x_i = 1/n_i$ for singular factor spaces. n is the order of maximal cyclic subgroup $Z_n \subset G$, where G defines singular covering or factor space. In principle all rational values of $r = h/h_0$ are possible.

Phases with different values x_i behave like dark matter with respect to each other in the sense that they do not have direct interactions except at criticality corresponding to a leakage between different sectors of imbedding space glued together along CD or CP^2 factors. The scalings of CD and CP^2 covariant metrics are from anyonic arguments given by r^2 and 1 so that the value of effective h appearing in Schrödinger equation is given by $r = x_a x_b$ and in principle can have all positive rational values. In large $h(CD)$ phases various quantum time and length scales are scaled up which means macroscopic and macro-temporal quantum coherence.

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat polygones constructible using only ruler and compass and given as products $n_F = 2^k \prod F_i$, where $F_i = 2^{2i} + 1$ are distinct Fermat primes, are favored. The reason would be that quantum phase $q = \exp(i\pi/n)$ in this case expressible using only iterated square root operation by starting from rationals. The known Fermat primes correspond to $s = 0, 1, 2, 3, 4$ so that the hypothesis is very strong and predicts that p-adic length scales have satellite length scales given as multiples of n_F of fundamental p-adic length scale.

The only coupling constant strength of theory is Kähler coupling constant g_K^2, which appears in the definition of the Kähler function K characterizing the geometry of the configuration space of 3-surfaces (the "world of classical worlds"). The exponent of K defines vacuum functional analogous to the exponent of Hamiltonian in thermodynamics. The allowed value(s) of g_K^2, which is (are) analogous to critical temperature(s), is (are) determined by quantum criticality requirement. Contrary to the original hypothesis inspired by the requirement that gravitational coupling is renormalization group invariant, α_K does not seem to depend on p-adic prime whereas gravitational constant is proportional to L_p^2. The situation is saved by the assumption that gravitons correspond to the largest non-supernova-strophysitical Mersenne prime M_{127} so that gravitational coupling is effectively RG invariant in p-adic coupling constant evolution [4].

$h(CD)$ and $h(CP^2)$ appear in the commutation and anticommutation relations of various superconformal algebras. Only $r = h/h_0 = x_a x_b$ of CD and CP^2 Planck constants appears in Kähler action and is due to the fact that the CD and CP^2 metrics of the imbedding space sector with given values of Planck constants are proportional to the corresponding Planck constants [24]. This implies that Kähler function codes for radiative corrections to the classical action, which makes possible to consider the possibility that higher order radiative corrections to functional integral vanish as one might expect at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to the spectrum of Planck constants coding for the scaled up values of Compton lengths and other quantal lengths and times. If so, large h phases could be crucial for understanding of quantum critical superconductors, in particular high T_c superconductors. For a fixed value of $x_a x_b$ one obtains zoomed up versions of particles with size scaled up by $x_a x_b$.

A further great idea is that the transition to large h phase occurs when perturbation theory based on the expansion in terms of gauge coupling constant ceases to converge: Mother Nature would take care of the problems of theoretician. The transition to large h phase obviously reduces gauge coupling strength α so that higher orders in perturbation theory are reduced whereas the lowest order "classical" predictions remain unchanged. A possible quantitative formulation of the criterion is that maximal 2-particle gauge interaction strength parameterized as $Q_1 Q_2 \alpha$ satisfies the condition $Q_1 Q_2 \alpha \approx 1$. TGD actually predicts an infinite hierarchy of phases behaving like dark or partially dark matter with respect to the ordinary matter [29] and the value of h is only one characterizer of these phases. These phases, especially so large h phase, seem to be essential for the understanding of even ordinary
hadronic, nuclear and condensed matter physics [29, 71, 23]. This strengthens the motivations for finding whether dark matter might be involved with quantum critical super-conductivity.

Cusp catastrophe serves as a metaphor for criticality. In the recent case temperature and doping are control variables and the tip of cusp is at maximum value of T_c. Critical region correspond to the cusp catastrophe. Quantum criticality suggests the generalization of the cusp to a fractal cusp. Inside the critical lines of cusp there are further cusps which corresponds to higher levels in the hierarchy of dark matters labeled by increasing values of \hbar and they correspond to a hierarchy of subtle quantum coherent dark matter phases in increasing length scales. The proposed model for high T_c superconductivity involves only single value of Planck constant but it might be that the full description involves very many values of them.

Many-sheeted space-time concept and ideas about macroscopic quantum phases

Many-sheeted space-time leads to obvious ideas concerning the realization of macroscopic quantum phases.

1. The dropping of particles to larger space-time sheets is a highly attractive mechanism of superconductivity. If space-time sheets are thermally isolated, the larger space-time sheets could be at extremely low temperature and super-conducting.

2. The possibility of large \hbar phases allows to give up the assumption that space-time sheets characterized by different p-adic length scales are thermally isolated. The scaled up versions of a given space-time sheet corresponding to a hierarchy of values of \hbar are possible such that the scale of kinetic energy and magnetic interaction energy remain same for all these space-time sheets. For the scaled up variants of space-time sheet the critical temperature for superconductivity could be higher than room temperature.

3. The idea that wormhole contacts can form macroscopic quantum phases and that the interaction of ordinary charge carriers with the wormhole contacts feeding their gauge fluxes to larger space-time sheets could be responsible for the formation of Cooper pairs, have been around for a decade [87]. The rather recent realization that wormhole contacts can be actually regarded as space-time correlates for Higgs particles suggests also a new view about the photon massivation in super-conductivity.

4. Quantum classical correspondence has turned out be a very powerful idea generator. For instance, one can ask what are the space-time correlates for various notions of condensed matter such as phonons, BCS Cooper pairs, holes, etc...

2.1.2 TGD inspired model for high T_c superconductivity

The TGD inspired model for high T_c super-conductivity relies on the notions of quantum criticality, dynamical quantized Planck constant requiring a generalization of the 8-D imbedding space to a book like structure, and many-sheeted space-time. In particular, the notion of magnetic flux tube as a carrier of supra current of central concept.

With a sufficient amount of twisting and weaving these basic ideas one ends up to concrete models for high T_c superconductors as quantum critical superconductors consistent with the qualitative facts that I am personally aware. The following minimal model looks the most realistic option found hitherto.

1. The general idea is that magnetic flux tubes are carriers of supra currents. In anti-ferromagnetic phases these flux tube structures form small closed loops so that the system behaves as an insulator. Some mechanism leading to a formation of long flux tubes must exist. Doping creates holes located around stripes, which become positively charged and attract electrons to the flux tubes.

2. The higher critical temperature T_{c1} corresponds to a formation local configurations of parallel spins assigned to the holes of stripes giving rise to a local dipole fields with size scale of the order of the length of the stripe. Conducting electrons form Cooper pairs at the magnetic flux tube structures associated with these dipole fields. The elongated structure of the dipoles favors
angular momentum \(L = 2 \) for the pairs. The presence of magnetic field favors Cooper pairs with spin \(S = 1 \).

3. Stripes can be seen as 1-D metals with delocalized electrons. The interaction responsible for the energy gap corresponds to the transversal oscillations of the magnetic flux tubes inducing oscillations of the nuclei of the stripe. These transverse phonons have spin and their exchange is a good candidate for the interaction giving rise to a mass gap. This could explain the BCS type aspects of high \(T_c \) super-conductivity.

4. Above \(T_c \), supra currents are possible only in the length scale of the flux tubes of the dipoles which is of the order of stripe length. The reconnections between neighboring flux tube structures induced by the transverse fluctuations give rise to longer flux tubes structures making possible finite conductivity. These occur with certain temperature dependent probability \(p(T, L) \) depending on temperature and distance \(L \) between the stripes. By criticality \(p(T, L) \) depends on the dimensionless variable \(x = TL/\hbar \) only: \(p = p(x) \). At critical temperature \(T_c \) transverse fluctuations have large amplitude and makes \(p(x_c) \) so large that very long flux tubes are created and supra currents can run. The phenomenon is completely analogous to percolation [10].

5. The critical temperature \(T_c = x_c h / L \) is predicted to be proportional to \(h \) and inversely proportional to \(L \), (which is indeed to be the case). If flux tubes correspond to a large value of \(h \), one can understand the high value of \(T_c \). Both Cooper pairs and magnetic flux tube structures represent dark matter in TGD sense.

6. The model allows to interpret the characteristic spectral lines in terms of the excitation energy of the transversal fluctuations and gap energy of the Cooper pair. The observed 50 meV threshold for the onset of photon absorption suggests that below \(T_c \), also \(S = 0 \) Cooper pairs are possible and have gap energy about 9 meV whereas \(S = 1 \) Cooper pairs would have gap energy about 27 meV. The flux tube model indeed predicts that \(S = 0 \) Cooper pairs become stable below \(T_c \) since they cannot anymore transform to \(S = 1 \) pairs. Their presence could explain the BCS type aspects of high \(T_c \) super-conductivity. The estimate for \(h / h_0 = r \) from critical temperature \(T_c \) is about \(r = 3 \) contrary to the original expectations inspired by the model of of living system as a super-conductor suggesting much higher value. An unexpected prediction is that coherence length is actually \(r \) times longer than the coherence length predicted by conventional theory so that type I super-conductor could be in question with stripes serving as duals for the defects of type I super-conductor in nearly critical magnetic field replaced now by ferromagnetic phase.

7. TGD suggests preferred values for \(r = h / h_0 \). For the most general option the values of \(h \) are products and ratios of two integers \(n_a \) and \(n_b \). Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases \(exp(i2\pi / n_i) \), \(i \in \{a,b\} \), in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors powers of two as values of \(r \). The hypothesis that Mersenne primes \(M_k = 2^k - 1 \), \(k \in \{89, 107, 127\} \), and Gaussian Mersennes \(M_{G,k} = (1+i)k - 1 \), \(k \in \{113, 151, 157, 163, 167, 239, 241, \ldots \} \) (the number theoretical miracle is that all the four p-adic length scales sith \(k \in \{151, 157, 163, 167\} \) are in the biologically highly interesting range 10 nm to 2.5 \(\mu \)m) define scaled up copies of electro-weak and QCD type physics with ordinary value of \(h \) and that these physics are induced by dark variants of each other leads to a prediction for the preferred values of \(r = 2^{k+1} \), \(k_d = k_i - k_j \), and the resulting picture finds support from the ensuing models for biological evolution and for EEG [22].

At qualitative level the model explains various strange features of high \(T_c \) superconductors. One can understand the high value of \(T_c \) and ambivalent character of high \(T_c \) super conductors, the existence of pseudogap and scalings laws for observables above \(T_c \), the role of stripes and doping and the existence of a critical doping, etc...

The model explains the observed ferromagnetic super-conductivity at quantum criticality [42]. Since long flux tubes already exist, the overcritical transverse of fluctuations of the magnetic flux tubes inducing reconnections are now not responsible for the propagation of the super currents now. The should however provide the binding mechanism of \(S = 1, L = 2 \) Cooper pairs via the coupling of the fluctuations to effectively one-dimensional phonons in the direction of flux tubes. Also a modulated
ferromagnetic phase consisting of stripes of opposite magnetization direction allows superconductivity [42] and could be understood in terms of $S = 0$ Cooper pairs with electrons of the pair located at the neighboring stripes.

2.1.3 Empirical evidence for high T_c superconductivity in bio-systems

There is evidence for super-conductivity in bio-systems. DNA should be insulator but under some circumstances it becomes conductor [24] and perhaps even high T_c quantum critical super-conductor. Also evidence for Josephson effect has been reported [22]. The so called ORMEs patented by Hudson [8] are claimed to behave like superconductors: unfortunately the academic world has not taken these claims seriously enough to test them. The claimed properties of ORMEs conform with high quantum critical T_c super-conductivity and superfluidity. The strange findings about the strange quantal behavior of ionic currents through cell membranes [48] suggest the presence of ionic supra currents. This evidence is discussed in the next chapter [13].

2.2 General TGD based view about super-conductivity

Today super-conductivity includes besides the traditional low temperature super-conductors many other non-orthodox ones [61]. These unorthodox super-conductors carry various attributes such as cuprate, organic, dichalcogenide, heavy fermion, bismute oxide, ruthenate, antiferromagnetic and ferromagnetic. Mario Rabinowitz has proposed a simple phenomenological theory of superfluidity and super-conductivity which helps non-specialist to get a rough quantitative overall view about super-conductivity [61].

2.2.1 Basic phenomenology of super-conductivity

The following provides the first attempt by a non-professional to form an overall view about super-conductivity.

Basic phenomenology of super-conductivity

The transition to super-conductivity occurs at critical temperature T_c and involves a complete loss of electrical resistance. Super-conductors expel magnetic fields (Meissner effect) and when the external magnetic field exceeds a critical value H_c super-conductivity is lost either completely or partially. In the transition to super-conductivity specific heat has singularity. For long time magnetism and super-conductivity were regarded as mutually exclusive phenomena but the discovery of ferromagnetic super-conductors [42, 27] has demonstrated that reality is much more subtle.

The BCS theory developed by Bardeen, Cooper, and Schrieffer in 1957 provides a satisfactory model for low T_c super-conductivity in terms of Cooper pairs. The interactions of electrons with the crystal lattice induce electron-electron interaction binding electrons to Cooper pairs at sufficiently low temperatures. The electrons of Cooper pair are at the top of Fermi sphere (otherwise they cannot interact to form bound states) and have opposite center of mass momenta and spins. The binding creates energy gap E_g determining the critical temperature T_c. The singularity of the specific heat in the transition to super-conductivity can be understood as being due to the loss of thermally excitable degrees of freedom at critical temperature so that heat capacity is reduced exponentially. BCS theory has been successful in explaining the properties of low temperature super conductors but the high temperature super-conductors discovered in 1986 and other non-orthodox superconductors discovered later remain a challenge for theorists.

The reasons why magnetic fields tend to destroy super-conductivity is easy to understand. Lorentz force induces opposite forces to the electrons of Cooper pair since the momenta are opposite. Magnetic field tends also to turn the spins in the same direction. The super-conductivity is destroyed in fields for which the interaction energy of magnetic moment of electron with field is of the same order of magnitude as gap energy $E_g \sim T_c$: $ehH_c/2m \sim T_c$.

If spins are parallel, the situation changes since only Lorentz force tends to destroy the Cooper pair. In high T_c super-conductors this is indeed the case: electrons are in spin triplet state ($S = 1$) and the net orbital angular momentum of Cooper pair is $L = 2$. The fact that orbital state is not $L = 0$ state makes high T_c super-conductors much more fragile to the destructive effect of impurities than
conventional super-conductors (due to the magnetic exchange force between electrons responsible for magnetism). Also the Cooper pairs of ^3He superfluid are in spin triplet state but have $S = 0$.

The observation that spin triplet Cooper pairs might be possible in ferro-magnets stimulates the question whether ferromagnetism and super-conductivity might tolerate each other after all, and the answer is affirmative [27]. The article [42] provides an enjoyable summary of experimental discoveries.

Basic parameters of super-conductors from universality?

Super conductors are characterized by certain basic parameters such as critical temperature T_c and critical magnetic field H_c, densities n_c and n of Cooper pairs and conduction electrons, gap energy E_g, correlation length ξ and magnetic penetration length λ. The super-conductors are highly complex systems and calculation of these parameters from BCS theory is either difficult or impossible.

It has been suggested [61] that these parameters might be more or less universal so that they would not depend on the specific properties of the interaction responsible for the formation of Cooper pairs. The motivation comes from the fact that the properties of ordinary Bose-Einstein condensates do not depend on the details of interactions. This raises the hope that these parameters might be expressible in terms of some basic parameters such as T_c and the density of conduction electrons allowing to deduce Fermi energy E_F and Fermi momentum k_F if Fermi surface is sphere. In [61] formulas for the basic parameters are indeed suggested based on this argumentation assuming that Cooper pairs form a Bose-Einstein condensate.

1. The most important parameters are critical temperature T_c and critical magnetic field H_c in principle expressible in terms of gap energy. In [61] the expression for T_c is deduced from the condition that the de Broglie wavelength λ must satisfy in supra phase the condition

$$\lambda \geq 2d = 2(\frac{n_c}{g})^{1/D}$$ \hspace{1cm} (2.2.1)

guaranteeing the quantum overlap of Cooper pairs. Here n_c is the density of Bose-Einstein condensate of Cooper pairs and g is the number of spin states and D the dimension of the condensate. This condition follows also from the requirement that the number of particles per energy level is larger than one (Bose-Einstein condensation).

Identifying this expression with the de Broglie wavelength $\lambda = h/\sqrt{2mE}$ at thermal energy $E = (D/2)T_c$, where D is the number of degrees of freedom, one obtains

$$T_c \leq \frac{h^2}{4Dm}(\frac{n_c}{g})^{2/D}.$$ \hspace{1cm} (2.2.2)

m denotes the effective mass of super current carrier and for electron it can be even 100 times the bare mass of electron. The reason is that the electron moves is somewhat like a person trying to move in a dense crowd of people, and is accompanied by a cloud of charge carriers increasing its effective inertia. In this equation one can consider the possibility that Planck constant is not the ordinary one. This obviously increases the critical temperature unless n_c is scaled down in same proportion in the phase transition to large \hbar phase.

2. The density of n_c Cooper pairs can be estimated as the number of fermions in Fermi shell at E_F having width Δk deducible from kT_c. For $D = 3$-dimensional spherical Fermi surface one has

$$n_c = \frac{1}{2}\frac{4\pi k_F^2}{\frac{4\pi}{3}} \Delta k,$$

$$kT_c = E_F - E(k_F - \Delta k) \simeq \frac{h^2 k_F \Delta k}{m}.$$ \hspace{1cm} (2.2.3)
Analogous expressions can be deduced in $D = 2$- and $D = 1$-dimensional cases and one has

$$n_c(D) = \frac{D}{2} \frac{T_c}{E_F} n(D). \tag{2.2.4}$$

The dimensionless coefficient is expressible solely in terms of n and effective mass m. In [61] it is demonstrated that the inequality 2.2.2 replaced with equality when combined with 2.2.4 gives a satisfactory fit for 16 super-conductors used as a sample.

Note that the Planck constant appearing in E_F and T_c in Eq. 2.2.4 must correspond to ordinary Planck constant \hbar_0. This implies that equations 2.2.2 and 2.2.4 are consistent within orders of magnitudes. For $D = 2$, which corresponds to high T_c superconductivity, the substitution of n_c from Eq. 2.2.4 to Eq. 2.2.2 gives a consistency condition from which n_c disappears completely. The condition reads as

$$n\lambda_F^2 = \pi = 4g.$$

Obviously the equation is not completely consistent.

3. The magnetic penetration length λ is expressible in terms of density n_c of Cooper pairs as

$$\lambda^{-2} = \frac{4\pi e^2 n_c}{m_e}.$$

The ratio $\kappa \equiv \frac{\lambda}{\xi}$ determines the type of the super conductor. For $\kappa < \frac{1}{\sqrt{2}}$ one has type I super conductor with defects having negative surface energy. For $\kappa \geq \frac{1}{\sqrt{2}}$ one has type II super conductor and defects have positive surface energy. Super-conductors of type I this results in complex stripe like flux patterns maximizing their area near criticality. The super-conductors of type II have $\kappa > 1/\sqrt{2}$ and the surface energy is positive so that the flux penetrates as flux quanta minimizing their area at lower critical value H_{c_1} of magnetic field and completely at higher critical value H_{c_2} of magnetic field. The flux quanta contain a core of size ξ carrying quantized magnetic flux.

4. Quantum coherence length ξ can be roughly interpreted as the size of the Cooper pair or as the size of the region where it is sensible to speak about the phase of wave function of Cooper pair. For larger separations the phases of wave functions are un-correlated. The values of ξ vary in the range $10^3 - 10^4$ Angstrom for low T_c super-conductors and in the range $5 - 20$ Angstrom for high T_c super-conductors (assuming that they correspond to ordinary \hbar!) the ratio of these coherence lengths varies in the range $[50 \text{–} 2000]$, with upper bound corresponding to $n_F = 2^{11}$ for \hbar. This would give range $1 - 2$ microns for the coherence lengths of high T_c super-conductors with lowest values of coherence lengths corresponding to the highest values of coherence lengths for low temperatures super conductors.

Uncertainty Principle $\delta E \delta t = \hbar/2$ using $\delta E = E_g \equiv 2\Delta, \delta t = \xi/v_F$, gives an order of magnitude estimate for ξ differing only by a numerical factor from the result of a rigorous calculation given by

$$\xi = \frac{4\hbar v_F}{E_g}.$$

E_g is apart from a numerical constant equal to T_c: $E_g = nT_c$. Using the expression for v_F and T_c in terms of the density of electrons, one can express also ξ in terms of density of electrons.

For instance, BCS theory predicts $n = 3.52$ for metallic super-conductors and $n = 8$ holds true for cuprates [61]. For cuprates one obtains $\xi = 2n^{-1/3}$ [61]. This expression can be criticized since cuprates are Mott insulators and it is not at all clear whether a description as Fermi gas makes sense.
The fact that high T_c super-conductivity involves breakdown of anti-ferromagnetic order might justify the use of Fermi gas description for conducting holes resulting in the doping.

For large \hbar the value of ξ would scale up dramatically if deduced theoretically from experimental data using this kind of expression. If the estimates for ξ are deduced from v_F and T_c purely calculationally as seems to be the case, the actual coherence lengths would be scaled up by a factor $\hbar/\hbar_0 = n_F$ if high T_c super-conductors correspond to large \hbar phase. As also found that this would also allow to understand the high critical temperature.

2.2.2 Universality of the parameters in TGD framework

Universality idea conforms with quantum criticality of TGD Universe. The possibility to express everything in terms of density of critical temperature coding for the dynamics of Cooper pair formation and the density charge carriers would make it also easy to understand how p-adic scalings and transitions to large \hbar phase affect the basic parameters. The possible problem is that the replacement of inequality of Eq.2.2.2 with equality need not be sensible for large \hbar phases. It will be found that in many-sheeted space-time T_c does not directly correspond to the gap energy and the universality of the critical temperature follows from the p-adic length scale hypothesis.

The effect of p-adic scaling on the parameters of super-conductors

p-Adic fractality expresses as $n \propto 1/L^3(k)$ would allow to deduce the behavior of the various parameters as function of the p-adic length scale and naive scaling laws would result. For instance, E_g and T_c would scale as $1/L^2(k)$ if one assumes that the density n of particles at larger space-time sheets scales p-adically as $1/L^3(k)$. The basic implication would be that the density of Cooper pairs and thus also T_c would be reduced very rapidly as a function of the p-adic length scale. Without thermal isolation between these space-time sheets and high temperature space-time sheets there would not be much hopes about high T_c super-conductivity.

In the scaling of Planck constant basic length scales scale up and the overlap criterion for super-conductivity becomes easy to satisfy unless the density of electrons is reduced too dramatically. As found, also the critical temperature scales up so that there are excellent hopes of obtain high T_c super-conductor in this manner. The claimed short correlation lengths are not a problem since they are calculational quantities.

It is of interest to study the behavior of the various parameters in the transition to the possibly existing large \hbar variant of super-conducting electrons. Also small scalings of \hbar are possible and the considerations to follow generalize trivially to this case. Under what conditions the behavior of the various parameters in the transition to large \hbar phase is dictated by simple scaling laws?

1. Scaling of T_c and E_g

T_c and E_g remain invariant if E_g corresponds to a purely classical interaction energy remaining invariant under the scaling of \hbar. This is not the case for BCS super-conductors for which the gap energy E_g has the following expression.

$$
E_g = \hbar \omega_c \exp(-1/X),
$$

$$
X = n(E_F)U_0 = \frac{3}{2} N(E_F) \frac{U_0}{E_F},
$$

$$
n(E_F) = \frac{3}{2} \frac{N(E_F)}{E_F},
$$

$$
\omega_c = \omega_D = (6n^2)^{1/3} c_s n^{1/3}.
$$

Here ω_c is the width of energy region near E_F for which ”phonon” exchange interaction is effective. n_n denotes the density of nuclei and c_s denotes sound velocity.

$N(E_F)$ is the total number of electrons at the super-conducting space-time sheet. U_0 would be the parameter characterizing the interaction strength of of electrons of Cooper pair and should not depend on \hbar. For a structure of size $L \sim 1 \mu$ in one would have $X \sim n_n^{10^{12}} \frac{U_0}{E_F}$, n_n being the number of exotic electrons per atom, so that rather weak interaction energy U_0 can give rise to $E_g \sim \omega_c$.

The expression of ω_c reduces to Debye frequency ω_D in BCS theory of ordinary superconductivity. If c_s is proportional to thermal velocity $\sqrt{T_c/m}$ at criticality and if n_n remains invariant in the scaling of h, Debye energy scales up as h. This can imply that $E_q > E_F$ condition making scaling non-sensible unless one has $E_q < E_F$ holding true for low T_c superconductors. This kind of situation would not require large h phase for electrons. What would be needed that nuclei and phonon space-time sheets correspond to large h phase.

What one can hope is that E_q scales as h so that high T_c superconductor would result and the scaled up T_c would be above room temperature for $T_c > .15$ K. If electron is in ordinary phase X is automatically invariant in the scaling of h. If not, the invariance reduces to the invariance of U_0 and E_F under the scaling of h. If n scales like $1/h^D$, E_F and thus X remain invariant. U_0 as a simplified parametrization for the interaction potential expressible as a tree level Feynman diagram is expected to be in a good approximation independent of h.

It will be found that in high T_c superconductors, which seem to be quantum critical, a high T_c variant of phonon mediated superconductivity and exotic superconductivity could be competing. This would suggest that the phonon mediated superconductivity corresponds to a large h phase for nuclei scaling ω_D and T_c by a factor $r = h/h_0$.

Since the total number $N(E_F)$ of electrons at larger space-time sheet behaves as $N(E_F) \propto E_F^{D/2}$, where D is the effective dimension of the system, the quantity $1/X \propto E_F/n(E_F)$ appearing in the expressions of the gap energy behaves as $1/X \propto E_F^{-D/2+1}$. This means that at the limit of vanishing electron density $D = 3$ gap energy goes exponentially to zero, for $D = 2$ it is constant, and for $D = 1$ it goes zero at the limit of small electron number so that the formula for gap energy reduces to $E_q \approx \omega_c$. These observations suggest that the superconductivity in question should be 2- or 1-dimensional phenomenon as in case of magnetic walls and flux tubes.

2. Scaling of ξ and λ

If n_c for high T_c super-conductor scales as $1/h^D$ one would have $\lambda \propto h^{D/2}$. High T_c property however suggests that the scaling is weaker. ξ would scale as h for given v_F and T_c. For $D = 2$ case the this would suggest that high T_c superconductors are of type I rather than type II as they would be for ordinary h. This conforms with the quantum criticality which would be counterpart of critical behavior of super-conductors of type I in nearly critical magnetic field.

3. Scaling of H_c and B

The critical magnetization is given by

$$H_c(T) = \frac{\Phi_0}{\sqrt{8\pi \xi(T)\lambda(T)}} , \quad (2.2.8)$$

where Φ_0 is the flux quantum of magnetic field proportional to h. For $D = 2$ and $n_c \propto h^{-2} H_c(T)$ would not depend on the value of h. For the more physical dependence $n_c \propto h^{2+\epsilon}$ one would have $H_c(T) \propto h^{-\epsilon}$. Hence the strength of the critical magnetization would be reduced by a factor $2^{-11\epsilon}$ in the transition to the large h phase with $n_F = 2^{-11}$.

Magnetic flux quantization condition is replaced by

$$\int 2eBdS = nh\pi . \quad (2.2.9)$$

B denotes the magnetic field inside super-conductor different from its value outside the super-conductor. By the quantization of flux for the non-superconducting core of radius ξ in the case of super-conductors of type II $eB = h/\xi^2$ holds true so that B would become very strong since the thickness of flux tube would remain unchanged in the scaling.

2.2.3 Quantum criticality and super-conductivity

The notion of quantum criticality has been already discussed in introduction. An interesting prediction of the quantum criticality of entire Universe also gives naturally rise to a hierarchy of macroscopic quantum phases since the quantum fluctuations at criticality at a given level can give rise to higher
level macroscopic quantum phases at the next level. A metaphor for this is a fractal cusp catastrophe for which the lines corresponding to the boundaries of cusp region reveal new cusp catastrophes corresponding to quantum critical systems characterized by an increasing length scale of quantum fluctuations.

Dark matter hierarchy could correspond to this kind of hierarchy of phases and long ranged quantum slow fluctuations would correspond to space-time sheets with increasing values of \hbar and size. Evolution as the emergence of modules from which higher structures serving as modules at the next level would correspond to this hierarchy. Mandelbrot fractal with inversion analogous to a transformation permuting the interior and exterior of sphere with zooming revealing new worlds in Mandelbrot fractal replaced with its inverse would be a good metaphor for what quantum criticality would mean in TGD framework.

How the quantum criticality of superconductors relates to TGD quantum criticality

There is empirical support that super-conductivity in high T_c super-conductors and ferromagnetic systems [42, 41] is made possible by quantum criticality [62]. In the experimental situation quantum criticality means that at sufficiently low temperatures quantum rather than thermal fluctuations are able to induce phase transitions. Quantum criticality manifests itself as fractality and simple scaling laws for various physical observables like resistance in a finite temperature range and also above the critical temperature. This distinguishes sharply between quantum critical super conductivity from BCS type super-conductivity. Quantum critical super-conductivity also exists in a finite temperature range and involves the competition between two phases.

The absolute quantum criticality of the TGD Universe maps to the quantum criticality of sub-systems, which is broken by finite temperature effects bringing dissipation and freezing of quantum fluctuations above length and time scales determined by the temperature so that scaling laws hold true only in a finite temperature range.

Reader has probably already asked what quantum criticality precisely means. What are the phases which compete? An interesting hypothesis is that quantum criticality actually corresponds to criticality with respect to the phase transition changing the value of Planck constant so that the competing phases would correspond to different values of \hbar. In the case of high T_c super-conductors (anti-ferromagnets) the fluctuations can be assigned to the magnetic flux tubes of the dipole field patterns generated by rows of holes with same spin direction assignable to the stripes. Below T_c fluctuations induce reconnections of the flux tubes and a formation of very long flux tubes and make possible for the supra currents to flow in long length scales below T_c. Percolation type phenomenon is in question. The fluctuations of the flux tubes below $T_{c1} > T_c$ induce transversal phonons generating the energy gap for $S = 1$ Cooper pairs. $S = 0$ Cooper pairs are predicted to stabilize below T_{c1}.

Scaling up of de Broglie wave lengths and criterion for quantum overlap

Compton lengths and de Broglie wavelengths are scaled up by an integer n_F whose preferred values correspond to $n_F = 2^k \prod F_s$, where $F_s = 2^{2^s} + 1$ are distinct Fermat primes. In particular, $n_F = 2^{11}$ seem to be favored in living matter. The scaling up means that the overlap condition $\lambda \geq 2d$ for the formation of Bose-Einstein condensate can be satisfied and the formation of Cooper pairs becomes possible. Thus a hierarchy of large \hbar super-conductivities would be associated with to the dark variants of ordinary particles having essentially same masses as the ordinary particles.

Unless one assumes fractionization, the invariance of $E_F \propto \hbar^2 k_f n^{2/3}$ in \hbar increasing transition would require that the density of Cooper pairs in large \hbar phase is scaled down by an appropriate factor. This means that supra current intensities, which are certainly measurable quantities, are also scaled down. Of course, it could happen that E_F is scaled up and this would conform with the scaling of the gap energy.

Quantum critical super-conductors in TGD framework

For quantum critical super-conductivity in heavy fermions systems, a small variation of pressure near quantum criticality can destroy ferromagnetic (anti-ferromagnetic) order so that Curie (Neel) temperature goes to zero. The prevailing spin fluctuation theory [23] assumes that these transitions are induced by low ranged and slow spin fluctuations at critical pressure P_c. These fluctuations make
and break Cooper pairs so that the idea of super-conductivity restricted around critical point is indeed conceivable.

Heavy fermion systems, such as cerium-indium alloy CeIn₃ are very sensitive to pressures and a tiny variation of density can drastically modify the low temperature properties of the systems. Also other systems of this kind, such as CeCu₂Ge₂, CeIn₃, CePd₂Si₂ are known \([22, 27]\). In these cases super-conductivity appears around anti-ferromagnetic quantum critical point.

The last experimental breakthrough in quantum critical super-conductivity was made in Grenoble \([11]\). URhGe alloy becomes super-conducting at \(T_c = 0.280\) K, loses its super-conductivity at \(H_c = 2\) Tesla, and becomes again super-conducting at \(H_c = 12\) Tesla and loses its super-conductivity again at \(H = 13\) Tesla. The interpretation is in terms of a phase transition changing the magnetic order inducing the long range spin fluctuations.

TGD based models of atomic nucleus \([71]\) and condensed matter \([23]\) assume that weak gauge bosons with Compton length of order atomic radius play an essential role in the nuclear and condensed matter physics. The assumption that condensed matter nuclei possess anomalous weak charges explains the repulsive core of potential in van der Waals equation and the very low compressibility of condensed matter phase as well as various anomalous properties of water phase, provide a mechanism of cold fusion and sono-fusion, etc. \([23, 21]\). The pressure sensitivity of these systems would directly reflect the physics of exotic quarks and electro-weak gauge bosons. A possible mechanism behind the phase transition to super-conductivity could be the scaling up of the sizes of the space-time sheets of nuclei.

Also the electrons of Cooper pair (and only these) could make a transition to large \(\hbar\) phase. This transition would induce quantum overlap having geometric overlap as a space-time correlate. The formation of join along boundaries bonds between neighboring atoms would be part of the mechanism. For instance, the criticality condition \(4n^2\alpha = 1\) for BE condensate of \(n\) Cooper pairs would give \(n = 6\) for the size of a higher level quantum unit possibly formed from Cooper pairs. If one does not assume invariance of energies obtained by fractionization of principal quantum number, this transition has dramatic effects on the spectrum of atomic binding energies scaling as \(1/\hbar^2\) and practically universal spectrum of atomic energies would result \([21]\) not depending much on nuclear charge. It seems that this prediction is non-physical.

Quantum critical super-conductors resemble superconductors of type I with \(\lambda \ll \xi\) for which defects near thermodynamical criticality are complex structures looking locally like stripes of thickness \(\lambda\). These structures are however dynamical in super-conducting phase. Quite generally, long range quantum fluctuations due to the presence of two competing phases would manifest as complex dynamical structures consisting of stripes and their boundaries. These patterns are dynamical rather than static as in the case of ordinary spin glass phase so that quantum spin glass or 4-D spin glass is a more appropriate term. The breaking of classical non-determinism for vacuum extremals indeed makes possible space-time correlates for quantum non-determinism and this makes TGD Universe a 4-dimensional quantum spin glass.

Could quantum criticality make possible new kinds of high \(T_c\) super-conductors?

The transition to large \(\hbar = r\hbar_0\) phase increases various length scales by \(r\) and makes possible long range correlations even at high temperatures. Hence the question is whether large \(\hbar\) phase could correspond to ordinary high \(T_c\) super-conductivity. If this were the case in the case of ordinary high \(T_c\) super-conductors, the actual value of coherence length \(\xi\) would vary in the range \(5 - 20\) Angstrom scaled up by a factor \(r\). For effectively \(D\)-dimensional super-conductor The density of Cooper pairs would be scaled down by an immensely small factor \(1/r^D\) from its value deduced from Fermi energy.

Large \(\hbar\) phase for some nuclei might be involved and make possible large space-time sheets of size at least of order of \(\xi\) at which conduction electrons forming Cooper pairs would topologically condense like quarks around hadronic space-time sheets (in \([23]\) a model of water as a partially dark matter with one fourth of hydrogen ions in large \(\hbar\) phase is developed).

Consider for a moment the science fictive possibility that super conducting electrons for some quantum critical super-conductors to be discovered or already discovered correspond to large \(\hbar\) phase with \(\hbar = r\hbar_0\) keeping in mind that this affects only quantum corrections in perturbative approach but not the lowest order classical predictions of quantum theory. For \(r \simeq n^{2/11}\) with \((n, k) = (1, 1)\) the size of magnetic body would be \(L(149) = 5\) nm, the thickness of the lipid layer of cell membrane. For \((n, k) = (1, 2)\) the size would be \(L(171) = 10\) µm, cell size. If the density of Cooper pairs is of
same order of magnitude as in case of ordinary superconductors, the critical temperature is scaled up by 2^{k+1}. Already for $k=1$ the critical temperature of 1 K would be scaled up to $4 \times 10^6 \text{K}$ if n_c is not changed. This assumption is not consistent with the assumption that Fermi energy remains non-relativistic. For $n = 1$ $T_c = 400 \text{K}$ would be achieved for $n_c \rightarrow 10^{-6} n_c$, which looks rather reasonable since Fermi energy transforms as $E_F \rightarrow 8 \times 10^3 E_F$ and remains non-relativistic. H_c would scale down as $1/\hbar$ and for $H_c = .1 \text{Tesla}$ the scaled down critical field would be $H_c = .5 \times 10^{-4} \text{Tesla}$, which corresponds to the nominal value of the Earth’s magnetic field.

Quantum critical superconductors become especially interesting if one accepts the identification of living matter as ordinary matter quantum controlled by macroscopically quantum coherent dark matter. One of the basic hypothesis of TGD inspired theory of living matter is that the magnetic flux tubes of the Earth’s magnetic field carry a superconducting phase and the spin triplet Cooper pairs of electrons in large \hbar phase might realize this dream. That the value of Earth’s magnetic field is near to its critical value could have also biological implications.

2.2.4 Space-time description of the mechanisms of superconductivity

The application of ideas about dark matter to nuclear physics and condensed matter suggests that dark color and weak forces should be an essential element of the chemistry and condensed matter physics. The continual discovery of new superconductors, in particular of quantum critical superconductors, suggests that superconductivity is not well understood. Hence superconductivity provides an obvious test for these ideas. In particular, the idea that wormhole contacts regarded as parton pairs living at two space-time sheets simultaneously, provides an attractive universal mechanism for the formation of Cooper pairs and is not so far-fetched as it might sound first.

Leading questions

It is good to begin with a series of leading questions. The first group of questions is inspired by experimental facts about superconductors combined with TGD context.

1. The work of Rabinowitch [61] suggests that that the basic parameters of superconductors might be rather universal and depend on T_c and conduction electron density only and be to a high degree independent of the mechanism of superconductivity. This is in a sharp contrast to the complexity of even BCS model with its somewhat misty description of the phonon exchange mechanism.

 Questions: Could there exist a simple universal description of various kinds of superconductivities?

2. The new superconductors possess relatively complex chemistry and lattice structure.

 Questions: Could it be that complex chemistry and lattice structure makes possible something very simple describable in terms of quantum criticality. Could it be that the transversal oscillations magnetic flux tubes allow to understand the formation of Cooper pairs at T_c and their reconnections generating very long flux tubes the emergence of supra currents at T_c?

3. The effective masses of electrons in ferromagnetic superconductors are in the range of 10-100 electron masses [42] and this forces to question the idea that ordinary Cooper pairs are current carriers.

 Questions: Can one consider the possibility that the p-adic length scale of say electron can vary so that the actual mass of electron could be large in condensed matter systems? For quarks and neutrinos this seems to be the case [47, 48]. Could it be that the Gaussian Mersennes $(1+i)^k - 1$, $k = 151, 157, 163, 167$ spanning the p-adic lengthscale range 10 nm-2.5 μm very relevant from the point of view of biology correspond to p-adic length especially relevant for superconductivity?

Second group of questions is inspired by quantum classical correspondence.

1. Quantum classical correspondence in its strongest form requires that bound state formation involves the generation of join along boundaries bonds between bound particles. The weaker form of the principle requires that the particles are topologically condensed at same space-time sheet. In the case of Cooper pairs in ordinary superconductors the length of join along boundaries bonds between electrons should be of order $10^3 - 10^4$ Angstroms. This looks rather strange and
it seems that the latter option is more sensible.

Questions: Could quantum classical correspondence help to identify the mechanism giving rise to Cooper pairs?

2. Quantum classical correspondence forces to ask for the space-time correlates for the existing quantum description of phonons.

Questions: Can one assign space-time sheets with phonons or should one identify them as oscillations of say space-time sheets at which atoms are condensed? Or should the microscopic description of phonons in atomic length scales rely on the oscillations of wormhole contacts connecting atomic space-time sheets to these larger space-time sheets? The identification of phonons as wormhole contacts would be completely analogous to the similar identification of gauge bosons except that phonons would appear at higher levels of the hierarchy of space-time sheets and would be emergent in this sense. As a matter fact, even gauge bosons as pairs of fermion and antifermion are emergent structures in TGD framework and this plays fundamental role in the construction of QFT limit of TGD in which bosonic part of action is generated radiatively so that all coupling constants follow as predictions [54,27]. Could Bose-Einstein condensates of wormhole contacts be relevant for the description of super-conductors or more general macroscopic quantum phases?

The third group of questions is inspired by the new physics predicted or by TGD.

1. TGD predicts a hierarchy of macroscopic quantum phases with large Planck constant.

Questions: Could large values of Planck constant make possible exotic electronic super-conductivities? Could even nuclei possess large \hbar (super-fluidity)?

2. TGD predicts that classical color force and its quantal counterpart are present in all length scales.

Questions: Could color force, say color magnetic force which play some role in the formation of Cooper pair. The simplest model of pair is as a space-time sheet with size of order ξ so that the electrons could be “outside” the background space-time. Could the Coulomb interaction energy of electrons with positively charged wormhole throats carrying parton numbers and feeding em gauge flux to the large space-time sheet be responsible for the gap energy? Could wormhole throats carry also quark quantum numbers. In the case of single electron condensed to single space-time sheet the em flux could be indeed fed by a pair of $u\bar{u}$ and $\bar{d}d$ type wormhole contacts to a larger space-time sheet. Could the wormhole contacts have a net color? Could the electron space-time sheets of the Cooper pair be connected by long color flux tubes to give color singlets so that dark color force would be ultimately responsible for the stability of Cooper pair?

3. Suppose that one takes seriously the ideas about the possibility of dark weak interactions with the Compton scale of weak bosons scaled up to say atomic length scale so that weak bosons are effectively massless below this length scale [23].

Questions: Could the dark weak length scale which is of order atomic size replace lattice constant in the expression of sound velocity? What is the space-time correlate for sound velocity?

Photon massivation, coherent states of Cooper pairs, and wormhole contacts

The existence of wormhole contacts is one of the most stunning predictions of TGD. First I realized that wormhole contacts can be regarded as parton-antiparton pairs with parton and antiparton assignable to the light-like causal horizons accompanying wormhole contacts. Then came the idea that Higgs particle could be identified as a wormhole contact. It was soon followed by the identification all bosonic states as wormhole contacts [11]. Finally I understood that this applies also to their supersymmetric partners, which can be also fermion [27]. Fermions and their super-partners would in turn correspond to wormhole throats resulting in the topological condensation of small deformations of CP^2 type vacuum extremals with Euclidian signature of metric to the background space-time sheet. This framework opens the doors for more concrete models of also super-conductivity involving the effective massivation of photons as one important aspect in the case of ordinary super-conductors.

There are two types of wormhole contacts. Those of first type correspond to elementary bosons. Wormhole contacts of second kind are generated in the topological condensation of space-time sheets.
carrying matter and form a hierarchy. Classical radiation fields realized in TGD framework as oscillations of space-time sheets would generate wormhole contacts as the oscillating space-time sheet develops contacts with parallel space-time sheets (recall that the distance between space-time sheets is of order CP^2 size). This realizes the correspondence between fields and quanta geometrically. Phonons could also correspond to wormhole contacts of this kind since they mediate acoustic oscillations between space-time sheets and the description of the phonon mediated interaction between electrons in terms of wormhole contacts might be useful also in the case of super-conductivity. Bose-Einstein condensates of wormhole contacts might be highly relevant for the formation of macroscopic quantum phases. The formation of a coherent state of wormhole contacts would be the counterpart for the vacuum expectation value of Higgs.

The notions of coherent states of Cooper pairs and of charged Higgs challenge the conservation of electromagnetic charge. The following argument however suggests that coherent states of wormhole contacts form only a part of the description of ordinary super-conductivity. The basic observation is that wormhole contacts with vanishing fermion number define space-time correlates for Higgs type particle with fermion and antifermion numbers at light-like throats of the contact. The ideas that a genuine Higgs type photon massivation is involved with super-conductivity and that coherent states of Cooper pairs really make sense are somewhat questionable since the conservation of charge and fermion number is lost for coherent states. A further questionable feature is that a quantum superposition of many-particle states with widely different masses would be in question. These interpretational problems can be resolved elegantly in zero energy ontology [17] in which the total conserved quantum numbers of quantum state are vanishing. In this picture the energy, fermion number, and total charge of any positive energy state are compensated by opposite quantum numbers of the negative energy state in geometric future. This makes possible to speak about superpositions of Cooper pairs and charged Higgs bosons separately in positive energy sector.

If this picture is taken seriously, super-conductivity can be seen as providing a direct support for both the hierarchy of scaled variants of standard model physics and for the zero energy ontology.

Space-time correlate for quantum critical superconductivity

The explicit model for high T_c super-conductivity relies on quantum criticality involving long ranged quantum fluctuations inducing reconnection of flux tubes of local (color) magnetic fields associated with parallel spins associated with stripes to form long flux tubes serving as wires along which Cooper pairs flow. Essentially [10] type phenomenon would be in question. The role of the doping by holes is to make room for Cooper pairs to propagate by the reconnection mechanism: otherwise Fermi statistics would prevent the propagation. Too much doping reduces the number of current carriers, too little doping leaves too little room so that there exists some optimal doping. In the case of high T_c super-conductors quantum criticality corresponds to a quite wide temperature range, which provides support for the quantum criticality of TGD Universe. The probability $p(T)$ for the formation of reconnections is what matters and exceeds the critical value at T_c.

2.2.5 Super-conductivity at magnetic flux tubes

Super-conductivity at the magnetic flux tubes of magnetic flux quanta is one the basic hypothesis of the TGD based model of living matter. There is also evidence for magnetically mediated superconductivity in extremely pure samples [37]. The magnetic coupling was only observed at lattice densities close to the critical density at which long-range magnetic order is suppressed. Quantum criticality that long flux tubes serve as pathways along which Cooper pairs can propagate. In antiferromagnetic phase these pathways are short-circuited to closed flux tubes of local magnetic fields.

Almost the same model as in the case of high T_c and quantum critical super-conductivity applies to the magnetic flux tubes. Now the flux quantum contains BE condensate of exotic Cooper pairs interacting with wormhole contacts feeding the gauge flux of Cooper pairs from the magnetic flux quantum to a larger space-time sheet. The interaction of spin 1 Cooper pairs with the magnetic field of flux quantum orients their spins in the same direction. Large value of \hbar guarantees thermal stability even in the case that different space-time sheets are not thermally isolated.

The understanding of gap energy is not obvious. The transversal oscillations of magnetic flux tubes generated by spin flips of electrons define the most plausible candidate for the counterpart of
2.2. General TGD based view about super-conductivity

phonons. In this framework phonon like states identified as wormhole contacts would be created by the oscillations of flux tubes and would be a secondary phenomenon.

Large values of \(h \) allow to consider not only the Cooper pairs of electrons but also of protons and fermionic ions. Since the critical temperature for the formation of Cooper pairs is inversely proportional to the mass of the charge carrier, the replacement of electron with proton or ion would require a scaling of \(h \). If \(T_{c1} \) is proportional to \(h^2 \), this requires scaling by \((m_p/m_e)^{1/2}\). For \(T_{c1} \propto h \) scaling by \(m_p/m_e \simeq 2^{11} \) is required. This inspired idea that powers of \(2^{11} \) could define favored values of \(h/h_0 \). This hypothesis is however rather adhoc and turned out to be too restrictive.

Besides Cooper pairs also Bose-Einstein condensates of bosonic ions are possible in large \(h \) phase and would give rise to super-conductivity. TGD inspired nuclear physics predicts the existence of exotic bosonic counterparts of fermionic nuclei with given \((A,Z) \) [2].

Superconductors at the flux quanta of the Earth’s magnetic field

Magnetic flux tubes and magnetic walls are the most natural candidates for super-conducting structures with spin triplet Cooper pairs. Indeed, experimental evidence relating to the interaction of ELF em radiation with living matter suggests that bio-super-conductors are effectively 1- or 2-dimensional. \(D \leq 2 \)-dimensionality is guaranteed by the presence of the flux tubes or flux walls of, say, the magnetic field of Earth in which charge carries form bound states and the system is equivalent with a harmonic oscillator in transversal degrees of freedom.

The effect of Earth’s magnetic field is completely negligible at the atomic space-time sheets and cannot make super conductor 1-dimensional. At cellular sized space-time sheets magnetic field makes possible transversal the confinement of the electron Cooper pairs in harmonic oscillator states but does not explain energy gap which should be at the top of 1-D Fermi surface. The critical temperature extremely low for ordinary value of \(h \) and either thermal isolation between space-time sheets or large value of \(h \) can save the situation.

An essential element of the picture is that topological quantization of the magnetic flux tubes occurs. In fact, the flux tubes of Earth’s magnetic field have thickness of order cell size from the quantization of magnetic flux. The observations about the effects of ELF em fields on bio-matter [11] suggest that similar mechanism is at work also for ions and in fact give very strong support for bio-super conductivity based on the proposed mechanism.

Energy gaps for superconducting magnetic flux tubes and walls

Besides the formation of Cooper pairs also the Bose-Einstein condensation of charge carriers to the ground state is needed in order to have a supra current. The stability of Bose-Einstein condensate requires an energy gap \(E_{g,BE} \) which must be larger than the temperature at the magnetic flux tube.

Several energies must be considered in order to understand \(E_{g,BE} \).

1. The Coulombic binding energy of Cooper pairs with the wormhole contacts feeding the em flux from magnetic flux tube to a larger space-time sheet defines an energy gap which is expected to be of order \(E_{C} = \alpha/L(k) \) giving \(E_{g} \sim 10^{-3} \) eV for \(L(167) = 2.5 \mu m \) giving a rough estimate for the thickness of the magnetic flux tube of the Earth’s magnetic field \(B = .5 \times 10^{-4} \) Tesla.

2. In longitudinal degrees of freedom of the flux tube Cooper pairs can be described as particles in a one-dimensional box and the gap is characterized by the length \(L \) of the magnetic flux tube and the value of \(h \). In longitudinal degrees of freedom the difference between \(n = 2 \) and \(n = 1 \) states is given by \(E_0(k_2) = 3\hbar^2/4m_eL^2(k_2) \). Translational energy gap \(E_t = 3E_0(k_2) = 3\hbar^2/4m_eL^2(k_2) \) is smaller than the effective energy gap \(E_0(k_1) - E_0(k_2) = \hbar^2/4m_eL^2(k_1) - \hbar^2/4m_eL^2(k_2) \) for \(k_1 > k_2 + 2 \) and identical with it for \(k_1 = k_2 + 2 \). For \(L(k_2 = 151) \) the zero point kinetic energy is given by \(E_0(151) = 20.8 \) meV so that \(E_{g,BE} \) corresponds roughly to a temperature of 180 K. For magnetic walls the corresponding temperature would be scaled by a factor of two to 360 K and is above room temperature.

3. Second troublesome energy gap relates to the interaction energy with the magnetic field. The magnetic interaction energy \(E_m \) of Cooper pair with the magnetic field consists of cyclotron term \(E_c = n\hbar cB/m_e \) and spin-interaction term which is present only for spin triplet case and is given by \(E_s = \pm\hbar cB/m_e \) depending on the orientation of the net spin with magnetic field.
In the magnetic field $B_{\text{end}} = 2B_E/5 = .2$ Gauss ($B_E = .5$ Gauss is the nominal value of the Earth’s magnetic field) explaining the effects of ELF em fields on vertebrate brain, this energy scale is $\sim 10^{-9} \text{ eV}$ for h_0 and $\sim 1.6 \times 10^{-5} \text{ eV}$ for $\hbar = 2^{14} \times h_0$.

The smallness of translational and magnetic energy gaps in the case of Cooper pairs at Earth’s magnetic field could be seen as a serious obstacle.

1. Thermal isolation between different space-time sheets provides one possible resolution of the problem. The stability of the Bose-Einstein condensation is guaranteed by the thermal isolation of space-time if the temperature at the magnetic flux tube is below E_m. This can be achieved in all length scales if the temperature scales as the zero point kinetic energy in transversal degrees of freedom since it scales in the same manner as magnetic interaction energy.

2. The transition to large \hbar phase could provide a more elegant way out of the difficulty. The criterion for a sequence of transitions to a large \hbar phase could be easily satisfied if there is a large number of charge Cooper pairs at the magnetic flux tube. Kinetic energy gap remains invariant if the length of the flux tube scales as \hbar. If the magnetic flux is quantized as a multiple of \hbar and flux tube thickness scales as \hbar^2, B must scale as $1/\hbar$ so that also magnetic energy remains invariant under the scaling. This would allow to have stability without assuming low temperature at magnetic flux tubes.

2.3 TGD based model for high T_c super conductors

High T_c superconductors are quantum critical and involve in an essential magnetic structures, they provide an attractive application of the general vision for the model of super-conductivity based on magnetic flux tubes.

2.3.1 Some properties of high T_c super conductors

Quite generally, high T_c super-conductors are cuprates with CuO layers carrying the supra current. The highest known critical temperature for high T_c superconductors is 164 K and is achieved under huge pressure of 3.1×10^5 atm for LaBaCuO. High T_c super-conductors are known to be super-conductors of type II.

This is however a theoretical deduction following from the assumption that the value of Planck constant is ordinary. For $\hbar = 2^{14} h_0$ (say) ξ would be scaled up accordingly and type I super-conductor would be in question. These super-conductors are characterized by very complex patterns of penetrating magnetic field near criticality since the surface area of the magnetic defects is maximized. For high T_c super-conductors the ferromagnetic phase could be regarded as an analogous to defect and would indeed have very complex structure. Since quantum criticality would be in question the stripe structure would fluctuate with time too in accordance with 4-D spin glass character.

The mechanism of high T_c super conductivity is still poorly understood [59, 66].

1. It is agreed that electronic Cooper pairs are charge carriers. It is widely accepted that electrons are in relative d-wave state rather than in s-wave (see [26] and the references mentioned in [59]). Cooper pairs are believed to be in spin triplet state and electrons combine to form $L = 2$ angular momentum state. The usual phonon exchange mechanism does not generate the attractive interaction between the members of the Cooper pair having spin. There is also a considerable evidence for BCS type Cooper pairs and two kinds of Cooper pairs could be present.

2. High T_c super conductors have spin glass like character [58]. High T_c superconductors have anomalous properties also above T_c suggesting quantum criticality implying fractal scaling of various observable quantities such as resistivity. At high temperatures cuprates are antiferromagnets and Mott insulators meaning freezing of the electrons. Superconductivity and conductivity are believed to occur along dynamical stripes which are antiferromagnetic defects.

3. These findings encourage to consider the interpretation in terms of quantum criticality in which some new form of super conductivity which is not based on quasiparticles is involved. This superconductivity would be assignable with the quantum fluctuations destroying antiferromagnetic
order and replacing it with magnetically disordered phase possibly allowing phonon induced super-conductivity.

4. The doping of the super-conductor with electron holes is essential for high \(T_c \) superconductivity, and there is a critical doping fraction \(p = .14 \) at which \(T_c \) is highest. The interpretation is that holes make possible for the Cooper pairs to propagate. There is considerable evidence that holes gather on one-dimensional stripes with thickness of order few atom sizes and lengths in the range 1-10 nm \([66]\), which are fluctuating in time scale of \(10^{-12} \) seconds. These stripes are also present in non-superconducting state but in this case they do not fluctuate appreciably. The most plausible TGD based interpretation is in terms of fluctuations of magnetic flux tubes allowing for the formation of long connected flux tubes making super-conductivity possible. The fact that the fluctuations would be oscillations analogous to acoustic wave and might explain the BCS type aspects of high \(T_c \) super-conductivity.

5. \(T_c \) is inversely proportional to the distance \(L \) between the stripes. A possible interpretation would be that full super-conductivity requires delocalization of electrons also with respect to stripes so that \(T_c \) would be proportional to the hopping probability of electron between neighboring stripes expected to be proportional to \(1/L \) \([66]\).

From free fermion gas to Fermi liquids to quantum critical systems

The article of Jan Zaanen \([65]\) gives an excellent non-technical discussion of various features of high \(T_c \) super-conductors distinguishing them from BCS super-conductors. After having constructed a color flux tube model of Cooper pairs I found it especially amusing to learn that the analogy of high \(T_c \) super-conductivity as a quantum critical phenomenon involving formation of dynamical stripes to QCD in the vicinity of the transition to the confined phase leading to the generation of string like hadronic objects was emphasized also by Zaanen.

BCS super-conductor behaves in a good approximation like quantum gas of non-interacting electrons. This approximation works well for long ranged interactions and the reason is Fermi statistics plus the fact that Fermi energy is much larger than Coulomb interaction energy at atomic length scales.

For strongly interacting fermions the description as Fermi liquid (a notion introduced by Landau) has been dominating phenomenological approach. \(^3\)He provides a basic example of Fermi liquid and already here a paradox is encountered since low temperature collective physics is that of Fermi gas without interactions with effective masses of atoms about 6 times heavier than those of real atoms whereas short distance physics is that of a classical fluid at high temperatures meaning a highly correlated collective behavior.

It should be noticed that many-sheeted space-time provides a possible explanation of the paradox. Space-time sheets containing join along boundaries blocks of \(^3\)He atoms behave like gas whereas the \(^3\)He atoms inside these blocks form a liquid. An interesting question is whether the \(^3\)He atoms combine to form larger units with same spin as \(^3\)He atom or whether the increase of effective mass by a factor of order six means that \(\hbar \) as a unit of spin is increased by this factor forcing the basic units to consist of Bose-Einstein condensate of 3 Cooper pairs.

High \(T_c \) super conductors are neither Fermi gases nor Fermi liquids. Cuprate superconductors correspond at high temperatures to doped Mott insulators for which Coulomb interactions dominate meaning that electrons are localized and frozen. Electron spin can however move and the system can be regarded as an anti-ferromagnet. CuO planes are separated by highly oxidic layers and become super-conducting when doped. The charge transfer between the two kinds of layers is what controls the degree of doping. Doping induces somehow a delocalization of charge carriers accompanied by a local melting of anti-ferromagnet.

Collective behavior emerges for high enough doping. Highest \(T_c \) results with 15 per cent doping by holes. Current flows along electron stripes. Stripes themselves are dynamical and this is essential for both conductivity and superconductivity. For completely static stripes super-conductivity disappears and quasi-insulating electron crystal results.

Dynamical stripes appear in mesoscopic time and length scales corresponding to 1-10 nm length scale and picosecond time scale. The stripes are in a well-defined sense dual to the magnetized stripe like structures in type I super-conductor near criticality, which suggests analog of type I superconductivity. The stripes are anti-ferromagnetic defects at which neighboring spins fail to be antipar-
It has been found that stripes are a very general phenomenon appearing in insulators, metals, and super-conducting compounds [63].

Quantum criticality is present also above T_c

Also the physics of Mott insulators above T_c reflects quantum criticality. Typically scaling laws hold true for observables. In particular, resistivity increases linearly rather than transforming from T^2 behavior to constant as would be implied by quasi-particles as current carriers. The appearance of so-called pseudo-gap [18] at $T_{c1} > T_c$ conforms with this interpretation. In particular, the pseudo-gap is non-vanishing already at T_{c1} and stays constant rather than starting from zero as for quasi-particles.

Results from optical measurements and neutron scattering

Optical measurements and neutron scattering have provided especially valuable microscopic information about high T_c superconductors allowing to fix the details of TGD based quantitative model.

Optical measurements of copper oxides in non-superconducting state have demonstrated that optical conductivity $\sigma(\omega)$ is surprisingly featureless as a function of photon frequency. Below the critical temperature there is however a sharp absorption onset at energy of about 50 meV [34]. The origin of this special feature has been a longstanding puzzle. It has been proposed that this absorption onset corresponds to a direct generation of an electron-hole pair. Momentum conservation implies that the threshold for this process is $E_g + E$, where E is the energy of the 'gluon' which binds electrons of Cooper pair together. In the case of ordinary super-conductivity E would be phonon energy.

Soon after measurements, it was proposed that in absence of lattice excitations photon must generate two electron-hole pairs such that electrons possess opposite momenta [34]. Hence the energy of the photon would be $2E_g$. Calculations however predicted soft rather than sharp onset of absorption since pairs of electron-hole pairs have continuous energy spectrum. There is something wrong with this picture.

Second peculiar characteristic [35, 31, 30] of high T_c super conductors is resonant neutron scattering at excitation energy $E_w = 41$ meV of super conductor. This scattering occurs only below the critical temperature, in spin-flip channel and for a favored momentum exchange $(\pi/a, \pi/a)$, where a denotes the size of the lattice cube [35, 31, 30]. The transferred energy is concentrated in a remarkably narrow range around E_w rather than forming a continuum.

In [49] is is suggested that e-e resonance with spin one gives rise to this excitation. This resonance is assumed to play the same role as phonon in the ordinary super conductivity and e-e resonance is treated like phonon. It is found that one can understand the dependence of the second derivative of the photon conductivity $\sigma(\omega)$ on frequency and that consistency with neutron scattering data is achieved. The second derivative of $\sigma(\omega)$ peaks near 68 meV and assuming $E = E_g + E_w$ they found nearly perfect match using $E_g = 27$ meV. This would suggest that the energy of the excitations generating the binding between the members of the Cooper pair is indeed 41 meV, that two electron-hole pairs and excitation of the super conductor are generated in photon absorption above threshold, and that the gap energy of the Cooper pair is 27 meV. Of course, the theory of Carbotte et al does not force the 'gluon' to be triplet excitation of electron pair. Also other possibilities can be considered. What comes in mind are spin flip waves of the spin lattice associated with stripe behaving as spin 1 waves.

In TGD framework more exotic options become possible. The transversal fluctuations of stripes- or rather of the magnetic flux tubes associated with the stripes- could define spin 1 excitations analogous to the excitations of a string like objects. Gauge bosons are identified as wormhole contacts in quantum TGD and massive gauge boson like state containing electron-positron pair or quark-antiquark pair could be considered.

2.3.2 TGD inspired vision about high T_c superconductivity

The following general view about high T_c superconductivity as quantum critical phenomenon suggests itself. It must be emphasized that this option is one of the many that one can imagine and distinguished only by the fact that it is the minimal option.
The interpretation of critical temperatures

The two critical temperatures T_c and $T_{c1} > T_c$ are interpreted as critical temperatures. The recent observation that there exists a spectroscopic signature of high T_c super-conductivity, which prevails up to T_{c1}, supports the interpretation that Cooper pairs exist already below T_{c1} but that for some reason they cannot form a coherent super-conducting state.

One can imagine several alternative TGD based models but for the minimal option is the following one.

1. T_{c1} would be the temperature for the formation of two-phase system consisting of ordinary electrons and of Cooper pairs with a large value of Planck constant explaining the high critical temperature.

2. Magnetic flux tubes are assumed to be carriers of supra currents. These flux tubes are very short in in anti-ferromagnetic phase. The holes form stripes making them positively charged so that they attract electrons. If the spins of holes tend to form parallel sequences along stripes, they generate dipole magnetic fields in scales of order stripe length at least. The corresponding magnetic flux tubes are assumed to be carriers of electrons and Cooper pairs. The flux tube structures would be closed so that the supra currents associated with these flux tubes would be trapped in closed loops above T_c.

3. Below T_{c1} transversal fluctuations of the flux tubes structures occur and can induce reconnections giving rise to longer flux tubes. Reconnection can occur in two manners. Recall that upwards going outer flux tubes of the dipole field turn downwards and eventually fuse with the dipole core. If the two dipoles have opposite directions the outer flux tube of the first (second) dipole can reconnect with the inward going part of the flux tube of second (first) dipole. If the dipoles have same direction, the outer flux tubes of the dipoles reconnect with each other. Same applies to the inwards going parts of the flux tubes and the dipoles fuse to a single deformed dipole if all flux tubes reconnect. This alternative looks more plausible. The reconnection process is in general only partial since dipole field consists of several flux tubes.

4. The reconnections for the flux tubes of neighboring almost dipole fields occur with some probability $p(T)$ and make possible finite conductivity. At T_c the system the fluctuations of the flux tubes become large and also $p(T,L)$, where L is the distance between stripes, becomes large and the reconnection leads to a formation of long flux tubes of length of order coherence length at least and macroscopic supra currents can flow. One also expects that the reconnection occurs for practically all flux tubes of the dipole field. Essentially a percolation type phenomenon would be in question. Scaling invariance suggests $p_c(T,L) = p_c(TL/\hbar)$, where L is the distance between stripes, and would predict the observed $T_c \propto \hbar/L$ behavior. Large value of \hbar would explain the high value of T_c.

This model relates in an interesting manner to the vision of Zaanen expressed in terms of the highway metaphor visualizing stripes as quantum highways along which Cooper pairs can move. In antiferromagnetic phase the traffic is completely jammed. The doping inducing electron holes allows to circumvent traffic jam due to the Fermi statistics generates stripes along which the traffic flows in the sense of ordinary conductivity. In TGD framework highways are replaced with flux tubes and the topology of the network of highways fluctuates due to the possibility of reconnections. At quantum criticality the reconnections create long flux tubes making possible the flow of supra currents.

The interpretation of fluctuating stripes in terms of 1-D phonons

In TGD framework the phase transition to high T_c super-conductivity would have as a correlate fluctuating stripes to which supra currents are assigned. Note that the fluctuations occur also for $T > T_c$ but their amplitude is smaller. Stripes would be parallel to the dark magnetic flux tubes along which dark electron current flows above T_c. The fluctuations of magnetic flux tubes whose amplitude increases as T_c is approached induce transverse oscillations of the atoms of stripes representing 1-D transverse phonons.

The transverse fluctuations of stripes have naturally spin one character in accordance with the experimental facts. They allow identification as the excitations having 41 meV energy and would
propagate in the preferred diagonal direction \((\pi/a,\pi/a)\). Dark Cooper pairs would have a gap energy of 27 meV. Neutron scattering resonance could be understood as a generation of these 1-D phonons and photon absorption a creation of this kind of phonon and breaking of dark Cooper pair. The transverse oscillations could give rise to the gap energy of the Cooper pair below \(T_{c1}\) and for the formation of long flux tubes below \(T_c\) but one can consider also other mechanisms based on the new physics predicted by TGD.

Various lattice effects such as superconductivity-induced phonon shifts and broadenings, isotope effects in \(T_c\), the penetration depth, infrared and photoemission spectra have been observed in the cuprates [6]. The simplest interpretation is that ordinary phonons are replaced by 1-D phonons defined by the transversal excitations of stripes but do not give rise to the binding of the electrons of the Cooper pair but to the reconnection of flux tubes.

Explanation for the spectral signatures of high \(T_c\) superconductor

The model should explain various spectral signatures of high \(T_c\) superconductors. It seems that this is possible at qualitative level at least.

1. Below the critical temperature there is a sharp absorption onset at energy of about \(E_a = 50\) meV.
2. Second characteristic [35, 31, 30] of high \(T_c\) superconductors is resonant neutron scattering at excitation energy \(E_w = 41\) meV of super conductor also visible only below the critical temperature.
3. The second derivative of \(\sigma(\omega)\) peaks near 68 meV and assuming \(E = E_g + E_w\) they found nearly perfect match using \(E_g = 27\) meV for the energy gap.

\(E_g = 27\) meV has a natural interpretation as energy gap of spin 1 Cooper pair. \(E_w = 41\) meV can be assigned to the transversal oscillations of magnetic flux tubes inducing 1-D transversal photons which possibly give rise to the energy gap. \(E_a = 50\) meV can be understood if also \(S = 0\) Cooper pair for which electrons of the pair reside dominantly at the "outer" dipole flux tube and inner dipole core. The presence of this pair might explain the BCS type aspects of high \(T_c\) super conductivity. This identification would predict the gap energy of \(S = 0\) Cooper pair to be \(E_g(S = 0) = 9\) meV. Since the critical absorption onset is observed only below \(T_c\) these Cooper pairs would become thermally stable at \(T_c\) and the formation of long flux tubes should somehow stabilize them. For very long flux tubes the distance of a point of "outer" flux tube from the nearby point "inner" flux tube becomes very long along dipole flux tube. Hence the transformation of \(S = 0\) pairs to \(S = 1\) pairs is not possible anymore and \(S = 0\) pairs are stabilized.

Model for Cooper pairs

The TGD inspired model for Cooper pairs of high \(T_c\) super-conductor involves several new physics aspects: large \(\hbar\) phases, the notion of magnetic flux tubes. One can also consider the possibility that color force predicted by TGD to be present in all length scales is present.

1. One can consider two options for the topological quantization of the dipole field. It could decompose to a flux tube pattern with a discrete rotational symmetry \(Z_n\) around dipole axis or to flux sheets identified as walls of finite thickness invariant under rotations around dipole axis. Besides this there is also inner the flux tube corresponding to the dipole core. For the flux sheet option one can speak about eigenstates of \(L_z\). For flux tube option the representations of \(Z_n\) define the counterparts of the angular momentum eigenstates with a cutoff in \(L_z\) analogous to a momentum cutoff in lattice. The discretized counterparts of spherical harmonics make sense. The counterparts of the relative angular momentum eigenstates for Cooper pair must be defined in terms of tensor products of these rather than using spherical harmonics assignable with the relative coordinate \(r_1 - r_2\). The reconnection mechanism makes sense only for the flux tube option so that it is the only possibility in the recent context.

2. Exotic Cooper pair is modeled as a pair of large \(\hbar\) electrons with zoomed up size at space-time representing the dipole field pattern associated with a sequence of holes with same spin. If the
members of the pair are at diametrically opposite flux tubes or at the "inner" flux tube (dipole core) magnetic fluxes flow in same direction for electrons and spin 1 Cooper pair is favored. If they reside at the "inner" flux tube and outer flux tube, spin zero state is favored. This raises the question whether also $S = 0$ variant of the Cooper pair could be present.

3. Large \hbar is needed to explain high critical temperature. By the general argument the transition to large \hbar phase occurs in order to reduce the value of the gauge coupling strength - now fine structure constant- and thus guarantee the convergence of the perturbation theory. The generation or positive net charge along stripes indeed means strong electromagnetic interactions at stripe.

Color force in condensed matter length scales is a new physics aspect which cannot be excluded in the case that transverse oscillations of flux tubes do not bind the electrons to form a Cooper pair. Classically color forces accompany any non-vacuum extremal of Kähler action since a non-vanishing induced Kähler field is accompanied by a classical color gauge field with Abelian holonomy. Induced Kähler field is always non-vanishing when the dimension of the $C P^2$ projection of the space-time surface is higher than 2. One can imagine too alternative scenarios.

1. Electromagnetic flux tubes for which induced Kähler field is non-vanishing carry also classical color fields. Cooper pairs could be color singlet bound states of color octet excitations of electrons (more generally leptons) predicted by TGD and explaining quite impressive number of anomalies 79. These states are necessarily dark since the decay widths of gauge bosons do not allow new light fermions coupling to them. The size of these states is of order electron size scale $L (127)$ for the standard value of Planck constant. For the non-standard value of Planck constant it would be scaled up correspondingly. For $r = h / h_0 = 2^{14}$ the size would be around 3.3 Ångströms and for $r = 2^{24}$ of order 10 nm. Color binding could be responsible for the formation of the energy gap in this case and would distinguish between ordinary two-electron states and Cooper pair. The state with minimum color magnetic energy corresponds to spin triplet state for two color octed fermions whereas for colored fermion and antifermion it corresponds to spin singlet (pion like state in hadron physics).

2. A more complex variant of this picture served as the original model for Cooper pairs. Electrons at given space-time sheet feed their gauge flux to large space-time sheet via wormhole contacts. If the wormhole throats carry quantum numbers of quark and antiquark one can say that in the simplest situation the electron space-time sheet is color singlet state formed by quark and antiquark associated with the upper throats of the wormhole contacts carrying quantum numbers of u quark and \bar{d} quark. It can also happen that the electronic space-time sheets are not color singlet but color octet in which case the situation is analogous to that above. Color force would bind the two electronic space-time sheets to form a Cooper pair. The neighboring electrons in stripe possess parallel spins and could form a pair transforming to a large \hbar Cooper pair bound by color force. The Coulombic binding energy of the charged particles with the quarks and antiquarks assignable to the two wormhole throats feeding the em gauge flux to Y^3 and color interaction would be responsible for the energy gap.

Estimate for the gap energy

If transverse oscillations are responsible for the binding of the Cooper pairs, one expects similar expression for the gap energy as in the case of BCS type super conductors. The 3-D formula for the gap energy reads as

$$E_g = \hbar \omega_D \exp(-1/X) ,$$

$$\omega_D = (6\pi^2)^{1/3} c \alpha n^{1/3} ,$$

$$X = n(E_F) U_0 = \frac{3}{2} N(E_F) \frac{U_0}{E_F} ,$$

$$n(E_F) = \frac{3}{2} N(E_F) \frac{E_F}{E_F} .$$

(2.3.1)
X depends on the details of the binding mechanism for Cooper pairs and U_0 parameterizes these details.

Since only stripes contribute to high T_c super-conductivity it is natural to replace 3-dimensional formula for Debye frequency in 1-dimensional case with

\[E_g = h \omega \exp(-1/X) , \]
\[\omega = k c_s n . \] (2.3.2)

where n is the 1-dimensional density of Cooper pairs and k a numerical constant. X would now correspond to the binding dynamics at the surface of 1-D counterpart of Fermi sphere associated with the stripe.

There is objection against this formula. The large number of holes for stripes suggests that the counterpart of Fermi sphere need not make sense, and one can wonder whether it could be more advantageous to talk about the counterpart of Fermi sphere for holes and treat Cooper pair as a pair of vacancies for this "Fermi sphere". High T_c super conductivity would be 1-D conventional super-conductivity for bound states of vacancies. This would require the replacement of n with the linear density of holes along stripes, which is essentially that of nuclei.

From the known data one can make a rough estimate for the parameter X. If $E_w = hf = 41$ meV is assigned with transverse oscillations the standard value of Planck constant would give $f = f_0 = 9.8 \times 10^{12}$ Hz. In the general case one has $f = f_0 / r$. If one takes the 10^{-12} second length scale of the transversal fluctuations at a face value one obtains $r = 10$ as a first guess. $E_g = 27$ meV gives the estimate

\[\exp(-1/X) = \frac{E_g}{E_w} \] (2.3.3)
giving $X = 2.39$.

The interpretation in terms of transversal oscillations suggests the dispersion relation

\[f = c_s L . \]

L is the length of the approximately straight portion of the flux tube. The length of the "outer" flux tube of the dipole field is expected be longer than that of stripe. For $L = x$ nm and $f_D \sim 10^{12}$ Hz one would obtain $c_s = 10^3 x$ m/s.

Estimate for the critical temperatures and for h

One can obtain a rough estimate for the critical temperature T_{c1} by following simple argument.

1. The formula for the critical temperature proposed in the previous section generalize in 1-dimensional case to the following formula

\[T_{c1} \leq \frac{h^2}{8 m_e \left(\frac{n_c}{g} \right)^2} . \] (2.3.4)

g is the number of spin degrees of freedom for Cooper pair and n_c the 1-D density of Cooper pairs. The effective one-dimensionality allows only single $L = 2$ state localized along the stripe. The $g = 3$ holds true for $S = 1$.

2. By parameterizing n_c as $n_c = (1-p_h)/a$, $a = x$ Angstrom, and substituting the values of various parameters, one obtains

\[T_{c1} \approx \frac{r^2 (1-p_h)^2}{9 x^2} \times 6.3 \text{ meV} . \] (2.3.5)
3. An estimate for \(p_h \) follows from the doping fraction \(p_d \) and the fraction \(p_s \) of parallel atomic rows giving rise to stripes one can deduce the fraction of holes for a given stripe as

\[
p_h = \frac{p_d}{p_s}.
\]

(2.3.6)

One must of course have \(p_d \leq p_s \). For instance, for \(p_s = 1/5 \) and \(p_d = 15 \) per cent one obtains \(p_h = 75 \) per cent so that a length of four atomic units along row contains one Cooper pair on the average. For \(T_{c1} = 23 \) meV (230 K) this would give the rough estimate \(r = 23.3 \): \(r = 24 \) satisfies the Fermat polygon constraint. Contrary to the first guess inspired by the model of bio-superconductivity the value of \(\hbar \) would not be very much higher than its standard value. Notice however that the proportionality \(T_c \propto r^2 \) makes it difficult to explain \(T_{c1} \) using the standard value of \(\hbar \).

4. One \(p_h \propto 1/L \) whereas scale invariance for reconnection probability \((p = p(x = TL/\hbar)) \) predicts \(T_c = x_c \hbar/L = x_c p_s \hbar/a \). This implies

\[
\frac{T_c}{T_{c1}} = \frac{32\pi^2\frac{m_e a}{\hbar_0} x_c^2 g^2}{(1 - (p_d/p_s)^2)^2} \frac{x_c}{r}.
\]

(2.3.7)

This prediction allows to test the proposed admittedly somewhat ad hoc formula. For \(p_d \ll p_s \) \(T_c/T_{c1} \) does behaves as \(1/L \). One can deduce the value of \(x_c \) from the empirical data.

5. Note that if the reconnection probability \(p \) is a universal function of \(x \) as quantum criticality suggests and thus also \(x_c \) is universal, a rather modest increase of \(\hbar \) could allow to raise \(T_c \) to room temperature range.

The value of \(\hbar \) is predicted to be inversely proportional to the density of the Cooper pairs at the flux tube. The large value of \(\hbar \) needed in the modeling of living system as magnetic flux tube super-conductor could be interpreted in terms of phase transitions which scale up both the length of flux tubes and the distance between the Cooper pairs so that the ratio \(r_n \) remains unchanged.

Coherence lengths

The coherence length for high \(T_c \) super conductors is reported to be 5-20 Angstroms. The naive interpretation would be as the size of Cooper pair. There is however a loophole involved. The estimate for coherence length in terms of gap energy is given by \(\xi = \frac{4\hbar v_F}{\Delta} \). If the coherence length is estimated from the gap energy, as it seems to be the case, then the scaling up of the Planck constant would increase coherence length by a factor \(r = \hbar/\hbar_0 \). \(r = 24 \) would give coherence lengths in the range 12 – 48 nm.

The interpretation of the coherence length would be in terms of the length of the connected flux tube structure associated with the row of holes with the same spin direction which can be considerably longer than the row itself. As a matter fact \(r \) would characterize the ratio of size scales of the "magnetic body" of the row and of row itself. The coherence lengths could relate to the p-adic length scales \(L(k) \) in the range \(k = 151, 152, ..., 155 \) varying in the range \((10, 40) \) nm. \(k = 151 \) correspond to thickness cell membrane.

Why copper and what about other elements?

The properties of copper are somehow crucial for high \(T_c \) superconductivity since cuprates are the only known high \(T_c \) superconductors. Copper corresponds to \(3d^{10}4s^1 \) ground state configuration with one valence electron. This encourages the question whether the doping by holes needed to achieve superconductivity induces the phase transition transforming the electrons to dark Cooper pairs.

More generally, elements having one electron in \(s \) state plus full electronic shells are good candidates for doped high \(T_c \) superconductors. If the atom in question is also a boson the formation of
atomic Bose-Einstein condensates at Cooper pair space-time sheets is favored. Superfluid would be in question. Thus elements with odd value of A and Z possessing full shells plus single s wave valence electron are of special interest. The six stable elements satisfying these conditions are ^5Li, ^{39}K, ^{63}Cu, ^{85}Rb, ^{133}Cs, and ^{197}Au.

A new phase of matter in the temperature range between pseudo gap temperature and T_c?

Kram sent a link to a Science Daily popular article titled "High-Temperature Superconductor Spills Secret: A New Phase of Matter?" (see also this). For more details see the article in Science [38]. Zhi-Xun Shen of the Stanford Institute for Materials and Energy Science (SIMES), a joint institute of the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University, led the team of researchers, which discovered that in the temperature region between the pseudo gap temperature and genuine temperature for the transition to super-conducting phase there exists a new phase of matter. The new phase would not be super-conducting but would be characterized by an order of its own which remains to be understood. This phase would be present also in the super-conducting phase.

The announcement does not come as a complete surprise for me. A new phase of matter is what TGD inspired model of high T_c superconductivity indeed predicts. This phase would consist of Cooper pairs of electrons with a large value of Planck constant but associated with magnetic flux tubes with short length so that no macroscopic supra currents would be possible.

The transition to super-conducting phase involves long range fluctuations at quantum criticality and the analog of a phenomenon known as percolation [10]. For instance, the phenomenon occurs for the filtering of fluids through porous materials. At critical threshold the entire filter suddenly wets as fluid gets through the filter. Now this phenomenon would occur for magnetic flux tubes carrying the Cooper pairs. At criticality the short magnetic flux tubes fuse by reconnection to form long ones so that supra currents in macroscopic scales become possible.

It is not clear whether this prediction is consistent with the finding of Shen and others. The simultaneous presence of short and long flux tubes in macroscopically super-conducting phase is certainly consistent with TGD prediction. The situation depends on what one means with superconductivity. Is super-conductivity super-conductivity in macroscopic scales only or should one call also short scale super-conductivity not giving rise to macroscopic super currents as super-conductivity. In other words: do the findings of Shen’s team prove that the electrons above gap temperature do not form Cooper pairs or only that there are no macroscopic supra currents?

Whether the model works as such or not is not a life and death question for the TGD based model. One can quite well imagine that the first phase transition increasing \hbar does not yet produce electron Compton lengths long enough to guarantee that the overlap criterion for the formation of Cooper pairs is satisfied. The second phase transition increasing \hbar would do this and also scale up the lengths of magnetic flux tubes making possible the flow of supra currents as such even without reconnections. Also reconnections making possible the formation of very long flux tubes could be involved and would be made possible by the increase in the length of flux tubes.

21-Micrometer mystery

21 micrometer radiation from certain red giant stars have perplexed astronomers for more than a decade [43]. Emission forms a wide band (with width about 4 micrometers) in the infrared spectrum, which suggests that it comes form a large complex molecule or a solid or simple molecules found around stars. Small molecules are ruled out since they produce narrow emission lines. The feature can be only observed in very precise evolutionary state, in the transition between red giant phase and planetary nebular state, in which star blows off dust that is rich in carbon compounds. There is no generally accepted explanation for 21-micrometer radiation.

One can consider several explanations based on p-adic length scale hypothesis and some explanations might relate to the wormhole based super-conductivity.

1. 21 micrometers corresponds to the photon energy of 59 meV which is quite near to the zero point point kinetic energy 61.5 meV of proton Cooper pair at $k = 139$ space-time sheet estimated from the formula
\[\Delta E(2m_p, 139) = \frac{1}{2} \frac{\pi^2}{(2m_p)L(139)^2} = \frac{1}{8} \Delta E(m_p, 137) \simeq 61.5 \text{ meV}. \]

Here the binding energy of the Cooper pair tending to reduce this estimate is neglected, and this estimate makes sense only apart from a numerical factor of order unity. This energy is liberated when a Cooper pair of protons at \(k = 139 \) space-time sheet drops to the magnetic flux tube of Earth’s magnetic field (or some other sufficiently large space-time sheet). This energy is rather near to the threshold value about 55 meV of the membrane potential.

2. 21 micrometer radiation could also result when electrons at \(k = 151 \) space-time sheet drop to a large enough space-time sheet and liberate their zero point kinetic energy. Scaling argument gives for the zero point kinetic energy of electron at \(k = 151 \) space-time sheet the value \(\Delta(e, 151) \simeq 57.5 \text{ meV} \) which is also quite near to the observed value. If electron is bound to wormhole with quantum numbers of \(\overline{7} \) Coulombic binding energy changes the situation.

3. A possible explanation is as a radiation associated with the transition to high \(T_c \) superconducting phase. There are two sources of photons. Radiation could perhaps result from the de-excitations of wormhole BE condensate by photon emission. \(\lambda = 20.5 \) micrometers is precisely what one expects if the space-time sheet corresponds to \(p \simeq 2^k, \ k = 173 \) and assumes that excitation energies are given as multiples of \(E_w(k) = 2\pi/L(k) \). This predicts excitation energy \(E_w(173) \simeq 61.5 \text{ meV} \). Unfortunately, this radiation should correspond to a sharp emission line and cannot explain the wide spectrum.

2.4 Evidence for electronic superconductivity in bio-systems

There exists some evidence for super-conductivity in bio-systems. DNA should be insulator but under some circumstances it becomes conductor [24] and perhaps even high \(T_c \) super-conductor. Also evidence for Josephson effect has been reported [22].

2.4.1 DNA as a conductor?

Barton et al [24] have done several experiments between 1993-1997 related to the conductivity properties of DNA double helix. The conclusion is that DNA double helix has the ability to do chemistry at distance: "A DNA molecule with a chemical group artificially tethered to one end appears to mediate a chemical change far down the helix, causing a patch of damaged DNA to be mended."

What seems to occur is flow of electron current along DNA with very small resistance. Typically the experiments involve electron donor and acceptor separated by a long distance along DNA. When acceptor is radiated it goes to excited state and an electron current flows from donor to acceptor as a consequence. Standard wisdom tells that this should not be possible. The current should flow by quantum tunnelling between adjacent building units of DNA and it should diminish exponentially with distance. For proteins this is known to be the case. In experiments however no distance dependence was observed. Irradiation with visible light was also involved.

There exist a theory which assumes that the current could flow along the interior of double DNA, that is the region between the bases of strand and complementary strand. The electron would be delocalized in bases rings which would form a stack along DNA. The current would flow by tunnelling also now but the tunnelling probability would be so large that distance dependence would be weak. The critics of Barton argue that this model cannot explain all the experiments of Barton and that the model is not in accordance with basic organic chemistry and biology: ordinary sun light should have rather drastic effects on us. Barton admits that they do not understand the mechanism.

TGD suggests a possible explanation of phenomenon in terms of dark atoms or partially dark atoms for which valence electrons are dark.

1. The bases of DNA contain 5 or 6-cycles: both correspond to Fermat polygons. This symmetry suggests dark phase with \(G_a \subset SU(2) \) having maximal cyclic group \(\mathbb{Z}_5 \) or \(\mathbb{Z}_6 \) so that one would have \(n_a = 5 \) or \(n_a = 6 \) depending on the cycle. This identification would provide first principle explanation for why just these cycles appear in living matter. Most naturally organic atoms
would be ordinary but some electrons would reside on dark space-time sheets corresponding to

\[n_a = 5 \text{ or } n_a = 6 \text{ and } n_b = 1. \]

2. The scaled up size of the electronic orbital would be roughly \((n_a n^2/Z_{eff}^2) a_0\) and by a factor \(n_b^2\) larger than the size of ordinary orbital. The large distance of valence electrons suggest \(Z_{eff} = 1\) as a first guess, which would imply delocalization of electrons in the length scale \(625 a_0 \sim 312 \text{ nm}\) for Rb and \(900 a_0 \sim 45 \text{ nm}\) for Rh. For the estimate \(Z_{eff} \sim 10\) deduced below the delocalization would occur in length scales \(3 \text{ nm}\) and \(9 \text{ nm}\) which is probably quite enough since there is one DNA triplet per one nanometer if the conduction occurs as a sequence of replacements of a hole with electron analogous to the falling down of domino pieces.

3. The fact that the ratio \(6/5 = 1.2\) is rather near to the ratio \(45/37 = 1.22\) of nuclear charges of Rh and Rb atoms would guarantee that the binding energy of the valence electron for Rh atom with \(n_a = 6\) is reasonably near to that for Rh atom with \(n_a = 5\). This encourages to think that the mechanism of conductivity involves the ionization of dark valence electron of acceptor atom so that it can receive the dark valence electron of the donor atom. Delocalization makes this process possible.

4. The DNA environment would induce the phase transition of Rh and Ru atoms to partially dark atoms. The binding energy of the dark valence electron is reduced to \(E = (n_b/n_a)^2 Z_{eff}^2 E_0/n^2\), where \(Z_{eff}\) is the screened nuclear charge seen by valence electrons, \(n = 5\) the principal quantum number for the valence electron in the recent case, and \(E_0 = 13.6 \text{ eV}\) the ground state energy of hydrogen atom. \(Z_{eff} = 1\) would give .02 eV binding energy which is quite too small. If the binding energy reduces to that of a visible photon parameterized as \(E = x \text{ eV}\) one obtains the condition

\[
Z_{eff} = n_a n \sqrt{E/E_0} \approx 5n_a \sqrt{x/13.6}.
\]

For Rh \(x = 2\) would give \(Z_{eff} = 11.5\) and \(Z_{eff} = 9.6\) for Rb.

2.4.2 DNA as a super-conductor?

Also in the model of ORMEs as dark matter led to \(n_a = 6, n_b = 1\) in super-conducting phase. This suggests DNA super-conductivity is based on the same mechanism as the explanation of superconductivity assigned with ORMEs. In particular, the energy \(E \approx 0.05 \text{ eV}\) associated with the critical potential of neuronal membrane could correspond to the gap energy of the DNA super-conductor and this could relate directly to the activation of DNA. As found, the dark variant of a conventional super-conductor with gap energy around 10 K would give rise to a dark superconductor with a gap energy around room temperature. The estimate \(E_g = E/n_a^2\) gives 14 K for \(n_a = 6\) and 20 K for \(n_a = 5\) for the gap energy. DNA carries -2 units of electric charge per single nucleotide and the interpretation could be as one dark Cooper pair per nucleotide. \(n_a = 6\) would give the higher critical temperature.

The fact that there is a twist \(\pi/10\) per single nucleotide in DNA double strand led to the proposal that DNA pr RNA might serve as a minimal topological quantum computer with computation based on braiding S-matrix and characterized by \(n_a = 5\) [54]. Perhaps dark Cooper pairs having \(n_a = 5\) with charge fractionized to five identical fractions along 5-cycles could relate to the topological quantum computation.

DNA strand and its conjugate could form a pair of weakly coupled super-conductors forming kind of a scaled down version for the pairs formed by the inner and outer lipid layers of the axonal membrane or cell interior and exterior. Both DNA strand and double strand corresponds to the secondary p-adic length scale \(L(71,2) \approx 4.4 \text{ Angstroms}\). The soliton sequences associated with the phase differences of super-conducting order parameter over the Josephson junctions connecting DNA strands, and idealizable as a continuous one-dimensional Josephson junction, could serve as a quantum control mechanism. Josephson junctions could correspond to MEs which propagate with very low effective phase velocity along the DNA strand. The mathematics would be essentially that of a gravitational pendulum [55]. Soliton like structures associated with DNA have been proposed also by Peter Gariaev [24].
Aromatic rings and large \hbar phases

Aromatic rings contain odd number of π delocalized electron pairs with atoms in the same plane. The delocalization of π electrons in the ring is used to explain the stability of these compounds \[1\]. Benzene is the classical example of this kind of structure. Delocalization and DNA conductivity suggest interpretation in terms $n_a = 5$ or $n_a = 6$ phase and raises the question whether the delocalization of electrons could occur also in the orthogonal direction and whether it could give rise to Cooper pairs.

Aromatic rings consisting of 5 or 6 carbons are very common in biology. DNA basis have been already mentioned. Carbohydrates consist of monosaccharide sugars of which most contain aromatic ring (glucose used as metabolic fuel are exception). Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group that is connected to an aromatic ring by a two-carbon chain (-CH2-CH2-). The neurotransmitters known a monoamines are derived from the four aromatic amino acids phenylalanine, tyrosine, histidine, tryptophan. Also norepinephrine, dopamine, and serotonin involve aromatic rings As a rule psychoactive drugs involve aromatic rings: for instance, LSD contains four rings.

These observations inspire the question whether the compounds containing aromatic rings serve as junctions connecting pre- and postsynaptic neurons and induce Josephson currents between them. If Josephson radiation codes for the mental images communicated to the magnetic body, the psychoactive character of these compounds could be understood. One can also ask whether these compounds induce quantum criticality making possible generation of large \hbar phases?

Graphene as another example of dark electron phase?

The behavior of electrons in graphene, which is two-dimensional hexagonal carbon crystal with a thickness of single atomic layer, is very strange \[51\]. Electrons behave as massless particles but move with a velocity which is $1/300$ of light velocity. Graphene is an excellent conductor. TGD can provide a model for these peculiar properties.

1. One can regard graphene as a giant molecule and the hexagonal ring structure suggests that M^4 Planck constant is scaled up by a factor of 6 and that dark free electron pairs are associated with the ring structures. If also CP^2 Planck is scaled up with the same factor, chemistry is not affected although the size scale of electron wave functions is scaled up by a factor of 6. Just as in the case of DNA, the rings containing delocalized free electron pairs could be responsible for the anomalously high conductivity of graphene. If quantum critical super-conductor is in question, the super-conductivity could become possible in lower temperature.

2. Consider now the explanation for the vanishing of the rest mass. The general mass formula predicted by p-adic thermodynamics \[11\] states that particle mass squared is given by the thermal average of the conformal weight and that conformal weight and thus also mass squared is additive in bound states:

$$\left(\sum_i p_i\right)^2 = \sum_i m_i^2 \tag{2.4.1}$$

The assumption $p_i^2 = m_i^2$ makes sense only for massless partons moving collinearly. In the QCD based model of hadrons only longitudinal momenta and transverse momentum squared are used as labels of parton states, which would suggest that one has

$$-\sum_i p_{i,\perp}^2 + 2 \sum_{i,j} p_i \cdot p_j = 0 \tag{2.4.2}$$

The masses would be reduced in bound states: $m_i^2 \to m_i^2 - (p_i^2)$. This could explain why massive quarks can behave as nearly massless quarks inside hadrons. In the recent case electrons would become massless if one has hadron like many electron states (free electron pairs?) with $p_T^2 = m_e^2$.

3. TGD also predicts the possibility of anomalous time dilation in the absence of gravitational field implying also reduction of light velocity. The simplest example are vacuum extremals corresponding to the warped imbedding \(\phi = \omega t \) to \(M^4 \times S^1 \), a geodesic sphere of \(CP_2 \), which have induced metric for which time component of metric is \(g_{tt} = 1 - R^2 \omega^2 \) instead of \(g_{tt} = 1 \). Light velocity defined from the time taken to get from point A to B is reduced by a factor \(\sqrt{g_{tt}} \) from its maximal value. If the space-time sheets carrying the electrons have \(g_{tt} = 1/300 \), one can understand the reduction of light velocity.

2.4.3 Conducting DNA and metabolism

Besides charge transfer also energy transfer along DNA could be of importance in living systems.

Could metabolism involve electronic visible-dark phase transitions at DNA level?

If the dark valence electron associated with an ordinary atom is transformed to ordinary electron, the binding energy of the electron increases which means a liberation of a considerable amount of energy. This phase transition could liberate a large amount of metabolic energy in a coherent manner and might be involved with metabolism at molecular level.

Could the transfer of electrons along DNA make possible energy transfer?

One important function made possible by the dropping of electrons to larger space-time sheets is the transfer of not only charge but also energy through long distances and metabolism might well use this mechanism. The typical energy liberated when ATP molecule is used is about .5 eV. In the model of ATP it is suggested that energy metabolism involves the circulation of protons between atomic \((k = 137)\) space-time sheets and magnetic flux tubes of Earth. The dropping of proton from \(k = 137\) atomic space-time sheet to much larger space-time sheet liberates this energy as zero point kinetic energy and generation of ATP molecule involves kicking of three protons back to the atomic space-time sheets by using metabolic energy.

ATP might provide only the mechanism responsible for the energy transfer over short distances. The dropping of any ion from any space-time sheet to a larger space-time sheet is possible and liberates a definite amount of usable energy. When the smaller space-time sheet corresponds to a superconducting space-time sheet, the ions or their Cooper pairs can be rapidly transferred as dissipation free supra currents to the region, where the energy is needed. This long distance energy transfer mechanism could be associated with all kinds of linear structures: DNA, proteins, microfilaments, microtubules, axons etc... The magnitude of the energy quantum released would be fixed by the p-adic length scale hypothesis and the mass of the ion or of the Cooper pair. The acceleration in endogenous electric fields provides a mechanism kicking the ions back to the smaller space-time sheets.

Because of their low mass, electrons are exceptional. The dropping of an electronic Cooper pair from \(k = 139\) some space-time sheet presumably associated with the hydrogen bonds of length about 3 nm connecting the nucleotides of different DNA strands would liberate a huge energy of about 120 eV. The corresponding UV photon has frequency not far from the miracle frequency associated with \((k = 151)\) p-adic length scale, which is the first of the four subsequent p-adic miracle length scales corresponding to Gaussian Merennes. The dropping of electron Cooper pair from the space-time sheet of the DNA strand of thickness of order 4 – 5 Angstroms, which presumably corresponds to the secondary p-adic length scale \(L(71,2) \approx 4.4\) Angstroms, liberates energy of about 15 eV, which in turn corresponds to the p-adic miracle length scale \(L(157)\). This would mean that all miracle length scales would correspond to some energy unit of energy metabolism !

An interesting question relates to the possible function of this UV photon. The wavelength \(\lambda = L(151)\) corresponds to the thickness of the cell membrane. It is also to the minimal length of DNA sequence (10 DNA triplets) with the property that the net winding is a multiple of \(2\pi (3 \times 2\pi)\). By its reflection symmetry this helical sequence might serve as a subunit of DNA sequence. The ends of this subunit could act as mirrors connected by MEs carrying Bose-Einstein condensed photons propagating back and forth between the mirrors. The energy liberated by the electron as an UV photon could be condensed to this kind of ME.

At least in the case of monocytes having DNA at cell membrane, the photon could also be reflected between the outer and inner boundary of the cell membrane.
2.4. Evidence for electronic superconductivity in bio-systems

There is indirect evidence for electronic superconductivity in bio-systems. The basic signatures are photon emission and absorption with energies coming as multiples of the potential difference between two weakly coupled super conductors and voltage-current characteristics of Josephson current. The evidence is related to the tunnelling of electrons between a weakly coupled pair of super conductors.

According to [16], for several biological systems involving nerve or growth processes the square of the activation energy is a linear function of temperature over a moderate range of physiological temperatures. This behavior may be predicted from the hypothesis that the rate of biological process is controlled by single electron tunnelling between micro-regions of super-conductivity. In TGD framework natural candidates for this kind of regions are the lipid layers of cell membranes and cells themselves.

Positive experimental evidence for Josephson effect is reported and discussed in [22]. The evidence is based on the observation of voltage-current characteristic typical to the Josephson current flowing between weakly coupled super conductors, which are identified as neighboring cells. Also the radiation of photons with energies which are multiples of the potential difference between the weakly coupled super conductors is used as an empirical signature. The potential difference is about 15 nV and in completely different range as the potential difference of order .05 V between the lipid layers of the cell membrane. Various species of organisms can detect weak magnetic fields from .1 to 5 gauss and this is in accordance with the existence of Josephson junction in systems, which are super conductors of type II in critical region between H_{c1} and H_{c2}. The detection of magnetic fields could be based on the same mechanism as the operation of SQUIDs.

2.4.5 Microtubular space-time sheets as super conductors?

Microtubules are fashionable candidate for a macroscopic quantum system. Microtubules are the basic structural units of cytoskeleton and it has been suggested that cytoskeleton might play the role of nervous system at single cell level and provide the key element for understanding bio-systems as macroscopic quantum systems [23]. Microtubules are hollow cylindrical tubes with inner and outer radii of 14 nm and 25 nm respectively so that the thickness of the cylinder corresponds roughly to the length scale $\ell(151)$. Microtubules consist of dimers of α and β tubulines having at least two conformations: the position of electron centrally placed in the α-tubulin-β-tubulin juncture probably determines the conformation. Tubulin dimers have size ~ 8 nm not far from the length scale $\ell(157)$. There are 13 columns of tubulin dimers along the microtubule. The skew hexagonal pattern of microtubules exhibits pattern made up of 5 right handed and 8 left handed helical arrangements.

For left handed arrangement 2π rotation corresponds to a distance ~ 64 nm $\sim \ell(163)$ along the length of the microtubule [24] [8]. It has been suggested [23] that the electric dipole moments of tubulin dimers form a macroscopic quantum system analogous to a spin system. An alternative possibility is that microtubules might be super conducting. The cylindrical geometry is ideal for the creation of constant magnetic fields inside the tube by helical supercurrents flowing along the surface of the microtubule. The electrons determining the conformation of the tubulin dimer are the most obvious candidates for Cooper pairs. Perhaps the electrons corresponding to a given conformation of tubulin could form delocalized Cooper pairs.

The numbers 5 and 8 correspond to Fermat polygons which suggests that G_α with $n_\alpha = 5 \times 8 = 40$ defining order of maximal cyclic subgroup is involved. $n_\alpha = 40$ was also obtained from the requirement that the 20 aminoacids can be coded by the many-electron states of dark N-hydrogen atom having $n_b = 1$ [23]. Super-conductivity would correspond to $n_b = 1$ so that by the previous argument the critical temperature would be scaled up by a factor $n_b^2 = 1600$ from that of a conventional super-conductor. The possible problems relate to the thermal stability of light atoms if also nuclei are dark, which is however not expected.

The hypothesis that microtubules are infrared quantum antennas with average length giving rise to .1 eV infrared photon fits nicely with the super conductor idea. The fact that .1 eV is the basic energy scale of wormhole atomic physics explains the average length of microtubules. In case of Cooper pairs there is natural coupling to the Josephson currents related to Josephson junctions between lipid layers of the cell membrane. The coupling of wormhole supra currents to coherent photons contains two contributions. The first contribution is the coupling of the wormhole current to the difference of the gauge potentials describing topologically condensed coherent photons on the two space-time sheets.
The second contribution is proportional to the difference of dielectric constants on the two space-time sheets and is non-vanishing even when the topological condensates of coherent photons are identical.

2.4.6 Are living systems high T_c superconductors?

The idea about cells and axons as superconductors has been one of the main driving forces in development of the vision about many-sheeted space-time. Despite this the realization that the supra currents in high T_c superconductors flow along structure similar to axon and having same crucial length scales came as a surprise. Axonal radius which is typically of order $r = .5 \mu m$, $r = 151 - 127 = 24$ favored by the hypothesis that Mersennes and their Gaussian counterparts defined preferred p-adica length scales and their dark variants would predict $r = .4 \mu m$. The fact that water is liquid could explain why the radius differs from that predicted in case of high T_c superconductors.

Interestingly, Cu is one of the biologically most important trace elements [2]. For instance, copper is found in a variety of enzymes, including the copper centers of cytochrome c-oxidase, the Cu-Zn containing enzyme superoxide dismutase, and copper is the central metal in the oxygen carrying pigment hemocyanin. The blood of the horseshoe crab, Limulus polyphemus uses copper rather than iron for oxygen transport. Hence there are excellent reasons to ask whether living matter might be able to build high T_c superconductors based on copper oxide.

What are the preferred values of h for bio-superconductors?

The observed stripes would carry large h electrons attracted to them by hole charge. The basic question concerns the value of h which in the general case is given by $h = x_a x_b$, a refers to CD and b to CP_2. $x_i = n_i$ holds true for singular coverings and $x_i = 1/n_i$ for singular factor spaces. n is the order of maximal cyclic subgroup $Z_n \subset G$, where G defines singular covering or factor space. Number theoretic vision suggests that the integers n_i, which correspond to a n-polygon constructible using only ruler and compass are physically favored. Thus n_i would be a product containing only different Fermat primes $2^{2^k} + 1$ (3,5,17,257, $2^{16} + 1$) and some power of 2.

The first question concerns the value of the Planck constant assignable to electron.

1. The secondary time scale assignable to the CD of electron is scaled up from $T(2,127) \simeq .1$ seconds (actually fundamental biorhythm) to $rT(2,127)$, $r = h/h_0$. The corresponding p-adic length scale is $\sqrt{rL(127)} = \sqrt{r} \times 2.4 \times 10^{-12}$ m.

2. The appearance of 50 meV energy scale which can be interpreted in terms of Josephson energy for cell membrane at criticality for nerve pulse generation is too intriguing signal to be dismissed and forces to ask whether the p-adic length scales $L(k)$, $k = 149, 151$ associated with the lipid layer of cell membrane and membrane itself are involved also with non-biological high T_c superconductivity.

The model for living matter raises the question whether the favored values of $r = n_a n_b$ correspond to 2^{k_d}, where k_d is difference of integers k_i defining Mersenne primes or Gaussian Mersennes. This hypothesis can be tested.

1. $r = 2^{14} (127 - 113 = 14)$ would predict effective p-adic length scale $L(127 + 14) = 141 = 3.3$ Angstrom so that dark electrons would have atomic size scale. The thickness of the stripes is few atomic sizes and the members of spin 1 Cooper pair in high T_c super-conductors would naturally have distance given by atomic length scale if they are correspond to nearest neighbors in the lattice. This gives rise to a large Coulomb repulsion between electrons which suggests that the electrons at the magnetic flux tube tend to have as large distance as possible.

2. $r = 2^{24} (151 - 127 = 24)$ would give $L(127 + 24 = 151) = 10nm$ so that dark electron would have size which corresponds to the thickness of the cell membrane. Bio-superconductivity could correspond to this value of h. The minimum option is that only the exotic Cooper pairs making possible super-conductivity above T_c and broken by quantum criticality against transition to ordinary electron need have size of order $L(151) = 10$ nm. The length of stripes is in the range 1-10 nm and this forces to ask whether this length scale could correspond to the size of Cooper pairs also for high T_c super-conductors.
Neuronal axon as a geometric model for current carrying "rivers"

Neuronal axons, which are bounded by cell membranes of thickness $L (151)$ consisting of two lipid layers of thickness $L (149)$ are good candidates for high T_c superconductors in living matter.

These flux tubes with radius $4 \mu m$ would define "rivers" along which conduction electrons and various kinds of Cooper pairs flow. Scaled up electrons have size $L (k_{eff} = 151)$ corresponding to 10 nm, the thickness of the lipid layer of cell membrane. Also the quantum fluctuating stripes of length 1-10 nm observed in high T_c superconductors might relate to the scaled up electrons with Compton length 10 nm, perhaps actually representing zoomed up electrons!

The original assumption that exotic resp. BCS type Cooper pairs reside at boundaries resp. interior of the super-conducting rivulet. It would however seem that the most natural option is that the hollow cylindrical shells carry all supra currents and there are no Cooper pairs in the interior.

If exotic Cooper pairs reside only at the boundary of the rivulet or the Cooper pairs at boundary remain critical against exotic-BCS transition also below T_c, the time dependent fluctuations of the shapes of stripes accompanying high T_c super-conductivity can be understood as being induced by the fluctuations of membrane like structures. Quantum criticality at some part of the boundary is necessary in order to transform ordinary electron currents to super currents at the ends of rivulets. In biology this quantum criticality would correspond to that of cell membrane.

2.5 Exotic atoms, wormhole super conductivity and wormhole magnetic fields

Exotic atom, wormhole super conductivity and wormhole magnetic fields are purely TGD based concepts and it seems that these concepts might be involved with the transition from organic chemistry to biochemistry. There is certainly much more involved, in particular the long range color and weak forces discussed in [23].

2.5.1 Exotic atoms

For ordinary atoms all electrons are condensed on the "atomic" condensation level. One could however think the possibility that some electrons, most probably some valence electrons with high value of principal quantum number n, condense to the lower condensation level, at which atom itself is condensed. This process would give rise to exotic atoms. The exotic counterpart of atom with charge Z would behave chemically as element with $Z - n(val)$, where $n(val)$ is the number of exotic valence electrons. The energy levels of electron at the exotic condensate level should depend only very weakly on the nuclear charge of the parent atom: only the number of valence electrons is what matters. In particular, "electronic" alchemy becomes in principle possible by dropping some electrons on the lower condensate level. One can consider two options depending on whether the dropped electrons are ordinary or dark.

1. Dropped electrons are not dark

The model to be represented is the first version about exotic super-conductivity which was based on the idea about wormhole contact as a counterpart of phonon. Much later it became obvious that charged wormhole contacts can be in fact be identified as counterparts for charged Higgs field making photons massive. This aspect is not discussed below.

The exotic electrons see the Coulomb field of nucleus with effective charge $n(val)$. This charge and gravitational flux flows from the atomic condensate level via the tiny wormhole contacts located near the boundaries of atomic condensate level. If the electric flux of the wormhole is quantized with proton charge as unit there are $n(val)$ wormhole contacts, with each wormhole carrying one unit of electric charge. Note that the minimal unit of flux is naturally $1/3$ of elementary charge and the detection of electric flux of this size would be a triumph of the theory. In order to be able to evaluate the energy levels of this pseudo hydrogen atom one must know something about the mass of the wormhole contacts. The following physical considerations give estimate for the mass.

p-Adic length scale hypothesis states that physically most interesting length/mass scales are in one-one- correspondence with p-adic primes p near prime powers of two ($p \simeq 2^k$, k prime) and p-adic mass scale is given by $m \sim 1/L(p)$, where $L(p)$ is p-adic length scale expressible in terms of Planck
length as $L(p) \approx 10^4 \sqrt{p}$. The representation of wormhole contact as parton pair suggests that apart from effects related to the binding of wormhole throats to single unit, the inertial mass is just the sum of contributions of partron and antipartron associated with the throats carrying opposite gauge quantum numbers. If the time orientations of the space-time sheets involved are opposite, the energies can sum up to zero and the wormhole contact carries no mass. Otherwise the mass is sum of the two masses and the dominant contribution to their mass is determined by the length scale associated with the smaller space-time sheet and thus proportional to $1/\sqrt{p}$. In atomic length scales this would give mass of order 10^4 eV and in the length scale corresponding to room temperature mass would be of order 10^{-2} eV. Atoms ($k = 137$) can feed their electromagnetic gauge fluxes directly to "lower" p-adic condensate levels (such as $k = 149$) rather than $k = 139$ to minimize the contribution of wormhole masses to energy.

The small mass of wormhole implies that for atoms with sufficiently high Z it could be energetically favorable to drop electrons to the lower condensate level. Very light wormhole contacts are described by d’Alembertian operator associated with the induced metric of the 3-dimensional surface describing the boundary of atomic surface and having one time like direction.

Wormhole contacts are free to move along the boundary of the atomic 3-surface. If wormhole contacts are very light but not exactly massless, it is clear that wormhole contacts behave as bosons restricted to this surface and that state they condense on ground state. For very light but not massless wormhole contacts the lowest state has energy equal to rest mass of the wormhole and next state has energy of order $\pi/a \sim 10^4$ eV, where a is the radius of atom. Therefore very light wormhole contacts BE condense on the ground state and give rise to a constant charge distribution on the spherical shell surrounding atom. For exactly massless wormhole contacts the zero energy state is not possible and localization of massless wormhole contacts on surface of atomic size would require energy of order 10^4 eV. In the interior of this shell electrons are free and in exterior they move in the field of this charge distribution and form bound states. The energies of the electrons at "lower" space-time sheet depend only weakly on the value of Z (only via the dependence of the size of atomic 3-surface on Z) so that the spectral lines associated with the exotic atoms should be in certain sense universal.

The dropping of electrons of heavy atoms, such as Gold or Pb, to the lower space-time sheet, might be energetically favorable or require only a small energy and be induced by, say, absorption of a visible light. Once single electron is dropped it becomes more favorable for second electron to drop since the potential well in the final state is now deeper. The fact, that wormhole contacts form BE Einstein condensate, gives transition probability proportional to N^2 instead of N, N being the number of wormhole contacts already present. In this manner even cascade like process could become possible leading to drop of all valence electrons to the lower space-time sheet. One could even end up from heavy metal such as lead to pseudo-Xenon noble gas evaporating instantaneously!

2. Could exotic valence electrons be dark?

The basic objection against the proposed model is that the proposed wormhole mechanism has no experimental support. If temperature is same at the space-time sheets carrying the dropped electrons, it is not possible to have high T_c super-conductivity for conventional mechanisms.

The valence electrons could however be also dark, which would mean that at some radius atomic electric gauge fluxes flow to a dark space-time sheet and is shared to n_b sub-fluxes so that the each sheet carries flux n_{val}/n_b. For $n_a/n_b > 1$ the fractionization of the radial electric gauge flux could make the states of valence electrons thermally unstable. $n_a/n_b > 1$ would however favor the formation of Cooper pairs and thus high T_c variant of conventional super-conductivity with critical temperature scaled up by n_a^2.

The presence of Ca, Na and K ions in cells and their importance for the functioning of cell membrane could be also due to the fact that these ions are formed when some of the valence electrons transform to dark electrons and become super-conducting. An alternative explanation is that also the nuclei in question are dark and n_a/n_b is so high that atomic binding energies for valence electrons are below thermal threshold and cold plasma of dark ions is formed. These electrons could form Cooper pairs for large enough n_a/n_b. Magnetic flux sheets are excellent candidates for these space-time sheets. The observed ions would result via a phase transition of these ions to ordinary ones. Chemically the resulting elements would behave like noble gas. This kind of mechanism might be involved also with the formation of high T_c super-conductors.
2.5.2 Mono-atomic elements as dark matter and high T_c super-conductors?

The ideas related to many-sheeted space-time began to develop for a decade ago. The stimulation came from a contact by Barry Carter who told me about so called mono-atomic elements, typically transition metals (precious metals), including Gold. According to the reports these elements, which are also called ORMEs (“orbitally rearranged monoatomic elements”) or ORMUS, have following properties.

1. ORMEs were discovered and patented by David \[8\] are peculiar elements belonging to platinum group (platinum, palladium, rhodium, iridium, ruthenium and osmium) and to transition elements (gold, silver, copper, cobalt and nickel).

2. Instead of behaving as metals with valence bonds, ORMEs have ceramic like behavior. Their density is claimed to be much lower than the density of the metallic form.

3. They are chemically inert and poor conductors of heat and electricity. The chemical inertness of these elements have made their chemical identification very difficult.

4. One signature is the infra red line with energy of order 0.05 eV. There is no text book explanation for this behavior. Hudson also reports that these elements became visible in emission spectroscopy in which elements are posed in strong electric field after time which was 6 times longer than usually.

The pioneering observations of David Hudson \[8\] - if taken seriously - suggest an interpretation as an exotic super-conductor at room temperature having extremely low critical magnetic fields of order of magnetic field of Earth, which of course is in conflict with the standard wisdom about superconductivity. After a decade and with an impulse coming from a different contact related to ORMEs, I decided to take a fresh look on Hudson’s description for how he discovered ORMEs \[8\] with dark matter in my mind. From experience I can tell that the model to be proposed is probably not the final one but it is certainly the simplest one.

There are of course endless variety of models one can imagine and one must somehow constrain the choices. The key constraints used are following.

1. Only valence electrons determining the chemical properties appear in dark state and the model must be consistent with the general model of the enhanced conductivity of DNA assumed to be caused by large h valence electrons with $r = h/h_0 = n$, $n = 5, 6$ assignable with aromatic rings. $r = 6$ for valence electrons would explain the report of Hudson about anomalous emission spectroscopy.

2. This model cannot explain all data. If ORMEs are assumed to represent very simple form of living matter also the presence electrons having $h/h_0 = 2^{k11}$, $k = 1$, can be considered and would be associated with high T_c super-conductors whose model predicts structures with thickness of cell membrane. This would explain the claims about very low critical magnetic fields destroying the claimed superconductivity.

Below I reproduce Hudson’s own description here in a somewhat shortened form and emphasize that must not forget professional skepticism concerning the claimed findings.

Basic findings of Hudson

Hudson was recovering gold and silver from old mining sources. Hudson had learned that something strange was going on with his samples. In molten lead the gold and silver recovered but when ”I held the lead down, I had nothing”. Hudson tells that mining community refers to this as ”ghost-gold”, a non-assayable, non-identifiable form of gold.

Then Hudson decided to study the strange samples using emission spectroscopy. The sample is put between carbon electrodes and are between them ionizes elements in the sample so that they radiate at specific frequencies serving as their signatures. The analysis lasts 10-15 seconds since for longer times lower electrode is burned away. The sample was identified as Iron, Silicon, and Aluminum. Hudson spent years to eliminate Fe, Si, and Al. Also other methods such as Cummings Microscopy,
Diffraction Microscopy, and Fluorescent Microscopy were applied and the final conclusion was that there was nothing left in the sample in spectroscopic sense.

After this Hudson returned to emission spectroscopy but lengthened the time of exposure to electric field by surrounding the lower Carbon electrode with Argon gas so that it could not burn. This allowed to reach exposure times up to 300 s. The sample was silent up to 90 s after which emission lines of Palladium (Pd) appeared; after 110 seconds Platinum (Pt); at 130 seconds Ruthenium (Ru); at about 140-150 seconds Rhodium; at 190 seconds Iridium; and at 220 seconds Osmium appeared. This is known as fractional vaporization.

Hudson reports the boiling temperatures for the metals in the sample having in mind the idea that the emission begins when the temperature of the sample reaches boiling temperature inspired by the observation that elements become visible in the order which is same as that for boiling temperatures.

The boiling temperatures for the elements appearing in the sample are given by the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>(T_B/\degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>1420</td>
</tr>
<tr>
<td>Fe</td>
<td>1535</td>
</tr>
<tr>
<td>Si</td>
<td>2355</td>
</tr>
<tr>
<td>Al</td>
<td>2327</td>
</tr>
<tr>
<td>Pd</td>
<td>>2200</td>
</tr>
<tr>
<td>Rh</td>
<td>2500</td>
</tr>
<tr>
<td>Ru</td>
<td>4150</td>
</tr>
<tr>
<td>Pt</td>
<td>4300</td>
</tr>
<tr>
<td>Ir</td>
<td>>4800</td>
</tr>
<tr>
<td>Os</td>
<td>>5300</td>
</tr>
<tr>
<td>Ag</td>
<td>1950</td>
</tr>
<tr>
<td>Au</td>
<td>2600</td>
</tr>
</tbody>
</table>

Table 2. Boiling temperatures of elements appearing in the samples of Hudson.

Hudson experimented also with commercially available samples of precious metals and found that the lines appear within 15 seconds, then follows a silence until lines re-appear after 90 seconds. Note that the ratio of these time scales is 6. The presence of some exotic form of these metals suggests itself: Hudson talks about mono-atomic elements.

Hudson studied specifically what he calls mono-atomic gold and claims that it does not possess metallic properties. Hudson reports that the weight of mono-atomic gold, which appears as a white powder, is \(\frac{4}{9} \) of the weight of metallic gold. Mono-atomic gold is claimed to behave like super-conductor.

Hudson does not give a convincing justification for why his elements should be mono-atomic so that in following this attribute will be used just because it represents established convention. Hudson also claims that the nuclei of mono-atomic elements are in a high spin state. I do not understand the motivations for this statement.

Claims of Hudson about ORMEs as super conductors

The claims of Hudson that ORMES are super conductors are in conflict with the conventional wisdom about super conductors.

1. The first claim is that ORMEs are super conductors with gap energy about \(E_g = .05 \text{ eV} \) and identifies photons with this energy resulting from the formation of Cooper pairs. This energy happens to correspond one of the absorption lines in high \(T_c \) superconductors.

2. ORMEs are claimed to be super conductors of type II with critical fields \(H_{c1} \) and \(H_{c2} \) of order of Earth’s magnetic field having the nominal value \(.5 \times 10^{-4} \text{ Tesla} \). The estimates for the critical parameters for the ordinary super conductors suggests for electronic super conductors critical fields, which are about \(.1 \text{ Tesla} \) and thus by a factor \(\sim 2^{12} \) larger than the critical fields claimed by Hudson.

3. It is claimed that ORME particles can levitate even in Earth’s magnetic field. The latter claim looks at first completely nonsensical. The point is that the force giving rise to the levitation is roughly the gradient of the would-be magnetic energy in the volume of levitating super conductor. The gradient of average magnetic field of Earth is of order \(B/R \), \(R \) the radius of Earth and thus extremely small so that genuine levitation cannot be in question.
Minimal model

Consider now a possible TGD inspired model for these findings assuming for definiteness that the basic Hudson’s claims are literally true.

1. In what sense mono-atomic elements could be dark matter?

The simplest option suggested by the applicability of emission spectroscopy and chemical inertness is that mono-atomic elements correspond to ordinary atoms for which valence electrons are dark electrons with large value of \(r = h/h_0 \). Suppose that the emission spectroscopy measures the energies of dark photons from the transitions of dark electrons transforming to ordinary photons before the detection by de-coherence increasing the frequency by \(r \). The size of dark electrons and temporal duration of basic processes would be scaled up by \(r \).

Since the time scale after which emission begins is scaled up by a factor 6, there is a temptation to conclude that \(r = 6 \) holds true. Note that \(n = 6 \) corresponds to Fermat polygon and is thus preferred number theoretically in TGD based model for preferred values of \(h \) \cite{25}. The simplest possibility is that the group \(G_6 \) is trivial group and \(G_n = A_6 \) or \(D_6 \) so that ring like structures containing six dark atoms are suggestive.

This brings in mind the model explaining the anomalous conductivity of DNA by large \(h \) valence electrons of aromatic rings of DNA. The zooming up of spatial sizes might make possible exotic effects and perhaps even a formation of atomic Bose-Einstein condensates of Cooper pairs. Note however that in case of DNA \(r = 6 \) not gives only rise to conductivity but not super-conductivity and that \(r = 6 \) cannot explain the claimed very low critical magnetic field destroying the super-conductivity.

2. Loss of weight

The claimed loss of weight by a factor \(p \simeq 4/9 \) is a very significant hint if taken seriously. The proposed model implies that the density of the partially dark phase is different from that of the ordinary phase but is not quantitative enough to predict the value of \(p \). The most plausible reason for the loss of weight would be the reduction of density induced by the replacement of ordinary chemistry with \(r = 6 \) chemistry for which the Compton length of valence electrons would increase by this factor.

3. Is super-conductivity possible?

The overlap criterion is favorable for super-conductivity since electron Compton lengths would be scaled up by factor \(n_a = 6, n_b = 1 \). For \(r = h/h_0 = n_a = 6 \) Fermi energy would be scaled up by \(n_a^2 = 36 \) and if the same occurs for the gap energy, \(T_c \) would increase by a factor 36 from that predicted by the standard BCS theory. Scaled up conventional super-conductor having \(T_c \sim 10 \) K would be in question (conventional super-conductors have critical temperatures below 20 K). 20 K upper bound for the critical temperature of these superconductors would allow 660 K critical temperature for their dark variants!

For large enough values of \(r \) the formation of Cooper pairs could be favored by the thermal instability of valence electrons. The binding energies would behave as \(E = r^2 Z_{eff}^2 E_0/n^2 \), where \(Z_{eff} \) is the screened nuclear charge seen by valence electrons, \(n \) the principal quantum number for the valence electron, and \(E_0 \) the ground state energy of hydrogen atom. This gives binding energy smaller than thermal energy at room temperature for \(r > (Z_{eff}/n)\sqrt{2E_0/3T_{room}} \simeq 17.4 \times (Z_{eff}/n) \). For \(n = 5 \) and \(Z_{eff} < 1.7 \) this would give thermal instability for \(r = 6 \).

Interestingly, the reported .05 eV infrared line corresponds to the energy assignable to cell membrane voltage at criticality against nerve pulse generation, which suggests a possible connection with high \(T_c \) superconductors for which also this line appears and is identified in terms of Josephson energy. .05 eV line appears also in high \(T_c \) superconductors. This interpretation does not exclude the interpretation as gap energy. The gap energy of the corresponding BCS super-conductor would be scaled down by \(1/r^2 \) and would correspond to 14 K temperature for \(r = 6 \).

Also high \(T_c \) super-conductivity could involve the transformation of nuclei at the stripes containing the holes to dark matter and the formation of Cooper pairs could be due to the thermal instability of valence electrons of Cu atoms (having \(n = 4 \)). The rough extrapolation for the critical temperature for cuprate superconductor would be \(T_c(Cu) = (n_{Cu}/n_{Rh})^2 T_c(Rh) \). For \(T_c(Rh) = 300 \) K this would give \(T_c(Cu) = 192 \) K: accoding to Wikipedia cuprate perovskite has the highest known critical temperature which is 138 K. Note that quantum criticality suggests the possibility of several values of \((n_a, n_b) \) so that several kinds of super-conductivities might be present.
ORMEs as partially dark matter, high T_c super conductors, and high T_c super-fluids

The appearance of .05 eV photon line suggest that same phenomena could be associated with ORMEs and high T_c super-conductors. The strongest conclusion would be that ORMEs are T_c super-conductors and that the only difference is that Cu having single valence electron is replaced by a heavier atom with single valence electron. In the following I shall discuss this option rather independently from the minimal model.

1. **ORME super-conductivity as quantum critical high T_c superconductivity**

ORMEs are claimed to be high T_c superconductors and the identification as quantum critical superconductors seems to make sense.

1. According to the model of high T_c superconductors as quantum critical systems, the properties of Cooper pairs should be more or less universal so that the observed absorption lines discussed in the section about high T_c superconductors should characterize also ORMEs. Indeed, the reported 50 meV photon line corresponds to a poorly understood absorption line in the case of high T_c cuprate super conductors having in TGD framework an interpretation as a transition in which exotic Cooper pair is excited to a higher energy state. Also Copper is a transition metal and is one of the most important trace elements in living systems [2]. Thus the Cooper pairs could be identical in both cases. ORMEs are claimed to be superconductors of type II and quantum critical superconductors are predicted to be of type II under rather general conditions.

2. The claimed extremely low value of H_c is also consistent with the high T_c superconductivity. The supra currents in the interior of flux tubes of radius of order $L_w = .4 \mu m$ are BCS type supra currents with large h so that T_c is by a factor 2^{14} ($127 - 113 = 14$ is inspired by the Mersenne hypothesis for the preferred p-adic length scales) higher than expected and H_c is reduced by a factor 2^{-10}. This indeed predicts the claimed order of magnitude for the critical magnetic field.

3. The problem is that $r = 2^{14}$ is considerably higher that $r = 6$ suggested by the minimum model explaining the emission spectroscopic results of Hudson. Of course, several values of h are possible so that internal consistency would be achieved if ORMEs are regarded as a very simple form of living matter with relatively small value of r and giving up the claim about the low value of critical magnetic field.

4. The electronic configurations of Cu and Gold are chemically similar. Gold has electronic configuration [Xe, 4f135d10]6s with one valence electron in s state whereas Copper corresponds to 3d104s ground state configuration with one valence electron. This encourages to think that the doping by holes needed to achieve superconductivity induces the dropping of these electrons to $k = 151$ space-time sheets and gives rise to exotic Cooper pairs. Also this model assumes the phase transition of some fraction of Cu nuclei to large h phase and that exotic Cooper pairs appear at the boundary of ordinary and large h phase.

More generally, elements having one electron in s state plus full electronic shells are good candidates for doped high T_c superconductors. Both Cu and Au atoms are bosons. More generally, if the atom in question is boson, the formation of atomic Bose-Einstein condensates at Cooper pair space-time sheets is favored. Thus elements with odd value of A and Z possessing full shells plus single s wave valence electron are of special interest. The six stable elements satisfying these conditions are 6Li, ^{39}K, ^{63}Cu, ^{85}Rb, ^{133}Cs, and ^{197}Au.

2. **“Levitation” and loss of weight**

The model of high T_c superconductivity predicts that some fraction of Cu atoms drops to the flux tube with radius $L_w = .4 \mu m$ and behaves as a dark matter. This is expected to occur also in the case of other transition metals such as Gold. The atomic nuclei at this space-time sheet have high charges and make phase transition to large h phase and form Bose-Einstein condensate and superfluid behavior results. Electrons in turn form large h variant of BCS type superconductor. These flux tubes are predicted to be negatively charged because of the Bose-Einstein condensate of exotic Cooper pairs at the boundaries of the flux tubes having thickness $L(151)$. The average charge density equals to the doping fraction times the density of Copper atoms.
The first explanation would be in terms of super-fluid behavior completely analogous to the ability of ordinary superfluids to defy gravity. Second explanation is based on the electric field of Earth which causes an upwards directed force on negatively charged BE condensate of exotic Cooper pairs and this force could explain both the apparent levitation and partial loss of weight. The condition for levitation is \(F_e = 2\varepsilon E / x \geq F_{gr} = Amg, \) where \(g \approx 10 \text{ m}^2/\text{s} \) is gravitational acceleration at the surface of Earth, \(A \) is the atomic weight and \(m_p \) proton mass, \(E \) the strength of electric field, and \(x \) is the number of atoms at the space-time sheet of a given Cooper pair. The condition gives \(E \geq 5 \times 10^{-10} \text{Ax} \) m/s to be compared with the strength \(E = 10^2 \times 10^4 \) V/m of the Earths’ electric field.

An objection against the explanation for the effective loss of weight is that it depends on the strength of electric field which varies in a wide range whereas Hudson claims that the reduction factor is constant and equal to 4/9. A more mundane explanation would be in terms of a lower density of dark Gold. This explanation is quite plausible since there is no atomic lattice structure since nuclei and electrons form their own large \(\hbar \) phases.

4. The effects on biological systems

Some monoatomic elements such as White Gold are claimed to have beneficial effects on living systems \([5]\) . 5 per cent of brain tissue of pig by dry matter weight is claimed to be Rhodium and Iridium. Cancer cells are claimed to be transformed to healthy ones in presence of ORMEs. The model for high \(T_c \) super conductivity predicts that the flux tubes along which interior and boundary supra currents flow has same structure as neuronal axons. Even the basic length scales are very precisely the same. On basis of above considerations ORMEs are reasonable candidates for high \(T_c \) superconductors and perhaps even super fluids.

The common mechanism for high \(T_c \), ORME- and bio- super-conductivities could explain the biological effects of ORMEs.

1. In unhealthy state superconductivity might fail at the level of cell membrane, at the level of DNA or in some longer length scales and would mean that cancer cells are not anymore able to communicate. A possible reason for a lost super conductivity or anomalously weak super conductivity is that the fraction of ORME atoms is for some reason too small in unhealthy tissue.

2. The presence of ORMEs could enhance the electronic bio- superconductivity which for some reason is not fully intact. For instance, if the lipid layers of cell membrane are, not only wormhole-, but also electronic super conductors and cancer involves the loss of electronic super-conductivity then the effect of ORMEs would be to increase the number density of Cooper pairs and make the cell membrane super conductor again. Similar mechanism might work at DNA level if DNA:s are super conductors in "active" state.

5. Is ORME super-conductivity associated with the magnetic flux tubes of dark magnetic field

The general model for the ionic super-conductivity in living matter, which has developed gradually during the last few years and will be discussed in detail later, was originally based on the assumption that super-conducting particles reside at the super-conducting magnetic flux tubes of Earth’s magnetic field with the nominal value \(B_E = .5 \) Gauss. It became later clear that the explanation of ELF em fields on vertebrate brain requires \(B_d = .2 \) Gauss rather than \(B_E = .5 \) Gauss \([22]\) . The interpretation was as dark magnetic field \(B_d = .2 \) Gauss. The model of EEG led also to the hypothesis that Mersenne primes and their Gaussian counterparts define preferred p-adic length scales and their dark counterparts. This hypothesis replaced the earlier \(r = 2^{115} \) hypothesis.

For \(r = 2^{127−113−14} \) the predicted radius \(L_w = 4 \times 10^{-14} \) is consistent with the radius of neuronal axons. If one assumes that the radii of flux tubes are given by this length scale irrespective of the value of \(r \), one must replace the quantization condition for the magnetic flux with a more general condition in which the magnetic flux is compensated by the contribution of the supra current flowing around the flux tube: \(\oint (p − eA) \cdot dl = nh \) and assume \(n = 0 \). The supra currents would be present inside living organism but in the faraway region where flux quanta from organism fuse together, the quantization conditions \(e \oint B \cdot dS = nh \) would be satisfied.

The most natural interpretation would be that these flux tubes topologically condense at the flux tubes of \(B_E \). Both bosonic ions and the Cooper pairs of electrons or of fermionic ions can act as charge
carriers so that actually an entire zoo of super-conductors is predicted. There is even some support for the view that even molecules and macromolecules can drop to the magnetic flux tubes.

Nuclear physics anomalies and ORMEs

At the homepage of Joe Champion information about claimed nuclear physics anomalies can be found.

1) The first anomaly is the claimed low temperature cold fusion mentioned at the homepage of Joe. For instance, Champion claims that Mercury (Z=80), decays by emission of proton and neutrons to Gold with Z=79 in the electrochemical arrangement described in.

2) Champion mentions also the anomalous production of Cadmium isotopes electrochemically in presence of Palladium reported by Tadahiko Mizuno.

The simplest explanation of the anomalies would be based on genuine nuclear reactions. The interaction of dark nuclei with ordinary nuclei at the boundary between the two phases would make possible genuine nuclear transmutations since the Coulomb wall hindering usually cold fusion and nuclear transmutations would be absent (Trojan horse mechanism). Both cold fusion and reported nuclear transmutations in living matter could rely on this mechanism as suggested in.

Possible implications

The existence of exotic atoms could have far reaching consequences for the understanding of bio-systems. If Hudson’s claims about super-conductor like behavior are correct, the formation of exotic atoms in bio-systems could provide the needed mechanism of electronic super-conductivity. One could even argue that the formation of exotic atoms is the magic step transforming chemical evolution to biological evolution.

Equally exciting are the technological prospects. If the concept works it could be possible to manufacture exotic atoms and build room temperature super conductors and perhaps even artificial life some day. It is very probable that the process of dropping electron to the larger space-time sheet requires energy and external energy feed is necessary for the creation of artificial life. Otherwise the Earth and other planets probably have developed silicon based life for long time ago. Ca, K and Na ions have central position in the electrochemistry of cell membranes. They could actually correspond to exotic ions obtained by dropping some valence electrons from $k=137$ atomic space-time sheet to larger space-time sheets. For instance, the $k=149$ space-time sheet of lipid layers could be in question.

The status of ORMEs is far from certain and their explanation in terms of exotic atomic concept need not be correct. The fact is however that TGD predicts exotic atoms: if they are not observed TGD approach faces the challenge of finding a good explanation for their non-observability.

2.5.3 Wormholes and super-conductors

Charged wormhole contacts behave like super conductor

Wormhole contacts are bosons and suffer Bose-Einstein condensation to the ground state at sufficiently low temperatures. Their masses are very small and they are mobile in the directions tangential to the surface of atom. Very light but not exactly massless wormhole contacts look therefore ideal candidates for super conducting charge carriers. The em current of wormhole contacts at the ”lower” space-time sheet however corresponds to opposite current on the atomic space-time sheet so that actually motion of dipoles is in question (dipole moment is extremely small). Kind of ”apparent” super conductivity is in question, which looks real, when one restricts attention to either space-time sheet only. It should be noticed that the dropping of electrons to lower space-time sheets is not absolutely necessarily for wormhole super conductivity since wormhole contacts can appear as genuine particles. For instance, magnetic fields created by rotating wormhole contacts on the boundaries of magnetic flux tubes are possible.

What is required for macroscopic wormhole super conductivity is the formation of a join along boundaries condensate at the atomic space-time sheet. This implies that wormhole contacts move freely in the outer surfaces defined by this condensate. Wormhole contacts condense on ground state since there is large energy gap: for very light wormholes and join along boundaries condensate of size L the order of magnitude for the gap is about π/L. Wormhole contacts can appear as super
conducting "charge carriers" also at lower condensate levels. The energy gap allows objects with size of order $10^{-5} - 10^{-4}$ meters in room temperature: later it will be suggested that the largest macroscopic quantum systems in brain are of this size. If the thermalization time for between degrees of freedom associated with different space-time sheets is long, wormhole contacts can form metastable BE condensates also in longer length scales.

It has recently become clear that wormhole contacts can be seen as space-time counterparts for Higgs type particles [16] so that nothing genuinely new would be involved. Coherent states of wormhole contacts could appear also in the description of the ordinary super-conductivity in terms of coherent states of Cooper pairs and charged Higgs type particles making sense in the zero energy ontology [17]. Mathematically the coherent states of wormholes and Cooper pairs are very similar so that one can indeed speak about wormhole super-conductivity. For instance, both states are described by a complex order parameter. One can of course ask whether charged wormhole contacts and Cooper pairs could be seen as dual descriptions of super-conductivity. This need not be the case since standard Higgs mechanism provides an example of a presence of only wormhole contact Bose-Einstein condensate.

Wormhole magnetic fields as templates for bio-structures?

Wormhole magnetic fields are structures consisting of two space-time sheets connected by wormhole contacts (a more detailed treatment will be found in later chapters). The space-time sheets do not contain ordinary matter and the rotating wormhole contacts near the boundaries of the space-time sheets create magnetic fields of same strength but of opposite sign at the two space-time sheets involved. An attractive possibility is that not only ordinary but also wormhole magnetic fields could correspond to defects in bio super conductors and that they serve as templates for the formation of living matter. DNA and the hollow microtubular surfaces consisting of tubulin molecules are excellent examples of structures formed around defects of type II super conductor. The stripe like regions associated with the defects of superconductor could in turn correspond to wormhole magnetic or Z^0 magnetic fields serving as templates for the formation of cell membranes, epithelial cell sheets and larger structures of same kind.

Super conducting space-time sheets indeed form p-adic hierarchy and same holds true for the sizes of defects characterized by the coherence length ξ in case of super conductors of type II and by the magnetic penetration depth λ in case of super conductors of type I. The assumption that defects correspond to wormhole magnetic fields means that defect is a two-sheeted structure with wormhole magnetic field at larger sheet k cancelling the original magnetic field in the region of defect whereas the upper sheet contains the field as such. If upper sheet k_1 is super-conductor and the penetrating field is below the critical field $B_c(k)$, the field can penetrate only to the sheet k in the region near boundaries of the higher level space-time sheet such that the field strength is so large (by flux conservation) that it exceeds the critical value. This is achieved by the presence of supra currents near the boundaries of the smaller space-time sheet k.

In the case of super conductor of type II penetration occurs as flux tubes in the entire space-time sheet k_1, when the field strength is in the critical range (H_{c1}, H_{c2}). This hierarchical penetration in principle continues up to atomic length scales and once can say that defects decompose into smaller defects like Russian doll. It might well be that the fractal structure of defects is a basic architectural principle in bio-systems. Also the amplification of magnetic flux can take place: in this case two sheets contain magnetic fields having opposite directions.

Also defects formed by genuine wormhole magnetic fields are possible: in this case no external field is needed to create the defect. This kind of defects are especially interesting since their 3-space projections need not be closed flux tubes. Topologically these defects are closed as required by the conservation of magnetic flux since the magnetic flux flows from space-time sheet to another one at the ends of the defect behaving like magnetic monopoles.

In the case that the space-time sheets of wormhole magnetic field have opposite time orientations, the particles at the two space-time sheets have opposite inertial energies and it is in principle possible to generate these kind of states from vacuum. A possible interpretation for negative energy particles at the second sheet of the field quantum of wormhole magnetic field is as space-time correlates for holes.

An interesting working hypothesis is that wormhole magnetic fields serve as templates for the formation of bio-structures. The motivations are that defect regions could be regarded as realization for the reflective level of consciousness in terms of fermionic Fock state basis and that the surrounding
3-surface is in super conducting state so that also primitive sensory experiencing becomes possible. One could even say that defects formed by wormhole flux tubes are the simplest intelligent and living systems; that the type of super conductor (I or II) gives the simplest classification of living systems and that systems of type I are at higher level in evolution than systems of type II. A possible example of defects of type II are all linear bio-structures such as DNA, proteins, lipids in the cell membrane, microtubules, etc... Examples of defects of type I would be provided by cell membranes, epithelial sheets and the bilayered structures in the cortex.

How magnetic field penetrates in super conductor?

There are motivations for finding a mechanism for the amplification of magnetic fields although the original motivation coming from attempt to explain the claimed levitation of ORMEs in the Earth’s magnetic field has disappeared.

1. Magnetic flux is channelled to flux tubes when it penetrates to super-conductors of type II and the strength of the magnetic field is scaled up roughly as \(\lambda/\xi \) in this process.

2. Cells are known to be sensitive for very weak magnetic fields.

3. TGD proposal for the information storage in terms of topological integers related to magnetic fields also requires that the weak magnetic macroscopic fields prevailing inside brain are somehow amplified to stronger fields in microscopic length scales.

The basic mechanism for the amplification is the current of wormhole contacts induced by external magnetic field at given condensate level, which in turn serves as a source for a secondary magnetic field at higher level. Since the mass of the wormhole contact is very small the resulting current of wormhole contacts and thus the induced secondary magnetic field is strong.

1. The relevant portion of the many sheeted space-time consists of “our” space-time sheet and many sheets above it and at the top is the atomic space-time sheet. At “our” space-time sheet external magnetic field induces em surface current of wormhole contacts at this level. This current is concentrated on 2-dimensional surfaces, which corresponds to the boundaries of 3-surfaces at the previous level of the hierarchy. The interaction of wormhole contacts with the magnetic field is via the vector potential associated with the external magnetic field on “our” sheet. To get rid of unessential technicalities it is useful to assume cylindrical geometry at each space-time sheet: cylindrical surfaces with axis in same direction are considered and the radii of these surfaces get smaller in the higher levels of the topological condensate.

2. Let us study what happens to the wormhole contacts on the cylindrical surface in constant magnetic field in the direction of the cylinder of radius \(R \), when the magnitude of the magnetic field increases gradually. One has to solve d’Alembert type wave equation for the scalar field (describing wormhole contacts on cylinder in the vector potential associated with the external magnetic field, which is constant on the cylinder and in direction of the azimuthal coordinate \(\phi \): \(A_\phi = BR/2 \). Ground states correspond to the with minimum energy solutions. Vector potential gives just constant contribution to the d’Alembert equation and for small enough values of \(B \) the constant, nonrotating solution remains energy minimum. When the condition \(eA_\phi = m, \ m = 1, 2, ... \) is satisfied one however gets rotating solution with angular momentum \(L_z = m \) with same energy as the original vacuum solution! This implies that at the critical values

\[
B_{cr,m} = \frac{(2m + 1)}{eR^2},
\]

(2.5.1)

the solution with \(L_z = m \) becomes unstable and is replaced with \(L_z = m + 1 \) to achieve energy minimum.

3. At the higher condensation level the current of wormhole contacts generate a surface current
2.5. Exotic atoms, wormhole super conductivity and wormhole magnetic fields

\[K = n(\#)ev, \]
\[v = \frac{m}{RE}, \quad (2.5.2) \]

where \(n(\#) \) is surface density of the wormhole contacts and \(v = R\omega \) is the velocity of rotating wormhole contacts: \(v \) is quantized from the quantization of angular momentum. \(E \) is the energy of rotating wormhole. This surface current gives rise to axial magnetic field \(B = n(\#)ev \) in the interior of the cylinder at the higher condensate level.

4. The magnetic field can penetrate also to the higher levels of the hierarchy via exactly the same mechanism. At higher levels the requirement that magnetic flux is quantized implies relativistic energies for wormhole contacts and therefore one has \(K = n(\#)ev \simeq n(\#)e \). The magnetic fields at various levels have quantized values not depending much on the original magnetic field!

5. In non-relativistic situation one has \(v \simeq eBR/m(\#) \) and the relationship \(B(\text{higher}) = K \) following from Maxwell equations gives

\[B(\text{higher}) = \mu_R(p_1, p_2)B(\text{lower}), \]
\[\mu_R(p_1, p_2) = \frac{e^2n(\#)R}{m(\#)}. \quad (2.5.3) \]

Nonrelativistic wormhole contacts amplify the magnetic field at the larger space-time sheet by a factor \(\mu_R(p_1, p_2) \). \(\mu_R(p_1, p_2) \sim 10^6 \) is required to explain Hudson’s claims if penetration takes place in single step: of course multistep process is also possible. It is useful to express the parameters \(m \) and \(R \) and \(n(\#) \) at given p-adic condensation level in terms of the p-adic length scale \(L(p) \) as

\[m(\#) = \frac{m_0}{L(p)} \quad m_0 \ll 1, \]
\[R = R_0L(p), \]
\[v = \frac{m}{m_0R_0} \ll 1, \]
\[n(\#) = \frac{n_0}{L^2(p)}. \quad (2.5.4) \]

By fractality the dimensionless numbers \(m_0, R_0, n_0 \) should not depend strongly on p-adic condensation level. The expression for the amplification factor \(\mu_R(p_1, p_2) \) in non-relativistic case reads as

\[\mu_R(p_1, p_2) = \frac{e^2n_0R_0}{m_0}. \quad (2.5.5) \]

Situation of course becomes relativistic for suitably large values of integer \(m \).
Books related to TGD

Articles about TGD

Condensed Matter Physics

[1] Burning salt water. http://www.youtube.com/watch?v=aGg0ATfoBgo

Fringe Physics

Biology

Neuroscience and Consciousness

Chapter 3

Bio-Systems as Super-Conductors: Part II

3.1 Introduction

This chapter is devoted to further applications of the theory of high \(T_c \) superconductors as quantum critical superconductors involving dark matter hierarchy and large values of \(\hbar \). The theory is applied to explain the strange findings about ionic currents through cell membrane, exotic neutrino superconductivity and the notion of cognitive neutrino pair are discussed, and the possibility that superconductivity and Bose-Einstein condensates are involved with atmospheric phenomena is considered.

3.1.1 Strange behavior of cellular water and quantal ionic currents through cell membrane

The fact that cellular water does not leak out of cell in a centrifugal force suggests that some fraction of water inside cell is in different phase. One explanation is that the nuclei of water inside cell are in doubly dark phase whereas electrons are in singly dark phase (having Compton length of 5 nm and perhaps directly "visible" using day technology!) as indeed predicted by the model of high \(T_c \) superconductivity. This conceptual framework could explain various findings challenging the notions of ionic pumps.

The empirical findings challenging the notions of ionic pumps and channels, nicely summarized by G. Pollack in his book [48], provide a strong support for the notions of many-sheeted space-time and ionic super-conductivity.

1. The selectivity of the cell membrane implies that channels cannot be simple sieves and there must be complex information processing involved.

2. The needed number of pumps specialized to particular ions is astronomical and the first question is where to put all these channels and pumps. On the other hand, if the cell constructs the pump or channel specialized to a given molecule only when needed, how does it know what the pump looks like if it has never seen the molecule? The needed metabolic energy to achieve all the pumping and channelling is huge. Strangely enough, pumping does not stop when cell metabolism stops.

3. One can also wonder why the ionic currents through cell membrane look quantal and are same through cell membrane and silicon rubber membrane.

These observations suggest strongly the presence non-dissipative ionic currents and quantum self-organization. The TGD based explanation would be in terms of high \(T_c \) electronic and possibly even ionic superconductivity associated with cell membrane made possible by the large \(\hbar \) phase for nuclei and electrons in the interior of cell. It however seems that thermal stability conditions allow only protonic Cooper pairs in the model of ionic Cooper pairs based on direct generalization of the model
of high T_c electronic super conductivity. This does not however mean that quantal ionic currents would be absent. This empirical input also supports a view about homeostasis as a many-sheeted ionic flow equilibrium controlled by larger space-time sheets with the mediation of massless extremals (MEs) serving as space-time correlates for Bose-Einstein condensates of massless bosons (also of scaled down dark electro-weak bosons and gluons).

In the proposed picture one can understand how extremely low densities of ions and their supra currents can control much higher ion densities at the atomic space-time sheets. The liquid crystal nature of the bio-matter is crucial for this model. This vision allows also much better understanding of the effects of ELF em fields on bio-matter. Also the effects of homeopathic remedies and acupuncture known to crucially involve electromagnetic frequency signatures of chemicals can be understood if homeostasis is based on many-sheeted ionic flow equilibrium.

One can argue that pumps in case of basic ions are needed only when the cell interior and exterior are connected by join along boundaries bonds and that this connection is built only for diagnostic purposes in order to measure the concentrations of ions by measuring the ionic currents by their dissipation. The remote metabolism made possible by many-sheeted lasers reduces further the energy costs when pumping actually occurs. The transfer as Josephson current might apply only to the biologically important ions and pumps might be needed to achieve more efficient transfer also in this case. Pumps (active transport) and channels (passive transport) for more complex polar molecules realized as genetically coded proteins are certainly needed.

How noble gases can act as anesthetes?

Chemically inert noble gases are known to act as anesthetes. Somehow these atoms affect neuronal membrane, probably reducing the nerve pulse activity. A possible explanation is in terms of anomalous weak isospin due to the charged color bonds inside nuclei of noble gas generated in the cellular environment. This bonds carry also em charge so that noble gas atom would behave like ion with nuclear charge $Z+1$ or $Z-1$. Also the long ranged color force and dark weak force with range $L_w=0.2$ μm associated with noble gas nuclei in dark phase could be part of the solution of the mystery.

Cell membrane space-time sheet almost vacuum extremal?

It has been clear from the beginning that the nearly vacuum extremals of Kähler action could play key role key role in living systems. The reason is their criticality making them ideal systems for sensory perception. These extremals carry classical em and Z^0 fields related to each other by a constant factor and this could explain the large parity breaking effects characterizing living matter. The assumption that cell membranes are nearly vacuum extremals and that nuclei can feed their Z^0 charges to this kind of space-time sheets (not true for atomic electrons) in living matter leads to a modification of the model for the cell membrane as Josephson junction. Also a model of photoreceptors explaining the frequencies of peak sensitivity as ionic Josephson frequencies and allowing the dual identifications Josephson radiation as biophotons (energies) and EEG radiation (frequencies) emerge since the values of Planck constant can be very large. The value of the Weinberg angle in this phase is fixed to $\sin^2(\theta_W) = 0.0295$, whereas in standard phase the value is given by $\sin^2(\theta_W) = 0.23$. The significance of this quantitative success for TGD and TGD inspired quantum biology cannot be over-estimated.

3.1.2 General mechanisms of bio-superconductivity

The many-sheeted space-time concept provides a very general mechanism of superconductivity based on the ‘dropping’ of charged particles from atomic space-time sheets to larger space-time sheets. The first guess was that larger space-time sheets are very dry, cool and silent so that the necessary conditions for the formation of high T_c macroscopic quantum phases are met.

The possibility of large \hbar quantum coherent phases makes however the assumption about thermal isolation between space-time sheets un-necessary. At larger space-time sheet the interactions of the charged particles with classical em fields generated by various wormhole contacts feeding gauge fluxes to and from the space-time sheet in question give rise to the necessary gap energy. The simplest model for Cooper pair is space-time sheet containing charged particles having attractive Coulombic interaction with the quarks and antiquarks associated with the throats of the wormhole contacts.
Wormhole contacts can be interpreted as Higgs type fields and photon massivation could be understood in terms of a coherent state of charged wormhole contacts. The coherent states of charged wormhole contacts and of Cooper pairs do not imply non-conservation of energy, charge, and fermion number in zero energy ontology.

A crucial element is quantum criticality predicting a new kind of superconductivity explaining the strange features of high T_c super-conductivity. There are two kinds of Cooper pairs, exotic Cooper pairs and counterparts of ordinary BCS type Cooper pairs. Both correspond to a large value of Planck number in zero energy ontology.

Below temperature $T_{c1} > T_c$ only exotic Cooper pairs with spin are present and their finite lifetime implies that super-conductivity is broken to ordinary conductivity satisfying scaling laws characteristic for criticality. At T_c spinless BCS type Cooper pairs become stable and exotic Cooper pairs can decay to them and vice versa. An open question is whether the BCS type Cooper pairs can be present also in the interior of cell.

These two superconducting phases compete in certain narrow interval around critical temperature for which body temperature of endotherms is a good candidate in the case of living matter. Also high T_c superfluidity of bosonic atoms dropped to space-time sheets of electronic Cooper pairs becomes possible besides ionic super conductivity. Even dark neutrino superconductivity can be considered below the weak length scale of scaled down weak bosons.

Magnetic flux tubes and sheets are especially interesting candidates for supra current carries. In this case the Cooper pairs must have spin one and this is indeed possible for exotic Cooper pairs. The fact that the critical magnetic fields can be very weak or large values of h is in accordance with the idea that various almost topological quantum numbers characterizing induced magnetic fields provide a storage mechanism of bio-information.

This mechanism is extremely general and in principle works for electrons, protons, ions, charged molecules and even exotic neutrinos and an entire zoo of high T_c bio-superconductors, super-fluids and Bose-Einstein condensates is predicted. Of course, there are restrictions due to the thermal stability it room temperature and it seems that only electron, neutrino, and proton Cooper pairs are possible at room temperature besides Bose-Einstein condensates of all bosonic ions and their exotic counterparts resulting when some nuclear color bonds become charged.

3.1.3 Hierarchies of preferred p-adic length scales and values of Planck constant

TGD inspired quantum biology and number theoretical considerations suggest preferred values for $r = h/h_0$. For the most general option the values of h are products and ratios of two integers n_a and n_b. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases $exp(i 2\pi/n_i), i \in \{a,b\}$, in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors powers of two as values of r.

The hypothesis that Meresse primes $M_k = 2^k - 1$, $k \in \{89,107,127\}$, and Gaussian Meresses $M_{G,k} = (1+i)k - 1$, $k \in \{113,151,157,163,167,239,241,\ldots\}$ (the number theoretical miracle is that all the four p-adic length scales sith $k \in \{151,157,163,167\}$ are in the biologically highly interesting range 10 nm-2.5 μm) define scaled up copies of electro-weak and QCD type physics with ordinary value of h and that these physics are induced by dark variants of corresponding lower level physics leads to a prediction for the preferred values of $r = 2^k \mu$, $k_3 = k_i - k_j$, and the resulting picture finds support from the ensuing models for biological evolution and for EEG. This hypothesis - to be referred to as Meresse hypothesis - replaces the earlier rather ad hoc proposal $r = h/h_0 = 2^{1+k}$ for the preferred values of Planck constant.

3.1.4 Fractal hierarchy of magnetic flux sheets and the hierarchy of genomes

The notion of magnetic body is central in the TGD inspired theory of living matter. Every system possesses magnetic body and there are strong reasons to believe that the magnetic body associated with human body is of order Earth size and that there could be an entire hierarchy of these bodies with even much larger sizes. Therefore the question arises what one can assume about these magnetic bodies. The quantization of magnetic flux suggests an answer to this question.
1. The quantization condition for magnetic flux reads in the most general form as $\oint (p - eA) \cdot dl = nh$. If supra currents flowing at the boundaries of the flux tube are absent one obtains $e \int B \cdot dS = nh$, which requires that the scaling of the Planck constant scales up the flux tube thickness by r^2 and scaling of B by $1/r$. If one assumes that the radii of flux tubes do not depend on the value of r, magnetic flux is compensated by the contribution of the supra current flowing around the flux tube: $\oint (p - eA) \cdot dl = 0$. The supra currents would be present inside living organism but in the faraway region where flux quanta from organism fuse together, the quantization conditions $e \int B \cdot dS = nh$ would be satisfied.

2. From the point of view of EEG especially interesting are the flux sheets which have thickness $L(151) = 10$ nm (the thickness of cell membrane) carrying magnetic field having strength of endogenous magnetic field. In absence of supra currents these flux sheets have very large total transversal length proportional to r^2. The condition that the values of cyclotron energies are above thermal energy implies that the value of r is of order 2^{24}, $k_d = 44$. Strongly folded flux sheets of this thickness might be associated with living matter and connect their DNAs to single coherent structure. One can of course assume the presence of supra currents but outside the organism the flux sheet should fuse to form very long flux sheets.

3. Suppose that the magnetic flux flows in head to tail direction so that the magnetic flux arrives to the human body through a layer of cortical neurons. Assume that the flux sheets traverse through the uppermost layer of neurons and also lower layers and that DNA of each neuronal nuclei define a transversal sections organized along flux sheet like text lines of a book page. The total length of DNA in single human cell is about one meter. It seems that single organism cannot provide the needed total length of DNA if DNA dominates the contribution. This if of course not at all necessarily since supra currents are possible and outside the organism the flux sheets can fuse together. This implies however correlations between genomes of different cells and even different organisms.

These observations inspire the notion of super- and hyper genes. As a matter fact, entire hierarchy of genomes is predicted. Super genes consist of genes in different cell nuclei arranged to threads along magnetic flux sheets like text lines on the page of book whereas hyper genes traverse through genomes of different organisms. Super and hyper genes provide an enormous representative capacity and together with the dark matter hierarchy allows to resolve the paradox created by the observation that human genome does not differ appreciably in size from that of wheat.

3.1.5 Bose-Einstein condensates at magnetic flux quanta in astrophysical length scales

The model for the topological condensation at magnetic flux quanta of endogenous magnetic field $B_{end} = .2$ Gauss is based on the dark matter hierarchy with levels characterized by the values of Planck constant. The hypothesis for the preferred values of Planck constans allows to build quantitative model for the Bose-Einstein condensation at magnetic flux quanta assuming that the value of B_{end} scales like $1/\hbar$. A justification for this hypothesis comes form flux quantization conditions and from the similar scaling of Josephson frequencies [22].

1. There are several levels of dynamics. In topological condensation the internal dynamics of ions is unaffected and \hbar has the ordinary value. For instance, the formation of Cooper pairs involves dynamics at $k_d = 24 = 151 - 127$ level of dark matter hierarchy if one assumes that electrons and Cooper pairs have size given by the cell membrane thickness $L(151)$. Also the dynamics of ionic Cooper pairs remains unaffected in the topological condensation to magnetic flux quanta obeying $k_d > 24$ dynamics.

2. Cyclotron energies scale as \hbar so that for a sufficiently high value of k_d thermal stability of cyclotron states at room temperature is achieved for a fixed value of B. Same applies to spin flip transitions in the recent scenario. The model for EEG based on dark matter hierarchy [22] involves the hypothesis that EEG quanta correspond to Josephson radiation with energies in the visible and UV range and that they produce in the decay to ordinary photons either bunches of EEG photons or visible/UV photons. This identification allows to deduce the value of k_d when
3.2. Empirical support for ionic super-conductivity as a fundamental control mechanism

The frequency of the dark photon is fixed. The Mersenne hypothesis for the preferred p-adic length scales and values of Planck constants leads to very precise predictions.

3. Cyclotron energies \(E = (\hbar/2\pi) \times ZeB/Am \) are scaled up by a factor \(r = 2^d \) from their ordinary values and for 10 Hz cyclotron frequency are in the range of energies of visible light for \(k_d = 46 \).

3.1.6 Atmospheric phenomena and superconductivity

There is a considerable evidence that various electromagnetic time scales associated with the atmospheric phenomena correspond to those associated with brain functioning. If magnetic sensory canvas hypothesis holds true, this is just what is expected. In this section these phenomena are considered in more detail with the aim being to build as concrete as possible a vision about the dynamics involving the dark matter Bose-Einstein condensates at super-conducting magnetic flux quanta, and membrane like structures near vacuum extremals.

In living matter Bose-Einstein condensates of dark matter at magnetic flux quanta near vacuum extremals carrying both em and \(Z^0 \) magnetic fields are in fundamental role. Even neutral atoms with net weak isospin spin which is non-vanishing for nuclei for which proton and neutron numbers are different, couple to the classical \(Z^0 \) field so that a plasma like state would be in question.

Tornadoes and hurricanes provide the first example of self-organizing systems which might also correspond to systems for which some space-time sheets are near vacuum extremals. Auroras represent a second phenomenon possibly involving supra currents of Cooper pairs and of exotic ions. Lightnings, sprites and elves might also involve higher levels of dark matter hierarchy. \(p \)-Adic length scale hypothesis and the hierarchy of Planck constants provide a strong grasp to these far from well-understood phenomena and allow to build rather detailed models for them as well as to gain concrete understanding about how dark matter hierarchy manifests itself in the electromagnetic phenomena at the level of atmosphere.

3.2 Empirical support for ionic super-conductivity as a fundamental control mechanism

The notions of ionic channels and pumps associated with cell membrane are central for the standard cell biology [50]. There are however puzzling observations challenging this dogma and suggesting that the currents between cell interior and exterior have quantum nature and are universal in the sense that they not depend on the cell membrane at all [42, 21, 58, 28, 18]. One of the pioneers in the field has been Gilbert Ling [42], who has devoted for more than three decades to the problem, developed ingenious experiments, and written several books about the topic. The introduction of the book [48] gives an excellent layman summary about the paradoxical experimental results.

It was a pleasant surprise to find that these experimental findings give direct support for the role of supra currents and Josephson currents in biocontrol. In fact, the experimental data lead to an archetype model cell homeostasis as a flow equilibrium in which very small densities of superconducting ions (also molecular ions) and ionic supra currents at cellular and other super-conducting space-time sheets dictate the corresponding densities at the atomic space-time sheets. \(Z^0 \) superconductivity in principle allows to generalize the model also to the control of the densities of neural atoms and molecules at atomic space-time sheets.

3.2.1 Strange behavior of the intracellular water

The basic strange feature of cellular interior is related to its gelatinous nature and is in fact familiar for everyone. Although 80 percent of hamburger is water, it is extremely difficult to extract this water out. Ling [21] has demonstrated this at cellular level by using a centrifuge and cells for which cell membrane is cut open: centrifugal accelerations as high as 1000 g fail to induce the separation of the intracellular water.

The dipolar nature of biomolecules and induced polarization are basis prerequisites for the formation of gels. Ling raises the cohesion between water and protein molecules caused by electric dipole

\(^1\)I am grateful for ‘Wandsqueen’ for sending me the relevant URL address and for Gene Johnson for very stimulating discussions.
forces as a fundamental principle and calls this principle association-induction hypothesis [42]. This cohesion gives rise to liquid [10] [8] like structure of water implying among other things layered structures and internal electric fields orthogonal to the plane of the layers [33, 34, 42]. For instance, cell membranes can be understood as resulting from the self-organization of liquid crystals [14]. The fundamental importance of electret nature of biomatter was also realized by Fröhlich [29] and led him to suggest that macroscopic quantum phases of electric dipoles might be possible. This concept, which is in central role in many theories of quantum consciousness, has not been established empirically.

3.2.2 Are channels and pumps really there?

Standard neurophysiology relies strongly on the concepts of what might be called hydro-electrochemistry. The development of the theory has occurred through gradual improvements saving the existing theory.

The development began from the basic observation that cells are stable gelatinous entities not mixing with the surrounding water. This led to the hypothesis that cell membrane takes care that the contents of the cell do not mix with the cell exterior. It was however soon found that cell membrane allows some ions to flow through. The interaction between theory and experiment led gradually to the notions of ion channel and ion pump, which are still central for the standard paradigm of the cell [50]. Note that also ‘electric pump’ taking care that membrane potential is preserved, is needed.

These notions developed gradually during the period when cell was seen as a bag containing water and a mixture of various biochemicals. If cell biology would have started to develop during the latter half of this century and after the discovery of DNA, cell as a computer metaphor might have led to a quite different conceptualization for what happens in the vicinity of the cell membrane. Also the notion of liquid crystals [8] would have probably led to different ideas about how homeostasis between cell interior and exterior is realized [33, 34, 42].

For me it was quite a surprise to find that pump-channel paradigm is not at all so well-established as I had believed as an innocent and ignorant outsider. The first chapter of the book "Cells, Gels and the Engines of Life" of Gerald Pollack [48] provides a summary about the experimental paradoxes (the interested reader can find the first chapter of this book from web).

The standard theoretical picture about cell is based on the observation that cell exterior and interior are in a relative non-equilibrium. The measured concentrations of various atomic ions and organic molecules are in general different in the interior and exterior and cell membrane seems to behave like a semi-permeable membrane. There is also a very strong electric field over the cell membrane. In standard approach, which emerged around 1940, one can understand the situation by assuming that there are cell membrane pumps pumping ions from cell interior to exterior or vice versa and channels through which the ions can leak back. Quite a many candidates for proteins which seem to function like pump and channel proteins have been identified: even a pump protein for water [48]! This does not however prove that pumping and channelling is the main function of these proteins on the case of basic biological ions or that they have anything to do with how ionic and molecular concentrations in the interior and exterior of the cell are determined. It could quite well be that in the case of basic ions pump and channel proteins are receptors involved with the transfer of information rather than charges and only effectively act as pumps and channels.

There are several serious objections of principle against the vision of cell as a bag of water containing a mixture of chemicals. Even worse, the hypothesis seems to be in conflict with experimental data.

Selectivity problem

Cell membrane is extremely selective and this leads to an inflation in the complexity of channels and pumps. The problem might be christened as a dog-door problem: the door for dog allows also cat go through it. Channels cannot be simple sieves: it is known that channels which let some ions through do not let much smaller ions through. There must be more complicated criteria than geometric size for whether the channel lets the ion go through. Quite generally, channels must be highly selective and this seems to require complicated information processing to decide which ion goes through and which not. As a consequence, the models for channels inflate in their complexity.

The only reasonable way to circumvent the problem is to assume that there is kind of binary coding of various chemical compounds but it is difficult to see how this could be achieved in the framework of the standard chemistry. The notion of fractional atom proposed in [23] to give rise to the emergence
of symbols at the level of biochemistry could however allow this kind of coding. Channels and pumps (or whatever these structures actually are) could be also generated by self-organization process when needed.

Inflation in the number of pumps and channels

Channels and pumps for atomic ions and channels and pumps for an astronomical number of organic molecules are needed. The first question is where to put all those channels and pumps? Of course, one could think that pumps and channels are constructed by the cell only when they are needed. But how does the cell know when a new pump is needed if the cell as never met the molecule in question: for instance, antibiotic or curare molecule?

To realize how weird the picture based on channels and pumps is, it is useful to imagine a hotel in which there is a door for every possible client letting only that client through but no one else. This strange hotel would have separate door for every five point five milliard humans. Alternatively, the building would be in a continual state of renovation, new doors being built and old being blocked.

There is however an TGD based objection against this slightly arrogant argument. In TGD framework cell is a self-organizing structure and it might be that there is some mechanism which forces the cell to produce these pumps and channels by self-organization. Perhaps the basic characteristic of quantum control in many-sheeted space-time is that it somehow forces this kind of miracles to occur.

Why pumping does not stop when metabolism stops?

One can also wonder how metabolism is able to provide the needed energy to this continual construction of pumps and channels and also do the pumping. For instance, sodium pump alone is estimated to take 45-50 per cent of the cell’s metabolic energy supply. Ling has studied the viability of the notion of the ionic pump experimentally [42] by exposing cell to a coctail of metabolic poisons and depriving it from oxygen: this should stop the metabolic activities of the cell and stop also the pumping. Rather remarkably, nothing happened to the concentration gradients! Presumably this is the case also for the membrane potential so that also the notion of metabolically driven electrostatic pumps seems to fail. Of course, some metabolism is needed to keep the equilibrium but the mechanism does not seem to be a molecular mechanism and somehow manages to use extremely small amount of metabolic energy.

How it is possible that ionic currents through silicon rubber membrane are similar to those through cell membrane?

A crucial verification of the channel concept was thought to come in the experiment of Neher and Sakmann [52] (which led to a Nobel prize). The ingenious experimental arrangement was following. A patch of membrane is sucked from the cell and remains stuck on the micropipet orifice. A steady voltage is applied over the patch of the membrane and the resulting current is measured. It was found that the current consists of discrete pulses in consistency with the assumption that that a genuine quantum level current is in question. The observation was taken as a direct evidence for the postulate that the ionic currents through the cell membrane flow through ionic channels.

The later experiments of Fred Sachs [28] however yielded a complete surprise. Sachs found that when the patch of the cell membrane was replaced by a patch of silicon rubber, the discrete currents did not disappear: they remained essentially indistinguishable from cell membrane currents! Even more surprisingly, the silicon rubber membrane showed ion-selectivity features, which were essentially same as those of the cell membrane! Also the currents through synthetic polymer filters [18] were found to have essentially similar properties: as if ion selectivity, reversal potential, and ionic gating would not depend at all on the structure of the membrane and were more or less universal properties. Also experiments with pure lipid-layer membranes [58] containing no channel proteins demonstrated that the basic features – including step conductance changes, flickering, ion selectivity, and in-activation–characterized also cell membranes containing no ionic channels.

The in-escapable conclusion forced by these results seems to be that the existing 60-year old paradigm is somehow wrong. Ionic currents and the their properties seem to be universal and depend only on very weakly on the properties of the membrane. This conclusion need not apply to the currents of polar molecules for which genetically coded pump and channel proteins certainly exists. Neither does it imply that pumps and channels could not be used to achieve a more efficient transfer of ions.
3.2.3 Could the notion of the many-sheeted space-time solve the paradoxes?

The basic paradoxes are related to the universality of the ionic currents suggesting the absence of ionic channels and to the absence of metabolically driven chemical pumps assignable to cell membrane. Chemical pumps take care that the differences of the chemical potentials associated with the two sides of the cell membrane remain non-vanishing just like ordinary pump preserves a constant pressure difference. Also 'electrical pump' taking care that the potential difference between the cell exterior and interior is preserved is needed. The experiments suggest strongly that both chemical pumps and 'electrical pump', if present at all, need very low metabolic energy feed.

Many-sheeted space-time allows following interpretation for the puzzling findings.

1. What have been identified as pumps and channels are actually ionic receptors allowing the cell to measure various ionic currents flowing through membrane.

2. Pumps are not needed because the cell interior and exterior correspond to disjoint space-time sheets. The currents run only when join along boundaries contact (JAB) is formed and makes the current flow possible. The fact that the formation of JABs is quantal process explains the quantal nature of the currents. Channels are not needed because the currents run as supra current (also the cyclotron states of bosonic ions define Bose-Einstein condensates) along cell membrane space-time sheet. The absence of dissipation would explain why so little metabolic energy feed is needed and why the ionic currents are not changed when the cell membrane is replaced by some other membrane. JABs could be formed between the space-time sheets representing lipid layers or between cell exterior/interior and cell membrane space-time sheet. The formation of JABs has also interpretation as a space-time correlate for the generation of quantum entanglement.

3. The universality of the currents suggests that the densities of current carriers are universal. The first interpretation would be in terms of an ordinary-dark-ordinary phase transition. Ordinary charge carriers at space-time sheets associated with cell interior and exterior would be transformed to dark matter particles at the cell membrane space-time sheet and flow through it as supra currents and then transform back to ordinary particles (reader is encouraged to visualize the different space-time sheets). This phase transition could give for the currents their quantal character instead of the formation of JABs. Of course, the formation of JABs might be prerequisite for this phase transition.

4. The ion densities in cell interior and exterior are determined by flow equilibrium conditions for currents traversing from super-conducting space-time sheets to non-super-conducting space-time sheets and back. Ion densities would be controlled by super-conducting ion densities by an amplification mechanism made possible by the electret nature of the liquid crystal state. The dissipation by the currents at the atomic space-time sheets associated with cell interior and exterior is very weak by the weakness of the electric fields involved and at cell membrane space-time sheet superconductivity means absence of dissipation.

One must of course be cautious in order to not draw too strong conclusions. Besides basic ions cell membrane is non-permeable to various polar molecules such as the basic building bricks of DNA and aminoacids. The safest assumption is that genetically coded pump and channel proteins make possible the transfer. One must of course consider the possibility that channels and pumps are used to make the transfer of basic ions more effective. Taking this into account, the proposed vision does not differ so radically from the standard one as one might think first and only the model for nerve pulse generation must be modified radically.

Many-sheeted cell

TGD based model of nerve pulse and EEG relies on the notion of the many-sheeted space-time. There is entire hierarchy of space-time sheets so that one can assign to cell and its exterior atomic space-time sheets forming join-along boundaries condensate of units of size of about 10^{-10} meters, lipid layer resp. cell membrane space-time sheets with thickness of order $L(149) \approx 5 \times 10^{-8}$ meters resp. $L(151) \approx 10^{-8}$ meters, and cellular space-time sheets with size of order few microns. These space-time
sheets are certainly not the only ones but the most important ones in the model of EEG and nerve pulse.

1. Water molecules at the atomic space-time sheet can form join along boundaries bond condensates and the strange properties of water inside the cell can be understood if these lumps in the cell interior have size larger than the join along boundaries bonds connecting atomic space-time sheet of cell interior to that of cell exterior. Liquid crystal structure indeed gives rise to layered crystal like structures of water.

2. Cell membrane space-time sheets have size of order cell membrane thickness and are assumed to be super-conducting. The lipid layers of the cell membrane define space-time sheets of thickness of about 50 Angstrom, which could act as parallel super-conductors connected by Josephson junctions.

3. Cellular space-time sheets have size of order cell size and are multi-ion super-conductors. Also they are connected to each other by join along boundaries bonds serving as Josephson junctions. Also charged organic molecules could form super-conductors and be transferred by the same mechanism between cell interior and exterior. In TGD framework also classical Z0 fields are present and Z0 super-conductivity is possible and could make possible neutral supra currents and control of the densities of the neutral atoms and molecules.

Neuronal and cellular space-time sheets of size of order cell size are assumed to be parts of the magnetic flux tube like structures associated with Earth’s magnetic field. Earth’s magnetic field inside organisms could contain closed circuits and it is conceivable that the notion of magnetic circulation containing neural circuitry as a sub-circuitry makes sense. Large value of \(\hbar \) makes possible high \(T_c \) superconductivity. Only protonic Cooper pairs are possible at room temperature besides electronic and neutrino Cooper pairs using the proposed criterion super conductivity. Bose-Einstein condensates of bosonic ions at cyclotron states define also superconductors and at \(k = 4 \) level of dark matter hierarchy the cyclotron frequencies in Earth’s magnetic field correspond to energies above thermal energy. These frequencies are in alpha band for most biologically relevant bosonic ions.

Electronic Josephson currents through cell membrane oscillate with a frequency which is given by the membrane potential \(eV = 70 \text{ meV} \): this predicts that the emission of infrared photons as a signature of a living cell. Super currents transform to Ohmic currents when they enter to the atomic space-time sheets.

Also present are ‘many-sheeted circuits’ for which currents flow along super-conducting space-time sheets go to atomic space-time sheets where they flow as very weak Ohmic currents, and run back to super-conducting space-time sheets. The currents flowing in closed circuits traversing both cellular and atomic space-time sheets are in flow equilibrium. Because of the high value of the cell membrane electric field, the ionic currents flowing at cell membrane space-time sheets would give rise to high dissipation. The ohmic currents from the cell exterior to interior can however enter to the super-conducting cell membrane space-time sheet and back to the atomic space-time sheet of the cell interior and thus avoid the dissipation.

This picture suggests that the flow of particles between the cell interior and exterior takes mainly via the cell membrane space-time sheet. This would mean that \(k = 169 \) cell interior space-time sheet has permanent bridges to the \(k = 151 \) cell membrane space-time sheet, which in turn has only temporary bridges to the \(k = 169 \) cell exterior space-time sheets.

The character of the ionic currents through cell membrane is highly relevant for the model of the nerve pulse. The development of the model of nerve [58] [58] has taken a long time and the original hypothesis about the decisive role of the ionic Josephson currents turned out to be wrong. The recent version of the model assumes that the reduction of charge entanglement between magnetic body and neuron interior made possible by charged W MEs leads to a exotic ionization of the Ca++ Bose-Einstein condensate. Exotic Ca++ Bose-Einstein condensate reduces the membrane resting potential below the threshold for the generation of nerve pulse. The random generation of JABs makes possible flow of ionic currents and leads to the generation of nerve pulse. One cannot exclude the possibility that a portion of em or Z0 ME drifting along the axon with the velocity of nerve pulse and connecting cell exterior and cell membrane space-time sheets defines the JAB: in the earlier version of the model Z0 ME was responsible for the reduction of the membrane potential.
Faraday’s law of induction in the many-sheeted space-time forces electrical non-equilibrium

Faraday’s induction law in the many-sheeted space-time gives strong constraints on the electric fields over the cell membrane region at various space-time sheets. Suppose that cellular space-time sheet and some other space-time sheets, say cellular and cell membrane space-time sheet, are in contact so that one can form a closed loop traversing along both space-time sheets. Faraday’s law implies that the rotation of electric field around a closed loop traversing first from cell exterior to interior at cellular space-time sheet, going to the atomic space-time sheet and returning back to cell exterior and down to cellular space-time sheet must be equal to the time derivative of the magnetic flux through this loop. Since magnetic flux cannot grow indefinitely, the time average of this potential difference is vanishing. During the generation of nerve pulse the situation might change but only for a finite duration of time (of order millisecond).

Thus in electrostatic equilibrium there must be same exterior-interior potential difference over all space-time sheets in contact with cellular space-time sheets and the variation of potential difference at cellular space-time sheets induces automatically an opposite variation at other space-time sheets. This means that the supra currents at cellular space-time sheets can indeed control potential differences at other space-time sheets, in particular at atomic space-time sheets. Faraday’s law in the many-sheeted space-time also implies that Ohmic currents at atomic space-time sheets cannot destroy the potential difference except for a finite period of time.

Faraday’s law makes also possible a gauge interaction between dark and ordinary matter. The changes of dark matter charge densities induce changes of electric field patterns at dark matter space-time and once JABs are formed between dark matter space-time sheet and space-time sheets at lower level of dark matter hierarchy, closed many-sheeted circuits become possible and voltage differences along space-time sheet at different levels of dark matter hierarchy correspond to each other.

Massless extremals (MEs, topological light rays) serve as correlates for dark bosons. Besides neutral massless extremals (em and Z^0 MEs) TGD predicts also charged massless extremals obtained from their neutral counterparts by a mere color rotation (color and weak quantum numbers are not totally independent in TGD framework). The interpretation of the charged MEs has remained open hitherto. Charged W MEs could induce long length scale charge entanglement of Bose-Einstein condensates by inducing exotic ionization of ionic nuclei. State function reduction could lead to a state containing a Bose-Einstein condensate in exotically ionized state.

In this manner the charge inside neuron and thus by Faraday’s law membrane potential could be affected by magnetic body. The generation of nerve pulse could rely on the reduction of the resting potential below the critical value by this kind of mechanism inducing charge transfer between cell interior and exterior. The mechanism might apply even in the scale of magnetic body and make possible the control of central nervous system. Also remote mental interactions, in particular telekinesis, might rely on this mechanism.

Flow equilibrium in many-sheeted space-time

The notion of many-sheeted space-time suggests that cell interior and exterior could be regarded as a system in ‘many-sheeted flow equilibrium’ so that the ion densities at atomic space-time sheets are determined by the ion densities at the super-conducting cellular space-time sheets and by the drift velocities by the basic formula \(n_1/n_2 = v_2/v_1 \) for flow equilibrium.

1. Cell exterior and interior understood as many-sheeted structures are in ionic flow equilibrium holding true for each ion type. The ionic currents run along circuits which traverse along super-conducting space-time sheets, enter into atomic space-time sheets and back to super-conducting space-time sheets.

2. To understand what is involved consider the simplest possible closed circuit connecting atomic and cellular space-time sheets. The ionic supercurrent \(I_{s,s} \) flowing from a super-conducting space-time sheet to the atomic space-time sheet is transformed to Ohmic current \(I_{s,O} \) in the atomic space-time sheet and in flow equilibrium one has

\[
I_{s,s}(int) = I_{s,s} = I_{s,O}(ext) = I_s(membr) .
\]

3. Ionic supra current is sum of two terms.
3.2. Empirical support for ionic super-conductivity as a fundamental control mechanism

\[I_{i,s} = I_{i,s,j} + I_{i,s,d} \]

The first term is the oscillatory Josephson current associated with the Josephson junction connecting interior and exterior cellular space-time sheet. The second term is direct supra current

\[I_{i,s,d} = \frac{1}{m_i} n_{i,s} \nabla \phi = \frac{n_{i,s} K_i}{m_i} \]

where \(\phi \) is the phase of the super-conducting order parameter, and \(m_i \) is the mass of the ion. \(K_i \) is the quantized momentum like quantum number associated of superconducting loop (assuming for simplicity that current is constant).

4. Ionic Ohmic current is equal to

\[I_{i,O}(int) = \frac{n_i(int) q_i E_{int}}{k_i(int)} \]
\[I_{i,O}(ext) = \frac{n_i(ext) q_i E_{ext}}{k_i(ext)} \]

Here \(k_i \) is linear friction coefficient. Since cell exterior and interior are in different internal states, \(k_i \) is different for cell interior and exterior. \(E \) is the weak internal electric field made possible by liquid crystal property which is also different for the interior and exterior. Flow equilibrium conditions give for the ratio of the ion densities in interior and exterior

\[\frac{n_i(int)}{n_i(ext)} = \frac{v_i(int)}{v_i(ext)} = \frac{E_{ext} k_i(int)}{E_{int} k_i(ext)} \]

Thus in flow equilibrium the ratio of the internal and external ion densities differs from unity and is determined by the ratio of the ionic drift velocities, which are different in cell interior and exterior.

5. The densities of the super-conducting ions at super-conducting space-time sheet determine the corresponding ion densities at the atomic space-time sheet

\[\frac{n_i(int)}{n_i,s} = \frac{v_i,s}{v_i(int)} \]
\[\frac{K_i k_i(int)}{m_i E_{int}} \]
\[\frac{n_i(ext)}{n_i,s} = \frac{v_i,s}{v_i(ext)} \]
\[\frac{K_i k_i(ext)}{m_i E_{ext}} \]

Obviously, super-conducting ion densities control the ion densities at the atomic space-time sheets. Very weak electric fields \(E_{ext} \) and \(E_{int} \) and high values of friction coefficients \(k_i \) make possible a large amplification of the superconducting densities to the non-super-conducting ionic densities at atomic space-time sheet. Thus the fact that liquid crystals allowin weak but stable electric fields orthogonal to the layer like structure is crucial for the mechanism.

6. Also flow equilibrium requires metabolism to keep the currents at the atomic space-time sheets flowing. There are two options.

i) Assuming that the current flows through cell membrane as an Ohmic current, the power dissipated in the circuit is equal to

\[P = I_i(int)(V_{int} + V_{memb} + V_{ext}) = I_{i,s}(V_{int} + V_{memb} + V_{ext}) \]

Since supercurrents and thus also Ohmic currents are weak and electric fields are weak in cell interior and exterior, also dissipation can be extremely low in these regions. The dominating and problematic term to the dissipation comes from the membrane potential which is very large.

ii) An alternative option is that the current flows through cell membrane region as a supercurrent by going from atomic to cell membrane space-time sheet and returning back to atomic space-time sheet. This gives
\[P = I_{i,s}(V_{\text{int}} + V_{\text{ext}}) \]

In this manner huge amount of metabolic energy would be saved and it is quite possible that this is the only sensible manner to understand the experimental results of Ling [12].

Refinements and generalizations

The proposed oversimplified model allows obviously refinements and variants. For instance, current circuits could run from exterior cellular space-time sheet to cell membrane space-time sheet and run only through the cell interior. In this case only the ionic concentrations in the cell interior would be controlled: this does not look a good idea. This option might be necessary in the case that cell exterior cannot be regarded as an electret carrying weak but stable electric field.

Several super-conducting space-time sheets are probably involved with the control and complex super-conducting circuits are certainly involved. The structure of the cell interior suggests a highly organized ohmic circuitry. In particular, cytoskeleton could be important carrier of currents and atomic space-times sheets of the microtubules could be in crucial role as carriers of the ohmic currents: there is indeed electric field along microtubule. The collagenous liquid crystalline networks [33, 34] are excellent candidates for the carriers of weak ohmic currents in the inter-cellular tissue. Fractality suggests that also structures like proteins, DNA and microtubules are in a similar flow equilibrium controlled by super-conducting ion densities at protein/DNA/microtubule space-time sheets and probably also larger space-time sheets.

Bioelectromagnetic research provides a lot of empirical evidence for the existence of the direct current ohmic circuits, mention only the pioneering work of Becker and the work of Nordenström [11, 32]. For instance, these direct currents are proposed to be crucial for the understanding of the effects of the acupuncture. The ancient acupuncture, which even now is not taken seriously by many skeptics, could indeed affect directly the densities and supercurrents of ions at super-conducting space-time sheets and, rather ironically, be an example of genuine quantum medicine.

Explanation of the paradoxes in terms of many-sheeted space-time

The qualitative predictions of the flow equilibrium model conform with the experimental facts discussed above.

1. One can understand how a gelatinous lump of matter can be a stable structure if the interior of the cell is in a gelatinous state in length scales larger than the size of the Josephson junctions at atomic space-time sheet. This means that water inside cell consists of coherent lumps larger than the size of Josephson junction and cannot leak to the exterior. If the exterior of the cell forms single large space-time sheet or consists of sheets connected by Josephson junctions with size larger than the typical size for the coherent lumps of water in cell exterior, cell exterior behaves like ordinary mixture of water and chemicals.

2. The amplification mechanism of supra currents relying crucially on liquid crystal property implies that although liquid crystal pumps and metabolism are needed, the amount of metabolic energy can be extremely small. Absolutely essential is however that ohmic currents run through the super-conducting short circuit provided by the cell membrane space-time sheet.

3. The currents for various ions do not depend at all on the properties of the cell membrane but are determined by what happens on cellular and other superconducting space-time sheets. In flow equilibrium supra currents and Josephson currents are identical with currents through cell membrane at atomic space-time sheet. The observed quantal nature of the ionic currents supports their interpretation as faithful atomic level images of supra currents.

4. Since various ionic currents at the cellular space-time sheets dictate the ionic currents at the atomic space-time sheets, the selectivity of the cell membrane would seem to be only an apparent phenomenon. One must however be very cautious here. The self-organizing cell membrane might have the virtue of being co-operative and develop gradually structures which make it easier to establish the flow equilibrium. For large deviations from the flow equilibrium, ohmic currents are expected to flow through the atomic space-time sheet associated with the cell membrane.
since super-conducting currents become overcritical and super-conductivity is spoiled. Also the proteinic Josephson junctions between lipid layer space-time sheets might be crucial. Thus the notions of channel and pump proteins might make sense in the far from flow equilibrium regime where the currents though membrane region are dominantly ohmic.

To sum up, one could see super-conducting space-time sheets as controllers of the evolution of the cellular and other biological structures and the model of organism could be specified to some degree in terms of the densities and currents of the super-conducting particles at various space-time sheets besides the values quantized magnetic fluxes associated with various many-sheeted loops. Setting up the goal at controlling space-time sheets would force the atomic space-time sheets to self-organize so that the goal is achieved. This clearly provides a quantum mechanism of of volition. A fascinating challenge is to apply this vision systematically to understand morphogenesis and homeostasis.

Needless to say, the notion of many-sheeted current circuitry would have also revolutionary technological implications since all undesired dissipative effects could be minimized and currents at atomic space-time sheets would be used only for heating purposes! Of course, many-sheeted current circuitries would also make possible quantum computer technologies.

Bio-control as a control of quantum numbers characterizing supracurrents

The magnetic quantum numbers K_i which together with the densities of super-conducting ions characterize the densities of various ions at atomic space-time sheets. Thus magnetic quantum numbers associated with super-conducting circuits formed by magnetic flux tubes indeed characterize biological information as speculated already more than decade ago on basis of mathematical necessity. Direct ohmic currents and supra currents determine these quantum numbers only partially since in superconducting circuit integer valued magnetic flux can flow without any induced current in the circuit. In presence of dissipation the currents in super-conducting circuit are minimal needed to guarantee quantized flux through the circuit.

In this picture biocontrol boils down to the changing of the various integers characterizing the phase increments over closed superconducting loops. If nerve pulse involves induction of supra current compensating the deviation of the magnetic flux in circuit from integer multiple of flux quantum, this can be achieved. The coupling of super-conducting circuits with MEs makes it possible for MEs to affect the magnetic quantum numbers by time varying or constant magnetic fields.

1. If dissipation is slow, supra currents and thus also ionic concentrations can suffer a large change and the homeostatis of neuron changes for a period determined by the rate of dissipation for supra currents.

2. The induced a supra current could also dissipate rapidly to minimal supra current required by the quantization of the magnetic flux: the quantized part of the magnetic flux of external perturbation penetrates to super-conductor and is expected to affect the super-conducting part of the system. This does not of course occur permanently for oscillating em fields. The deviation of the external magnetic flux from a quantized value is coded to a small supercurrent. This mechanism combined with stochastic resonance possible for SQUID type circuits [36] makes it possible to 'measure' extremely weak magnetic fields of MEs by amplifying them to biological effects.

MEs can also form junctions (possibly Josephson-) between two super-conducting circuits. In this case a constant electric field associated by ME defines the frequency of the induced Josephson current: the weaker the potential difference, the slower the oscillation period. This mechanism might explain why the effects of ELF em fields in living matter occur in intensity windows.

The role of the cell membrane

What is the role of the cell membrane in TGD inspired picture about cell? Very much what it is found to be. Cell membrane recognizes various organic molecules, interacts with them, and possibly allows them to go through. A protein in the cell membrane might act as an effective channel or pump but this function would be only apparent in case of ions. Only if cell membrane space-time sheet has join along boundaries contacts with the cell interior, can ions and proteins enter cell interior through the membrane space-time sheet. One must also consider very seriously the possibility that cell membrane
space-time sheet is a carrier of supra currents participating in the control of the physics at atomic space-time sheets.

This vision conforms with a computer-ageist view about cell membrane as an interface between computer and clients. Against the fact that tools (proteins) and symbols (DNA) emerge already at atomic length scale, it would indeed seem rather strange that cell would reduce to a bag of water containing mixture of chemicals. This view conforms also with fractality. Skin is the largest connected part of the nervous system and cell membrane could be also seen as the skin of neuron and thus a part of the nervous system of cell, specialized to receive signals from the external world.

In this vision cell is much more like a living, intelligent computer than a sack of ion-rich water, and cell membrane is its interface with the external world. Proteins and biomolecules are messages/messengers, and cell membrane allows them to attach to the receptor only if a number of conditions are satisfied.

In many cases it is not necessary for the messenger to continue its travel to the interior since electromagnetic and electromechanical communications with the cell nucleus are possible by liquid crystal property of cell structures. TGD suggests MEs (‘massless extremals’) and magnetic flux tubes carrying ionic super-conductors as a universal tool for these communications, and the simplest hypothesis is that the fractally scaled down versions of the communications in the cell length scale are realized also in the interior of the cell and inside cell nucleus, and even at the level of DNA. The interaction of MES and topologically quantized magnetic fields could solve many of the paradoxical features related with the phenomenon of pleiotropy discussed briefly in [51]. In particular, electromagnetic passwords and commands analogous to computer language commands based on suitable frequency combinations or even amplitude modulated field patterns could be involved. For instance, in case of DNA SQUID type mechanism combined with stochastic resonance could make possible the activation of specified genes by using specific frequency combinations associated with MEs.

3.2.4 Water memory, homeopathy, and acupuncture

Further guidelines for TGD based view about biocontrol and coordination were provided by the empirical evidence for water memory and various effects involved with it [22] [23]. In [33] a detailed mechanism of homeopathy and water memory based on the model of biocontrol in terms of many-sheeted ionic flow equilibrium is discussed.

1. Transfer of homeopathic potency to non-atomic space-time sheets is not enough

Many-sheeted ionic flow equilibrium suggests a possible mechanism of homeopathy: the extremely low densities of homeopathic remedies are at the controlling super-conducting space-time sheets where the control is. Thus homeopathy could be seen as a high precision medicine minimizing the amount of the remedy needed rather than some kind of magic treatment. This cannot be however the whole story. As already explained the study of homeopathic effects suggest an electromagnetic representation of the biomolecules based on frequencies [54] and it is possible achieve the healing effect by transferring mere frequencies instead of using homeopathic potency.

2. Mechanisms of frequency imprinting and entrainment

According to [54], the homeopathic remedies seem to be characterized by frequencies varying in the range containing at least the range $10^{-3} - 10^{5}$ Hz suggesting that electromagnetic fields at specific frequencies characterize the homeopathic remedy. These frequencies can be imprinted into water and also erased. Rather remarkably, the removal of Earth’s magnetic field erases the imprinted frequencies.

One the other hand, the studies of acupuncture support the existence of certain highly coherent endogenous frequencies [54] at which em radiation has strong effects. The fact that these frequencies can entrain to exogenous frequencies suggests a mechanism of homeopathy based on entrainment. Effects are observed at pairs of high and low frequencies and the ratio of these frequencies is constant over all acupuncture meridians with a standard derivation of ±15 per cent. The first branch is at GHz range: in particular the frequencies 2.664 GHz, 1.42 GHz and 384 MHz have unexpected properties. The second branch of frequencies is in ELF range, in particular Schumann frequency 7.8 Hz accompanies 384 MHz.

Consider now the explanation of the observations of Smith and others in in TGD framework using the proposed model assigning to magnetic flux tubes parallel MEs making magnetic flux tube effectively a magnetic mirror.

1. The basic idea is that water forms representations for chemicals it contains in terms of transition
frequencies of the chemical which become frequencies of MEs and structures of water generating these MEs by emission and absorption processes. Also representations of representations are possible. The molecule of a homeopathic potency is characterized by characteristic frequencies associated with its transitions as well as ELF frequencies. Of course, also transitions of a complex formed by molecule of the potency and water molecule could be involved.

Water represents the transition frequencies of the potency molecule as transition frequencies of water molecules or of structures which correspond to space-time sheets of various sizes. This conforms with the fact that frequency imprinting disappears after thorough drying and returns when water is added and that also bulk water without any potency allows frequency imprinting. In the frequency range studied by Smith rotational transition frequencies of water and of the space-time sheets containing water in liquid crystal form provide a good candidate for a representational mechanism. ELF frequencies correspond now to the magnetic transitions of these space-time sheets behaving like point like objects in Earth’s magnetic field.

2. The simplest assumption is that the ELF branch of the frequency spectrum corresponds to the magnetic transition frequencies in Earth’s magnetic field whereas the high frequency branch corresponds to the characteristic frequencies \(f = c/L \) of MEs parallel to the magnetic flux tubes. This assumption conforms with the crucial role of Earth’s magnetic field in the erasure of the imprinted frequencies. Also the importance of \(7.8 \) Hz Schumann frequency for the heart chakra \([54]\) can be understood.

The singly ionized Ca, Ar, and K (all \(7.5 \) Hz for \(B = .5 \times 10^{-4} \) Tesla) and Cl (\(8.5 \) Hz) have cyclotron transition frequencies near to Schumann frequency. For LC water blobs the ELF frequencies are below \(1 \) Hz and the requirement that water blob has size smaller than radius of magnetic flux tube of Earth’s magnetic field allows ELF frequencies down to \(1/f \sim 1000 \) years so that all biologically relevant length scales are covered. Quite interestingly, the frequency \(f_h \) corresponding 1000 years is \(20 \) Hz by the scaling law suggested by Smith and corresponds to the lower bound for audible frequencies and that also language involves subneuronal mimicry by LC water blobs. A fascinating possibility is that subneuronal LC water blobs could be responsible for all biorhytms and be involved also with our long term memories.

3. Frequency entrainment for both ELF and high frequency branches can be understood if both the thickness and length of the magnetic flux tubes are subject to a homeostatic control. The assumption that the total magnetic energy of the flux tube remains constant during the frequency entrainment together with the magnetic flux quantization implies that the ratio \(S/L \) of the area \(S \) of the magnetic flux tube to its length \(L \) remains constant during entrainment. Thus the ratios \(f_h/f_{ELF} \) of the magnetic transition frequencies to characteristic frequencies of MEs would be homeostatic invariants in agreement with the empirical findings. The value of the ratio is in good approximation \(f_h/f_{ELF} = 2 \times 10^{11} \).

4. The electromagnetic signature of the homeopathic potency corresponds to MEs stimulated by the electromagnetic transitions associated with the potency molecule. Since these frequencies are also transition frequencies for water molecules or space-time sheets containing water in liquid crystal form a resonant interaction is possible and em fields of MEs can be amplified/replicated by the transitions associated with these structures.

5. According to \([54]\), coherence propagates with a light velocity whereas coherent domain of size \(L \) diffuses with a velocity given by the scaling law \(v \propto L f \). In TGD the natural interpretation for the velocity of coherence propagation is as a signal velocity inside ME (possibly representing external em field). \(v \) is in turn associated with the motion of ME transversal to some linear structure along it: this effect is not possible in Maxwell’s theory since particle-field duality is not realized at the classical level. The velocities are reported to be of order few meters per second and of the same order of magnitude as nerve pulse conduction velocity and phase velocities for EEG waves. This relationship is of the same form as the scaling law which relates together the phase velocity of EEG wave (velocity of EEG ME in TGD framework) and the size \(L \) of corresponding structure of brain or body. For instance, scaling law relates the size \(L \) for brain structures and corresponding magnetic sensory canvas with much larger size \(L_c = c/f \) \([61]\). Scaling law would give \(v/c = f_{ELF}/f_h \) and velocity of order mm/s for the motion of transversal
MEs along magnetic flux tubes: this velocity is considerably smaller velocity than m/s reported in [54].

A detailed model for various homeopathic effects is discussed in [33]. The model leads to a generalization of the view about many-sheeted DNA with magnetic mirrors transversal to DNA coding the electromagnetic structure of the organism and allows to understand introns as chemically passive but electromagnetically active genes. Magnetic mirrors provide also a recognition mechanism fundamental for the functioning of the bio-system: consider only the ability of aminoacids to find corresponding RNA triplets, the self assembly of tobacco mosaic virus and the functioning of the immune system. Magnetic mirrors can also serve as bridges between sender and receiver of intent in remote healing and viewing and these processes could be seen as scaled-up version of those occurring routinely endogenously.

3.3 Could cell correspond to almost vacuum extremal?

The question whether cell could correspond almost vacuum extremal of Kähler action was the question which led to the realization that the frequencies of peak sensitivity for photoreceptors correspond to the Josephson frequencies of biologically important ions if one accepts that the value of the Weinberg angle equals to \(\sin^2(\theta_W) = 0.0295 \) instead of the value .23 in the normal phase, in which the classical electromagnetic field is proportional to the induced Kähler form of \(CP_2 \) in a good approximation. Another implication made possible by the large value of Planck constant is the identification of Josephson photons as the counterparts of biophotons one one hand and those of EEG photons on the other hand. These observation in turn led to a detailed model of sensory qualia and of sensory receptor. Therefore the core of this argument deserves to be represented also here although it has been discussed in [55].

3.3.1 Cell membrane as almost vacuum extremal

Although the fundamental role of vacuum extremals for quantum criticality and life has been obvious from the beginning, it took a long time to realize how one could model living cell as this kind of system.

1. Classical electric fields are in a fundamental role in biochemistry and living biosystems are typically electrets containing regions of spontaneous electric polarization. Fröhlich [29] proposed that oriented electric dipoles form macroscopic quantum systems with polarization density serving as a macroscopic order parameter. Several theories of consciousness share this hypothesis. Experimentally this hypothesis has not been verified.

2. TGD suggests much more profound role for the unique di-electric properties of the biosystems. The presence of strong electric dipole fields is a necessary requisite for cognition and life and could even force the emergence of life. Strong electric fields imply also the presence of the charged wormhole BE condensates: the surface density of the charged wormholes on the boundary is essentially equal to the normal component of the electric field so that wormholes are in some sense ‘square root’ of the dipole condensate of Fröhlich! Wormholes make also possible pure vacuum polarization type dipole fields: in this case the magnitudes of the em field at the two space-time sheets involved are same whereas the directions of the fields are opposite. The splitting of wormhole contacts creates fermion pairs which might be interpreted as cognitive fermion pairs. Also microtubules carry strong longitudinal electric fields. This formulation emerged much before the identification of ordinary gauge bosons and their superpartners as wormhole contacts.

Cell membrane is the basic example about electret and one of the basic mysteries of cell biology is the resting potential of the living cell. Living cell membranes carry huge electric fields: something like \(10^7 \) Volts per meter. For neuron resting potential corresponds to about .07 eV energy gained when unit charge travels through the membrane potential. In TGD framework it is not at all clear whether the presence of strong electromagnetic field necessitates the presence of strong Kähler field. The extremely strong electric field associated with the cell membrane is not easily understood in Maxwell’s theory and almost vacuum extremal property could change the situation completely in TGD framework.
1. The configuration could be a small deformation of vacuum extremal so that the system would be highly critical as one indeed expects on basis of the general vision about living matter as a quantum critical system. For vacuum extremals classical em and Z^0 fields would be proportional to each other. The second half of Maxwell’s equations is not in general satisfied in TGD Universe and one cannot exclude the presence of vacuum charge densities in which case elementary particles as the sources of the field would not be necessarily. Neutrinos are the most candidates for the carrier of Z^0 charge. Also nuclei could feed their weak gauge fluxes to almost non-vacuum extremals but not atomic electrons since this would lead to dramatic deviations from atomic physics. This would mean that weak bosons would be light in this phase and also Weinberg angle could have a non-standard value.

2. There are also space-time surfaces for CP_2 projection belongs to homologically non-trivial geodesic sphere. In this case classical Z^0 field can vanish and the vision has been that it is sensible to speak about two basic configurations.

(a) Almost vacuum extremals (homologically trivial geodesic sphere).
(b) Small deformations of non-vacuum extremals for which the gauge field has pure gauge Z^0 component (homologically non-trivial geodesic sphere).

The latter space-time surfaces are excellent candidates for configurations identifiable as TGD counterparts of standard electroweak physics. Note however that the charged part of electroweak fields is present for them.

3. To see whether the latter configurations are really possible one must understand how the gauge fields are affected in the color rotation.

(a) The action of color rotations in the holonomy algebra of CP_2 is non-trivial and corresponds to the action in $U(2)$ sub-group of $SU(3)$ mapped to $SU(2)_L \times U(1)$. Since the induced color gauge field is proportional to Kähler form, the holonomy is necessary Abelian so that also the representation of color rotations as a sub-group of electro-weak group must correspond to a local $U(1)$ sub-group local with respect to CP_2 point.

(b) Kähler form remains certainly invariant under color group and the right handed part of Z^0 field reducing to $U(1)_R$ sub-algebra should experience a mere Abelian gauge transformation. Also the left handed part of weak fields should experience a local $U(1)_L$ gauge rotation acting on the neutral left handed part of Z^0 in the same manner as it acts on the right handed part. This is true if the $U(1)_L$ sub-group does not depend on point of CP_2 and corresponds to Z^0 charge. If only Z^0 part of the induced gauge field is non-vanishing as it can be for vacuum extremals then color rotations cannot change the situation. If Z^0 part vanishes and non-vacuum extremal is in question, then color rotation rotation of W components mixing them but acts as a pure $U(1)$ gauge transformation on the left handed component.

(c) It might not be without importance that for any partonic 2-surface induced electroweak gauge fields have always $U(1)$ holonomy, which could allow to define what neutral part of induced electroweak gauge field means locally. This does not however hold true for the 4-D tangent space distribution. In any case, the cautious conclusion is that there are two phases corresponding to nearly vacuum extremals and small deformations of extremals corresponding to homologically non-trivial geodesic spheres for which the neutral part of the classical electroweak gauge field reduces to photon field.

4. The unavoidable presence of long range Z^0 fields would explain large parity breaking in living matter, and the fact that neutrino Compton length is of the order of cell size would suggest the possibility that within neutrino Compton electro-weak gauge fields or even longer scales could behave like massless fields. The explanation would be in terms of the different ground state characterized also by a different value of Weinberg angle. For instance, of the p-adic temperature of weak bosons corresponds to $T_p = 1/2$, the mass scale would be multiplied by a factor $\sqrt{M_{GS}}$ and Compton lengths of weak bosons would be around 10^{-4} meters corresponding to the size scale of a large neuron. If the value of Planck constant is also large then the Compton length increases to astrophysical scale.
5. From the equations for classical induced gauge fields in terms of Kähler form and classical Z^0 field \[1\], \[1\]

\[
\gamma = 3J - \frac{p}{2}Z^0, \quad QZ = I_L^3 - pQ_{em}, \quad p = \sin^2(\theta_W)
\] (3.3.1)

it follows that for the vacuum extremals the part of the classical electro-weak force proportional to the electromagnetic charge vanishes for $p = 0$ so that only the left-handed couplings to the weak gauge bosons remain. The absence of electroweak symmetry breaking and vanishing or at least smallness of p would make sense below the Compton length of dark weak bosons. If this picture makes sense it has also implications for astrophysics and cosmology since small deformations of vacuum extremals are assumed to define the interesting extremals. Dark matter hierarchy might explain the presence of unavoidable long ranged Z^0 fields as being due to dark matter with arbitrarily large values of Planck constant so that various elementary particle Compton lengths are very long.

6. The simplest option is that the dark matter –say quarks with Compton lengths of order cell size and Planck constant of order $10^7\hbar_0$ - are responsible for dark weak fields making almost vacuum extremal property possible. The condition that Josephson photons correspond to EEG frequencies implies $h \sim 10^{13}\hbar_0$ and would mean the scaling of intermediate gauge boson Compton length to that corresponding to the size scale of a larger neuron. The quarks involved with with DNA as topological quantum computer model could be in question and membrane potential might be assignable to the magnetic flux tubes. The ordinary ionic currents through cell membrane -having no coupling to classical Z^0 fields and not acting as its source- would be accompanied by compensating currents of dark fermions taking care that the almost vacuum extremal property is preserved. The outcome would be large parity breaking effects in cell scale from the left handed couplings of dark quarks and leptons to the classical Z^0 field. The flow of Na$^+$ ions during nerve pulse could take along same dark flux tube as the flow of dark quarks and leptons. This near vacuum extremal property might be fundamental property of living matter at dark space-time sheets at least.

Could nuclei and neutrinos couple to light variants of weak gauge fields in the critical phase?

One of the hard-to-kill ideas of quantum TGD inspired model of quantum biology is that neutrinos might have something do with hearing and cognition. This proposal looks however unrealistic in the recent vision. I would be more than happy to get rid of bio-neutrinos but the following intriguing finding does not allow me to have this luxury.

1. Assume that the endogenous magnetic field $B_{end} = .2$ Gauss is associated with a nearly vacuum extremal and therefore accompanied by $B_Z = 2B_{end}/p$. Assume for definiteness $m_\nu = .3$ eV and $p = \sin^2(\theta_W) = .23$. The neutrino cyclotron frequency is given by the following expression

\[
f_\nu = \frac{m_e}{m_\nu} \frac{1}{2\sin^2(\theta_W)} f_e.
\]

From $f_e \approx .57 \times$ MHz and $p = \sin^2(\theta_W) = .23$ one obtains $E_\nu = 1.7 \times 10^{-2}$ eV, which is roughly one third to the Josephson frequency of electron assignable to cell membrane. Could Josephson frequency of cell membrane excite neutrino cyclotron transitions?

2. The model for photoreceptors to be discussed below forces to conclude that the value of Weinberg angle in the phase near vacuum extremal must be $p = .0295$ if one wants to reproduce the peak energies of photoreceptors as Josephson frequencies of basic biological ions. This would predict $E_\nu = .41$ eV, which is rather near to the metabolic energy quantum. The non-relativistic formula however fails in this case and one must use the relativistic formula giving

\[
E = \sqrt{g_Z Q_Z B_Z 2\pi} \approx .48 \text{ eV}
\]
3.3. Could cell correspond to almost vacuum extremal?

giving the metabolic energy quantum. Does this mean that Z^0 cyclotron frequency for neutrino is related to the transfer of metabolic energy using Z^0 MEs in the phase near vacuum extremals.

3. Josephson frequency is proportional to $1/\hbar$, whereas neutrino cyclotron frequency does not depend on \hbar at non-relativistic energies. For larger values of \hbar the neutrino becomes relativistic so that the mass in the formula for cyclotron frequency must be replaced with energy. This gives

$$E = \sqrt{n r^{1/2} \sqrt{gZQZBZ2π}} \simeq r^{1/2} \times 48 \text{ eV} , \quad r = \sqrt{\hbar/\hbar_0} .$$

Here n refers to the cyclotron harmonic.

These observations raise the question whether the three frequencies with maximum response assignable to the three different types of receptors of visible light in retina could correspond to the three cyclotron frequencies assignable to the three neutrinos with different mass scales? The first objection is that the dependence on mass disappears completely at the relativistic limit. The second objection is that the required value value of Planck constant is rather small and far from being enough to have electroweak boson Compton length of order cell size. One can of course ask whether the electroweak gauge bosons are actually massless inside almost vacuum extremals. If fermions -including neutrino- receive their masses from p-adic thermodynamics then massless electroweak gauge bosons would be consistent with massive fermions. Vacuum extremals are indeed analogous to the unstable extrema of Higgs potential at which the Higgs vacuum expectation vanishes so that this interpretation might make sense.

Ionic Josephson frequencies defined by the resting potential for nearly vacuum extremals

If cell membrane corresponds to an almost vacuum extremal, the membrane potential potential is replaced with an effective resting potential containing also the Z^0 contribution proportional to the ordinary resting potential. The surprising outcome is that one could understand the preferred frequencies for photo-receptors as Josephson frequencies for biologically important ions. Furthermore, most Josephson energies are in visible and UV range and the interpretation in terms of biophotons is suggestive. If the value of Planck constant is large enough Josephson frequencies are in EEG frequency range so that biophotons and EEG photons could be both related to Josephson photons with large \hbar.

1. One must assume that the interior of the cell corresponds to many fermion state -either a state filled with neutrinos up to Fermi energy or Bose-Einstein condensate of neutrino Cooper pairs creating a harmonic oscillator potential. The generalization of nuclear harmonic oscillator model so that it applies to multi-neutrino state looks natural.

2. For exact vacuum extremals elementary fermions couple only via left-handed isospin to the classical Z^0 field whereas the coupling to classical em field vanishes. Both K^+, Na^+, and Cl^-, $A - Z = Z + 1$ so that by p-n pairing inside nucleus they have the weak isospin of neuron (opposite to that of neutrino) whereas Ca^{++} nucleus has a vanishing weak isospin. This might relate to the very special role of Ca^{++} ions in biology. For instance, Ca^{++} defines an action potential lasting a time of order .1 seconds whereas Na^+ defines a pulse lasting for about 1 millisecond. These time scales might relate to the time scales of CD's associated with quarks and electron.

3. The basic question is whether only nuclei couple to the classical Z^0 field or whether also electrons do so. If not, then nuclei have a large effective vector coupling to em field coming from Z^0 coupling proportional to the nuclear charge increasing the value of effective membrane potential by a factor of order 100. If both electrons and nuclei couple to the classical Z^0 field, one ends up with difficulties with atomic physics. If only quarks couple to the Z^0 field and one has $Z^0 = -2\gamma/p$ for vacuum extremals, and one uses average vectorial coupling $(\langle I^2 \rangle) = \pm 1/4$ with $+$ for proton and - for neutron, the resulting vector coupling is following

$$\left(\frac{Z - N}{4} - pZ\right)Z^0 + q_{em}\gamma = Q_{eff}\gamma ,$$

$$Q_{eff} = -\frac{Z - N}{2p} + 2Z + q_{em} .$$
Here γ denotes em gauge potential. For K^+, Cl^-, Na^+, Ca^{++} one has $Z = (19,17,11,20)$, $Z-N = (-1,-1,-1,0)$, and $q_m = (1,-1,1,2)$. Table 1 below gives the values of Josephson energies for some values of resting potential for $p = .23$. Rather remarkably, they are in IR or visible range.

<table>
<thead>
<tr>
<th>Ion</th>
<th>$V = -40$ mV</th>
<th>$V = -60$ mV</th>
<th>$V = -70$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$</td>
<td>1.01</td>
<td>1.51</td>
<td>1.76</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>1.40</td>
<td>2.11</td>
<td>2.46</td>
</tr>
<tr>
<td>K$^+$</td>
<td>1.64</td>
<td>2.47</td>
<td>2.88</td>
</tr>
<tr>
<td>Ca$^{++}$</td>
<td>1.68</td>
<td>2.52</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Table 2. Values of the Josephson energy of cell membrane for some values of the membrane voltage for $p = .23$. The value $V = -40$ mV corresponds to the resting state for photoreceptors and $V = -70$ mV to the resting state of a typical neuron.

3.3.2 Are photoreceptors nearly vacuum extremals?

In Hodgkin-Huxley model ionic currents are Ohmian currents. If one accepts the idea that the cell membrane acts as a Josephson junction, there are also non-dissipative oscillatory Josephson currents of ions present, which run also during flow equilibrium for the ionic parts of the currents. A more radical possibility is that the dominating parts of the ionic currents are oscillatory Josephson currents so that no metabolic energy would be needed to take care that density gradients for ions are preserved. Also in this case both nearly vacuum extremals and extremals with nearly vanishing Z^0 field can be considered. Since sensory receptors must be highly critical the natural question is whether they could correspond to nearly vacuum extremals. The quantitative success of the following model for photoreceptors supports this idea.

Photoreceptors can be classified to three kinds of cones responsible for color vision and rods responsible for black-white vision. The peak sensitivities of cones correspond to wavelengths (405, 535, 565) nm and energies (3.06, 2.32, 2.19) eV. The maximum absorption occurs in the wave length range 420-440 nm, 534-545 nm, 564-580 nm for cones responsible for color vision and 498 nm for rods responsible black-white vision [4, 6]. The corresponding photon energies are (2.95, 2.32, 2.20) eV for color vision and to 2.49 eV for black-white vision. For frequency distribution the maxima are shifted from these since the maximum condition becomes $dI/d\lambda + 2I/\lambda = 0$, which means a shift to a larger value of λ, which is largest for smallest λ. Hence the energies for maximum absorbance are actually lower and the downwards shift is largest for the highest energy.

From Table 2 above it is clear that the energies of Josephson photons are in visible range for reasonable values of membrane voltages, which raises the question whether Josephson currents of nuclei in the classical em and Z^0 fields of the cell membrane could relate to vision.

Consider first the construction of the model.

1. Na$^+$ and Ca$^{++}$ currents are known to present during the activation of the photoreceptors. Na$^+$ current defines the so called dark current [6] reducing the membrane resting potential below its normal value and might relate to the sensation of darkness as eyes are closed. Hodgkin-Huxley model predicts that also K^+ current is present. Therefore the Josephson energies of these three ion currents are the most plausible correlates for the three colors.

2. One ends up with the model in the following manner. For Ca$^{++}$ the Josephson frequency does not depend on p and requiring that this energy corresponds to the energy 2.32 eV of maximal sensitivity for cones sensitive to green light fixes the value of the membrane potential during hyperpolarization to $V = .055$ V, which is quite reasonable value. The value of the Weinberg angle parameter can be fixed from the condition that other peak energies are reproduced optimally. The result of $p = .0295$.

The predictions of the model come as follows summarized also by the Table 3 below.

1. The resting potential for photoreceptors is $V = -40$ mV [7]. In this case all Josephson energies are below the range of visible frequencies for $p = .23$. Also for maximal hyperpolarization Na$^+$ Josephson energy is below the visible range for this value of Weinberg angle.
2. For $V = -40 \text{ mV}$ and $p = .0295$ required by the model the energies of Cl^- and K^+ Josephson photons correspond to red light. 2 eV for Cl^- corresponds to a basic metabolic quantum. For Na^+ and Ca^{++} the wave length is below the visible range. Na^+ Josephson energy is below visible range. This conforms with the interpretation of Na^+ current as a counterpart for the sensation of darkness.

3. For $V = -55 \text{ mV}$ - the threshold for the nerve pulse generation- and for $p = .0295$ the Josephson energies of Na^+, Ca^{++}, and K^+ a correspond to the peak energies for cones sensitive to red, green, and blue respectively. Also Cl^- is in the blue region. Ca^{++} Josephson energy can be identified as the peak energy for rods. The increase of the hyperpolarization to $V = -59 \text{ mV}$ reproduces the energy of the maximal wave length response exactly. A possible interpretation is that around the criticality for the generation of the action potential ($V \simeq -55 \text{ mV}$) the qualia would be generated most intensely since the Josephson currents would be strongest and induce Josephson radiation inducing the quale in other neurons of the visual pathway at the verge for the generation of action potential. This supports the earlier idea that visual pathways defines a neural window. Josephson radiation could be interpreted as giving rise to biophotons (energy scale is correct) and to EEG photons (for large enough values of \hbar the frequency scales is that of EEG).

4. In a very bright illumination the hyperpolarization is $V = -65 \text{ mV}$ θ, which the normal value of resting potential. For this voltage Josephson energies are predicted to be in UV region except in case of Ca^{++}. This would suggests that only the quale 'white' is generated at the level of sensory receptor: very intense light is indeed experienced as white.

The model reproduces basic facts about vision assuming that one accepts the small value of Weinberg angle, which is indeed a natural assumption since vacuum extremals are analogous to the unstable extrema of Higgs potential and should correspond to small Weinberg angle. It deserves to be noticed that neutrino Josephson energy is 2 eV for $V = -50 \text{ mV}$, which correspond to color red. 2 eV energy defines an important metabolic quantum.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Na^+</th>
<th>Cl^-</th>
<th>K^+</th>
<th>Ca^{++}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_J(0.04 \text{ mV}, p = .23)/eV$</td>
<td>1.01</td>
<td>1.40</td>
<td>1.51</td>
<td>1.76</td>
</tr>
<tr>
<td>$E_J(0.065 \text{ V}, p = .23)/eV$</td>
<td>1.64</td>
<td>2.29</td>
<td>2.69</td>
<td>2.73</td>
</tr>
<tr>
<td>$E_J(40 \text{ mV}, p = .0295)/eV$</td>
<td>1.60</td>
<td>2.00</td>
<td>2.23</td>
<td>1.68</td>
</tr>
<tr>
<td>$E_J(50 \text{ mV}, p = .0295)/eV$</td>
<td>2.00</td>
<td>2.49</td>
<td>2.79</td>
<td>2.10</td>
</tr>
<tr>
<td>$E_J(55 \text{ mV}, p = .0295)/eV$</td>
<td>2.20</td>
<td>2.74</td>
<td>3.07</td>
<td>2.31</td>
</tr>
<tr>
<td>$E_J(65 \text{ mV}, p = .0295)/eV$</td>
<td>2.60</td>
<td>3.25</td>
<td>3.64</td>
<td>2.73</td>
</tr>
<tr>
<td>$E_J(70 \text{ mV}, p = .0295)/eV$</td>
<td>2.80</td>
<td>3.50</td>
<td>3.92</td>
<td>2.94</td>
</tr>
<tr>
<td>$E_J(75 \text{ mV}, p = .0295)/eV$</td>
<td>3.00</td>
<td>3.75</td>
<td>4.20</td>
<td>3.15</td>
</tr>
<tr>
<td>$E_J(80 \text{ mV}, p = .0295)/eV$</td>
<td>3.20</td>
<td>4.00</td>
<td>4.48</td>
<td>3.36</td>
</tr>
<tr>
<td>$E_J(90 \text{ mV}, p = .0295)/eV$</td>
<td>3.60</td>
<td>4.50</td>
<td>5.04</td>
<td>3.78</td>
</tr>
<tr>
<td>$E_J(95 \text{ mV}, p = .0295)/eV$</td>
<td>3.80</td>
<td>4.75</td>
<td>5.32</td>
<td>3.99</td>
</tr>
<tr>
<td>Color</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>W</td>
</tr>
<tr>
<td>E_{max}</td>
<td>2.19</td>
<td>2.32</td>
<td>3.06</td>
<td>2.49</td>
</tr>
<tr>
<td>energy-interval/eV</td>
<td>1.77-2.48</td>
<td>1.97-2.76</td>
<td>2.48-3.10</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. The table gives the prediction of the model of photoreceptor for the Josephson energies for typical values of the membrane potential. For comparison purposes the energies E_{max} corresponding to peak sensitivities of rods and cones, and absorption ranges for rods are also given. R,G,B,W refers to red, green, blue, white. The values of Weinberg angle parameter $p = \sin^2(\theta_W)$ are assumed to be .23 and .0295. The latter value is forced by the fit of Josephson energies to the known peak energies.

It interesting to try to interpret the resting potentials of various cells in this framework in terms of the Josephson frequencies of various ions.

1. The maximum value of the action potential is +40 mV so that Josephson frequencies are same as for the resting state of photoreceptor. Note that the time scale for nerve pulse is so slow as
compared to the frequency of visible photons that one can consider that the neuronal membrane is in a state analogous to that of a photoreceptor.

2. For neurons the value of the resting potential is -70 mV. Na^+ and Ca^{++} Josephson energies 2.80 eV and 2.94 eV are in the visible range in this case and correspond to blue light. This does not mean that Ca^{++} Josephson currents are present and generate sensation of blue at neuronal level: the quale possibly generated should depend on sensory pathway. During the hyperpolarization period with -75 mV the situation is not considerably different.

3. The value of the resting potential is -95 mV for skeletal muscle cells. In this case Ca^{++} Josephson frequency corresponds to 4 eV metabolic energy quantum as the table below shows.

4. For smooth muscle cells the value of resting potential is -50 mV. In this case Na^+ Josephson frequency corresponds to 2 eV metabolic energy quantum.

5. For astroglia the value of the resting potential is -80/-90 mV for astroglia. For -80 mV the resting potential for Cl^- corresponds to 4 eV metabolic energy quantum. This suggests that glial cells could also provide metabolic energy as Josephson radiation to neurons.

6. For all other neurons except photo-receptors and red blood cells Josephson photons are in visible and UV range and the natural interpretation would be as biophotons. The biophotons detected outside body could represent sensory leakage. An interesting question is whether the IR Josephson frequencies could make possible some kind of IR vision.

3.4 TGD based model for qualia and sensory receptors

The construction of model for hearing in TGD framework involves so many speculative elements that only the condition of universality of the model so that it applies to all sensory qualia gives hopes of constructing something which might be taken seriously.

3.4.1 A general model of qualia and sensory receptor

The identification of sensory qualia in terms of quantum number increments and geometric qualia representing geometric and kinematic information in terms of moduli of CD, the assignment of sensory qualia with the membrane of sensory receptor, and capacitor model of qualia are basic ideas behind the model. The communication of sensory data to magnetic body using Josephson photons is also a key aspect of the model.

A general model of qualia

It is good to start by summarizing the general vision about sensory qualia and geometric qualia in TGD Universe.

1. The basic assumption is that sensory qualia correspond to increments of various quantum numbers in quantum jump. Standard model quantum numbers- color quantum numbers, electromagnetic charge and weak isospin, and spin are the most obvious candidates. Also cyclotron transitions changing the integer characterizing cyclotron state could corresponds to some kind of quale- perhaps ‘a feeling of existence’. This could make sense for the qualia of the magnetic body.

2. Geometric qualia could correspond to the increments of zero modes characterizing the induced CP_2 Kähler form of the partonic 2-surface and of the moduli characterizing the causal diamonds serving as geometric correlates of selves. This moduli space involves the position of CD and the relative position of tips as well as position in CP_2 and relative position of two CP_2 points assigned to the future and past boundaries of CD. There are good motivations for proposing that the relative positions are quantized. This gives as a special case the quantization of the scale of CD in powers of two. Position and orientation sense could would represent this kind of qualia. Also kinematical qualia like sensation of acceleration could correspond to geometric qualia in generalized 4-D sense. For instance, the sensation about motion could be coded by Lorentz boots of sub-CD representing mental image about the object.
3.4. TGD based model for qualia and sensory receptors

3. One can in principle distinguish between qualia assignable to the biological body (sensory receptors in particular) and magnetic body. The basic question is whether sensory qualia can be assigned only with the sensory receptors or with sensory pathways or with both. Geometric qualia might be assignable to the magnetic body and could provide third person perspective as a geometric and kinematical map of the body and its state of motion represented using the moduli space assignable to causal diamonds (CD). This map could be provided also by the body in which case the magnetic body would only share various mental images. The simplest starting assumption consistent with neuro-science is that sensory qualia are assigned with the cell membrane of sensory receptor and perhaps also with the neurons receiving data from it carried by Josephson radiation coding for the qualia and possibly partially regenerating them if the receiving neuron has same value of membrane potential as the sensory receptor when active. Note that during nerve pulse also this values of membrane potential is achieved for some time.

Could some sensory qualia correspond to the sensory qualia of the magnetic body?

Concerning the understanding of a detailed model for how sensory qualia are generated, the basic guideline comes from the notion of magnetic body and the idea that sensory data are communicated to the magnetic body as Josephson radiation associated with the cell membrane. This leaves two options: either the primary a sensory qualia are generated at the level of sensory receptor and the resulting mental images negentropically entangle with the "feeling of existence" type mental images at the magnetic body or they can be also generated at the level of the magnetic body by Josephson radiation -possibly as cyclotron transitions. The following arguments are to-be-or-not-to-be questions about whether the primary qualia must reside at the level of sensory receptors.

1. Cyclotron transitions for various cyclotron condensates of bosonic ions or Cooper pairs of fermionic ions or elementary particles are assigned with the motor actions of the magnetic body and Josephson frequencies with the communication of the sensory data. Therefore it would not be natural to assign qualia with cyclotron transitions. One the other hand, in zero energy ontology motor action can be regarded formally as a time reversed sensory perception, which suggests that cyclotron transitions correlated with the "feeling of existence" at magnetic body entangled with the sensory mental images. They could also code for the pitch of sound as will be found but this quale is strictly speaking also a geometric quale in the 4-D framework.

2. If Josephson radiation induces cyclotron transitions, the energy of Josephson radiation must correspond to that of cyclotron transition. This means very strong additional constraint not easy to satisfy except during nerve pulse when frequencies varying from about 10^{14} Hz down to kHz range are emitted the system remains Josephson contact. Cyclotron frequencies are also rather low in general, which requires that the value of \hbar must be large in order to have cyclotron energy above the thermal threshold. This would however conform with the very beautiful dual interpretation of Josephson photons in terms of biophotons and EEG. One expects that only high level qualia can correspond to a very large values of \hbar needed.

For the sake of completeness it should be noticed that one might do without large values of \hbar if the carrier wave with frequency defined by the metabolic energy quantum assignable to the kicking and that the small modulation frequency corresponds to the cyclotron frequency. This would require that Josephson frequency corresponds to the frequency defined by the metabolic quantum. This is not consistent with the fact that very primitive organisms possess sensory systems.

3. If all primary qualia are assigned to the magnetic body, Josephson radiation must include also gluons and light counter parts of weak bosons are involved besides photons. This is quite a strong additional assumption and it will be found that the identification of sensory qualia in terms of quantum numbers of quark pair restricts them to the cell membrane. The coding of qualia by Josephson frequencies is however possible and makes it possible to regenerate them in nervous system. The successful model explaining the peak frequencies of photoreceptors in terms of ionic cyclotron frequencies supports this view and provides a realization for an old idea about spectroscopy of consciousness which I had already been ready to give up.
Capacitor model of sensory qualia

In capacitor model of sensory receptor the increments of quantum numbers are amplified as particles with given quantum numbers flow between the plates of capacitor-like system and the second plate defines the subself responsible for the mental image. The generation of complementary qualia assignable to the two plates and bringing in mind complementary colors is predicted. The capacitor is at the verge of dielectric breakdown. The interior and exterior of the receptor cell are the most plausible candidates for the capacitor plates with lipid layers defining the analog of dielectric able to changes its properties. Josephson currents generating Josephson radiation could communicate the sensory percept to the magnetic body but would not generate genuine sensory qualia there (the pitch of sound would be interpreted as a geometric quale). The coding is possible if the basic qualia correspond in one-one manner to ion-dielectric currents. There are sensory receptors which themselves do not fire (this is the case for hair cells for hearing and tactile receptor cells) and in this case the neuron next to the receptor in the sensory pathway would take the role of the quantum critical system.

The notion of sensory capacitor can be generalized. In zero energy ontology the plates could be effectively replaced with positive and negative energy parts of zero energy state or with cyclotron Bose-Einstein condensates corresponding to two different energies. Plates could also correspond to a pair of space-time sheets labeled by different p-adic primes and the generation of quale would correspond in this case to a flow of particles between the space-time sheets or magnetic flux tubes connected by contacts defining Josephson junctions.

The TGD inspired model for photoreceptors relies crucially on the assumption that sensory neurons at least and probably all cell membranes correspond to nearly vacuum extremals with the value of Weinberg angle equal to \(\sin^2(\theta_W) = 0.0295 \) and weak bosons having Compton length of order cell size and ordinary value of Planck constant. This also explains the large parity breaking effects in living matter. The almost vacuum extremal property conforms with the vision about cell membrane as a quantum critical system ideal for acting as a sensory receptor.

3.4.2 Qualia and DNA as topological quantum computer hypothesis

The proposed vision about qualia requires a lot of new physics provided by TGD. What leads to a highly unique proposal is the intriguing coincidence of fundamental elementary particle time scales with basic time scales of biology and neuro science and the model of DNA as topological quantum computer.

1. Zero energy ontology brings in the size scale of \(CD \) assignable to the field body of the elementary particle. Zero energy states with negentropic time-like entanglement between positive and negative energy parts of the state might provide a key piece of the puzzle. The negentropic entanglement between positive energy parts of the states associated with the sub-\(CD \) assignable to the cell membrane and sub-\(CD \) at the magnetic body is expected to be an important factor.

2. For the standard value of \(\hbar \) the basic prediction would be 1 ms second time scale of \(u \) quark, 6.5 ms time scale of \(d \) quark, and .1 second time scale of electron as basic characterizes of sensory experience if one accept the most recent estimates \(m(u) = 2 \text{ MeV} \) and \(m(d) = 5 \text{ MeV} \) for the quark masses. These time scales correspond to 10 Hz, 160 Hz, and 1280 Hz frequencies, which all characterize neural activity (for the identification of 160 Hz frequency as cerebellar resonance frequency see [20]). Hence quarks could be the most interesting particles as far as qualia are considered and the first working hypothesis would be that the fundamental quantum number increments correspond to those for quark-anti-quark pair. The identification in terms of quantum numbers of single quark is inconsistent with the model of color qualia.

3. The model of DNA as topological quantum computer led to the proposal that DNA nucleotides are connected to the lipids of the cell membrane by magnetic flux tubes having quark and antiquark at its ends such that the \(u \) and \(d \) quarks and their antiquarks code for the four nucleotides. The outer lipid layer was also assumed to be connected by flux tubes to the nucleotide in some other cell or in cell itself.

4. The model for DNA as topological quantum computer did not completely specify whether the flux tubes are ordinary flux tubes or wormhole flux tubes with possibly opposite signs of energy assigned with the members of the flux tube pair. Although it is not necessary, one could assume...
that the quantum numbers of the two parallel flux tubes cancel each other so that wormhole flux tube would be characterized by quantum numbers of quark pairs at its ends. It is not even necessary to assume that the net quantum numbers of the flux tubes vanish. Color confinement however suggests that the color quantum at the opposite ends of the flux tube are of opposite sign.

(a) The absence of a flux tube between lipid layers was interpreted as an isolation from external world during the topological quantum computation. The emergence of the flux tube connection means halting of topological quantum computation. The flux tube connection with the external world corresponds to sensory perception at the level of DNA nucleotide in consistency with the idea that DNA plays the role of the brain of cell [65]. The total color quantum numbers at the ends of the flux tubes were assumed to sum up to zero. This means that the fusion of the flux tubes ending to the interior and exterior cell membrane to single one creates a flux tube state not localized inside cell and that the interior of cell carries net quantum numbers. The attractive interpretation is that this process represents the generation of quale of single nucleotide.

(b) The formation of the flux tube connection between lipid layers would involve the transformation of both quark-antiquark pairs to an intermediate state. There would be no kinematic constraints on the process nor to the mass scales of quarks. A possible mechanism for the separation of the two quark-antiquark pairs associated with the lipids from the system is double reconnection of flux tubes which leads to a situation in which the quark-antiquark pairs associated with the lipid layers are connected by short flux loops and separated to a disjoint state and there is a long wormhole flux tube connecting the nucleotides possibly belonging to different cells.

(c) The state of two quark pairs need not have vanishing quantum numbers and one possibility is that the quantum numbers of this state code for qualia. If the total numbers of flux tubes are vanishing also the net quantum numbers of the resulting long flux tube connecting two different cells provide equivalent coding. A stronger condition is that this state has vanishing net quantum numbers and in this case the ends of the long flux tube would carry opposite quantum numbers. The end of flux tube at DNA nucleotide would characterize the quale.

5. Two identification of primary qualia are therefore possible.

(a) If the flux tubes have vanishing net quantum numbers, the primary sensory quale can be assigned to single receptor cell and the flow of the quantum numbers corresponds to the extension of the system with vanishing net quantum numbers in two-cell system.

(b) If the net quantum numbers of the flux tube need not vanish, the resulting two cell system carries non-vanishing quantum numbers as the pair of quark-antiquark pairs removes net quantum numbers out of the system.

6. If the net quantum numbers for the flux tubes vanish always, the specialization of the sensory receptor membrane to produce a specific quale would correspond to an assignment of specific quantum numbers at the DNA ends of the wormhole flux tubes attached to the lipid layers of the cell membrane. The simplest possibility that one can imagine is that the outer lipid layer is connected to the conjugate DNA nucleotide inside same cell nucleus. This option would however assign vanishing net quantum number increments to the cell as whole and is therefore unacceptable.

7. The formation of a temporary flux tube connection with another cell is necessary during the generation of quale and the question is what kind of cell is in question. The connection of the receptor to cells along the sensory pathway are expected to be present along the entire sensory pathway from DNA nucleotide to a nucleotide in the conjugate strand of second neuron to DNA nucleotide of the third neuron.... If Josephson photons are able to regenerate the quale in second neuron this would make it possible to replicate the quale along entire sensory pathway. The problem is that Josephson radiation has polarization orthogonal to axons and must propagate along the axon whereas the flux tube connection must be orthogonal to axon.
Hence the temporary flux tube connection is most naturally between receptor cells and would mean horizontal integration of receptor cells to a larger structure. A holistic process in directions parallel and orthogonal to the sensory pathway would be in question. Of course, the flux tube could be also curved and connect the receptor to the next neuron along the sensory pathway.

8. The specialization of the neuron to sensory receptor would require in the framework of positive energy ontology that -as far as qualia assignable to the electro-weak quantum numbers are considered - all DNA nucleotides are identical by the corresponds of nucleotides with quarks and antiquarks. This cannot be the case. In zero energy ontology and for wormhole flux tubes it is however enough to assume that the net electroweak quantum numbers for the quark antiquark pairs assignable to the DNA wormhole contact are same for all nucleotides. This condition is easy to satisfy. It must be however emphasized that there is no reason to require that all nucleotides involved generate same quale and at the level of neurons sensory maps assigning different qualia to different nucleotides and lipids allowing DNA to sensorily perceive the external world are possible.

The model should be consistent with the assignment of the fundamental bio-rhythms with the CDs of electron and quarks.

1. Quark color should be free in long enough scales and cellular length scales are required at least. The QCD in question should therefore have long enough confinement length scales. The first possibility is provided by almost vacuum extremals with a long confinement scale also at the flux tubes. Large \hbar for the cell membrane space-time sheet seems to be unavoidable and suggests that color is free in much longer length scale than cell length scale.

2. Since the length of the flux tubes connecting DNA and cell membrane is roughly 1 micrometer and by a factor of order 10^7 longer than the quark Compton length, it seems that the value of Planck constant must be of this order for the flux tubes. This however scales up the time scale of quark CD by a factor of 10^{14} to about 10^4 years! The millisecond and 160 ms time scales are much more attractive. This forces to ask what happens to the quark-anti-quark pairs at the ends of the tubes.

3. The only possibility seems to be that the reconnection process involves a phase transition in which the closed flux tube structure containing the two quark pairs assignable to the wormhole contacts at lipid layers is formed and leaks to the page of the Big Book with pages partially labeled by the values of Planck constant. This page would correspond to the standard value of Planck constant so that the corresponding d quark CDs would have a duration of millisecond. The reconnection leading to the ordinary situation would take place after millisecond time scale. The standard physics interpretation would be as a quantum fluctuation having this duration. This sequence of quark sub-CDs could define what might be called memetic codon representation of the nerve pulse sequence.

4. One can also consider the possibility is that near vacuum extremals give rise to a copy of hadron physics for which the quarks associated with the flux tubes are light. The Gaussian Mersennes corresponding to $k = 151, 157, 163, 167$ define excellent p-adic time scales for quarks and light variants of weak gauge bosons. Quark mass 5 MeV would with $k = 120$ would be replaced with $k = 163 (167)$ one would have mass $1.77 \text{ eV} (.44 \text{ eV})$. Small scaling of both masses gives 2 eV and $.5 \text{ eV}$ which correspond to basic metabolic quanta in TGD framework. For quark mass of 2 MeV with $k = 123 k = 163 (167)$ one would give masses $.8 \text{ eV} (.05 \text{ eV})$. The latter scale correspond to Josephson energy assignable with the membrane potential in the ordinary phase. In this case a phase transition transforming almost vacuum extremal to ordinary one takes place. What this would mean that the vacuum extremal property would hold true below much shorter p-adic length scale. In zero energy ontology the scaling up of quark masses is in principle possible. This option looks however too artificial.

3.4.3 Overall view about qualia

This picture leads to the following overall view about qualia. There are two options depending on whether single quark-antiquark pair or two of them labels the qualia. In the following only the simpler option with single quark-antiquark pair is discussed.
1. All possible pairings of spin and electroweak isospin (or em charge) define 16 basic combinations if one assumes color singletness. If arbitrary color is allowed, there is a nine-fold increase of quantum numbers decomposable to color singlet and octet qualia and further into 3×15 qualia with vanishing increments of color quantum numbers and 6×16 qualia with non-vanishing increments of color quantum numbers. The qualia with vanishing increments for electroweak quantum numbers could correspond to visual colors. If electroweak quantum numbers of the quark-anti-quark pair vanish, one has 3×7 resp. 6×8 combinations of colorless resp. colored qualia.

2. There is a huge number of various combinations of these fundamental qualia if one assumes that each nucleotide defines its own quale and fundamental qualia would be analogous to constant functions and more general qualia to general functions having values in the space with $9 \times 16 - 1$ points. Only a very small fraction of all possible qualia could be realized in living matter unless the neurons in brain provide representations of body parts or of external world in terms of qualia assignable to lipid-nucleotide pairs. The passive DNA strand would be ideal in this respect.

3. The basic classification of qualia is as color qualia, electro-weak quale, and spin quale and products of these qualia. Also combinations of color qualia and and electroweak and spin quale are possible and could define exotic sensory qualia perhaps not yet realized in the evolution. Synesthesia is usually explained in terms of sensory leakage between sensory pathways and this explanation makes sense also in TGD framework if there exists a feedback from the brain to the sensory organ. Synesthesia cannot however correspond to the product qualia: for "quantum synesthesia" cross association works in both directions and this distinguishes it from the ordinary synesthesia.

4. The idea about brain and genome as holograms encourages to ask whether neurons or equivalently DNA could correspond to sensory maps with individual lipids representing qualia combinations assignable to the points of the perceptive field. In this framework quantum synesthesia would correspond to the binding of qualia of single nucleotide (or lipid) of neuron cell membrane as a sensory representation of the external world. DNA is indeed a holographic representation of the body (gene expression of course restricts the representation to a part of organism). Perhaps it is this kind of representation also at the level of sensory experience so that all neurons could be little sensory copies of body parts as holographic quantum homunculi. In particular, in the associative areas of the cortex neurons would be quantum synesthetes experiencing the world in terms of composite qualia.

5. The number of flux tube connections generated by sensory input would code for the intensity of the quale. Josephson radiation would do the same at the level of communications to the magnetic body. Also the temporal pattern of the sequence of quale mental images matters. In the case of hearing this would code for the rhythmic aspects and pitch of the sound.

3.4.4 About detailed identification of the qualia

One can make also guesses about detailed correspondence between qualia and quantum number increments.

1. Visual colors would correspond to the increments of only color quantum numbers. Each biologically important ion would correspond to its own color increment in one-one correspondence with the three pairs of color-charged gluons and these would correspond to blue-yellow, red-green, and black white [58]. Black-white vision would mean a restriction to the $SU(2)$ subgroup of color group. The model for the cell membrane as a nearly vacuum extremal assigns the peak frequencies corresponding to fundamental colors with biologically important ions. Josephson radiation could induce artificially the same color qualia in other neurons and this might provide an manner to communicate the qualia to the brain where they could be re-experienced at neuronal level. Some organisms are able to perceive also the polarization of light. This requires receptors sensitive to polarization. The spin of quark pair would naturally code for polarization quale.

2. Also tastes and odours define qualia with "colors". Certainly the increments of electroweak numbers are involved but since these qualia do not have any directional flavor, spin is probably
not involved. This would give 3×4 basic combinations are possible and can certainly explain the 5 or 6 basic tastes (counted as the number of different receptors). Whether there is a finite number of odours or not has been a subject of a continual debate and it might be that odours already correspond to a distribution of primary qualia for the receptor cell. That odours are coded by nerve pulse patterns for a group of neurons \cite{28} would conform with this picture.

3. Hearing seems to represent a rather colorless quale so that electroweak isospin suggests again itself. If we had a need to hear transversely polarized sound also spin would be involved. Cilia are involved also with hair cells acting as sensory receptors in the auditory system and vestibular system. In the case of hearing the receptor itself does not fire but induces a firing of the higher level neuron. The temporal pattern of qualia mental images could define the pitch of the sound whereas the intensity would correspond to the number of flux tube connections generated.

The modulation of Josephson frequencies -rather than Josephson frequencies as such- would code for the pitch and the total intensity of the Josephson radiation for the intensity of the sound and in fact any quale. Pitch represents non-local information and the qualia subselves should be negentropically entangled in time direction. If not, the experience corresponds to a sequence of sound pulses with no well-defined pitch and responsible for the rhythmic aspects of music. Right brain sings-left brain talks metaphor would suggests that right and left brain have different kind of specializations already at the level of sensory receptors.

4. Somato-sensory system gives rise to tactile qualia like pain, touch, temperature, proprioception (body position). There are several kinds of receptors: nocireceptors, mechanoreceptors, thermoreceptors, etc... Many of these qualia have also emotional coloring and it might be that the character of entanglement involved (negentropic/entropic defines the emotional color of the quale. If this is the case, one might consider a pure quale of touch as something analogous to hearing quale. One can argue that directionality is basic aspect of some of these qualia -say sense of touch- so that spin could be involved besides electroweak quantum numbers. The distribution of these qualia for the receptor neuron might distinguish between different tactile qualia.

3.5 The roles of Josephson radiation, cyclotron radiation, and of magnetic body

Before representing any detailed model for hearing, it is good to summarize the vision about the roles of Josephson radiation, cyclotron radiation, and of magnetic body on basis of the proposed general view about qualia and sensory receptors.

3.5.1 The role of Josephson currents

The general vision is that Josephson currents of various ions generate Josephson photons having dual interpretations as bio-photons and EEG photons. Josephson photons can in principle regenerate the quale in the neurons of the sensory pathway. In the case of motor pathways the function would be different and the transfer of metabolic energy by quantum credit card mechanism using phase conjugate photons is suggested by the observation that basic metabolic quanta 2 eV resp. 4 eV are associated with smooth muscle cells \textit{resp.} skeletal muscle cells.

As already found in the previous section, the energies of Josephson photons associated with the biologically important ions are in general in visible or UV range except when resting potential has the value of -40 mV which it has for photoreceptors. In this case also IR photons are present. Also the turning point value of membrane potential is +40 mV so that one expects the emission of IR photons. Josephson photons could be used to communicate the quale to the magnetic body.

1. If Josephson currents are present during the entire action potential, the entire range of Josephson photons down to frequencies of order 2 kHz range is emitted for the standard value of \hbar. The reason is that lower frequencies corresponds to cycles longer than the duration of the action potential. The continuum of Josephson frequencies during nerve pulse makes it possible to induce cyclotron transitions at the magnetic body of neuron or large structure. This would make possible to communicate information about spatial and temporal behavior of the nerve pulse pattern to the magnetic body and build by quantum entanglement a sensory map.
2. The frequencies below 2 kHz could be communicated as nerve pulse patterns. When the pulse rate is above \(f = 28.57 \) Hz the sequence of pulses is experienced as a continuous sound with pitch \(f \). \(f \) defines the minimum frequency for which nerve pulses could represent the pitch and there remains a 9 Hz long range to be covered by some other communication method.

3. The cyclotron frequencies of quarks and possibly also of electron would make possible a selective reception of the frequencies emitted during nerve pulse. Same applies also to the Josephson frequencies of hair cell (which does not fire). If the value of Planck constant is large this makes possible to communicate the entire range of audible frequencies to the magnetic body. Frequency would be coded by the magnetic field strength of the flux tube. Two options are available corresponding to the standard ground state for which \(Z^0 \) field is very weak and to almost vacuum extremals. For the first option one as ordinary cyclotron frequencies. The cyclotron frequency scales for them differ by a factor

\[
r(q) = \frac{Q_{\text{eff}}(q)}{Q_{\text{em}}(q)} = \frac{\epsilon(q)}{2pQ_{\text{em}}(q)} + 1 , \quad \epsilon(u) = -1 , \epsilon(d) = 1
\]

from the standard one. For \(p = .0295 \) one obtains \((r(u), r(d), r(e)) = (24.42, 49.85, 15.95)\). The cyclotron frequencies for quarks and electron with masses \(m(u)=2 \text{ MeV}, m(d)=5 \text{ MeV}, \text{ and } m(e)=.5 \text{ MeV} \) are given the table below for the two options. If one assumes that \(B_{\text{end}} \) defines the upper bound for field strength then he standard option would require both d quark and electron. Gor d quark with kHz CD the upper bound for cyclotron frequencies would be 20 kHz which corresponds to the upper limit of audible frequencies.

<table>
<thead>
<tr>
<th>Fermion</th>
<th>(f_c(e)/\text{MHz})</th>
<th>(f_c(u)/\text{MHz})</th>
<th>(f_c(d)/\text{MHz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>.564</td>
<td>.094</td>
<td>.019</td>
</tr>
<tr>
<td>Nearly vacuum extremal</td>
<td>8.996</td>
<td>2.275</td>
<td>.947</td>
</tr>
</tbody>
</table>

Table 4. Cyclotron frequencies of quarks and electron in magnetic field \(B_{\text{end}} = .2 \text{ Gauss} \) for standard vacuum with very small \(Z^0 \) field and nearly vacuum extremal.

4. Besides cyclotron frequencies also the harmonics of the fundamental frequencies assignable to quark and electron CDs could be used and in case of musical sounds this looks a highly attractive option. In this case it is now however possible to select single harmonics as in the case of cyclotron transitions so that only the rate of nerve pulses can communicate single frequency. Lorentz transform sub-CD scales up the frequency scale from the secondary p-adic time scale coming as octave of 10 Hz frequency. Also the scaling of \(h \) scales this frequency scale.

3.5.2 What is the role of the magnetic body?

The basic vision is that magnetic body receives sensory data from the biological body- basically from cell membranes and possibly via genome - and controls biological body via genome. This leaves a huge amount of details open and the almost impossible challenge of theoretician is to guess the correct realization practically without any experimental input. The following considerations try to clarify what is involved.

Is magnetic body really needed?

Libet’s findings and the model of memory based on time mirror hypothesis suggests that magnetic body is indeed needed. What is the real function of magnetic body? Is it just a sensory canvas? The previous considerations suggest that it is also the seat of geometric qualia, in particular the pitch of sound should be coded by it. It would be relatively easy to understand magnetic body as a relatively passive sensory perceiver defining sensory map. If one assumes that motor action is like time reversed sensory perception then sensory and motor pathways would be just sensory pathways proceeding in opposite time directions from receptors to the various layers of the magnetic body. Brain would perform the information processing.
Certainly there must exist a region in which the motor and sensory parts of the magnetic body interact. What comes in mind is that these space-time sheets (or actually pairs of space-time sheets) are parallel and generate wormhole contacts between them. This interaction would be assignable to the region of the magnetic body could receive positive energy signals from associative sensory areas and send negative energy signals to motor motor neurons at the ends of motor pathways wherefrom they would progate to premotor cortex, supplementary motor cortex and to frontal lobes where the abstract plans about motor actions are generated.

Is motor action time reversal of sensory perception in zero energy ontology?

One could argue that the free will aspect of motor actions does not conform with the interpretation as sensory perception in reversed direction of time. On the other hand, also percepts are selected -say in binocular rivalry [19]. Only single alternative percept need to be realized in a given branch of the multiverse. This makes possible metabolic economy: for instance, the synchronous firing at kHz frequency serving as a correlate for the conscious percept requires a lot of energy since dark photons at kHz frequency have energies above thermal threshold. Similar selection of percepts could occur also at the level of sensory receptors but quantum statistical determinism would guarantee reliable perception. The passivity of sensory perception and activity of motor activity would reflect the breaking of the arrow of time if this interpretation is correct.

What magnetic body looks like?

What magnetic body looks like has been a question that I have intentionally avoided as a question making sense only when more general questions have been answered. This question seems how unavoidable now. Some of the related questions are following. The magnetic flux lines along various parts of magnetic body must close: how does this happen? Magnetic body must have parts of size at least that defined by EEG wavelengths: how do these parts form closed structures? How the magnetic bodies assignable to biomolecules relate to the Earth sized parts of the magnetic body? How the personal magnetic body relates to the magnetic body of Earth?

1. The vision about genome as the brain of cell would suggest that active and passive DNA strands are analogous to motor and sensor areas of brain. This would suggests that sensory data should be communicated from the cell membrane along the passive DNA strand. The simplest hypotesis is that there is a pair of flux sheet going through the DNA strands. The flux sheet through the passive strand would be specialized to communicate sensory information to the magnetic body and the flux sheet through the active strand would generate motor action as DNA expression with transcription of RNA defining only one particular aspect of gene expression. Topological quantum computation assignable to introns and also electromagnetic gene expression would be possible.

2. The model for sensory receptor in terms of Josephson radiation suggests however that flux tubes assignable to axonal membranes carry Josephson radiation. Maybe the flux tube structures assigned to DNA define the magnetic analog of motor areas and flux tubes assigned with the axons that of sensory areas.

3. A complex structure of flux tubes and sheets is suggestive at the cellular level. The flux tubes assignable to the axons would be parallel to the sensory and motor pathways. Also microtubules would be accompanied by magnetic flux tubes. DNA as topological quantum computer model assumes and the proposed model of sensory perception and cell membrane level suggests transversal flux tubes between lipids and nucleotides. The general vision about DNA as brain of cell suggest flux sheets through DNA strands.

During sensory perception of cell and nerve pulse the wormhole flux tube connecting the passive DNA strand of the first cell to the inner lipid layer would recombine with the flux tube connecting outer lipid layer to some other cell to form single flux tube connecting two cells. In the case of sensory organs these other cells would be naturally other sensory receptors. This would give rise to a dynamical network of flux tubes and sheets and axonal sequences of genomes would be like lines of text at the page of book. This structure could have a fractal generalization and would give rise to an integration of genome to super-genome at the level of organelles, organs.
and organism and even hypergenome at the level of population. This would make possible a coherent gene expression.

4. This vision gives some idea about magnetic body in the scale of cell but does not say much about it in longer scales. The CDs of electrons and quarks could provide insights about the size scale for the most relevant parts of the magnetic body. Certainly the flux tubes should close even when they have the length scale defined by the size of Earth.

Additional ideas about the structure follow if one assumes that magnetic body acts as a sensory canvas and that motor action can be regarded as time reversed sensory perception.

1. If the external world is represented at part of the magnetic body which is stationary, the rotation of head or body would not affect the sensory representation. This part of the magnetic body would be obviously analogous to the outer magnetosphere, which does not rotate with Earth.

2. The part of the magnetic body at which the sensory data about body (posture, head orientations and position, positions of body parts) is represented, should be fixed to body and change its orientation with it so that bodily motions would be represented as motions of the magnetic, which would be therefore analogous to the inner magnetosphere of rotating Earth.

3. The outer part of the personal magnetic body is fixed to the inner magnetosphere, which defines the reference frame. The outer part might be even identifiable as the inner magnetosphere receiving sensory input from the biosphere. This magnetic super-organism would have various life forms as its sensory receptors and muscle neurons. This would give quantitative ideas about cyclotron frequencies involved. The wavelengths assignable to the frequencies above 10 Hz would correspond to the size scale of the inner magnetosphere and those below to the outer magnetosphere. During sleep only the EEG communications with outer magnetic body would remain intact.

4. Flux quantization for large value of \(h \) poses an additional constraint on the model.

 (a) If Josephson photons are transformed to a bunch of ordinary small \(h \) photons magnetic flux tubes can correspond to the ordinary value of Planck constant. If one assumes the quantization of the magnetic flux in the form

 \[\int B dA = n h \]

 used in super-conductivity, the radius of the flux tube must increase as \(\sqrt{h} \) and if the Josephson frequency is reduced to the sound frequency, the value of \(h \) codes for the sound frequency. This leads to problems since the transversal thickness of flux tubes becomes too large. This does not however mean that the condition might not make sense: for instance, in the case of flux sheets going through DNA strands the condition might apply.

 (b) The quantization of magnetic flux could be replaced by a more general condition

 \[\mathcal{P} (p - ZeA) dl = nh \]

 (3.5.1)

 where \(p \) represents momentum of particle of super-conducting phase at the boundary of flux tube. In this case also \(n = 0 \) is possible and poses no conditions on the thickness of the flux tube as a function of \(h \). This option looks reasonable since the charged particles at the boundary of flux tube would act as sources of the magnetic field.

 (c) Together with the Maxwell’s equation giving \(B = ZeNv \) in the case that there is only one kind of charge carrier this gives the expression

 \[N = \frac{2m}{RZ^2e^2} \]

 (3.5.2)

 for the surface density \(N \) of charge carrier with charge \(Z \). \(R \) denotes the radius of the flux tube. If several charge carriers are present one has \(B = \sum_k N_k Z_k ev_k \), and the condition generalizes to
\[N_i = \frac{2m_i v_i}{R Z_i \sum_k Z_k v_k e^2} \]

(3.5.3)

It seems that this condition is the most realistic one for the large \(h \) flux sheets at which Josephson radiation induces cyclotron transitions.

What are the roles of Josephson and cyclotron photons?

The dual interpretation of Josephson radiation in terms of bio-photons and EEG photons seems to be very natural and also the role of Josephson radiation seems now relatively clear. The role of cyclotron radiation and its interaction with Josephson radiation are not so well understood.

1. At least cell membrane defines a Josephson junction (actually a collection of them idealizable as single junctions). DNA double strand could define a series of Josephson junctions possibly assignable with hydrogen bonds. This however requires that the strands carry some non-standard charge densities and currents- I do not know whether this possibility is excluded experimentally. Quarks and antiquarks assignable to the nucleotide and its conjugate have opposite charges at the two sheets of the wormhole flux tube connective nucleotide to a lipid. Hence one could consider the possibility that a connection generated between them by reconnection mechanism could create Josephson junction.

2. The model for the photoreceptors leads to the identification of biophotons as Josephson radiation and suggests that Josephson radiation propagates along flux tubes assignable to the cell membranes along sensory pathways up to sensory cortex and from there to motor cortex and back to the muscles and regenerates induced neuronal sensory experiences.

3. Josephson radiation could be used quite generally to communicate sensory data to/along the magnetic body: this would occur in the case of cell membrane magnetic body at least. The different resting voltages for various kinds of cells would select specific Josephson frequencies as communication channels.

4. If motor action indeed involves negative energy signals backwards in geometric time as Libet’s findings suggest, then motor action would be very much like sensory perception in time reversed direction. The membrane resting potentials are different for various types of neurons and cells so that one could speak about pathways characterized by Josephson frequencies determined by the membrane potential. Each ion would have its own Josephson frequency characterizing the sensory or motor pathway.

The basic questions concern the function of cyclotron radiation and whether Josephson radiation induces resonantly cyclotron radiation or vice versa.

1. Cyclotron radiation would be naturally associated with the flux sheets and flux tubes. The simplest hypothesis is that at least the magnetic field \(B_{\text{end}} = .2 \) Gauss can be assigned with the some magnetic flux quanta at least. The model for hearing suggests that \(B_{\text{end}} \) is in this case quantized so that cyclotron frequencies provide a magnetic representation for audible frequencies. Flux quantization does not pose any conditions on the magnetic field strength if the above discussed general flux quantization condition involving charged currents at the boundary of the flux quantum are assumed. If these currents are not present, \(1/h \) scaling of \(B_{\text{end}} \) for flux tubes follows.

2. The assumption that cyclotron radiation is associated with the motor control via genome is not consistent with the vision that motor action is time reversed sensory perception. It would also create the unpleasant question about information processing of the magnetic body performed between the receival of sensory data and motor action.

3. The notion of magnetic sensory canvas suggests a different picture. Josephson radiation induces resonant cyclotron transitions at the magnetic body and induces entanglement of the mental images in brain with the points of the magnetic body and in this manner creates sensory maps
3.5. The roles of Josephson radiation, cyclotron radiation, and of magnetic body

giving a third person perspective about the biological body. There would be two kind of sensory maps. Those assignable to the external world and those assignable to the body itself. The Josephson radiation would propagate along the flux tubes to the magnetic body.

4. There could be also flux tube connections to the outer magnetosphere of Earth. It would seem that the reconnections could be flux tubes traversing through inner magnetosphere to poles and from there to the outer magnetosphere. These could correspond to rather low cyclotron frequencies. Especially interesting structure in this respect is the magnetic flux sheet at the Equator.

3.5.3 Magnetic homeostasis and magnetic circulation?

The possible importance of the precise value of the local magnetic field for say memetic code \cite{32} suggests that living matter has learned to control local magnetic field inside magnetic flux tubes just as it controls salt level of biological water.

Variation of the local strength of B_{end}

B_{end} -which is assigned to the magnetic body of particular body part- should scale as $1/h$ to maintain the constant ratio of Josephson and cyclotron frequencies. This predicts hierarchy of cyclotron frequency scales coming in octaves if one accepts that the preferred levels of dark matter hierarchy come as $r = h/\hbar_0 = 2^k$ with values of k_d fixed by Mersenne hypothesis introduced in introduction and discussed in detail in \cite{22}. Cell differentiation could lead to the differentiation of the local value of k_d and the value could vary even inside single cell nucleus.

Also a slight variation of the strength of B_{end} for a given value of r is possible. The condition that the ratios of Josephson frequencies and cyclotron frequencies remain constant means that the scalings of B_{end} and membrane resting potential are identical. Also the relative variation of EEG frequency scale would be same as that of the resting potential. The variation of resting potential is 10 per cent as is also that of EEG frequency scale so that this prediction is correct. Since the resting potential is characteristic of cell type \cite{22}, also the value of B_{end} for corresponding part of magnetic body would be such. In the model of hearing the variation of both k_d decomposing the frequencies into octaves and smaller variations of B_{end} allowing to decompose octaves into smaller intervals would make possible to sense the pitch of the sound \cite{57}. This sense would be essentially a sensory quale assignable to magnetic body.

Magnetic circulation

There is a rather precise analogy with blood flow since both incompressible velocity field of blood and magnetic field are divergenceless: one can imagine magnetic flux to flow along 'B-veins' (magnetic flux tubes) along organism or at least CNS. Variation of the magnetic field strength would be forced by the variation of the thickness of the flux tube since magnetic flux is conserved just as the variation of the thickness of blood veins affects blood flow. Artificial small alteration of local magnetic from outside would only interfere with this control.

For instance, alpha peak drifts in Hz range and this could be due the variation of the value of local magnetic field varies as much as 10 per cent. If this variation is due to the homeostatic variation of the local magnetic field, absolute variation should increase for higher frequencies: at the upper end of gamma band it would be 9 Hz. An alternative explanation for drifting is in terms of amplitude modulation: amplitude modulation of frequency f_1 by frequency f implies that original frequency is split to frequencies $f_1 \pm f$. In this case the amplitude of drifting does not depend on frequency.

The analogy with blood flow suggests that one could speak about B-circulation completely analogous to blood circulation: B-circulation could be crucial for bio-system to act as macroscopic quantum system. B-circulation would naturally accompany neural circuitry. It could be also accompany ordinary blood circulation physically or could form an independent system. The association with blood circulation would provide prerequisites for quantum control of also blood circulation and metabolism. The control could be based on MW frequency Josephson currents associated with ELF em fields inducing conformational changes of proteins coherently in large regions in turn giving rise to needed synchronous biochemical self-organization processes.
Temperature dependence of the local magnetic field strength

EEG frequencies are known to change with [12, 13] in the sense that the increase of the temperature raises the peak frequency of the power spectrum. This need not mean that the individual EEG frequencies are affected since the distribution of these frequencies could be affected due to the effects on the ionic conductances.

On the other hand, the equilibrium potentials for various ions are proportional to the temperature. In TGD framework this would predict that also EEG frequency scale is proportional to T so that the effect of temperature could be understood at least partially. Of course, very large drop of temperature known to induce sleep EEG involves dropping of higher EEG bands from the spectrum. The maximal reduction of body temperature have been to about 1 degree C and correspond to 10 per cent reduction of absolute temperature. 10 per cent variation is also characteristic variation of EEG band positions.

As far as nerve pulse generation is considered small reduction of temperature should lead to reduced membrane potential and if the value of the potential inducing nerve pulse does not follow, this would lead to a level of arousal. Maybe this could explain the stimulating effect of cold.

The question is whether cyclotron frequency scale follows the scale of the resting potential. If this is not the case, the communications to the magnetic body suffer from temperature changes since resonance conditions are lost. This could partially explain why a serious hibernation leads to a lower level of arousal. Cyclotron frequency scale can follow the change of the temperature as long as the transversal size scale of the magnetic flux quanta can react on the changes of the temperature and by flux conservation induce a change of the magnetic field strength. It is however highly questionable whether this is possible at distant parts of the magnetic body if it indeed can have the size scale of Earth.

The results of Blackman [13] suggesting that ELF effects with given frequency disappear when body temperature is not in the range 36 – 37 C inspires the hypothesis that quantum critical high T_c superconductivity and almost vacuum extremal property of the cell membrane space-time sheet are possible only in the range 36-37 C. This obviously provides a more plausible explanation for the effect of hibernation. In this picture the extreme importance of temperature regulation for the functioning of organism could be seen as a prerequisite for continual quantum control by magnetic transition frequencies.

Circadian temperature variation can be something like 20 Kelvins, which means relative variation about 10 per cent for poikilotherms, which is of same order as alpha frequency drifting. The relative width of the cyclotron resonance would be from this about 7 per cent ($\Delta f/f = \Delta B/B \propto \Delta T/T$). The relative variation of the membrane resting potential as a function of temperature is predicted to be sam.

Why the increase of the local magnetic field strength by factor of ten does not raise alpha band to heaven?

The increase of the local magnetic field strength by a factor 10 – 20 is known to induce stress [41] and confuse biological timekeeper mechanisms but it certainly cannot raise alpha band above 100 Hz as as a very naive standard physics based application of the cyclotron frequency hypothesis would suggest.

In standard physics picture one could indeed argue that the increase of the strength of the local magnetic field interferes directly with bio-control and has catastrophic consequences. This is not the case of B_{end} corresponds to so large value of Planck constant that cyclotron energy corresponds to the energy of visible or UV photon and if the local magnetic field corresponds to the ordinary (or just different) value of Planck constant. That the variation local magnetic field has effect can be understood if the flux tubes of the dark magnetic field B_{end} are in contact with the those of the local magnetic field presumably having standard value of Planck constant. This would be classical interaction between visible and dark sectors of “world of classical worlds”. One can of course imagine also other interaction mechanisms.

3.5.4 Some remarks and questions

Synchronizing effect of Earth’s magnetic field

Earth’s magnetic field could act as grand synchronizer of biorhythms of even separate organisms. Magnetic homeostasis does not prevent the effects due to the variation of Earth’s magnetic field on
human consciousness.

The close correlation of various cycles of biological and brain activity, in particular sleep-wake cycle, with periodic circadian variations of the geomagnetic field \(11\), is consistent with this. Magnetic storms change temporarily the value of the local magnetic field and also this should have effects on consciousness. The statistics about mental hospitals supports this view \(11\). Also Persinger has proposed that the modulations of Earth’s magnetic field caused by geomagnetic perturbations have effect on human consciousness \(11, 35\). Michael Persinger has studied extensively the effects of Schumann resonances on brain and has even explained religious and UFO experiences as correlates of this interaction \(35\).

Also the diurnal changes of magnetic field caused by Moon having period of 25 hours are known and this variation seems to provide fundamental biological clock which sets on in absence of the normal 24 rhythm regulated by sunlight. The diurnal variations of the geomagnetic field are also responsible for sleep-awake rhythm: the increased melatonin secretion during dark hours correlate with the variation of Earth’s magnetic field.

It is also known that that the exposure to magnetic fields 10-20 times geomagnetic field induces stress in rabbits and slowed reaction time in humans; that the absence of geomagnetic field leads to a complete de-synchroniztion of biorhythms and that the synchronization of ELF biorhythms is coupled to ELF geomagnetic pulsations \(11\). In particular, pineal gland serves as biological timekeeper with cyclotron frequency of \(Co^{2+}\) ion defining the basic time unit of .1 seconds.

Dr. Phil Callahan \(3\) claims on basis of intensive experimental work that there is a tendency of political strifes and wars to concentrate on regions where Schumann resonances are weak. This would not be surprising since Schumann resonances act as collective bio-rhythms if vertebrate brains are connected to the magnetic body of Earth.

3. What happens to astronaut’s magnetic body

There is an old objection against the notion of magnetic body. If the local value of Earth’s magnetic field is crucial for the brain functioning, astronauts should experience grave difficulties or at least dramatic changes in the character of consciousness. A possible estimate for the weakening of the local magnetic field is based on the scaling law \(B \propto 1/r^3\) for dipole field. In this case a rough estimate for the relative change of the EEG frequency scale is \(\Delta f/f = 3\Delta R/R \sim 6\) per cent for satellites moving below the ionosphere. This should affect the state of consciousness.

As a matter fact, there is reported evidence \(30, 27\) that cosmonauts spending months in MIR had strange altered states of consciousness involving among other things precognition of the difficulties to be countered by MIR and receiving advices and identification experiences with other people and life forms, even dinosaurs of ancient Earth!

In the many-sheeted space-time the situation looks like following.

1. Only the levels \(k_d\) for which the size scale is between the size scale of personal magnetic body and the distance travelled could have been affected.

2. Astronauts could have drawn the magnetic flux sheets connecting them to the magnetic body of Earth and higher level magnetic bodies with them but long period could have led to a loss of the connections to the magnetic body of Earth.

3. At the level of cell nuclei nothing dramatic need happen. Energetically the stretching magnetic flux sheets associated with DNA is not a problem since the energy densities involved are rather tiny. Furthermore, if the flux sheets carry homological monopole flux, they could highly stable against increase of length since they would have magnetic monopole wormhole contacts at their ends.

4. A long period in space without contact with magnetic Mother Gaia might relate to the strange experiences reported by astronauts. One might imagine that the magnetic body of say solar system or even galactic magnetic body replaces Earth’s magnetic body as a kind of fundamental reference frame. For instance, the third person perspective could rely on the inner magnetosphere which is at rest with respect to rotating Earth and the outer magnetosphere which does not rotate with Earth would provide even higher level reference system which begins to dominate in this kind of situation.
5. The experiences are consistent with TGD based view about geometric time and possibility of geometric memories extending beyond the duration of individual life cycle. There is also a consistency with Mersenne hypothesis summarized in the introduction and with the vision about long term memory inspired by this hypothesis \(\text{[22]} \). If one takes seriously the report about dinosaurs, which lived for \(\sim 10^8 \) years ago, the level \(k_{eff} = 163 + k_d = 257 \), which corresponds to Josephson period of about \(10^8 \) years could have contributed to the conscious experience of dinosaurs. Therefore \(k_d = 94 \) characterizes the value of Planck constant as \(r = \hbar/\hbar_0 = 2^k_d \). \(2^{18} \) is consistent with Mersenne hypothesis. One has \(257 = 239 + 18 \), where \(k_{eff} = 239 \) is member of the twin pair \(239, 241 \) of Gaussian Mersennes suggested to be responsible for long term memory. \(257 - 239 = 18 \) in turn equals to the difference \(107 - 89 = 18 \) corresponds to the ratio of hadronic p-adic length scale \(k = 107 \) and intermediate boson length scale \(k = 89 \) defined by Mersenne primes. One cannot of course take the individual numbers deadly seriously: what is important the general view about memory based on hierarchy of weak physics assigned to Mersennes and their Gaussian counterparts suggests an explanation for the reported transpersonal memories.

5. What the reduction of Earth’s magnetic field means?

The strength of Earth’s magnetic field has reduced 50 per cent during last 1,000 years. The fact that an exponential evolution of civilization has occurred during this period, is perhaps not an accident. Surprisingly many magnetic transition frequencies happen to be near to Schumann resonance frequencies which do not depend on the strength of the magnetic field. If the scale of dark magnetic field \(B_{sud} \) has followed the scale of \(B_E \) during this period has reduced cyclotron frequency spectrum of heavy ions from \(3 - 8 \) Hz range to the range \(1.5 - 4 \) Hz but leaving the spectrum of Schuman resonances unchanged. Rather remarkably, delta frequencies near \(3 \) Hz correspond to a peak in the frequency spectrum of so called sferics associated with lightning activity \([3] \).

These observations suggest the emergence of strong interaction between brain and higher levels of the self hierarchy based on spherics and Schumann resonances. Assuming temporal linearity, the reduction of Earth’s magnetic field has been 25 per cent after Newton and 5 per cent during last 100 years. Perhaps an exponential development of mathematical consciousness made possible by the activation of cyclotron frequencies of heavy ions with high nuclear and electronic angular momenta and allowing large number of conscious-to-us magnetic transitions, and possibly also involving some kind of fine tuning is taking place.

The weakening of Earth’s magnetic field probably relates to a forthcoming change in the polarity of Earth’s magnetic field. One might guess that the personal magnetic bodies are not affected appreciably during this period but that the violent change of Earth’s magnetic field induces dramatic effects on collective aspects of consciousness at \(k_d = 44 \) level as the findings of Callahan suggest.

What about spin flips?

The natural question is whether also spin flips to which Larmor frequencies are associated could be important. If anomalous magnetic moment vanishes Larmor frequency differs by a factor \(1/2 \) from cyclotron frequency: \(f_L = f_c/2 \) so that spin flip frequency is same as cyclotron frequency. For atomic nuclei the Larmor frequency tends to be larger than cyclotron frequency as the table of Appendix demonstrates. The effects of em fields in living matter at Larmor frequencies have not been however reported.

The natural expectation is that Larmor frequency behaves in the same manner as cyclotron frequency in the scaling of Planck constant and this is indeed the case since spin scales as \(\hbar_{eff} \). This allows to consider the possibility that also spin flip transitions are of interest and perhaps define correlates for sensory qualia.

Spin flip frequencies are in general of order few hundred Hz for \(B = .2 \) Gauss. The eight ions listed in the table below have however exceptionally low Larmor frequencies and, very importantly, the singly ionized states have vanishing electronic spin for all ions except Rh and Ir for which electronic configuration corresponds to \(J - e = 2/2 \) (non-vanishing electronic spin implies that the Larmor frequency of ion is of order \(f_L = f_c(e)/2 \approx 3 \times 10^5 \) Hz). This suggests that electromagnetic spin flip transitions for these ions at least could be related to our consciousness. Note that K, Ag and Au have
spin flip frequencies near to the harmonics of the fundamental frequencies of exotic super-symplectic representations important in EEG frequency range. Note that the spin flip frequency of K is 39.1 Hz which is in 40 Hz thalamocortical resonance band. The spin flip frequency 82.2 Hz for Cl might relate to the resonance frequency 80 Hz associated with retina.

<table>
<thead>
<tr>
<th>Ion</th>
<th>(Z,A,S)</th>
<th>f/v Hz</th>
<th>f_{flip} Hz</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>(17,35,F)</td>
<td>8.5</td>
<td>82.2</td>
<td>3/2</td>
</tr>
<tr>
<td>K</td>
<td>(19,39,F)</td>
<td>7.5</td>
<td>39.1</td>
<td>3/2</td>
</tr>
<tr>
<td>Rb</td>
<td>(37,85,F)</td>
<td>3.5</td>
<td>81.0</td>
<td>5/2</td>
</tr>
<tr>
<td>Y</td>
<td>(39,89,F)</td>
<td>3.4</td>
<td>41.2</td>
<td>1/2</td>
</tr>
<tr>
<td>Rb</td>
<td>(45,103,F)</td>
<td>2.9</td>
<td>26.6</td>
<td>1/2</td>
</tr>
<tr>
<td>Ag</td>
<td>(47,107,F)</td>
<td>2.8</td>
<td>34.2 (39.2)</td>
<td>1/2</td>
</tr>
<tr>
<td>Ir</td>
<td>(77,193,F)</td>
<td>1.6</td>
<td>17.0</td>
<td>3/2</td>
</tr>
<tr>
<td>Au</td>
<td>(79,197,F)</td>
<td>1.5</td>
<td>14.0</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Table 3. The ions for which electronic spin vanishes in ground state and minimum spin flip frequency f_{flip} is below 90 Hz. f_{flip} is defined as $f_{min} = 2f_L/J$, where J is nuclear spin. Ag allows two stable isotopes with almost same abundances and the values of f_{flip} are given for both.

3.6 Models for ionic superconductivity

In this section the model for ionic superconductivity is constructed as a straightforward generalization of the model of high T_c electronic superconductivity. There is however a loophole involved. TGD based model of atomic nucleus predicts that fermionic ions can have bosonic chemical equivalents for which one of the color bonds connecting nucleons to nuclear string is charged. Dark fermionic ions like Na$^+$, K$^+$, and Cl$^-$ could be actually exotic ions of this kind having different mass number and be able to form Bose-Einstein condensates. This is required by the recent model for nerve pulse [58]. The prediction can be tested.

The new model for the topological condensation at magnetic flux quanta of endogenous magnetic field differs radically from the earlier model and allows to understand that effects of ELF em fields on brain. Bose-Einstein condensates of bosonic ions are predicted to be of special importance for the functioning of living systems. Also a quantitative understanding of the effects of Schumann resonances and EEG emerges.

3.6.1 Model for ionic superconductivity

Exactly the same mechanisms are expected to work also in the case of ions and the only differences come from the different mass and charge of ion.

1. Magnetic flux tubes are carriers of supra currents and magnetic fields favor the formation of spin 1 Cooper pairs which are parallel and have also spins parallel to the flux tubes. In living matter the flux tubes could be dark magnetic flux tubes connecting different biomolecules. For instance, DNA as topological quantum computer model [24] assumes that flux tubes connect nucleotides of DNA with the lipid layers of nuclear or cell membrane.

2. Mersenne hypothesis discussed in the introduction is assumed and makes possible precise quantitative predictions using scaling arguments. With the motivation coming from the model of cell membrane as Josephson junction it is also assumed that magnetic field scales as $1/\hbar$ and that the supra currents at the boundaries of flux tubes guarantee that the quantization condition $\oint (p - eA) \cdot dl = 0$ is satisfied. This allows the flux tubes to have a fixed transversal size (cell membrane thickness) irrespective of the value of Planck constant. An attractive hypothesis is that the $B_{end} = 0.2$ Gauss and its $1/\hbar$ scaled variants define preferred values of magnetic field.

3. In the case of ionic super-conductivity there is no antiferromagnetic lattice present. Therefore there is no obvious reason for having higher critical temperature $T_{c,1}$. Percolation type mechanism is possible if a recombination of shorter magnetic flux tubes to form longer ones takes place at critical temperature. According to the model of DNA as topological quantum computer
recombination of the flux tubes is a basic mechanism of information processing mechanism in living matter so that percolation type criticality might be present.

4. For large values of h the gap for magnetic cyclotron energies implies that proton Cooper pairs condense to the ground state in the degrees of freedom transversal to the flux tube in which harmonic oscillator states provide a good approximate model. In the longitudinal degrees of freedom one has effectively particle in box. The corresponding energy gap $E = \pi^2 h^2 / 2m_p L^2$ is below thermal energy at room temperature for flux tube lengths L of order $L(139)$ for ordinary value of h. For electron this length scale is by a factor $m_p/m_e \approx 2^{11}$ longer and corresponds to about 100 nm. The value of flux tube length however scales as h if one assumes that energy does not change in the scaling of h. Hence arbitrarily long flux tube lengths are possible. For ion with mass number A the minum value of h allowing given flux tube length L scales as $h \propto AL$.

5. In the case of bosonic ions there is no need for Cooper pairs and super-conductivity would be due to the Bose-Einstein condensation of ions. TGD based nuclear physics also predicts exotic ions, which are chemically like their fermionic counterparts but are actually bosons. This is made possible by the possibility of the color flux tubes connecting nucleons to nuclear string to carry charges $1, 0, -1$.

6. Whether the Cooper pairs of fermionic ions can be thermally stable is far from obvious. The model for electronic super-conductivity would suggest transversal fluctuations of the flux tube as the mediator of the attractive interaction winning Coulomb repulsion and making possible the formation of the Cooper pairs.

One might hope that the ions are trapped to the neighboring nodes of the transversal standing wave type oscillations and in this manner form correlated pairs. The size of the Cooper pairs would correspond to a multiple of wavelength for the transversal oscillations in this case. The approximation of the magnetic flux tube as string would suggest that waves are of form $sin(\omega t)sin(kz)$, $k = \omega$. The frequencies $\omega = n\pi/L$ would be allowed for a flux tube of length L.

Perhaps it would be more appropriate to say that one has Bose-Einstein condensate of transverse phonons making possible the Bose-Einstein condensate of Cooper pairs. It is quite possible that metabolic energy must be pumped to the Bose-Einstein condensate of transverse oscillations in order to not lose the ionic super-conductivity.

3.6.2 Super conductors of exotic bosonic counterparts of fermionic ions

If ion is boson, no Cooper pairs is needed in order to have a super conductor, and Ca^{++} and Mg^{++} ions at dark magnetic flux tubes with large value of Planck constant could give rise to high T_c superconductors in this manner. Fermionic ions (Na^+, K^+, Cl^-...) would not define supra currents. The explanation of the effects of ELF em fields on vertebrate brain however suggests cyclotron Bose-Einstein condensates of also ions behaving chemically like fermionic ions. Also the model of nerve pulse requires Josephson currents of ions which are chemical equivalents of fermionic ions.

TGD based nuclear physics $^2[2], [2]$ allows this kind of ions. The model indeed predicts the possibility of exotic nuclei for which one or more color bonds connecting nucleons to the nuclear string are charged. These exotic nuclei with electronic states identical to those of genuine ions could save the situation. The table below describes how cyclotron frequencies for $B = 2$ Gauss of the most important ions are modified in the simplest replacements with exotic ions. For instance, the notation $Mg^{±}$ tells that there is double electronic ionization and electron shell of Argon as usual but that one color bond is negatively charged.

<table>
<thead>
<tr>
<th>Ion</th>
<th>f_c/Hz</th>
<th>Pseudo - ion</th>
<th>f_c/Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{23}Na^+$</td>
<td>13.1</td>
<td>$^{19}Ne^+$</td>
<td>15.7</td>
</tr>
<tr>
<td>$^{23}Na^+$</td>
<td>13.1</td>
<td>$^{24}Mg^{++}$</td>
<td>12.5</td>
</tr>
<tr>
<td>$^{39}K^+$</td>
<td>7.7</td>
<td>$^{40}A_+$</td>
<td>7.5</td>
</tr>
<tr>
<td>$^{39}K^+$</td>
<td>7.7</td>
<td>$^{40}Ca^{++}$</td>
<td>7.5</td>
</tr>
<tr>
<td>$^{35}Cl^-$</td>
<td>8.6</td>
<td>$^{40}A_-$</td>
<td>7.5</td>
</tr>
</tbody>
</table>

(3.6.1)

$f_c(K^+)$ and $f_c(Cl^-)$ are replaced with the frequency 7.5 Hz and one can do only using the cyclotron frequencies $f(Ca^{++})/2 = 7.5$ Hz, $f_c(Mg^{++}) = 12.5$ Hz, and $f(Ca^{++}) = 15$ Hz. The nominal values
of the lowest Schumann frequencies are 7.8 Hz and 14.3 Hz. All ions with relevance for nerve pulse and EEG could be bosonic ions or bosonic pseudo-ions. I do not know how well the needed ionization mechanisms are understood in the standard framework.

3.6.3 More quantitative picture about Bose-Einstein condensates

Cyclotron frequencies of biologically important ions in the endogenous magnetic field $B_{end} = 0.2$ Gauss are involved with the effects of ELF em fields on vertebrate brain and are also central in the model of EEG \[22\]. This motivates a more detailed study of these frequencies. Also the cyclotron frequencies of biologically important molecules are interesting.

Bose-Einstein condensates of bosonic ionized atoms

The number of elements for which ions are bosons is not very large. The following table lists the cyclotron frequencies of bosonic ions which are biologically important for $B_{end} = 2 \times 10^{-4}$ Tesla.

<table>
<thead>
<tr>
<th>Ion</th>
<th>f_1/Hz</th>
<th>E_1/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^6\text{Li}^+$</td>
<td>50.1</td>
<td>3.3</td>
</tr>
<tr>
<td>$^{24}\text{Mg}^{2+}$</td>
<td>25.0</td>
<td>1.65</td>
</tr>
<tr>
<td>$^{16}\text{O}^{2-}$</td>
<td>37.6</td>
<td>2.48</td>
</tr>
<tr>
<td>$^{32}\text{S}^{2-}$</td>
<td>18.8</td>
<td>1.24</td>
</tr>
<tr>
<td>$^{40}\text{Ca}^{2+}$</td>
<td>15.0</td>
<td>0.99</td>
</tr>
<tr>
<td>$^{56}\text{Fe}^{2+}$</td>
<td>11.4</td>
<td>0.75</td>
</tr>
<tr>
<td>$^{55}\text{Mn}^{2+}$</td>
<td>10.8</td>
<td>0.71</td>
</tr>
<tr>
<td>$^{56}\text{Fe}^{2+}$</td>
<td>10.0</td>
<td>0.66</td>
</tr>
<tr>
<td>$^{64}\text{Zn}^{2+}$</td>
<td>9.4</td>
<td>0.62</td>
</tr>
<tr>
<td>$^{80}\text{Se}^{2-}$</td>
<td>7.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 1. The first columns give the cyclotron frequencies and cyclotron energies for biologically relevant bosonic ions in $B_{end} = 2\times 10^{-4}$ Tesla. The third column gives cyclotron energy.

The table inspires some comments.

1. For Li^+ the dominating isotope $^7\text{Li}^+$ is fermion. $^6\text{Li}^+$ is boson and its abundance is 5 per cent. Li^+ ions are used as medications in mania and represents mood stabilizer \[3\]. A possible explanation is that the cyclotron oscillations of Bose-Einstein condensate of $^6\text{Li}^+$ ions serve as a biological clock helping to stabilize the mood. The cyclotron frequency is however 50 Hz and higher than thalamocortical resonance frequency having nominal value 40 Hz.

An alternative explanation for the effect of Li^+ is based on the observation that $^7\text{Li}^+$ has cyclotron frequency equal to 42.9 Hz for $B_{end} = 2 \times 10^{-4}$ Tesla, which is at the upper limit of the 40 Hz resonance band. The presence of lithium ions or their Cooper pairs could enhance thalamocortical resonance.

These hypothesis could be tested by looking whether the use of pure $A = 6 \ (A = 7)$ isotope of Li^+ amplifies the beneficial effect and the use of $A = 7 \ (A = 6)$ isotope nullifies it.

2. For Mg^{2+} cyclotron energy corresponds to the energy of photon of green light. Chlorophyll is not able to convert nutrients to sugar without magnesium, which suggests that cyclotron transitions of Mg BE condensate are at least partially responsible for the green color of plants. Mg BE condensate could control the coherent occurrence of photosynthesis in the size scale of plant.

3. For oxygen ion the cyclotron frequency is 37.6 Hz and rather near to ~ 40 Hz thalamocortical resonance frequency, which suggests that the cyclotron transitions of oxygen ions might play key role in inducing coherent firing of neurons at this frequency. This would mean that oxygen would be much more than a mere provider of metabolic energy. Note also that $\Delta n = 3$ cyclotron transition of Na^+ ion corresponds to frequency 39 Hz and might be involved with the synchronous firing.
4. Ca$^{2+}$ ions play a unique role in the functioning of living matter. In particular, calcium waves appearing in a wide range of time scales are known to serve a crucial role in nervous system [25]. Ca$^{2+}$ corresponds to .99 eV cyclotron energy scale, which is twice the energy of metabolic energy quantum. Hence one can ask whether the cyclotron transitions of Ca$^{2+}$ BE condensate could induce a collective emission of metabolic energy quanta and in this manner induce coherent metabolic activity in the scale of entire body.

5. The cyclotron frequencies Mn, Fe, Co, Cu, and Zn are in alpha band and corresponding cyclotron energies are somewhat above metabolic energy quantum. These energy quanta could drive protons from larger space-time sheet to $k = 137$ atomic space-time sheet. 10 Hz frequency is known to define an important biological clock and Co ions could be essential for the functioning of this clock. $n = 3$ multiple of Co$^{2+}$ cyclotron frequency corresponds to the 30 Hz threshold of gamma band known to be important for cognition. Also $3f_c(Fe^{2+}) = 32.2$ Hz and $3f_c(Mn^{2+}) = 34.2$ belong to gamma band. The presence of Bose-Einstein condensates of these ions in length scale of $5L(212) = 141$ km could mean that these bio-rhythms are shared by different organisms inside regions of this size.

6. The fact that the cyclotron frequency of Se$^{2−}$ ion, which is known to be a biologically important trace element, corresponds to the nominal value of the metabolic energy quantum, raises the question whether Selenium BE condensate might act as a metabolic synchronizer.

Cyclotron frequencies and Schumann frequencies

Even in the case that Cooper pairs of fermionic ions are not thermally stable, the cyclotron transitions of fermionic ions like K$^+$, Cl$^−$, and Na$^+$ are expected to be important. In the following table cyclotron frequencies and energies of some fermionic ions are given. Notice that the cyclotron energy of K$^+$ ion corresponds to metabolic energy quantum. Quite generally fermionic ions cannot be involved with the generation of Josephson part of EEG.

<table>
<thead>
<tr>
<th>Ion</th>
<th>f/Hz</th>
<th>E_c/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li$^+$</td>
<td>42.9</td>
<td></td>
</tr>
<tr>
<td>8F$^−$</td>
<td>15.8</td>
<td>1.04</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>13</td>
<td>.86</td>
</tr>
<tr>
<td>Al$^+$</td>
<td>11.1</td>
<td>.73</td>
</tr>
<tr>
<td>Cl$^−$</td>
<td>8.5</td>
<td>.56</td>
</tr>
<tr>
<td>K$^+$</td>
<td>7.5</td>
<td>.50</td>
</tr>
<tr>
<td>Cu$^+$</td>
<td>4.8</td>
<td>333.9</td>
</tr>
<tr>
<td>Ag$^+$</td>
<td>2.8</td>
<td>.18</td>
</tr>
<tr>
<td>I$^+$</td>
<td>2.4</td>
<td>.16</td>
</tr>
<tr>
<td>Au$^+$</td>
<td>1.5</td>
<td>.10</td>
</tr>
</tbody>
</table>

Table 2. The first columns give cyclotron frequencies and corresponding cyclotron energies for some ions in $B_{end} = .2 \times 10^{-4}$ Tesla for some fermionic ions.

The first thing to notice is the close relationship of cyclotron frequencies with the lowest resonance frequencies in the spectrum of geo-electromagnetic field starting from 5 Hz, so called Schumann frequencies [14], are 7.8, 14, 20, 26, 33, 39 and 45 Hz. 5 Hz corresponds roughly to the threshold 4 Hz of theta frequency range below which EEG spectrum lies during sleep which suggests that wake-up state involves the coupling of brain with geo-electro-magnetic activity. 7.8 Hz corresponds to the threshold for alpha waves associated with wake-up state without cognition; 14 Hz corresponds to threshold of 13 Hz for beta waves accompanying cognitive activities, and 33 Hz is quite near to the threshold 30 Hz for gamma waves known to be important in the temporal coding of sensory data.

Consider now examples of cyclotron frequencies keeping in mind that Schumann frequencies vary typically within 1 Hz interval around their mean values [14].

1. As already noticed, the frequencies, which are multiples of 15 Hz can be assigned to Cu$^{2+}$ ion. The excitations $n = 3, 5, 7, \ldots$ correspond to the frequencies 45, 75, 105, \ldots Hz. All these
frequencies have been observed. The two lowest frequencies correspond to Schumann frequencies 14 and 45 Hz with accuracy of 1 Hz.

2. Na_+ has $A = 23$ and gives $f = 13$ Hz. This is the lower bound for the frequency of beta EEG waves which are associated with conscious cognition. This would suggest that the presence of em field of 13 Hz frequency correlates with large fluxes of Na_+ ions through the axonal cell membrane during nerve pulse generation. This could result from increased amplitude of Na_+ Josephson current facilitating the emission of nerve pulses at the second half of the EEG cycle. Silencing of mind by meditation or closing eyes reduces amplitudes associated with EEG frequencies below 13 Hz and conscious cognition disappears.

3. K_+ has $A = 39$ and gives $f = 7.5$ Hz, which is theta frequency rather near to the lowest Schumann resonance frequency 7.8 Hz. K_+ ion flux could correlate with em fields in the range of the alpha frequencies creating cyclotron resonance. Theta activity dominates during sleep and Adey’s observations [41] demonstrate that 7 Hz ELF field increases reaction times. Second and third transition frequencies are within 1.5 Hz Schumann frequencies 20 and 37.5 Hz.

4. Cl_- ion has $A = 35$ and gives $f = 8.5$ Hz. Chloride ion has inhibitory effect. $n = 3, 7, ...$ excitations correspond to 25.5, 42.5 Hz,... Rather interestingly, frequencies rather near to 40 Hz associated with thalamo-cortical loops appear as excitations for all ions relevant to nerve pulse activity. Note that 39 Hz is also Schumann frequency. Two lowest transition frequencies of Cl_- are quite near to Schumann frequencies 7.8 and 25 Hz.

5. Fe^{2+} has $A = 56$ and corresponds to 10.7 Hz. $3f_c(Fe^{2+}) = 32.2$ Hz is rather near to Schumann frequency 33 Hz whereas Co^{2+} corresponds to 10 Hz in excellent accuracy. Co has especially large nuclear magnetic moment and serves as a natural magnet. Fe^{2+} and/or Co^{2+} could be present in magnetic sensory organ possessed also by humans making it possible to navigate using magnetic fields. Yarrow suggests that Co makes B_{12} magnetic vitamin [41] so that it can serve as fundamental biological clock at frequency very precisely equal to 10 Hz. Co is carried by B_{12} vitamin and is known to be important for normal consciousness: among other things the lack of B_{12} causes fatigue, blurred vision and cognitive problems.

6. Mg^{2+} has $A=24$ and $f = 25$ Hz which is near to Schumann frequency: $n = 3$ corresponds 75 Hz. Charged polypeptides could also form BE condensates and be involved with cyclotron mechanism: they are rather heavy and their cyclotron frequencies are in Hz range. Negatively charged organic molecules are indeed known to be present in neurons.

To sum up, surprisingly many magnetic transition frequencies are near to Schumann frequencies which suggests strong resonant interaction between brain and geo-electromagnetic fields.

What about proton’s cyclotron frequency?

There are good reasons to expect that the cyclotron frequency of proton and its odd harmonics play an important role in brain functioning. The cyclotron frequency of proton in $B_{end} = .2$ Gauss is $f(p) = 300$ Hz. The frequency associated with $n = 3$ transition would be $3f_c(p) = 900$ Hz. Third harmonics of cyclotron frequencies of many ions with f_c in alpha band belong to gamma band known to relate to cognition. Perhaps this is true also in the case of proton.

The duration of single bit of the memetic codeword consisting of 127 bits and having total duration defined by the p-adic timescale $T_{127} = .1$ seconds corresponds to the frequency $f_m = 1027$ Hz. This frequency is by 10 per cent higher than the cyclotron frequency of proton for $B_{end} = .2$ Gauss. If magnetic homeostasis is realized, as will be discussed later, and if it allows 10 per cent variation of
the strength of magnetic field as the width 1 Hz of alpha band suggests, it is possible to realize this
frequency as proton's cyclotron transition frequency.

The frequency of neuronal synchronization, which is obviously associated with cognitive processing,
is \(\simeq 1 \text{ kHz} \) and might well be identifiable with \(f_m \). The maximum rate of neuronal firing is slightly
below kHz: this rate however corresponds to the rate of quantum jumps rather than oscillation
frequency at space-time level.

Bose-Einstein condensates of bosonic molecular ions

Also biologically relevant bosonic molecular ions such \(\text{SO}_4^{2-} \), \(\text{CO}_2^{2-} \), \(\text{NO}_3^- \), \(\text{NO}_2^- \) could form Bose-
Einstein condensates. The cyclotron frequencies for bosonic molecular ions satisfying the thermal
stability condition \(A \leq 233 \times Z \) at room temperature are typically in theta and delta band and above
\(f_{\text{min}} = 1.29 \text{ Hz} \).

DNA is negatively charged and an interesting question is whether DNA satisfies the stability
condition. The molecular weights of DNA nucleotides A,T,C,G are 132,126,96,149. The molecular
weight of deoxyribose sugar attached to the nucleotide is 100 and that of phosphate group \(\text{PO}_4^{2-} \) is 95.
Altogether this makes molecular weights 327, 321, 291, 344. Since phosphate group is doubly charged
this structure has cyclotron energy which is higher than thermal energy. Also DNA sequences satisfy
the thermal stability condition. The presence of DNA Bose-Einstein condensates at magnetic flux
quanta could mean that DNA can be transferred between different organisms along these space-time
sheets and that DNAs of different organisms of same species could form quantum coherent systems
inside regions where magnetic field can be regarded as a constant.

3.7 Atmospheric phenomena and super-conductivity

There is a lot of evidence that various electromagnetic time scales associated with the atmospheric
phenomena correspond to those associated with brain functioning. If magnetic sensory canvas hypoth-
essis holds true, this is just what is expected. In this section these phenomena are considered in more
detail with the aim being to build as concrete as possible vision about the dynamics involving the
dark matter Bose-Einstein condensates at super-conducting magnetic flux quanta. If almost vacuum
extremals are in question, a strong analogy with living matter is implied and both em and \(Z^0 \) fields
are present. In case of cell membrane this assumption is highly successful.

One particular consequence is that there is a coupling to left handed weak nuclear isospin propor-
tional to neutron proton difference as well as coupling to nuclear electromagnetic charge \(Z \) which
dominates for heavier nuclei and gives rather large coupling (here it is essential that atomic electrons
do not condense at the almost vacuum extremal). This means that the system behaves like plasma
such that all particles have same sign of net weak isospin. Either opposite \(Z^0 \) charge carried by neu-
trinos or ionization is necessary in order to achieve stability. Also large parity breaking is implied in
macroscopic length scales. One implication would be vortices with a preferred direction of rotation.

3.7.1 Tornadoes as a macroscopic quantum phenomenon involving super-conductivity?

Tornadoes represent a piece of not completely understood atmospheric physics. To mention just two
questions which have received no satisfactory answer.

1. What makes possible the ability of tornado to preserve its structure and coherence?
2. What makes possible the coherent rotation of matter inside tornado?
3. How to understand various luminous phenomena associated with the tornadoes [11, 11, 18]?

Classical \(Z^0 \) forces and the vision about magnetic flux tubes as bio-superconductors suggests a
new approach to the physics of tornados possibly providing also answers to these questions. My
own attempts to understand tornadoes have been based on three separate approaches. Tornado as
a magnetic spiral vortex carrying em and \(Z^0 \) magnetic fields, tornado as an analog of a rotating
magnetic system known as Searl device, and tornado as a system for which the interactions between
visible and dark matter are essential.
The most recent approach to tornadoes and rotating magnetic systems relies on the recent model of cell membrane as almost vacuum extremal and assumption that tornades could be seen in many respects as p-adically scaled up variants of the axonal membrane. The combination of this line of approach with the earlier ones, probably not mutually consistent in every detail, will be discussed in the sequel.

Tornadoes as magnetic spiral vortices near vacuum extremals?

The basic idea is that tornadoes are a phenomenon involving complex many-sheeted space-time topology and classical em and Z^0 magnetic fields in an essential manner making tornadoes macroscopic quantum systems in meteorological length and time scales.

1. A partial answer to the question relating to the stability and coherence is self-organization, which in fact implies in TGD context that tornado has ‘self’ and is conscious in some primitive sense. In standard physics context the ability of tornado to have a well defined macroscopic structure despite the locally chaotic nature of the hydrodynamic flow involved, is not easy to understand. In particular, self-organization does not as such explain the coherent rotation of the matter inside tornado. The almost vacuum extremal property is characteristic aspect of cell membrane [22], which suggests that tornado or at least the boundary layer between exterior and interior of tornado corresponds to almost vacuum extremal so that tornado might be perhaps compared to neuronal axons in some respects. Self organization is indeed associated with strong gradients and the boundary layer certainly represents this kind of region.

2. In TGD framework the answer to the question relating to the rotation of matter inside tornado is that tornado or its boundary corresponds to magnetic flux tube with em and Z^0 magnetic fields -or more generally -a more complex structure consisting of magnetic flux quanta, say a hierarchy of hollow flux tubes inside hollow flux tubes.

3. One expects that these Z^0 ions rotate with almost the same rotation velocity and in the same direction in the Z^0 magnetic field associated with the space-time sheet of the tornado. Although rotation velocities can have both signs, coherent motion in single direction can occur stably and large parity breaking favors the other direction of rotation. Z^0 magnetic field is generated if all screening neutrinos do not co-rotate with the matter or if the screening of nuclear Z^0 charge by neutrinos is not complete. Conducting and super-conducting neutrinos are expected to be unable to follow the rotation of the nuclei whereas the neutrinos below Fermi surface should co-rotate with matter so that Z^0 magnetic field can be generated. Situation is completely analogous to that of an electric conductor.

4. Neutral atoms and molecules are highly charged Z^0 ions with effective charge proportional to nuclear charge if electrons do not condense on almost vacuum extremal. The quantization of em and Z^0 magnetic field of tornado to flux tubes suggests strongly itself and the classical orbits of Z^0 ions in the average Z^0 magnetic field correspond to Z^0 magnetic flux tubes with a helical shape. In the case of tornado these flux tubes are expected to have spiral like structure implied by garden hose instability and provide an example of spiral waves which seem to be a very general phenomenon in excitable media. Just like the flux tubes of the magnetic field, also Z^0 magnetic flux tubes are expected to be super-conducting. One of the first proposals of TGD inspired view about supra phase was that also super-fluidity might involve Z^0 magnetic vortices [37] but at that time I did not realize that almost vacuum extremals- which I was of course well aware- might be in question.

5. Also the vortices of any hydrodynamic flow could involve Z^0 magnetic boundary layers at least: in particular, the mechanism inducing transition from superfluidity to ordinary fluid flow is generation of Z^0 magnetic vortices at critical velocities which are much lower than those predicted by hydrodynamical arguments [37]. The leakage mechanism of radial em or Z^0 supra currents from magnetic flux tubes might be involved with the dissipation and also with sono-luminescence [1]. Also TGD inspired cosmology and classical view about gravitational fields relies on the approximation that cosmologies can be idealized with vacuum extremals [30].

To build a more quantitative picture one needs some information about the model for almost vacuum extremals.
1. In the model of cell membrane as almost vacuum extremal electrons are not assumed to condense at the almost vacuum extremal space-time sheets since this would not be consistent with atomic physics. Nuclei however feed their Z^0 charges to these space-time sheets. Neutral atoms for $N - Z > 0$ have left-handed weak isospin equal to $(Z - N)/2$ and same vectorial charge proportional to $\sin^2(\theta_W)Z$. The classical Z^0 field is for vacuum extremal proportional to em field and this allows to use only em field and effective em charge expressible as

$$Q_{\text{eff}} = \frac{-Z - N}{2p} + 2Z + q_{\text{em}}, \quad p = \sin^2(\theta_W). \quad (3.7.1)$$

Z denotes proton number, N neutron number, and q_{em} the charge due to ionization in units of proton charge. What is remarkable that even neutral atoms have large effective em charge due to the charge of protons. There is also an axial coupling to the classical Z^0 field causing large parity breaking effects. The value of Weinberg angle for almost vacuum extremals is not expected to be same as for far from vacuum extremals. The model for photoreceptors fixes p to be $p = 0.0295$ to be compared with $p \approx 0.23$ for standard model vacuum. Just fixing the value p predicts correctly the frequencies of peak sensitivity for the four types of photoreceptors [22].

Radiation at visible photon energies is the signature of tornadoes [17] difficult to understand in the standard physics framework. Also rotating magnetic systems [16] exhibit similar strange characteristics. Same applies to sonoluminescence [1]. One can consider two mechanisms generating radiation at visible and UV frequencies.

1. First mechanism is based on Josephson radiation. The almost vacuum extremal property, the suggested membrane like structure at the boundary of tornado, and the hypothesis that scaled up variant of axonal membrane with an appropriate value of Planck constant could in question suggests that there is also an electric field over the membrane. T TGD based model for rotating objects also predicts radial electric field [80] and there is also a kinematic effect producing this kind of electric field [5]. From the vanishing of total Lorentz force one has $E = \omega \rho B$, where B is the strength of the magnetic field, ω the angular velocity of rotation, and ρ is the distance from the rotation axes. For $\omega k/\rho$ outside the rotating magnetic system voltage is same for all flux sheets and voltage is

$$V = k \Delta RB = \omega R \Delta RB.$$

If the value of the analog of membrane potential is same as for cell membrane, one would have electric strength ~ 9.5 V/m for the minimal sized vortex. This condition would relate the magnetic field strength to the basic parameters of the tornado. This kind of assumption is of course somewhat adhoc and only its success can justify it.

Superconducting atoms and molecules would be Z^0 ions with effective em charge proportional to the total nuclear charge Z and gain in this electric fields energies comparable in visible and UV range (few eVs) and one expects that the dark Josephson radiation at low frequencies is generated providing the system with the analog of EEG. The leakage of dark Josephson photons to the ordinary space-time sheets and their interaction with atoms and molecules could in turn induce ordinary ionization which might be required also by the stability of the system. This would explain the visible light from this kind of systems. The rotation frequency of the system might directly relate to the frequency of dark Josephson radiation. The energy spectrum of radiation would serve as a signature allowing to distinguish the model from models explaining the radiation in terms of atomic transitions.

2. One can consider also second mechanism. The mechanism for the breaking of the ordinary superconductivity in the case of the magnetic flux tubes is based on the idea that for curved flux tubes ionic current with an overcritical ion velocity leaks along join along boundaries bonds from the magnetic flux tubes to non-super-conducting space-time sheets. The reason is simply the inertia of the charged particle. This process implies the generation radiation in case of the ordinary electromagnetic ions. This process occurs in the reconnection of magnetic flux tubes.
3.7. Atmospheric phenomena and super-conductivity

and more generally, when the curvature of flux tube becomes very large so that the inertia of the particle drives it to a larger space-time sheet. The model applies also to Z^0 magnetic case and if the particles are ordinary em ions, the generation of radiation is expected also now. Of course, also the collisions of neural particles generate also radiation but much more weakly. It is of course possible that stability condition requires also ordinary ionization of atoms.

This mechanism, besides providing a model for dissipation, might explain also the luminous phenomena associated with tornadoes [11, 1, 18]. Tornadoes are expected to involve also ordinary magnetic fields and corresponding flux tube structures so that also they could give rise to luminous phenomena by the same mechanism as in the case of auroras.

Rotating magnetic systems as dark matter systems analogous to neuronal axon

A useful analogy for the tornado is provided by rotating magnetic system known as Searl device [16]. This system is reported to start to spontaneously accelerate at certain critical rotation frequency. The TGD inspired model for the system is discussed in [5]. Spontaneous acceleration is accompanied by spontaneously occurring concentric cylindrical magnetic walls of thickness ≈ 0.5 cm with mutual distance of ≈ 0.5 m. What is intriguing that the spontaneous acceleration starts at 9.1 Hz rotation frequency and and acceleration continues up to 10 Hz after which the experimentation becomes impossible due to the problems with the mechanical stability. 10 Hz corresponds to the alpha band of EEG and to the fundamental frequency of electron’s CD. There is also a strong parity breaking involved: depending on the direction of rotation the weight of the system either decreases or increases, which suggests that some space-time sheets involved correspond to almost vacuum extremals: this could also explain the problems with stability.

These observations suggest that it might make sense to apply the idea about scaled up cell membrane to the boundary layer and magnetic flux walls associated with the rotating magnetic system. There are several scales and possibly also several values of Planck constant involved.

1. The radius of the rotating magnetic system is about 1 m and corresponds to the p-adic length scale $k = 204$ which corresponds to 1.2 m. This would suggest $k_d = 204 - 163 = 41$. The distance between magnetic walls is about .5 m and would correspond to $k_d = 39$. The thickness of the magnetic walls is about 5 cm corresponding to about $k_d = 32$. It is difficult to say anything definite about the thickness of the boundary layer assignable to the rotating magnetic system. 1 mm is one estimate based on the fact that the cylindrical rollers are at this distance from the central cylinder. This would suggest $k = 184$ and $k_d = 21$. The corresponding dark photon frequencies are 320 Hz, 1280 Hz, .66 MHz, and .32 GHz. Note that the second frequency corresponds to the 1.28 kHz frequency assignable to the CD of quark.

2. The very special role of 10 Hz frequency suggests the value $k_d = 2^{46}$. Note that the time scale of electron’s CD is in question. Of course, several dark values of Planck constant are possible.

3. One can also consider the possibility that magnetic walls of thickness 5 cm could be dark matter systems with thickness allowing an interpretation as scaled up counterparts of cell membrane of thickness 10 nm. The ratio of these scales is 5×10^6. This would give $k_d = 2^{45}$ not far from the value deduced from 10 Hz critical rotation frequency. Here one must however notice that cell membrane thickness is not affected in the scalings of Planck constant so that also other values of Planck constant are possible.

The idea about a strict scaling of the cell membrane suggests that there is also an electric field orthogonal to the boundary layer. From the vanishing of the total Lorentz force one has $E = \omega \rho B$, where B is the strength of the magnetic field, ω the angular velocity of rotation, and ρ is the distance from the rotation axes. For $\omega = k/\rho$ outside the rotating magnetic system voltage is same for all flux sheets and voltage is $V = k \Delta RB$.

If the value of the analog of membrane potential is same as for the cell membrane, one would have electric strength ≈ 9.5 V/m. Superconducting atoms and molecules in this field would gain energies of UV photons and highly energetic dark Josephson radiation at these frequencies would be generated providing the system with the analog of EEG. If the voltage is same also in the case of cell membrane, dark Josephson radiation at frequencies determined by the value of the Planck constant
is generated. The rotation frequency of the system -very near to 10 Hz- might relate to the frequency of Josephson radiation.

Magnetic walls could contain dark matter Bose-Einstein condensates in cyclotron state carrying maximal magnetic field of $B = 0.05$ Tesla [5, 10]. Magnetic walls could serve as angular momentum and energy storages from which the system draws energy by time mirror mechanism which means sending of negative energy phase conjugate photons absorbed by the Bose-Einstein condensate.

One can imagine several interpretation for the ionization of the air.

1. One already discussed explanation for the ionization of air would be in terms of energetic dark atoms and molecules and dark Josephson radiation leaking to the space-time sheets carrying visible matter. For instance, for N_2 and O_2 molecules one has Z_{tot} equal to 15 and 16 respectively, and the energies of UV photons are in few eV scale for cell membrane potential and could ionize molecules [22].

2. The observed ionization of the air in the vicinity of the rotating system could be also understood in terms of an Ohmic current generated by the radial vacuum electric field implied by the rotating magnetic field. Since the electric field corresponds to a non-vanishing vacuum charge density, this current charges the rotating magnetic system. Current carriers drop from atomic space-time sheets to larger space-time sheets at the boundary of the system liberating their large zero point kinetic energy of order 1 keV. The resulting voltage allows in principle to use the system as an over-unity device by adding load to a wire connecting the system to ground. The model leads to the proposal that rotating magnetic flux quanta provide a fundamental mechanism leading to the generation of plasmoids, which can be regarded as primitive living systems [43].

Tornadoes as dark matter systems

The identification of tornadoes as large \hbar systems is suggested by the ability to self-organize and preserve the self-organization pattern for relatively long periods of time. Dark matter would imply self organization and make the system living in a primitive sense.

The identification of tornadoes as rotating magnetic systems near vacuum extremals would allow to interpret the luminous phenomena associated with tornadoes [11, 1, 18] in terms of a plasma resulting by the mechanisms proposed in previous section. The angular momentum stored to dark Bose-Einstein condensates at the magnetic walls would provide angular momentum and energy for the tornado. As a matter fact, the formation of these Bose-Einstein condensates could force the rotation of tornado by angular momentum conservation.

The already discussed model of the boundary layer between rotating magnetic system and external world as a scaled up variant of cell membrane space-time sheet applied to the boundary layer between tornado and external world would make essentially the same predictions if one assumes that the voltage through the layer is same as in the case of the cell membrane. In particular, ionization is expected by the atoms and molecules gaining energies corresponding to photons in visible and UV regions and the resulting ions would in turn generate Josephson photons.

There are several kinds of tornadoes [17]. For supercell tornadoes called twisters the width is usually below $d = 90$ m but can sometimes extend over 1.6 km. Wind velocity is typically $v_0 = 160$ km/h= 44 m/s at the outer boundary. This gives a rough estimate for the angular velocity at the outer boundary as $\omega = v/d$. The rotation frequency is $f = 1/2\pi \approx .16 \approx 2^{-6} \times 10$ Hz in this particular case. For a radius of 1.6 km and same wind velocity one would have $f \approx 8.8$ mHz $\approx 2^{-10} \times 10$ Hz By the basic rule the values of k_d vary in the range [52, 56] with p-adic length scales $163 + k_d$ in the range [215, 218]. The length scale range would be [40,113] m. What is encouraging that the lower limit corresponds to the radius of the minimum sized tornado. The upper limit is too small by an order of magnitude. The interpretation suggested by the interpretation in the case of rotating systems is that 114 m would correspond to the thickness of the boundary layer between tornado and exterior world. For the minimal tornado the boundary layer would cover the entire interior.

3.7.2 Auroras as an astrophysical quantum phenomenon?

Auroras are perhaps the most magnificent electromagnetic phenomenon in the atmosphere. The mechanism generating the auroras is not completely understood. What is however known that auroras involve the motion of ions along flux lines of Earth’s magnetic field acting effectively as current wires.
This suggest the that the ionic currents could be supra currents running along the flux tubes of the magnetic field of Earth or its dark counterpart $B_{end} = 2B_E/5$ suggest to exist on basis of findings about the effects of ELF em fields on vertebrate brain [22]. Hence auroras could be a directly visible macroscopic quantum phenomenon! In the following a model of auroras based on this vision and explaining the latest findings about them is developed.

Basic facts, ideas and puzzles related to auroras

Auroras occur at heights of 56-970 km along a circle surrounding the magnetic North (South) pole [9]. Magnetic storms accompany auroras and auroras are especially intense during sunspot maxima. Protons and electrons of the solar wind are known to flow along magnetic flux lines acting effectively as current wires. Some mechanism accelerates electrons and protons during their travel to the pole region where they collide with the ions (mainly oxygen and nitrogen) of the ionosphere and generate visible light. The spectral lines correspond to ionic transitions and each color corresponds to a particular ion dominating at a particular height.

A brief summary of the basic ideas and problems related to the auroras is in order before representing TGD based model.

1. The reconnection of solar magnetic field lines carried by solar wind with the field lines of Earth’s magnetic field was proposed by James Dungey as a mechanism explaining the energetics of the auroras. There is indeed increasing empirical support for the view that the reconnection of the magnetic field lines of Sun and Earth accompanies [9] [6, 13, 15]. What would happen would be that the reconnected nearby opposite fields lines form a tightly bent U-shaped structure which straightens and acts as a catapult giving recoil energy to the plasma ions flinging in the direction of Earth. The highly energetic protons and electrons of the solar wind would flow towards Earth and collide with the ions of atmosphere and generate the auroras in this manner. The detailed understanding of the reconnection mechanism is lacking and here TGD suggests microscopic topological description relying on magnetic flux tubes.

2. The problem of the reconnection mechanism is how the solar and earthly magnetic flux lines running in opposite directions and carrying opposite currents know of each other and can change their direction so that the lines can meet. In TGD framework the reconnection of the magnetic flux tubes could be seen as a process changing space-time topology and this process is now one of the basic mechanisms of TGD inspired quantum biology [28]. At the point of reconnection magnetic field becomes zero in Maxwell’s theory and it is thought that the charged particles must be able to leave the flux lines by some unknown mechanism so that demagnetization occurs. TGD in turn suggests that inertial effects force ions flow to larger space-time sheets along join along boundaries bonds.

3. An electric field parallel to the magnetic flux lines has been postulated as the mechanism of acceleration: empirical evidence for the existence of this electric field has been found quite recently [1]. Two U shaped potential regions with positive resp. negative charges have been found at heights 5000-8000 km resp. 1500-3000 km. It is convenient to christen lower U shaped region as $∩$ and the upper one as $∪$. The negatively charged region feeds electrons to the aurora region and positively charged region sucks them back. There is however no consensus about how this kind of electric field is generated and how it could be stable.

A TGD inspired model for auroras

There are several poorly understood aspects related to the modelling of auroras. TGD approach provides new views to these problems. The following vision is perhaps the most plausible option discovered hitherto.

The basic condition is that cyclotron energies are above thermal energy. This allows to deduce lower bound the value of Planck constant assignable to the magnetic flux quanta. For $B_{end} = .2$ Gauss the cyclotron frequencies of electron and proton are .6 MHz and 300 Hz respectively and the formula $E = .41 \times 10^{-14} r \times (f/Hz)$, $r = h/h_0$, allows to deduce the estimate for the minimum value of Planck constant in terms of thermal energy and cyclotron frequency as
\[r = 2^{k_d} \geq \frac{E_{th}}{E}, \quad \frac{E}{eV} = \frac{f_c}{Hz} \times \frac{B}{B_{end}} . \]

(3.7.2)

Here power of two for \(r \) is assumed for simplicity. This gives the frequency as

\[k_d(e) \geq k_d(e, \text{min}) = 28.71 + 1.44 \times (\log(\frac{E_{th}}{eV}) - \log(\frac{B}{B_{end}})) \text{ (electron)} , \]

\[k_d(p) \geq k_d(p, \text{min}) + 11 \text{ (proton)} , \]

\[k_d(I) \geq k_d(p, \text{min}) + \log(\frac{A}{Z}) \text{ (ion)} , \]

\[\frac{E_{th}}{eV} = 2.22 \times 10^{-4} \times \frac{T}{K} . \]

(3.7.3)

Both electronic and protonic supra currents flow for \(k_d > k_d(e, \text{min}) + 11 \). \(I \) refers to ion with charge \(Z \) and mass number \(A \).

1. The ionosphere of Earth is at room temperature roughly below 85 km and at temperature 1200 K at upper layers. For \(B_{end} \) both electronic and protonic currents could flow as supra currents if this condition is satisfied for temperature roughly room temperature for \(k_d(p) = k_d(e) \geq 34 \) below 85 km and for \(k_d(p) = k_d(e) \geq 36 \) at the upper layers.

2. The reconnection of field lines generalizes to reconnection of magnetic flux tubes. The large inertia of ions in reconnection process from solar wind flux tube can induce their leakage and subsequent transfer to the upper magnetic flux tube in reconnection process. This would accumulate negative charge to the lower and positive charge to the upper U shaped flux tube.

3. The rapid straightening of the lower U shaped flux tube behaving like rubber band provides the mechanism of acceleration and brings ions of solar wind to the ionosphere where the collision with the flux tubes of inner magnetosphere induces the collision of electrons and ions and generates auroras. The liberation of cyclotron energy of electrons in cyclotron transitions of Bose-Einstein condensate of Cooper pairs of electrons and protons, and possibly even of exotic \(O^+ \) ions makes possible ionization and electronic excitations of ions involved.

1. Could em currents flow along magnetic flux quanta of solar and Earth’s magnetic field as supra currents?

The question is under what conditions the statement that charged particles move along the flux lines of Earth’s magnetic field without appreciable dissipation translates in TGD framework to supra currents flowing along the flux tubes of Earth’s magnetic field.

1. Consider first the flux tubes of solar wind. The solar wind is made of Hydrogen (95%) and Helium (4%) and Carbon, Nitrogen, Oxygen, Neon, Magnesium, Silicon and Iron (\(\approx 1% \)). The temperature is \(T \approx 15 \text{ eV} \). The magnetic field has strength \(\sim 10 \text{ nT} \). Both proton and electron Cooper pairs cyclotron energies a would be above thermal energy at \(k_d(p, \text{min}) \geq 56 \) levels of dark matter hierarchy.

2. Consider next flux tubes in magnetotail. In magnetotail the field strength of Earth’s magnetic field is around 30 nT in the lobes of the inner magnetosphere at the night side of Earth and temperature is around \(.5 \text{ eV} \) (metabolic energy quantum again). This gives \(k_d(p, \text{min}) = 50 \) to be compared with \(k_d(p, \text{min}) \geq 56 \) for solar wind meaning that the reconnection process involves a phase transition changing the value of Planck constant.

3. An interesting question is whether Bose-Einstein condensates of exotic \(O^+ \) ions could be present near polar regions where field is stronger. What is known that cyclotron resonance frequencies of \(O^+ \) and \(H^+ \) ions appear in the frequency spectrum of electric fields in the aurora regions [4]. This however requires only \(k_d \geq 53 \) since magnetic field is much stronger and near to \(B_E = .5 \text{ Gauss} \). What is interesting and perhaps of significance is that \(O^+ \) exotic ion would be the heaviest possible ion forming Bose-Einstein condensates and also the dominating one besides proton.
2. Radii of flux quanta

The gyroradius \(pr/ZeB \), where \(pr \) is momentum transversal to \(B \), of proton resp. electron of solar wind in the magnetotail is known to be about 700 km resp. 20 km whereas the radii of the magnetic flux tubes would be in the range in 10-100 micrometers for ordinary value of \(h \) and minimal magnetic flux. One must of course notice that currents at the boundaries of flux quanta allow to have arbitrary radii of flux quanta and this is the only sensible option in biomatter. One can consider several scaling laws for the the radius of the flux tube.

p-Adic length scale hypothesis suggests that scaling law could be \(R \propto \sqrt{r}, r = h/\hbar_0 \). Also the radii of cyclotron orbits scale as \(\sqrt{rn/eB} \), where \(n \) labels the cyclotron states. For \(B_{\text{end}} \) and for \(r = 1 \) the minimum radius would be about 5 \(\mu \)m. If the flux quantization in standard form is satisfied for \(B_{\text{end}} \) with \(k_d(p, \text{min}) = 36 \), the radius is about 1 m. For solar wind with \(k_d(p, \text{min}) = 56 \) and \(B = 10 \) nT this would give minimal radius of about 5 km. For tail with \(B = 30 \) nT and \(k_d(p, \text{min}) = 50 \) this would give 23 km which is slightly larger than electron’s gyroradius. The value of gyroradius gives a condition on \(n \) if one assumes that the situation is semiclassical. For proton would have \(n \approx 926 \) in tail.

The gyroradii of ions are smaller than the radii of flux tubes if one assumes standard flux quantization. If the radii of flux tubes are comparable than gyroradii, the ions can leak out from solar flux tube in the reconnection process. This would be essential for how the negatively and positively charged regions are generated in the reconnection process.

3. Reconnection mechanism

In TGD framework one can understand how reconnection can occur. The helical structure of the flux tubes implies that they can be in transversal direction to the average magnetic field and this means that flux tubes can meet each other in U-shaped manner. Thus the process of reconnection would be a genuine quantal and topological transition for which the flux quantization would be essential.

It seems natural to expect that the location of the reconnection region is determined from the requirement that the flux tubes of solar wind and Earth’s magnetic field have same thickness so that also local magnetic fields have the same strength from flux quantization. In Maxwell’s theory this corresponds to the fact that the two magnetic fields sum up to zero. The reconnection process should be also energetically favored.

4. Acceleration mechanism

One can regard Earth’s magnetic field as a collection of magnetic flux tubes containing matter and analogous to rubber strings. For instance, the rotation of the magnetic flux tubes could be essential prerequisite for the stability of curved flux tubes. Also the idea about catapult action meaning that the reconnected U shaped magnetic flux tube in East-West plane, briefly \(\cap \), rapidly straightens and becomes a flux tube in ionosphere and collides with flux tubes of ionosphere looks natural. \(k_d \geq 56 \rightarrow k_d \geq 50 \) phase transition would naturally accompany this process.

The collision of flux tubes would in turn induce the collision of ions and electrons inside them and generate auroras. For \(k_d = 56 \) at solar wind flux tubes the high energy scale \(E_{\text{c}} = 15 \) keV of the cyclotron energy states of electrons would induce ionization of atoms in the magnetic flux tubes and induce generation of visible light in atomic transitions of ions and also generation of X rays and perhaps even gamma rays. Even when the phase transition to \(k_d \geq 50 \) state occurs inside ionosphere, the cyclotron energy scale is 1.44 eV, which is in infrared. Here one must of course be careful to notice that this energy is just the minimum energy. One can think that the charged particles of solar wind end to large \(n \) cyclotron states at magnetotail and end up to lower energy states by emission of cyclotron radiation. Analogous collision of flux tubes could explain generation of X and gamma rays associated with lightnings.

5. Formation of return current and generation of strong voltage between reconnection region and aurora region

This picture allows also to understand why a return current from aurora region to \(\cup \) is formed and what might cause the strong voltage of about \(10^4 \) Volts between the top of \(\cap \) and ionosphere.

The formation of the return current of electrons suggests the presence of closed electric field lines so that electric field would not be conservative. These closed field lines would correspond to closed structures formed from magnetic flux tubes carrying electric field. This means that there must be time
varying magnetic flux through the surface, call it \(X^2 \), orthogonal to Earth’s surface and extending from the aurora region in ionosphere to \(\cup \). This is the case if the highly curve \(\cap \) contracts (recall the rubber band analogy) to a relatively straight flux tube inside ionosphere in magnetic East-West direction. The change of the magnetic flux through \(X^2 \) would be the magnetic flux carried by this flux tube. Of course, several flux tubes might be involved.

The generalization of the flux quantization condition to time domain reads as

\[
2e \int_0^T VdT = nr\hbar_0 ,
\]

where \(T \) is the time during which flux tube traverses the boundary of ionosphere. The condition follows from Faraday’s induction law and magnetic flux quantization, and relates the change of flux to the time and non-conservative voltage around flux loop. If \(n \) refers to the flux of single flux tube of Earth’s magnetic field in which case it would have radius \(R_n = \sqrt{n} \times 23 \text{ km} \), \(n \geq 1 \) by the requirement that electron gyroradius is smaller than \(R_n \).

This condition allows to estimate the value of \(T \) using the estimate \(V = 10^4 \text{ V} \) for the voltage between recombination region and auroral region. For \(B_{\text{tail}} \) and \(k_d = 56 \) this gives \(T = n \times 49 \text{ s} \) for the time during which the flux tube traverses the boundary of the ionosphere. In \(200 \text{ s} \) time scale is associated with the straightening process on basis of experimental data so that \(n = 4 \) suggests itself. This would support the idea about quantal process. This would mean radius 46 km safely above the electronic gyroradius 20 km. The velocity of straightening for the flux tube would be \(v \sim 2R_1/T \approx 25 \text{ km/s} \).

7. Generation of regions of positive and negative charge

The proposed reconnection mechanism provides also insights to the mechanism leading to the generation of negative charge to the top of \(\cap \) at height 1500-3000 km above Earth and positive charge to the bottom of \(\cup \) at 5000 – 8000 km above Earth [7]. The formation of these regions can be indeed understood: due to the small inertia of electron Cooper pairs of solar wind and the fact that the electronic gyroradius 20 km is smaller than the radius of flux tube of Earth’s magnetic field in magentotail for \(k_d = 56 \), electrons are not expected to leak out of the flux tube in the reconnection process. Ions are however much more massive and their gyroradius (700 km for proton) is much larger than 20 km so that they are expected to leak out in the reconnection process and end up to \(\cap \) thus providing it with a positive charge.

Auroras, meteors, and consciousness?

There are claims that auroras generate audible sounds [9]. These sounds have not been detected by acoustic means. Magnetic sensory canvas hypothesis could explain this. The magnetic storms accompanying auroras should affect also our personal auditory canvases. In particular, Schumann resonances which could correspond either MEs parallel to the magnetic flux tubes or oscillations of the magnetic flux tubes, are excited. Higher Schumann resonances are in the audible range and could directly give rise to extrasensory perception of sounds.

There is also some other evidence for the sensory canvas hypothesis. Since 16th century it is known that also meteors produce audible sounds. What is mysterious is that there is no time lag due to the propagation through the atmosphere. The explanation is that it is very low frequency em waves which propagate to Earth and generate sounds by interacting with the objects at the surface of Earth. Joined by the International Leonid Watch - Croatia (ILWC) project, a group of scientists presented the first instrumental detection of elusive electrophonic meteor sounds. In November 1998, the researchers from the Croatian Physical Society and the University of Kentucky organized an expedition to Mongolia to observe the anticipated Leonid meteor shower and shed some light on the phenomenon [8]. The complete data analysis revealed two electrophonic (electronically detected) sounds that provided several important clues about the nature of this longstanding astronomical mystery. It became clear that sounds were created when the meteors were crossing night-time ionosphere. The existing theories cannot however completely explain the phenomenon. The energy of meteor does not seem to be high enough to invoke the electric fields needed to explain the electronically recorded sounds, and strangely enough, the frequencies are much lower than expected, in the region 20-40 Hz.

Magnetic flux quanta as carriers of the electromagnetic perturbations might allow a better understanding of the phenomenon. Perhaps the audible sounds, in contrast to the electronically recorded
3.7. Atmospheric phenomena and super-conductivity

ones which seem to be of much lower frequency, are in fact generated by the direct perturbations of magnetic auditory canvas: this would explain why there is no lag due to the propagation through atmosphere. Electronically recorded sounds could be induced by the em perturbations propagating along magnetic flux ruvwa at Schumann frequencies and the mirrors might act as resonators amplifying the em fields (electrophonic sounds had frequency spectrum in the region of lowest Schumann frequencies). Notice that magnetic flux tubes of length shorter than Earth’s circumference would give rise to higher resonance frequencies than Schumann frequencies.

There are also reports that seeing auroras can cause a loss of consciousness. This effect might not be only due to the depth of the aesthetic experience. The effects of magnetic storms on patients of mental hospitals are also well documented. If our sensory representations are indeed realized at magnetic flux tubes structures associated with Earth’s magnetic field, one is led to ask whether the dissipative processes associated with auroras destroying ionic supra currents might indeed affect directly our consciousness, inducing even a loss of consciousness.

The magnetic flux tube structures associated with the sensory canvas could also experience the pressure of the solar wind and change their shape during night time. Also this might correlate with the fact that we usually sleep during night time and daytime consciousness differs from nighttime consciousness.

3.7.3 Lightnings, sprites, elves, and the hypothesis of magnetic sensory canvas

In 1920s, the Scottish physicist C. T. R. Wilson predicted the existence of brief flashes of light high above large thunderstorms [64, 64]. Almost 70 years later, Bernard Vonnegut of SUNY Albany realized that this prediction could be tested by studying the videos of Earth’s upper atmosphere recorded by space shuttle astronauts. William Boeck and Otha Vaughan from NASA decided to look for the evidence and they indeed found it. Also John Winkler and his colleagues had serendipitously observed a flash in moonless night time skies over Minnesota in 1989. These findings inspired two field programs (led by Walter Lyons and Davis Sentman respectively) to study the new phenomena and it soon became clear that the flashes are in fact a common phenomenon in the mesosphere.

Sentman and Lyons found two broad classes of flashes [5, 12]: sprites and elves. These short lived luminous phenomena are associated with large thunder storms called mesoscale convective systems often covering entire states in the Great Plains of the US in summertime. These migratory regions contain often regions of active convection adjacent to the regions of weaker stratiform convection. Ground flashes with a negative polarity (Earth surface corresponds to the negative electrode) dominate in the active convection regions whereas the less frequent but more energetic flashes with positive polarity (Earth surface corresponds to positive electrode) predominate in the stratiform regions. The great majority of sprites and elves are initiated by ground flashes of the latter type. Elves and very low frequency perturbations from electromagnetically pulsed sources are centered above vertical channels to ground whereas sprites lie above horizontally extensive spider lightnings in the lower portion of the stratiform cloud.

My own interest on these phenomena was stimulated by the article [16] according to which neither the origin of the blue light accompanying sprites nor the fast rate for the development of sprites are well-understood. The obvious strategy is to find whether the notion of many-sheeted space-time could provide an improved understanding of these phenomena.

The notion of many-sheeted space-time is crucial for TGD based model of brain involving in an essential manner also the notion of the magnetic sensory canvas: the magnetic flux tube structures involved can have size comparable to Earth’s size. An interesting question is whether one could somehow relate the notion of sensory magnetic canvas to the electromagnetic phenomena occurring in the atmosphere. Rather encouragingly, the basic dynamical time scales of lightnings, sprites and elves correspond to those associated with brain. This inspires some speculations about how magnetic bodies and atmospheric electromagnetic phenomena might relate.

Lightnings

A good summary about basic facts concerning lightnings [11], sprites and elves can be found in Wikipedia [1]. Lightnings are classified to positive and negative lightnings depending on whether the
electron current is from ground to cloud or vice versa. The following brief summary gives a rough account of what happens in case of negative lightning for which electron current flows to ground.

An initial discharge, (or path of ionised air), called a "stepped leader", starts from the cloud and proceeds generally downward in a number of quick jumps, typical length 50 meters, but taking a relatively long time (200 milliseconds) to reach the ground. This initial phase involves a small current and is almost invisible compared to the later effects. When the downward leader is quite close, a small discharge comes up from a grounded (usually tall) object because of the intensified electric field.

Once the ground discharge meets the stepped leader, the circuit is closed, and the main stroke follows with much higher current. The main stroke travels at about 0.1 c and has high current for .1 m or so. It may persist for longer periods with lower current.

In addition, lightning often contains a number of restrikes, separated by a much larger amount of time, 30 milliseconds being a typical value. This rapid restrike effect was probably known in antiquity, and the "strobe light" effect is often quite noticeable.

Positive lightning does not generally fit the above pattern.

Positive lightnings are rare but more energetic. The typical voltages, electric fields, and durations of strikes involved with positive resp. negative lightnings are 1 GV, 10^5 V/m and 1 ms resp. .1 GV, 10^4 V/m and .1 ms. During positive lightning there is a huge amount of VLF and ELF radiations which implies that lightning induces effects in ionospheric scale.

The notions of leader emerging from cloud and streamer emerging from ground and meeting before the strike are well established. The development of leader means that air becomes conductive in a stepwise manner by ionization. Stepped leaders are associated with negative lightnings and dart leaders with positive lightnings. Lightning is accompanied by X ray bursts with duration < .1 ms, with X ray energies up to few hundred keV. The bursts are presumably generated during stepped leader and dart leader phase. Also gamma ray bursts have been observed.

Runaway breakdown is a generally accepted mechanism in the theory for the formation of lightnings. It is assumed that cosmic ray strikes atmospheric molecular and releases extremely energetic electrons having enhanced free path length of tens of centimeters. Electrons are accelerated in the electric field of storm and ionize further molecules and initiate the runaway breakdown at higher which then proceeds downwards. Conductive path with a length of typically 50 m is created. There are however some problems. The rate for the strikes by cosmic rays having sufficient energy is 50/km2 and too low to explain the number of lightnings during thunderstorm. Also the measured X ray burst intensity is only 5 per cent of the predicted value.

Sprites

Sprites come in several varieties and these complex structures have been dubbed with descriptive names like carrots, angles, jellyfish and A-bombs. The simplest sprites are so called C sprites which have transversal size of order 200 m and height of order 10 km and form structures resembling Fourth of July fireworks. The vertical extension of sprites can be as high as 60 km and there lower end is typically at the height of 30 km (for illustrations of sprites and elves see [16]).

In Wikipedia [11] sprites are characterized as follows.

Sprites are now well-documented electrical discharges that occur high above the cumulonimbus cloud of an active thunderstorm. They appear as luminous reddish-orange, neon-like flashes, last longer than normal lower stratospheric discharges (typically around 17 milliseconds), and are usually spawned by discharges of positive lightning between the cloud and the ground.

Sprites can occur up to 50 km from the location of the lightning strike, and with a time delay of up to 100 milliseconds. Sprites usually occur in clusters of two or more simultaneous vertical discharges, typically extending from 65 to 75 km above the earth, with or without less intense filaments reaching above and below. Sprites are preceded by a sprite halo that forms because of heating and ionisation less than 1 millisecond before the sprite.

The structure of sprite resembles that of a botanic tree consisting of roots (negative end), trunk and branches (positive end). This bi-directional structure of the sprite suggests two separate processes: the first process proceeds upwards and is followed by a second process proceeding downwards. The blue color of the lower part of the sprite (roots) is known to be due to the transitions of N^+ ions whereas the red color of the upper part is due to the transitions of N_2 molecules.

Wilson’s theory suggests that the process associated with trunk and branches of the tree corresponds to a dielectric breakdown induced by the ionization of molecules by electrons flowing upwards
in the electric field generated by the spider lightning. The dipole field associated with the lightning behaves as $1/z^3$ as function of height from the pancake like electronic reservoir located at the thunder cloud at height of order 10 km. Since the dielectric strength (the critical electric field causing the ionization of molecules) is proportional to the density of the molecules, which decreases exponentially with height, the dielectric breakdown is predicted to begin from higher heights above thunder cloud and cause a cascade like electron current.

The expression for the drift velocity of electron in an external electric field is obtained from the condition

$$\frac{m_e v^2}{2} = eE l , \quad l = \frac{1}{n \sigma} . \quad (3.7.4)$$

Here σ denotes the total scattering cross section for the scattering of electrons on molecules and l denotes the length of the average free path of electron. The condition simply states that the kinetic energy gained in the field between two interactions equals to the work done by the electric field on electron.

Ionization becomes possible when the kinetic energy is above the ionization energy E_{ion} of the molecules of the atmosphere. This condition determines the critical value of the electric field as

$$eE_{cr} = 2E_{ion} n \sigma . \quad (3.7.5)$$

The critical value of the electric field is proportional to the density n of the molecules decreasing exponentially with height. The values of the dipole moment p characterizing the electric fields generated by lightnings range from 10 to more 10^3 coulomb kilometers (for the convenience of the reader we notice that one coulomb corresponds roughly to 10^{19} electronic charges). Assuming the distance scale $z \sim 40$ km, dipole moment $p \sim 10^3$ Ckm, and collision cross section $\sigma \sim \text{Angstrom}^2$, one finds that the critical drift velocity is of the same order of magnitude as the observed velocity $1 c$ for the generation of sprite. In [16] it has been stated that the predicted critical drift velocity tends to be too small.

The negative end of the sprite (roots) accompanied by blue light suggests that the N_2^+ ions created in the electronic ionization run downwards in this region. The mechanism leading to the the transitions of N_2^+ ions generating blue light is most naturally the collisions of N_2^+ ions with N_2 molecules. This assumption conforms with the basic facts about sprite formation and structure: the intensity of the blue light is comparable to that of red light, the blue end of the sprite develops later than the red end, the blue emission is at the lower end of the sprite, and the branching of the lower end proceeds downwards. Note that the critical velocity for the ionization of N_2 molecules by collisions with N_2^+ molecules is proportional to $1/\sqrt{M(N_2)n}$ and thus considerably smaller than in case of electron for given values of n and E. This together with the larger density of N_2 molecules implies that the lower part of the sprite is generated more slowly.

A priori also sprites for which thunder cloud carries positive charge are possible. Only two cases of sprites associated of this kind have been found, and according to [16] this asymmetry is not yet well-understood. A possible explanation is following. When cloud is negatively charged, the pancake like electronic reservoir located at the thunderstorm provides the seed electrons initiating the ionization cascade providing new current carrying electrons. When the cloud is positively charged, the electrons would propagate downwards from upper part of atmosphere to the direction in which drift velocity decreases. There are however no seed electrons now. There is however a reservoir of positive N_2^+ ions in thunder cloud and they might be able to generate the dielectric breakdown. It is quite possible that the typical seed density is simply too low for this in most cases. These infrequent sprites should have blue or pink-blue upper end ($N_2^+ - N_2$ collisions can also excite N_2 molecules) and should develop with much more slower rate.

If the collisions with the electrons were responsible for the transitions of N_2^+ ions (as believed in [16]), the intensity of the blue light would be by several orders of magnitude weaker from the fact that the density of N_2^+ ions is of the same order as that of electrons from the requirement of overall charge neutrality, and from the fact that the density of N_2 ions is much higher than that of electrons (there are roughly 1 electron per 10 billion N_2 molecules [16] at the upper portion of the sprite).
Elves

In Wikipedia, elves are characterized in the following manner.

Elves often appear as a dim, flattened, expanding glow around 400 km (250 miles) in diameter that lasts for, typically, just one millisecond [7]. They occur in the ionosphere 100 km (60 miles) above the ground over thunderstorms. Their color was a puzzle for some time, but is now believed to be a red hue. Elves were first recorded on another shuttle mission, this time recorded off French Guiana on October 7, 1990. Elves is a frivolous acronym for Emissions of Light and Very Low Frequency Perturbations From Electromagnetic Pulse Sources. This refers to the process by which the light is generated; the excitation of nitrogen molecules due to electron collisions (the electrons having been energized by the electromagnetic pulse caused by a positive lightning bolt).

Elves are thus a phenomenon occurring above ionosphere rather whereas sprites are ionospheric phenomena. This allows to understand why they occur for positive lightings (electrons flow from ground to cloud).

In case of elves the ionization mechanism differs from that for sprites. The radiation from the lightning decays with distance as $1/z$ and this guarantees that the threshold for the breakdown is exceeded as long as lightning current is sufficiently large. The observations show that there is a time lapse of order 10 ms between the lightning and the generation of elf: this lapse is consistent with the propagation of radiation with light velocity. Observations show that peak currents of 70 A or greater are required.

Electronic plasma frequency defined as

$$f_p^2 = \frac{n_e e^2}{m_e}$$ (3.7.6)

plays an important role in understanding the electromagnetic phenomena in atmosphere. Plasma frequency defines the cutoff frequency for waves which can propagate inside sprite: what this means is that frequencies lower than f_p are reflected. The observations about reflections of EM waves on sprites show that f_p is in the range $2 - 25$ kHz which means that the density of electrons is in the range 10^4 to 10^6 cm$^{-3}$, somewhat more dilute than in aurora borealis and slightly above the electron concentration in the daytime E region of the ionosphere. VF and ELF EM waves can propagate in the 80-90 km thick wave guide below ionosphere and sprite activity generates ELF waves, which are especially strong at Schumann resonance frequencies and serve as a global signature for them.

Dark matter hierarchy, lightnings, sprites, and elves

What is known about sprites and elves might be marginally understood in the framework of standard physics. The model for the leaders based on runaway breakdown induced by cosmic rays is however inconsistent with the empirical facts and dark Bose-Einstein condensates at the flux tubes of Earth’s magnetic field provide an alternative model. This inspires the question whether dark matter hierarchy could manifest itself somehow in these phenomena. The first thing one can do is to look whether the time and length scales involved could be assigned with the basic scales of the dark matter hierarchy.

1. **Time scales**

Millisecond time scale seems to govern the dynamics of both lightnings, sprites and elves. The net time for the formation of stepped leader is about $\tau = 200$ ms and since length scale involved is 10 km this means that generation of single step corresponds to millisecond time scale $T_{step} = 1$ ms. Also the time scales of strikes are in millisecond scale: for instance, sprite halos appears millisecond before sprite, sprite typically last about 17 milliseconds, and elves last for 1 millisecond. Note that millisecond time scale assignable to d quark CD and 100 ms scale corresponds to electron.

The appearance of millisecond time scale for the main strike and appearance of re-strikes brings strongly in mind nerve pulse generation and nerve pulse sequences having similar time scales. Moreover, delta band of EEG resembles corresponding region of sferics and intense VLF and ELF radiation accompanies positive lightnings. The question is whether the similarity of time scales is a mere accident and whether lightnings could be regarded as sequences of scaled up nerve pulse like discharges involving kHz synchrony related to quark CDs and duration of 100 ms related to the CD of electron.

2. **Length scales**
One could consider at least half seriously the idea that the region between thunder cloud and Earth with thickness $L \sim 10$ km defining the length of leader is analogous to a scaled up dark variant of cell membrane. Similar idea could apply to the $L \sim 100$ km thick region between ionosphere and Earth surface. The length scale of single step about 50 m and its ratio to the distance $L = 10$ km is 2^{14} and could be understood in terms of the ratio $\tau / \tau_{\text{step}}$. One could wonder whether this ratio corresponds to proton-electron mass ratio.

1. Dark matter hypothesis implies that scaling proportional to r. The value of Planck constant can be deduced as $r = 2^{d_a} \simeq L/d$, where $d = 10$ nm denotes the thickness of the cell membrane. Note that \sqrt{r} proportionality appropriate for p-adic length scales does not work and these scales could be most naturally assigned with CDNs. This gives the estimate $k_d = 40$ for thunder cloud and corresponds to Josephson frequency 640 Hz. For ionosphere one obtains $k_d = 47$, which corresponds to the 5 Hz Josephson frequency assigned with wake-up EEG. 50 km defining the maximum distance between sprites and lightning and would correspond to $k_d = 46$ and 10 Hz Josephson frequency with obvious meaning in biology.

2. The length scale 50 m for the step of the leader could correspond to $k_d = 18$ and Josephson frequency of 2.5 GHz.

3. The generation of lightning could proceed from $k_d = 40 \approx 18$ level to higher levels of dark matter hierarchy. This kind of hierarchical development could explain the sprites and elves as well as strong ELF and VLF is associated with positive lightnings as being to the fact that electron current proceeds upwards and can thus excite $k_d = 40$ ionospheric excitations (sprites) and $k_d = 47$ excitations (elves) above ionosphere.

3. Dark matter hierarchy and generation of leaders

Dark matter hierarchy suggests a new kind of mechanism initiating the development of leaders. The dissipation-free acceleration of cyclotron electron Cooper pairs and of ions at the flux tubes in strong electric field and transfer to the atomic space-time sheets could provide a mechanism generating the typically 50 meter long steps of step leaders. The energy of .5 MeV, which corresponds to electron rest mass, would be reached in a free acceleration of proton or electron Cooper pair in an electric field of $E = 10^4$ V/m associated with negative lightnings over distance 50 meters. This corresponds to electron rest mass so that also the generation of gamma rays could be understood. For dart leaders the same energy would be reached during 5 meter long free acceleration, which raises the question whether dart leaders are step leaders with shorter length of the basic step.

Electronic cyclotron energy scale for $k_d = 40$ level of dark matter hierarchy is about $E_c = 2$ keV. Therefore cyclotron photons emitted in the collisions of electron Cooper pairs at the magnetic flux tubes of Earth could be involved with the generation of highly energetic electrons which in turn induce runaway breakdown. This energy is perhaps too small to explain the energies of highest X rays and of gamma rays.

4. $k_d = 47$ dark matter level and the formation of sprites and elves

The too low drift velocity of electrons drifting to the trunk and branches of sprite from electron reservoir at the bottom of the cloud is a possible problem in the model for the formation of sprites. Almost dissipation free upwards directed acceleration of Cooper pairs of electrons at $k_d = 47$ magnetic flux tubes would allow much higher drift velocities since the free path of electron Cooper pair would be longer. This would reduce the critical value of the electric field and make the process faster.

The density of N_2 molecules is about $10^5 / \mu m^3$ at the upper part of the sprite and one can consider the possibility that at least part of these molecules reside at the magnetic flux tubes of the dark counterpart B_{emd} of the Earth’s magnetic field B_E which is hypothesized to have the value $B_{\text{emd}} = 2B_E/5$ on basis of the model explaining the effects of ELF em fields on vertebrate brain (see the appendix of [13] and [22]). One can even raise the question whether singly charged exotic N_2^+ ions (behaving like neutral atoms electronically) could be present and define cyclotron condensates. The downwards directed dissipation-free acceleration of N_2^+ exotic ions scattering from ordinary N_2^+ ions could induce the transitions of N_2^+ ions responsible for the blue color in the lower part of sprite.

In the case of elves the ionization mechanism is believed to involve radiation from lightning energizing electrons in turn exciting N_2 molecules. The effect would be stronger if Bose-Einstein condensate of exotic N_2^+ ions is excited coherently by the collisions with energized electronic Cooper pairs.
Atmospheric electromagnetic phenomena and consciousness

The hypothesis about magnetic sensory canvas should be related to experimental reality somehow. The electromagnetic phenomena (such as lightnings, auroras sprites, elves) in the atmospheric waveguide are indeed rather promising in this respect.

1. If the magnetic sensory canvas hypothesis holds true one has the right to expect that brain functioning and these electromagnetic phenomena should possess common time scales. Amazingly, the frequency spectra as well as typical durations for the lightnings, sprites and elves correspond to those associated with brain. The typical duration of lightning is about 0.1 seconds which is the fundamental time scale of sensory consciousness and defines the duration of the memetic code word. Sprites are generated during one millisecond and typically last 10-100 milliseconds. The spectrum of the phenomena associated with the activity of lightnings is in the range 0-25 kHz: this follows from the fact that waves in this frequency range are reflected from ionosphere and propagate in the waveguide defined by the atmosphere. It is perhaps not an accident that this frequency range corresponds to the range of frequencies audible for human brain.

It is also known that hippocampus, which is crucial for long term memories, contains highly ordered magnetite particles (private communication) and responds in complex ways to magnetic perturbations having frequencies in ELF range and amplitudes in picoTesla range. The amplitudes for the perturbations of Earth’s magnetic field are also in picoTesla range in theta and alpha range of EEG frequencies. Also alpha waves generate a peak in MEG with amplitude of order picoTesla: presumably this peak corresponds to the lowest Schumann frequency. Also eyes generate static magnetic fields with strength of order 10 picoTesla.

In consistency with the observations of Blackmann and others about the intensity and frequency windows for ELF em fields, these findings encourage to think that brain is indeed sensitive to the perturbations of Earth’s magnetic field (note however that the electric fields in these experiments are typically of order 10^{-10} V/m [17] and roughly two orders of magnitude higher). This would mean also a sensitivity to the perturbations of the magnetic flux tube structures defining the hierarchy of magnetic bodies. These perturbation might directly affect conscious experience (not necessarily at our level of hierarchy) giving rise to effective extrasensory perceptions and the effects at the level of brain would represent a reaction to this kind of conscious experience.

2. There should be also interaction between brain and the electromagnetic phenomena in the atmosphere and Schumann resonances which characterize the perturbations of Earth’s magnetic field should be of special importance. In fact, the third person aspect of conscious experience might be due to the cyclotron transitions at flux tubes assignable with dark parts of the Earth’s magnetic field [22]. Lightnings, sprites and elves indeed excite Schumann resonances known to affect strongly human consciousness [35]. Furthermore, the shape of the frequency spectrum for sferics at delta frequencies resembles delta band of EEG [9]. The generation of Schumann resonances might mean also a direct interaction with the magnetic sensory canvas and one cannot exclude the possibility that atmospheric phenomena could have role in signalling at the higher levels of self hierarchy. Perhaps the peak in MEG at alpha range results from this kind of interaction.

There are typically few sprites per minute and they generate strong Schumann resonances. One can wonder whether sprites and/or the associated spider lightnings could have correlates at the level of EEG and neurophysiology and perhaps even affect conscious experience, say by causing changes in mood. It should be possible to check whether the EEGs of persons possibly located at different parts of globe display simultaneous correlates for sprites and lightnings.

3. One could go even further and try to test the fractality hypothesis. The ratio of length scales associated with pairs cell membrane-cell, cortex-brain and atmospheric waveguide-Earth are of same order of magnitude. This observation and Mother Gaia hypothesis encourages to consider the possibility that the atmosphere could in some sense be a scaled-up version of cortex, which in turn would be scaled-up version of the cell membrane. For instance, the transversal size of order 200 m of the smallest sprites (so called C sprites) would correspond to the micron length scale in brain length scale and thus the size of smallest neurons whereas this length scale corresponds to nanometer (DNA size scale) at neuronal level. The height of C sprites which is about 10 km
corresponds to the length of about 50 microns which in turn reminds of the lengths of cortical neurons.

4. The geometric appearance of sprites brings in mind the geometry of neurons and one can even play with the thought that sprites and lightnings are associated with pre-existing electric flux tube structures in atmosphere so that lightnings, sprites and elves could be phenomena comparable to nerve pulse activity and graded potentials in brain. The geometric structures associated with sprites resembles the axonal and dendritic geometries for cortical neurons.

5. The most fascinating possibility is that sprites and elves are parts of magnetic bodies made temporarily visible. If so, then one could also consider the possibility that magnetic bodies form a self hierarchy analogous to that formed by monocellulars and increasingly complex multicellulars with cell being replaced with brain/physical body of organism. Various organisms would obviously form the lowest level of this self hierarchy and various levels of collective consciousness would be the electromagnetic analog of the multicellular life.

What auroras, tornadoes, ball lightnings, and cold fusion might have in common?

New physics due to a ground state, which is almost vacuum extremal could be the common denominator of very large class of anomalous phenomena including auroras, tornadoes, ball lightnings, cold fusion, sonofusion, and last but not least - the entire biology!

If the density of the ions inside magnetic flux tubes is constant, garden hose instability for magnetic field suggests itself strongly. Similar instability might be associated with the flux quanta of the em and \(Z^0 \) magnetic fields associated with almost vacuum extremals (this is not assumed about sensory canvas) if they contain \(Z^0 \) ions which can be electromagnetically neutral. This kind of instability giving rise to spiral helices is the basic assumption in the TGD based model of tornadoes. This suggests super-conductivity analogous to that in the case of cell membrane for almost vacuum extremals, and since rotating systems probably involve also magnetic fields, phenomena analogous to auroras could be involved also now.

It is indeed well known that luminous phenomena resembling those accompanying ball lightnings \cite{11} are associated also with tornadoes \cite{11,12,13}). Edward Lewis introduces the notion of plasmoid to explain a wide range of phenomena including ball lightnings and tornadoes. He assigns plasmons even with cold fusion (the damage resulting to Palladium target in cold fusion resembles the traces caused by ball lightnings, \cite{26}) and super-conductivity (sic!). Although Lewis obviously over-generalizes the notion of plasmoid, one cannot deny that the concept has a strong theoretical appeal in it.

Also sonoluminescence \cite{1} could involve a phase transition to almost vacuum extremal ground state and the emission of visible light could come from the membrane like boundary layer. The UV photons could generate the observed high temperatures estimated to be as high as 20,000 K, which corresponds to 2 eV photon energy. In this case the size scale of emitting region is in fact that of cell membrane. The proper identification of essense of plasmons could be the presence of membrane like structures with space-time sheets which are almost vacuum extremals. The presence of magnetic flux quanta far from vacuum extremal is also plausible if one takes the model of quantum biology as a starting point.

The findings of Lewis inspire the following basic ideas about the physics of many-sheeted space-time-

1. The runaway mechanism for ions from the magnetic flux tubes could provide a general mechanism behind luminous phenomena like auroras, lightnings, ball lightnings, sprites, tornadoes, UFOS and various anomalous luminous phenomena such as earth lights in tectonically active areas. Plasmoids could result from Josephson currents alone via the leakage of dark highly energetic particles and dark Josephson photons to visible matter sector. Also analog of nerve pulse could be involved responsible for phenomena like lightning and elves. The un-identified source of energy in these phenomena might be the energy associated with the dark supra currents.

2. The break-down of the dark super-conductivity could be understood in terms of a supra current leakage to non-super-conducting space-time sheets caused by the inertia of the current carriers. The critical temperature could be determined as the temperature below which the join along boundaries bonds between super-conducting and non-conducting space-time sheets are
not formed. The temperature of super-conducting space-time sheets could be much more lower than this temperature but this is not necessary if high \(h \) dark matter is in question.

3. The Trojan horse mechanism of cold fusion \([71] \) involves the notion many-sheeted space-time in an essential manner. Perhaps the dark supra currents running at the magnetic flux tube space-time sheets not containing the nuclear Coulombic fields provide the means to circumvent the Coulomb barrier.

3.8 Appendix

3.8.1 Hierarchy of Planck constants and the generalization of the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of Planck constant is summarized. The question is whether it might be possible in some sense to replace \(H \) or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can consider two options: either \(M^4 \) or the causal diamond \(CD \). The latter one is the more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a hierarchy of phases of matter with non-standard value of Planck constants was much faster than the evolution of mathematical ideas and quite a number of applications have been developed during last five years.

1. The starting point was the proposal of Nottale \([4] \) that the orbits of inner planets correspond to Bohr orbits with Planck constant \(h_{gr} = GMm/v_0 \) and outer planets with Planck constant \(h_{gr} = 5GMm/v_0, v_0/c \approx 2^{-11} \). The basic proposal \([66] \) was that ordinary matter condenses around dark matter which is a phase of matter characterized by a non-standard value of Planck constant whose value is gigantic for the space-time sheets mediating gravitational interaction. The interpretation of these space-time sheets could be as magnetic flux quanta or as massless extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton length meaning that the density of matter at these space-time sheets must be very slowly varying. The string tension of string like objects implies effective negative pressure characterizing dark energy so that the interpretation in terms of dark energy might make sense \([67] \). TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical mass density and the "pressure" associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about standard space-time is. Particles with different Planck constant must belong to different worlds in the sense local interactions of particles with different values of \(h \) are not possible. This inspires the idea about the book like structure of the imbedding space obtained by gluing almost copies of \(H \) together along common "back" and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different pages of the book like structure cannot appear in the same vertex of the generalized Feynman diagram. The phase transitions in which partonic 2-surface \(X^2 \) during its travel along \(X^3 \) leaks to another page of book are however possible and change Planck constant. Particle (say photon \(-\)) exchanges of this kind allow particles at different pages to interact. The interactions are strongly constrained by charge fractionization and are essentially phase transitions involving many particles. Classical interactions are also possible. It might be that we are actually observing dark matter via classical fields all the time and perhaps have even photographed it \([75] \).
5. The realization that non-standard values of Planck constant give rise to charge and spin fractionization and anyonization led to the precise identification of the prerequisites of anyonic phase \[55\]. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of \(CD\), the matter at the surface is anyonic and particles are confined at this surface. Dark matter could be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the findings of Nottale \[3\] can be understood. Dark matter would resemble to a high degree matter in black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size of order Schwartschild radius \(r_S\) of order scaled up Planck length \(l_{Pl} = \sqrt{\hbar G} = GM\). Black hole entropy is inversely proportional to \(\hbar\) and predicted to be of order unity so that dramatic modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents through cell membrane (low dissipation, quantal character, no change when the membrane is replaced with artificial one) has a natural explanation in terms of dark supra currents. This leads to a vision about how dark matter and phase transitions changing the value of Planck constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication and control tool of magnetic body containing dark matter and using biological body as motor instrument and sensory receptor. One especially amazing outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as nuclear strings \[2, 78\], \[2\].

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding space.

1. The fundamental group of the space for which one constructs a non-singular covering space or factor space should be non-trivial. This is certainly not possible for \(M^4\), \(CD\), \(CP_2\), or \(H\). One can however construct singular covering spaces. The fixing of the quantization axes implies a selection of the sub-space \(H_4 = M^2 \times S^2 \subset M^4 \times CP_2\), where \(S^2\) is geodesic sphere of \(CP_2\). \(M^4 = M^4 \setminus M^2\) and \(CP_2 = CP_2 \setminus S^2\) have fundamental group \(Z\) since the codimension of the excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could naturally give rise to the desired situation.

2. \(CP_2\) allows two geodesic spheres which left invariant by \(U(2)\ resp. SO(3)\). The first one is homologically non-trivial. For homologically non-trivial geodesic sphere \(H_4 = M^2 \times S^2\) represents a straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred extremal). One can argue that the many-valuedness of \(\hbar\) is un-acceptable for non-vacuum extremals so that only homologically trivial geodesic sphere \(S^2\) would be acceptable. One could go even further. If the extremals in \(M^2 \times CP_2\) can be preferred non-vacuum extremals, the singular coverings of \(M^4\) are not possible. Therefore only the singular coverings and factor spaces of \(CP_2\) over the homologically trivial geodesic sphere \(S^2\) would be possible. This however looks a non-physical outcome.

(a) The situation changes if the extremals of type \(M^2 \times Y^2\), \(Y^2\) a holomorphic surface of \(CP_3\), fail to be hyperquaternionic. The tangent space \(M^2\) represents hypercomplex sub-space and the product of the modified gamma matrices associated with the tangent spaces of \(Y^2\) should belong to \(M^2\) algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled up coordinates for \(M^4\) so that metric is continuous at \(M^2 \times CP_2\) but CDs with different size have different sizes differing by the ratio of Planck constants and would thus have only piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian products of singular coverings and factor spaces. These options can be denoted by \(C - C\), \(C - F\),...
The question how the observed Planck constant relates to the integers. How one could fix the spectrum of Planck constants?

1. How the gluing of copies of imbedding space at \(M^2 \times CP_2 \) takes place? It would seem that the covariant metric of \(CD \) factor proportional to \(\hbar^2 \) must be discontinuous at the singular manifold since only in this manner the idea about different scaling factor of \(CD \) metric can make sense. On the other hand, one can always scale the \(M^4 \) coordinates so that the metric is continuous but the sizes of \(CD \)s with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous change of the size of partonic 2-surface in \(M^4 \) degrees of freedom. This is not the case. Light-likeness in \(M^2 \times S^2 \) makes sense only for surfaces \(X^1 \times D^2 \subset M^2 \times S^2 \), where \(X^1 \) is light-like geodesic. The requirement that the partonic 2-surface \(X^2 \) moving from one sector of \(H \) to another one is light-like at \(M^2 \times S^2 \) irrespective of the value of Planck constant requires that \(X^2 \) has single point of \(M^2 \) as \(M^2 \) projection. Hence no sudden change of the size \(X^2 \) occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum extremals of Chern-Simons action have two-dimensional \(CP_2 \) projection to homologically non-trivial geodesic sphere \(S^2_1 \). The deformation of the entire \(S^2_1 \) to homologically trivial geodesic sphere \(S^2_1 \) is not possible so that only combinations of partonic 2-surfaces with vanishing total homology charge (Kähler magnetic charge) can in principle move from sector to another one, and this process involves fusion of these 2-surfaces such that \(CP_2 \) projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic sphere \(S^2_1 \) of \(CP_2 \) can be deformed to that of \(S^2_1 \) using 2-dimensional homotopy flattening the piece of \(S^2 \) to curve. If this homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take place only via quantum tunneling. Obviously the notions of light-like homotopies (cobordisms) are very relevant for the understanding of phase transitions changing Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers \(n_a \) and \(n_b \) defining the covering and factors spaces, is far from trivial and I have considered several options. The basic physical inputs are the condition that scaling of Planck constant must correspond to the scaling of the metric of \(CD \) (that is Compton lengths) on one hand and the scaling of the gauge coupling strength \(g^2/4\pi\hbar \) on the other hand.

1. One can assign to Planck constant to both \(CD \) and \(CP_2 \) by assuming that it appears in the commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck constants \(h(CD) \) and \(h(CP_2) \) must define a homomorphism respecting multiplication and division (when possible) by \(G_i \). This requires \(r(X) = h(X)h_0 = n \) for covering and \(r(X) = 1/n \) for factor space or vice versa.
2. If one assumes that $h^2(X) = X = M^4$, CP_2 corresponds to the scaling of the covariant metric tensor g_{ij} and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler action by dividing metric with $h^2(CP_2)$, one obtains the scaling of M^4 covariant metric by $r^2 \equiv h^2/\hbar^2 = h^2(M^4)/h^2(CP_2)$ whereas CP2 metric is not scaled at all.

3. The condition that h scales as n_a is guaranteed if one has $h(CD) = n_a h_0$. This does not fix the dependence of $h(CP_2)$ on n_b and one could have $h(CP_2) = n_b h_0$ or $h(CP_2) = h_0/n_b$. The intuitive picture is that n_b-fold covering gives in good approximation rise to $n_a n_b$ sheets and multiples YM action action by $n_a n_b$ which is equivalent with the $h = n_a n_b h_0$ if one effectively compresses the covering to $CD \times CP_2$. One would have $h(CP_2) = h_0/n_b$ and $h = n_a n_b h_0$. Note that the descriptions using ordinary Planck constant and coverings and scaled Planck constant but contracting the covering would be alternative descriptions.

This gives the following formulas $r \equiv h/h_0 = (M^4)/r(CP_2)$ in various cases.

<table>
<thead>
<tr>
<th>$C - C$</th>
<th>$F - C$</th>
<th>$C - F$</th>
<th>$F - F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_a n_b$</td>
<td>$n_a n_b$</td>
<td>$n_a n_b$</td>
<td>$n_a n_b$</td>
</tr>
</tbody>
</table>

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat polygons constructible using only ruler and compass and given as products $n_F = 2^k \prod F_s$, where $F_s = 2^{2^s} + 1$ are distinct Fermat primes, are favored. The reason would be that quantum phase $q = \exp(i\pi/n)$ in this case expressible using only iterated square root operation by starting from rationals. The known Fermat primes correspond to $s = 0, 1, 2, 3, 4$ so that the hypothesis is very strong and predicts that p-adic length scales have satellite length scales given as multiples of n_F of fundamental p-adic length scale. $n_F = 2^{11}$ corresponds in TGD framework to a fundamental constant expressible as a combination of Kähler coupling strength, CP_2 radius and Planck length appearing in the expression for the tension of cosmic strings, and the powers of 2^{11} was proposed to define favored as values of n_a in living matter.

The hypothesis that Mersenne primes $M_k = 2^k - 1$, $k \in \{89, 107, 127\}$, and Gaussian Mersennes $M_{G,k} = (1 + i)k - 1$, $k \in \{113, 151, 157, 163, 167, 239, 241\}$ (the number theoretical miracle is that all the four p-adic length scales sit $k \in \{151, 157, 163, 167\}$ are in the biologically highly interesting range 10 nm-2.5 μm) define scaled up copies of electro-weak and QCD type physics with ordinary value of \hbar and that these physics are induced by dark variants of corresponding lower level physics leads to a prediction for the preferred values of $r = 2^k a_k$, $k_1 = k_2 - k_1$, and the resulting picture finds support from the ensuing models for biological evolution and for EEG. This hypothesis - to be referred to as Mersenne hypothesis - replaces the rather ad hoc proposal $r = \hbar/\hbar_0 = 2^{11k}$ for the preferred values of Planck constant.

How Planck constants are visible in Kähler action?

$h(M^4)$ and $h(CP_2)$ appear in the commutation and anticommutation relations of various superconformal algebras. Only the ratio of M^4 and CP_2 Planck constants appears in Kähler action and is due to the fact that the M^4 and CP_2 metrics of the imbedding space sector with given values of Planck constants are proportional to the corresponding Planck. This implies that Kähler function codes for radiative corrections to the classical action, which makes possible to consider the possibility that higher order radiative corrections to functional integral vanish as one might expect at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to the spectrum of \hbar coding for the scaled up values of Compton lengths and other quantal lengths and times. If so, large \hbar phases could be crucial for understanding of quantum critical superconductors, in particular high T_c superconductors.

A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional quantum Hall effect at the level of basic quantum TGD as integer QHE for non-standard value of Planck constant.
The formula for the quantized Hall conductance is given by

\[\sigma = \nu \times \frac{e^2}{h}, \]
\[\nu = \frac{n}{m}. \]

(3.8.1)

Series of fractions in \(\nu = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15...; 2/3, 3/5, 4/7, 5/9, 6/11, 7/13..., 5/3, 8/5, 11/7, 14/9... ; 3/7, 5/13, 9/17..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7... \) with odd denominator have been observed as are also \(\nu = 1/2 \) and \(\nu = 5/2 \) states with even denominator [5].

The model of Laughlin [53] cannot explain all aspects of FQHE. The best existing model proposed originally by Jain is based on composite fermions resulting as bound states of electron and even number of magnetic flux quanta [50]. Electrons remain integer charged but due to the effective magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the observed fractions and also their relative intensities and the order in which they appear as the quality of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the current currying slab so that \(\nu eBdL \) one can assume that energy eigenstates are momentum eigenstates in the direction of current and harmonic oscillator Gaussians in \(x \)-direction in which Hall current runs. This gives

\[\Psi \propto \exp(iKy) \Psi_c(x + k^2) e^x \exp(-\frac{(x+k^2)^2}{2l^2}) \quad , \quad l^2 = \frac{\hbar}{eB}. \]

(3.8.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are important so that the momentum eigenvalues are in good approximation in the range \(0 \leq k \leq k_{_{\text{max}}} = L_x/l^2 \). Using \(N = (L_y/2\pi) \int_{0}^{k_{_{\text{max}}}} dk \) one obtains that the total number of momentum eigenstates associated with the given value of \(n \) is \(N = eBdL_x L_y/\hbar = n \). If \(N \) Landau states are filled, the value of \(\sigma \) is \(\sigma = ne^2/\hbar \).

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain also the fractionization of charge, spin, and electron number. There are \(2 \times 2 = 4 \) combinations of covering and factor spaces of \(CP_2 \) and three of them can lead to the increase or at least fractionization of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

\[\nu = \nu_0 \frac{h_0}{\pi} , \quad \nu_0 = 1, 2, ... \]

(3.8.3)

\(\nu_0 \) denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether a singular covering or factor space of \(CD \) (\(CP_2 \)) is in question. The observed filling fractions are consistent with options C-C, C-F, and F-C for which \(CD \) or \(CP_2 \) both correspond to a singular covering space. The values of \(\nu \) in various cases are given by the following table.

<table>
<thead>
<tr>
<th>Option</th>
<th>C – C</th>
<th>C – F</th>
<th>F – C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>(\frac{\nu_0}{n_a n_b})</td>
<td>(\frac{\nu_0 n_b}{n_a})</td>
<td>(\frac{\nu_0 n_a}{n_b})</td>
</tr>
</tbody>
</table>

(3.8.4)

There is a complete symmetry under the exchange of \(CD \) and \(CP_2 \) as far as values of \(\nu \) are considered.
3. All three options are consistent with observations. Charge fractionization allows only the options $C - C$ and $F - C$. If one believes the general arguments stating that also spin is fractionized in FQHE then only the option $C - C$, for which charge and spin units are equal to $1/n_b$ and $1/n_a$ respectively, remains. For $C - C$ option one must allow $n_b > 1$.

4. Both $\nu = 1/2$ and $\nu = 5/2$ state has been observed [5, 32]. The fractionized charge is believed to be $e/4$ in the latter case [57, 55]. This requires $n_b = 4$ allowing only (C, C) and (F, C) options. $n_i \geq 3$ holds true if coverings and factor spaces are correlates for Jones inclusions and this gives additional constraint. The minimal values of (n_0, n_a, n_b) are $(2, 1, 4)$ for $\nu = 1/2$ and $(10, 1, 4)$ for $\nu = 5/2$ for both $C - C$ and $F - C$ option. Filling fraction $1/2$ corresponds in the composite fermion model and also experimentally to the limit of zero magnetic field [50]. $n_b = 2$ would be inconsistent with the observed fractionization of electric charge for $\nu = 5/2$ and with the vision inspired by Jones inclusions implying $n_i \geq 3$.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values of m except $m = 2$ (Laughlin’s model predicts only odd values of m). A possible explanation is that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model) both n_a and n_b must be odd. This would require that $m = 2$ case differs in some manner from the remaining cases.

6. Large values of m in $\nu = n/m$ emerge as B increases. This can be understood from flux quantization. One has $e \int BdS = \hbar$. By using actual fractional charge $e_F = e/n_b$ in the flux factor would give for (C, C) option $e_F \int BdS = n_m \hbar$. The interpretation is that each of the n_b sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet is not affected so that the build-up of multiple covering seems to keep magnetic field strength below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in 80 mK temperature corresponding roughly to a thermal energy of $T \sim 10^{-5}$ eV. For graphene the effect is observed at room temperature. Cyclotron energy for electron is (from $f_c = 6 \times 10^5$ Hz at $B = .2$ Gauss) of order thermal energy at room temperature in a magnetic field varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such a low temperature. A possible explanation is that since FQHE involves several values of Planck constant, it is quantum critical phenomenon and is characterized by a critical temperature. The differences of single particle energies associated with the phase with ordinary Planck constant and phases with different Planck constant would characterize the transition temperature.

3.8.2 Could the dynamics of Kähler action predict the hierarchy of Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck constant could have large values in both astrophysical systems involving dark matter and also in biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor spaces of CD and CP_2 emerged from consistency conditions. The formula for the Planck constant involves heuristic guess work and physical plausibility arguments. There are good arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with the hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD rather than as a separate hypothesis. The following arguments suggest that this might be possible. One finds also a precise geometric interpretation of preferred extremal property interpreted as criticality in zero energy ontology.
1-1 correspondence between canonical momentum densities and time derivatives fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy ontology at the 3-D surfaces located at the light-like boundaries of $CD \times CP_2$.

1. In canonical quantization canonical momentum densities $\pi_k^0 \equiv \pi_k = \partial L_K / \partial (\partial_0 h^k)$, where $\partial_0 h^k$ denotes the time derivative of imbedding space coordinate, are the physically natural quantities in terms of which to fix the initial values: once their value distribution is fixed also conserved charges are fixed. Also the weak form of electric-magnetic duality given by $J^{01} \sqrt{g} = 4 \pi \alpha_K J_{12}$ and a mild generalization of this condition to be discussed below can be interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to their quantized values since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole) throat. This condition alone need not characterize criticality, which requires an infinite number of deformations of X^4 for which the second variation of the Kähler action vanishes and implies infinite number conserved charges. This in fact gives hopes of replacing π_k with these conserved Noether charges.

2. Canonical quantization requires that $\partial_0 h^k$ in the energy is expressed in terms of π_k. The equation defining π_k in terms of $\partial_0 h^k$ is however highly non-linear although algebraic. By taking squares the equations reduces to equations for rational functions of $\partial_0 h^k$. $\partial_0 h^k$ appears in contravariant and covariant metric at most quadratically and in the induced Kähler electric field linearly and by multiplying the equations by $\det(g_{03})^2$ one can transform the equations to a polynomial form so that in principle $\partial_0 h^k$ can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates as the coordinates of the spacetime surface so that the initial value conditions reduce to those for the canonical momentum densities associated with the remaining four coordinates. For instance, for space-time surfaces representable as map $M^4 \rightarrow CP_2$ M^4 coordinates are natural and the time derivatives $\partial_0 s^k$ of CP_2 coordinates are multivalued. One would obtain four polynomial equations with $\partial_0 s^k$ as unknowns. In regions where CP_2 projection is 4-dimensional -in particular for the deformations of CP_2 vacuum extremals the natural coordinates are CP_2 coordinates and one can regard $\partial_0 m^k$ as unknowns. For the deformations of cosmic strings, which are of form $X^4 = X^2 \times Y^2 \subset M^4 \times CP_2$, one can use coordinates of $M^2 \times S^2$, where S^2 is geodesic sphere as natural coordinates and regard as unknowns E^2 coordinates and remaining CP_2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivatives in terms of other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions to obtain algebraic equations from which one solves then second variable. Obviously situation is very complex without additional symmetries. The criticality of the preferred extremals might however give additional conditions allowing simplifications. The reasons for giving up the canonical quantization program was following. For the vacuum extremals of Kähler action π_k are however identically vanishing and this means that there is an infinite number of value distributions for $\partial_0 h^k$. For small deformations of vacuum extremals one might however hope a finite number of solutions to the conditions and thus finite number of space-time surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat the the many-valuedness of $\partial_0 h^k$. The most obvious guess is that one should replace the space of space-like 4-surfaces corresponding to different roots $\partial_0 h^k = F^k(\pi_1)$ with four-surfaces in the covering space of $CD \times CP_2$ corresponding to different branches of the many-valued function $\partial_0 h^k = F(\pi_1)$ co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of $\partial_0 h^k$ correspond to the coverings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces associated with the hierarchy of Planck constants. This would conform with quantum classical correspondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of \(\partial \partial h^k \) means a failure of perturbative canonical quantization and forces the introduction of the covering spaces. The interpretation would be that when the density of matter becomes critical the space-time surface splits to several branches so that the density at each branches is sub-critical. It is of course not at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis and one also consider modifications of this structure if necessary. The manner to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers assignable to \(CD \) and \(CP_2 \) degrees of freedom are however needed. How these two coverings could emerge?

(a) One should fix also the values of \(\pi_k^n = \partial L_K / \partial \partial h_k^n \), where \(n \) refers to space-like normal coordinate at the wormhole throats. If one requires that charges do not flow between regions with different signatures of the metric the natural condition is \(\pi_k^n = 0 \) and allows also multi-valued solution. Since wormhole throats carry magnetic charge and since weak form of electric-magnetic duality is assumed, one can assume that \(CP_2 \) projection is four-dimensional so that one can use \(CP_2 \) coordinates and regard \(\partial \partial h^k \) as un-knows. The basic idea about topological condensation in turn suggests that \(M^4 \) projection can be assumed to be 4-D inside space-like 3-surfaces so that here \(\partial \partial h^k \) are the unknowns. At partonic 2-surfaces one would have conditions for both \(\pi_k^0 \) and \(\pi_k^n \). One might hope that the numbers of solutions are finite for preferred extremals because of their symmetries and given by \(n_a \) for \(\partial \partial h^k \) and by \(n_b \) for \(\partial \partial h^k \). The optimistic guess is that \(n_a \) and \(n_b \) corresponds to the numbers of sheets for singular coverings of \(CD \) and \(CP_2 \). The covering could be visualized as replacement of space-time surfaces with space-time surfaces which have \(n_a n_b \) branches. \(n_b \) branches would degenerate to single branch at the ends of diagrams of the generalized Feynman graph and \(n_a \) branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of \(\pi_k^0 \) and \(\pi_k^n \) should relate closely to the effective 2-dimensionality as an additional condition perhaps crucial for criticality. One could argue that both \(\pi_k^0 \) and \(\pi_k^n \) must be fixed at \(X^4 \) and \(X^3 \) in order to effectively bring in dynamics in two directions so that \(X^4 \) could be interpreted as an orbit of partonic 2-surface in space-like direction and \(X^3 \) as its orbit in light-like direction. The additional conditions could be seen as gauge conditions made possible by symplectic and Ka-Seu Moody type conformal symmetries. The conditions for \(\pi_k^0 \) would give \(n_b \) branches in \(CP_2 \) degrees of freedom and the conditions for \(\pi_k^n \) would split each of these branches to \(n_a \) branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for \(\pi_k^n \)) could relate also very closely to the slicing of the space-time sheets by string world sheets and partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time surface? The treatment as a single surface seems to be the correct thing to do. Classically the conserved changes would be \(n_a n_b \) times larger than for single branch. Kähler action need not (but could!) be same for different branches but the total action is \(n_a n_b \) times the average action and this effectively corresponds to the replacement of the \(h_0 / g_{kk}^2 \) factor of the action with \(h / g_{kk}^2 \), \(r \equiv h / h_0 = n_a n_b \). Since the conserved quantum charges are proportional to \(h \) one could argue that \(r = n_a n_b \) tells only that the charge conserved charge is \(n_a n_b \) times larger than without multi-valuedness. \(h \) would be only effectively \(n_a n_b \) fold. This is of course poor man’s argument but might catch something essential about the situation.

3. How could one interpret the condition \(J^{03} \sqrt{g} = 4 \pi \alpha_K J_{12} \) and its generalization to be discussed below in this framework? The first observation is that the total Kähler electric charge is by \(\alpha_K \propto 1 / (n_a n_b) \) same always. The interpretation would be in terms of charge fractionization meaning that each branch would carry Kähler electric charge \(Q_K = n a g_K / n_a n_b \). I have indeed suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding space metric. The assumption that the \(M^4 \) covariant metric is proportional to \(h^4 \) follows from the physical idea about \(h \) scaling of quantum lengths as what Compton length is. One can
always introduce scaled M^4 coordinates bringing M^4 metric into the standard form by scaling up the M^4 size of CD. It is not clear whether the scaling up of CD size follows automatically from the proposed scenario. The basic question is why the M^4 size scale of the critical extremals must scale like n_an_b? This should somehow relate to the weak self-duality conditions implying that Kähler field at each branch is reduced by a factor $1/r$ at each branch. Field equations should posses a dynamical symmetry involving the scaling of CD by integer k and $J^{αβ}/\sqrt{g_4}$ and $J^{αβ}/\sqrt{g_4}$ by $1/k$. The scaling of CD should be due to the scaling up of the M^4 time interval during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce to single-sheeted coverings at $M^2 \subset M^4$ for CD and to $S^2 \subset CP_2$ for CP_2. Here S^2 is any homologically trivial geodesic sphere of CP_2 and has vanishing Kähler form. Weak self-duality condition is indeed consistent with any value of h and implies that the vacuum property for the partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed requires. This condition however generalizes. In weak self-duality conditions the value of h is free for any 2-D Lagrangian sub-manifold of CP_2.

The branching along M^2 would mean that the branches of preferred extremals always collapse to single branch when their M^4 projection belongs to M^2. Magnetically charged light-light-like throats cannot have M^4 projection in M^2 so that self-duality conditions for different values of h do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition would mean that the M^4 projection becomes light-like geodesic. Straight cosmic strings would have M^2 as M^4 projection. Also CP_2 type vacuum extremals for which the random light-like projection in M^4 belongs to M^2 would represent this of situation. One can ask whether the degeneration of branches actually takes place along any string like object $X^2 \times Y^2$, where X^2 defines a minimal surface in M^4. For these the weak self-duality condition would imply $h = \infty$ at the ends of the string. It is very plausible that string like objects feed their magnetic fluxes to larger space-times sheets through wormhole contacts so that these conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-like 3-surfaces with degenerate 4-metric and the degeneration of the n_an_b branches of the space-time surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants would be an outcome of criticality and of preferred extremal property and preferred extremals would be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries of $CD \times CP_2$ and at the throats.

3.8.3 Cyclotron frequencies and Larmor frequencies

The appendix emphasizes the difference between the endogenous magnetic field B_{end} explaining the effects of ELF em fields on vertebrate brain and Earth’s magnetic field B_E and lists cyclotron and Larmor frequencies of some ions for B_{end}.

The relationship between the values of the endogenous magnetic field and the Earth’s magnetic field

For years I erratically believed that the magnitude of the magnetic field assignable to the biological body is $B_E = .5$ Gauss, the nominal value of the Earth’s magnetic field. Probably I had made the calculational error at very early stage when taking Ca^{++} cyclotron frequency as a standard. I am grateful for Bulgarian physicist Rossen Kolarov for pointing to me that the precise magnitude of the magnetic field implying the observed 15 Hz cyclotron frequency for Ca^{++} is 2 Gauss and thus slightly smaller than the minimum value 3 Gauss of B_E. This value must be assigned to the magnetic body carrying dark matter rather than to the flux quanta of the Earth’s magnetic field. This field value corresponds roughly to the magnitude of B_E at distance $1.4R$, R the radius of Earth.
Dark matter hierarchy leads to a detailed quantitative view about quantum biology with several testable predictions \cite{22}. The applications to living matter suggests that the basic hierarchy corresponds to a hierarchy of Planck constants coming as $\hbar (k) = \lambda_k (p) \hbar_0$, $\lambda \simeq 2^{11}$ for $p = 2^{127} - 1$, $k = 0, 1, 2, \ldots$ \cite{22}. Also integer valued sub-harmonics and integer valued sub-harmonics of λ might be possible. Each p-adic length scale corresponds to this kind of hierarchy. Number theoretical arguments suggest a general formula for the allowed values of λ \cite{25} as $\lambda = n$ where n characterizes the quantum phase $q = \exp(i\pi/n)$ characterizing Jones inclusion \cite{86}. The values of n for which quantum phase is expressible using only iterated square root operation are number theoretically preferred and correspond to integers n expressible as $n = 2^k \prod F_{s_n}$, where $F_{s_n} = 2^{2^s} + 1$ is Fermat prime and each of them can appear only once. $n = 2^{11}$ obviously satisfies this condition. The lowest Fermat primes are $F_0 = 3, F_1 = 5, F_2 = 17$. The prediction is that also n-multiples of p-adic length scales are possible as preferred length scales. The unit of magnetic flux scales up as $h_0 \rightarrow h = nh_0$ in the transition increasing Planck constant: this is achieved by scalings $L(k) \rightarrow nL(k)$ and $B \rightarrow B/n$.

$B = .2$ Gauss would corresponds to a flux tube radius $L = \sqrt{5/2} \times L(169) \simeq 1.58L(169)$, which does not correspond to any p-adic length scale as such. $k = 169 = 2^3 \times 3 \times 7$ with $n = 5$ would predict the field strength correctly as $E_\text{end} = 2E_E/5$ and predict the radius of the flux tube to be $r = 18 \mu m$, size of a large neuron. However, $k = 169$ with flux $2h_5$ would be must more attractive option since it would give a direct connection with Earth’s magnetic field. Furthermore, the model for EEG forces to assume that also a field $E_\text{end}/2$ must be assumed and this gives the minimal flux h_5. Note that $n = 5$ is the minimal value of n making possible universal topological quantum computation with Beraha number $B_n = 4\cos^2(\pi/n)$ equal to Golden Mean \cite{84}.

An interesting working hypothesis is that E_end is the dark companion of the the Earth’s magnetic field and that the ratio $E_\text{end} = 2E_E/5$ holds true in the entire magnetosphere as a time average so that E_end would define what might be called the dark magnetosphere of Earth.

Table of cyclotron frequencies and magnetic frequencies

A detailed study of the cyclotron frequencies demonstrates that they indeed seem to correspond to important EEG frequencies. The cyclotron frequencies associated with other singly ionized atoms can be obtained by the formula

$$f = \frac{A}{2\pi} \times f(Ca^{2+}) \quad f(Ca^{2+}) \simeq 15 \text{ Hz} \quad \text{(3.8.5)}$$

Here the strength of the endogenous magnetic field E_end is assumed to be $.2$ Gauss = 2×10^{-5} Tesla. The following table lists cyclotron frequencies and their lowest multiples for some of the most important ions.
<table>
<thead>
<tr>
<th>Elementary particle</th>
<th>(f_1/Hz)</th>
<th>J</th>
<th>(f_L/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>(5.6 \times 10^5)</td>
<td>1/2</td>
<td>(2.8 \times 10^5)</td>
</tr>
<tr>
<td>p</td>
<td>300</td>
<td>1/2</td>
<td>419</td>
</tr>
</tbody>
</table>

Bosonic ions

<table>
<thead>
<tr>
<th>Ion</th>
<th>(f_1/Hz)</th>
<th>J</th>
<th>(f_L/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>('^6Li')</td>
<td>50.1</td>
<td>1</td>
<td>88.3</td>
</tr>
<tr>
<td>O(^{16})</td>
<td>37.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mg(^{24})</td>
<td>25.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ca(^{40})</td>
<td>15.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mn(^{55})</td>
<td>11.4</td>
<td>5/2</td>
<td>520</td>
</tr>
<tr>
<td>Fe(^{56})</td>
<td>10.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Co(^{59})</td>
<td>10.0</td>
<td>7/2</td>
<td>695</td>
</tr>
<tr>
<td>Zn(^{65})</td>
<td>9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sc(^{47})</td>
<td>7.6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fermionic ions

<table>
<thead>
<tr>
<th>Ion</th>
<th>(f_1/Hz)</th>
<th>J</th>
<th>(f_L/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>('^7Li')</td>
<td>42.9</td>
<td>3/2</td>
<td>489</td>
</tr>
<tr>
<td>N(^{14})</td>
<td>21.4</td>
<td>1</td>
<td>60.6</td>
</tr>
<tr>
<td>F(^{19})</td>
<td>15.8</td>
<td>1/2</td>
<td>395</td>
</tr>
<tr>
<td>Na(^{23})</td>
<td>13.0</td>
<td>3/2</td>
<td>333</td>
</tr>
<tr>
<td>Al(^{27})</td>
<td>11.1</td>
<td>5/2</td>
<td>546</td>
</tr>
<tr>
<td>Si(^{29})</td>
<td>10.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P(^{31})</td>
<td>9.7</td>
<td>1/2</td>
<td>170</td>
</tr>
<tr>
<td>S(^{32})</td>
<td>9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cl(^{35})</td>
<td>8.5</td>
<td>3/2</td>
<td>130</td>
</tr>
<tr>
<td>K(^{39})</td>
<td>7.5</td>
<td>3/2</td>
<td>58.5</td>
</tr>
<tr>
<td>Cr(^{52})</td>
<td>5.7</td>
<td>3/2</td>
<td>71.1</td>
</tr>
<tr>
<td>Cu(^{63})</td>
<td>4.8</td>
<td>3/2</td>
<td>333.9</td>
</tr>
<tr>
<td>Ag(^{107})</td>
<td>2.8</td>
<td>1/2</td>
<td>17</td>
</tr>
<tr>
<td>I(^{127})</td>
<td>2.4</td>
<td>5/2</td>
<td>420</td>
</tr>
<tr>
<td>Au(^{197})</td>
<td>1.5</td>
<td>3/2</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 10. The first column gives cyclotron frequency in cycles per second for some ions in the endogenous magnetic field \(B_{end} = \frac{2B_E}{5} = .2 \) Gauss explaining the effects of ELF em fields on vertebrate brain \(B_E = .5 \) Gauss denotes the nominal of the Earth’s magnetic field. The remaining columns give spin or nuclear spin and Larmor frequency \(f_L \).
Books related to TGD

Articles about TGD

Particle and Nuclear Physics

Condensed Matter Physics

[1] Burning salt water. [http://www.youtube.com/watch?v=aGg0ATfoBgo]

[8] Liquid crystals on line. [http://www.lcionline.net/]

Cosmology and Astro-Physics

Physics of Earth

Fringe Physics

Biology

Neuroscience and Consciousness

Part II

TOPOLOGICAL LIGHT RAYS
AND WORMHOLE MAGNETIC FIELDS
Chapter 4

Quantum Antenna Hypothesis

4.1 Introduction

One of the basic problems faced by the quantum theories of consciousness is to understand how macroscopic quantum coherence in the brain is realized. Bose-Einstein condensates and coherent states are believed to be crucial in this respect but the great problem is how macroscopic quantum phases could be realized in the wetty, noisy and hot environment provided by brain. In TGD framework the notion of many-sheeted space-time provides a solution to this basic problem. Furthermore, the notion of self as a subsystem able to remain un-entangled is consistent with the fact that macroscopic quantum phases behave like quantum particles. The general views about macroscopic quantum phases predicted by TGD and about their role with regards to consciousness is described in previous chapters. This chapter is devoted to coherent and Bose-Einstein condensed photons which are crucial in the quantum models of brain consciousness relaying on microtubules and seem to be associated with linear structures also in TGD framework. These linear structures include not only microtubules but also axons, DNA and proteins and most of the considerations to follow are quite general and by no means restricted to microtubules.

4.1.1 Massless extremals and quantum antenna hypothesis

The purpose of this chapter is a more detailed formulation of the quantum antenna hypothesis stating that microtubules generate a macroscopic coherent state of photons. The so called massless extremals are a very general class of zero action non-vacuum extremals of both the Kähler action and the effective action and differentiate clearly between TGD and standard gauge theories, in particular QED. Massless extremals describe the propagation of massless gauge fields in single preferred direction. The polarization for given values of transversal coordinates has a fixed direction. Linear superposition is not possible.

Topological field quantization assigns to each quantum notion its classical counterpart and a very attractive identification of the massless extremals is as the classical counterparts of massless classical quanta such as photons and gravitons. Even the classical counterparts of the virtual particles make sense: in particular, negative energy photons represented by annihilation part of the free photon field seem to have geometric representation as negative energy massless extremals.

Massless extremals (ME) of the effective action can indeed generate coherent states of photons and gravitons.

1. ME:s are characterised by light like vacuum Kähler current J_K. In general but not always this implies light-like em current J_{em} and the standard coupling to the quantized photon field generates a coherent state of photons.

2. The geometry of the 3-surface in question is most naturally cylindrical and microtubules (as also DNA, proteins, etc..) indeed possess this kind of geometry. There are sharp resonances at frequencies $\omega = n2\pi/L$, where L is the length of the cylindrical 3-surface (say a space-time sheet associated with a microtubule). The BE condensates for the resonance frequency photons provide means of communication for the neuron society and could orchestrate microtubules to
form a single macroscopic quantum system. One could also consider the possibility that nerve pulse patterns are coded to vacuum currents and in turn coded to patterns of coherent photons. In fact, the model of memetic code leads to the identification of nerve pulse/no nerve pulse as Boolean statement true/false. The coding of the nerve pulse patterns to the patterns of vacuum currents of axonal microtubules could occur naturally. The vacuum currents associated with the radial neuronal microtubules could communicate nerve pulse patterns to cell nucleus and the effects of the anesthetics on neuronal microtubules could mean the cutting of this communication line.

A necessary condition for the macroscopic quantum coherence is the phase locking of the vacuum currents associated with different microtubules. Join along boundaries bonds connecting the massless extremals to a larger space-time sheet serving as a common pacemaker could make possible the phase locking.

4.1.2 Evidence

This picture suggests that microtubules could act as senders and receivers of a coherent light and that visual consciousness should be closely related with the microtubules in accordance with the general philosophy already described. There is indeed some experimental support for identifying the coherent states of photons as associated with vision. It is known that some monocytes possess elementary vision based on the microtubules [13]. The length distribution of the microtubules in the rods and cones of the eye is concentrated in the region of the visible wavelengths. Insects are known to perceive certain chemical compounds (such as pheromones) by the maser like emission of infrared light by these chemical compounds [16]. Also human nose contains so called vomeronasal organ which seems to give rise to an additional unconscious sense of odors with social and sexual meaning. Interesting hypothesis is that also this vision is based on infrared vision.

There is quite unexpected connection with the phenomenon of sonoluminescence suggesting that liquids contain structures of size of order microtubule diameter and that the highly synchronized light flash emitted in the sonoluminescence results from the condensation of water vapor to liquid involving generation of \(k = 149 \) space-time sheets from \(k = 151 \) space-time sheets by \(p \)-changing phase transition and subsequent creation of light like vacuum currents at almost empty \(k = 151 \) space-time sheets leading to the emission of the flash of coherent light.

An additional support for the quantum antenna hypothesis comes from the quite recently observed anomalous dissociation of water molecules to hydrogen and oxygen in room temperature in presence of catalyst and stirring of the liquid. Usually the reaction is driven by thermal photons at temperature of order 3300 K. A possible explanation is that the \(Z^0 \) magnetic flux tubes created by the rotating nuclear \(Z^0 \) charge are accompanied by space-time sheets carrying light like vacuum currents generating coherent photons, which in turn drive the dissociation reaction.

Biefeld-Brown effect is one of the oldest poorly understood anomalous effects [3, 4, 15]. What happens is that charged capacitor gains center of mass momentum in the direction orthogonal to the plane of the capacitor plates. Antigravity effect caused by the redistribution of gravitational and/or \(Z^0 \) fluxes of the capacitor between various space-time sheets could explain some aspects of the effect. The generation of negative energy space-time sheet with net momentum associated with classical em fields could be also involved with the effect. So called "massless extremals" are optimal candidates for this purpose. This mechanism might be applied by bio-systems to generate coherent motions.

4.1.3 Quantum antenna hypothesis and brain consciousness

The identification of macroscopic quantum phases possibly serving as quantum correlates of some qualia does not yet help much in understanding brain consciousness. Brain as a neuron society, brain as a music instrument or even entire orchestra and the notion of neural window are metaphors which have served as guidelines in the attempts to guess the general architecture of brain consciousness and might help also the reader to better understand the considerations to follow.

Brain as a neuron society metaphor

The brain as a society of conscious neurons metaphor has surprisingly nontrivial consequences. In particular, a plausible and testable hypothesis for the physical correlates of the sensory qualia becomes
possible.

1. Brain as a society of conscious neurons metaphor suggests that our sensory qualia must have a reduction to the neuronal level. For instance, this could mean that our sensory experiences correspond to the sensory experiences associated with the large coherently firing neuron gap junction connected neuron groups in brain.

2. Conscious neurons must be able to communicate their conscious experiences to their fellow neurons. The simplest manner to achieve this is to regenerate the original sensory experience to be communicated by sending a message which creates the stimulus resembling the stimulus giving rise to the original sensory experience.

An attractive idea is that the massless extremals (MEs) associated with the microtubules and other linear structures are for the neuron society what radio receivers and stations are for us. Perhaps the idea about the information society at neuronal level does not look so far fetched if one recalls that a communication based on the genetic code takes place already at DNA-protein level. Furthermore, if Nature has invented a communication by means of a coherent light, it probably has invented also the use of several bandwidths by using several microtubule lengths so that very sophisticated communication systems could exists in brain.

Brain as a society of neurons hypothesis has close relationship to other hypothesis with very similar content. Global workspace hypothesis\[10\] states essentially that mass media type communication available for large numbers of neurons plays crucial role in the functioning of conscious brain: coherent light is ideal for this purpose. Also brain as hologram idea\[37, 38\], which is abstracted to neuronal window idea in TGD framework, states that some kind of mass media type communication occurs.

The notion of neural window

The idea of neural window suggests that secondary sensory organs see either the classical em field or the coherent light generated by the mind-like space-time sheets representing the objects of the perceptive field, which can be associated with the primary sensory organ or with the secondary sensory organs in thalamus and cortex. This secondary vision, which could make possible imagination in or all sensory modalities, would be made possible by the coherent photons suffered Bose-Einstein condensation on space-time sheets associated with microtubules or with axons (several space-time sheets might be involved) and serving as wave guides. Massless extremals allow to translate the notion of neural window to the notion of quantum hologram.

Music metaphor

Music metaphor which states that each neuron gives rise to characteristic sensory experience like string of piano gives rise to single note, gives strong constraint on the neuronal window idea. The massless extremal associated with axon corresponds to definite axon dependent frequency. In fact, in the proposed model for the quantum correlates of the sensory qualia\[30\] sensory qualia are characterized by some frequency of BE condensed photons besides a pattern of cyclotron frequencies.

A related catching metaphor is to regard groups of parallel axonal microtubules as an orchestra producing light instead of sound with various frequencies. The interior containing the light-like em current would be the instrument and the note produced by single tubule would be a superposition of the frequencies $\omega_0, \omega_0 = 2\pi/L$. The Fourier spectrum of the massless extremal would define the characteristics of the instrument. Of course, in long time scales microtubule could vary its length and achieve more impressive performances than single note samba. A good candidate for the player is the microtubule surface controlling the amplitude of the quantum photon field emitted by the interior by modulating the light-like current in the interior.

Brain as an associative net

The previous metaphors are consistent with the basic view about brain is as associative net such that conscious associations at neural level correspond to conscious experiences of presynaptic neurons associated with the experience of the postsynaptic neuron. The experiences of given neuron is always the same and only its intensity varies so that brain is indeed like a music instrument or orchestra.
The intensity of experience is coded by the pattern of nerve pulses. The hypothesis about memetic code states following things. Nerve pulse/no nerve pulse corresponds to true/false Boolean statement; the codons of the memetic code consist of 126 bits and have total duration of order .1 seconds, the duration of our cognitive subself; single bit corresponds to a duration of order one millisecond, the duration of nerve pulse; codons are represented by temporal sequences of cognitive neutrino pairs to which nerve pulse sequences are coded; cognitive neutrino pairs are in turn coded to conscious experiences in many-to-one manner by a unique code analogous to that coding mRNA sequences to polypeptides.

4.1.4 Relationship of TGD approach with microtubular approach

The role of the microtubules (for a nice introduction see [31]) is believed to be also important for brain consciousness. In TGD framework however microtubules are only one, rather low-lying, although certainly important, level of the self-hierarchy and microtubular consciousness is not expected to correspond to our consciousness directly. In fact, the identification of our subselves (mental images) as ‘ELF selves’ having as their geometrical correlates topological field quanta of em field with size of Earth, supported by various experimental data about the effects of ELF (extremely low frequency) em fields on brain and correlating our subselves with certain EEG frequencies, could not be philosophically farther from the reductionistic identification of microtubules as seat of our consciousness proposed by Penrose and Hameroff [34].

Frohlich condensates [29] and microtubular Bose-Einstein condensates of photons have been proposed as the relevant macroscopic quantum phases in the microtubular theory of consciousness. Also in TGD framework macroscopic quantum phases are crucial and serve as quantum correlates of sensory qualia. The basic problem of these theories is how to preserve macroscopic quantum coherence over a time interval of order .1 seconds characterizing our consciousness. In TGD framework the wake-up time of the microtubular selves (time which they are able to stay p-adically unentangled) of about 10^{-16} seconds typically, is not a problem since microtubular selves are not our immediate subselves.

The notion of many-sheeted space-time allows TGD counterparts of both Fröhlich condensates and microtubular photon BE condensates as condensatse associated not only with microtubules.

1. Wormhole contacts are unavoidable element of the many-sheeted space-time concept. Wormhole contacts behave in many respects like charged particles and are described by a complex order parameter and it makes sense to speak about wormhole super conductivity. The connection with Fröhlich’s condensate comes as follows. Electric fields penetrate from one space-time sheet to another via wormhole contacts carrying quantized fluxes. Thus the normal component of electric field is essentially the density of wormhole charge given by the modulus squared for the order parameter of the wormhole BE condensate. Vacuum polarization of the space-time sheet amounts to the generation of wormhole BE condensates of opposite gauge flux on the two sides of the polarized space-time sheet. In a well defined sense wormhole contact order parameter is square root of the order parameter of Fröhlich condensate.

2. Living matter behaves as liquid crystal and the electret nature of liquid crystals is crucial for many-sheeted ionic flow equilibrium since the weak but coherent electric fields make possible ohmic currents at atomic space-time sheets transforming to supra currents at superconducting space-time sheets.

3. Vacuum gauge fields with non-vanishing gauge currents are a generic phenomenon in TGD and not possible in standard theories. These c-number currents automatically generate quantum coherent states of photons and gravitons via their coupling to the corresponding quantized boson fields. Massless extremals are ideal in this respect since the generation of coherent photons by the light-like vacuum current occurs resonant like manner. Very importantly, massless extremals allow BE condensates of photons in the direction of the light-like vacuum current. This means that massless extremals can serve both as receiving and sending quantum antennae.

4.1.5 MEs and information molecules

The notion of information molecule is central for the understanding of biological control. There are however several difficult questions related to the notion of information molecule. TGD inspired view
about biocontrol and coordination suggests a general answer to these questions and leads to a general
model of biological control based on both MEs and information molecules with massless extremals
(MEs) serving as actual information carriers initiating self-organization processes whereas information
molecules are in the role analogous to that of computer password.

4.1.6 MEs and quantum holography

One can generalize the original solution ansatz for MEs by introducing what might be called local
light cone coordinates for M^4. Boundary conditions for MEs are satisfied if the boundaries of MEs
are light-like 3-surfaces, and thus have the same miraculous conformal properties as the boundary of
the future light cone. In fact, the light-likeness of the boundaries of M^4 like space-time sheets provide
a universal manner to satisfy boundary conditions for field equations.

The superconformal and super-symplectic symmetries can be used to generalize the construction
of the configuration space geometry to take into account the classical non-determinism of Kähler
action. Quantum holography in the sense of the quantum information theory allows to interpret
MEs both as receiving and sending quantum antennae as well as dynamical holograms with light-
like vacuum currents defining the counterpart of the diffraction grating, and making possible the
teleportation of quantum em fields. The superconformal and super-symplectic symmetries, which
commute with Poincare symmetries apart from quantum gravitational effects, makes the boundaries
of MEs natural seats of super-symplectic representations, and since these states are genuine quantum
gravitational states defined by statefunctionals in the 'world of worlds', they are expected to be crucial
for understanding higher level consciousness.

MEs induce supra currents in superconducting magnetic circuits by magnetic induction mecha-
nism, serve as Josephson junctions between magnetic flux tubes, and induce magnetic quantum phase
transitions. MEs can generate reference waves or their phase conjugates (time reversals) acting on
lower level MEs serving as dynamical holograms. The induced coherent light pattern would act as a
control command or its time reversed version. Conjugate reference waves could provide an extremely
simple basic mechanism of healing by time reversal allowing the living matter to fight against second
law. MEs could read DNA strand to the light-like vacuum current by drifting along it and thus
code DNA strand/conjugate strand to a hologram or its phase conjugate in turn acting as a control
command or its time reversal. Thus living matter could be regarded as a symbiosis in which MEs
control superconducting magnetic flux tubes controlling ordinary matter at atomic space-time sheets
via many-sheeted ionic flow equilibrium. DNA would represent the ROM of this system.

4.1.7 MEs and the notion of conscious hologram

The notion of conscious hologram is the last step in the development of ideas related to bioholograms.
The basic challenge is to generalize the notion of the ordinary hologram to that of a conscious hologram,
about which bio-holograms would be examples. The notion of quantum gravitational hologram is
defined at the level of geometric, purely physical existence whereas conscious holograms exist at the
level of subjective existence defined by the sequence of quantum jumps and giving rise to the self
hierarchy. Of course, these two notions of hologram must be closely related.

The notion of conscious hologram combines the saint and sinner aspects of consciousness to single
concept: macrotemporal quantum coherence due to the generation of bound state entanglement and
giving rise to co-operation on one hand, and the dissipative self-organization giving rise to Darwinian
selection and competition on the other hand.

In nutshell, the notion of conscious hologram follows from the topological field quantization. Clas-
sical fields and matter form a Feynmann diagram like structure consisting of lines representing matter
(say charged particles) and bosons (say photons). The matter lines are replaced by space-time sheets
representing matter (elementary particles, atoms, molecules,...), and virtual bosons are replaced by
topological light rays ("mass-less extremals", MEs). Also magnetic flux tubes appear and together
with MEs they serve as correlates for bound state quantum entanglement.

The classical fields associated with MEs interfere only at the nodes, where they meet, and one
has a hologram like structure with nodes interpreted as the points of a hologram. Thus one avoids
the loss of information caused by the interference of all signals everywhere. This aspect is crucial
for understanding the role of em fields in living matter and brain. The MEs corresponding to 'real
photons' are like laser beams entering the hologram and possibly reflected from it. What is new
that the nodes can be connected by ‘virtual photon’ MEs also analogous to laser beams. Hence also ‘self-holograms’ with no laser beam from external world are possible (brain without sensory input).

The hologram has a fractal structure: there are space-time sheets at space-time sheets and high frequency MEs propagating effectively as mass-less particles inside low frequency MEs serving as quantum entangling bridges of even astrophysical length. The particle like high frequency MEs induce ‘bridges’ between magnetic flux tubes and atomic space-time sheets at the receiving end. This makes possible the leakage of supra currents from magnetic flux tubes to atomic space-time sheets analogous to the exposure of film producing hologram. The leakage induces dissipation, self-organization, and primitive metabolism as a cyclic flow of ionic currents between the two space-time sheets, and thus a Darwinian selection of the self-organization patterns results. Under certain conditions the leakage followed by dropping back to the larger space-time sheet can also give rise to a many-sheeted laser. The low frequency MEs are responsible for the bound state entanglement, macroscopic quantum coherence and co-operation whereas high frequency MEs are responsible for self-organization and competition.

The 3-D vision associated with ordinary holograms generalizes to stereo consciousness resulting in the fusion of mental images associated with the points of conscious hologram [10].

4.1.8 Negative energy MEs and bio-control

Negative energy MEs correspond to space-time sheets with a reversed time orientation. These MEs serve as correlates for bound state entanglement. Low frequency negative energy MEs can contain inside them high frequency MEs propagating along them like negative energy particles. The possibility to quantum jump to a higher energy state by generating negative energy ME gives rise to the pay now-let others pay mechanism of metabolism. This quantum credit card mechanism makes the functioning of the living system extremely flexible. The fact that ELF MEs play an important role in living matter forces to consider the possibility of remote metabolism and the transfer of metabolic energy even in the length scale of Earth (7.8 Hz frequency corresponds to Earth’s circumference). The small energy dissipation related to ‘our’ consciousness could perhaps help to solve ‘brain’s energy crisis’ [22] raised by the puzzling observation that the human brain plus body as a whole does not use more energy than smaller brained mammals with a similar body size.

Negative energy MEs are optimal for the realization of intentions. First p-adic ME transformed to a negative energy ME is generated and serves as a geometric correlate of intention. Then quantum jumps of a real system to a higher energy state occurs and in this quantum jumps p-adic ME is transformed to a negative energy ME to take care of the conservation laws.

Right and left brain hemispheres could have different arrows of the geometric time at appropriate p-adic time scales. For instance, negative energy MEs would make possible quantum communications to the direction of the geometric past. The model of non-episodal memory call would involve quantum communication of the question to the geometric past (time-like entanglement and sharing of mental images), and a classical (dissipative) communication of the answer to the geometric future. Negative-positive energy dichotomy could be be realized in an extremely wide range of time scales and to explain, besides the basic mechanism of long term memory, also precisely targeted realization of intentions, sensory-motor dichotomy, and biocycles as dissipation-healing cycles.

4.1.9 MEs and dark matter hierarchy

This chapter has been written much before the emergence of the idea about dark matter hierarchy serving as the source of the long ranged electro-weak and color gauge fields. I have left the chapter more or less as such despite the deep insights provided by this vision (see for instance [25, 23, 21, 12, 13]). In the appendix of [13] the mathematical description of dark matter hierarchy in terms of the book like structure of the generalized imbedding space is briefly summarized. Some comments are however in order.

The pages of the Big Book are characterized by two numbers x_a and x_b assignable to M^4 and CP_2 degrees of freedom. The values of these numbers are either integers of their inverses depending on whether the page of the book is a singular covering or factor space defined by a discrete subgroup of SU(2). For a given CD the sectors characterized by different integers are glued together along $M^2 \subset M^4$ defining quantization axis of energy and spin. In CP_2 degrees of freedom the gluing is along a homologically trivial geodesic sphere of CP_2 and also now a fixing of the quantization axes is involved. The positions of the tips of CD and preferred points of CP_2 at the two light-like boundaries
of CD fix the quantization axis and moduli space for CDs. An attractive hypothesis is that the relative positions of tips and corresponding preferred points of CP2 form discrete spaces. The quantization of the temporal distance between tips in powers of two implies p-adic length scale hypothesis.

The arguments related to a model of anyons lead to the proposal that Planck constant equals to the product $x_a x_b$ and the value spectrum consists of rationals. One can expect that certain values are preferred ones for number theoretic reasons. For instance, ruler-and-compass integers expressible as product of a power of two with a product of different Fermat primes define an extension of p-adic numbers involving only square root operation applied to rationals. Only four Fermat primes are known and they are given by $F_k = 2^{2^k} + 1$, $k = 1, 2, 3, 4$. Primes and their inverses are also favored values for x_a and x_b. Since large values of Planck constant are favored in living matter, coverings of both M^4 and CP2 are favored. The finite discrete symmetries of biomolecules (such as 5- and 6-fold rostational symmetries of aromatic molecules) might correspond to singular factor spaces of CD and therefore to $x_a = 1/n_a$.

The original working hypothesis was motivated by the model for planetary orbits with gigantic Planck constant $h_{gr} = GMm/v_0$, v_0/c $\simeq 2^{-11}$. v_0 has an interpretation as a velocity like parameter. This motivated the working hypothesis that preferred values of Planck constant cone as powers of $\lambda = 2^{11}$ and living matter provides some support for this hypothesis consistent also with ruler-and-compass hypothesis. This hierarchy means for a given particle a hierarchy of zoomed up Compton lengths and times making possible macroscopic quantum coherence by the overlap criterion of space-time sheets having sizes of order Compton length. It must be however emphasized that much more general spectrum for the preferred values of Planck constant is expected.

A possible criterion for the phase transition to larger h phase at the lowest level is that the interaction strength αQ^2 for particles of charge Q and gauge coupling strength α satisfies $\alpha Q^2 \geq 1$ and implies the increase of h by $h \rightarrow Q^2 \alpha h/v_0$ implying the reduction of the interaction strength as $Q^2 \alpha \rightarrow v_0$. Another such criterion could be energy minimization.

MEs can be regarded as space-time correlates for a hierarchy of particles characterized by different values of Planck constant and the de-coherence phase transition would naturally correspond to the decay of MEs to smaller space-time sheets. Single sheeted MEs correspond to fermions and their super partners and topologically condensed CP2 type vacuum extremals representing particles involve only single wormhole throat carrying the quantum numbers. Double sheeted MEs connected by wormhole contacts correspond to bosons and their super-partners with the throats of wormhole contacts carrying the quantum numbers. The two sheets have opposite arrow of time and signs of energies (for a justification of this identification see [54]).

The ordinary laser light cannot be regarded as a large h phase, which de-coheres to ordinary photons before the interaction with ordinary matter. Very general consistency arguments lead to the working hypothesis that dark matter and dark MEst correspond to λ^k-fold ($k > 0$) coverings of CD (causal diamond) locally ($h(k) = \lambda^k h_0$, $\lambda = 2^{11}$) whereas ordinary laser light would correspond to $k = 0$.

4.2 Massless extremals

The so called massless extremals are very general solution of field equations associated with the minimization of Kähler action parameterized by several arbitrary functions. The characteristic feature of the massless extremals is the presence of light-like currents generating coherent states of photons and gravitons. These features suggest that massless extremals might have important role in bio-systems.

4.2.1 Massless extremals as general solutions of field equations

Let $k = (k^0, k^1, 0, 0)$ be a light like vector of M^4 and $u = u(m^1, m^2)$ arbitrary function of the Minkowski coordinates m^1 and m^2 in the plane orthogonal to the direction of the 3-vector $(k^0, 0, 0)$ associated with k. The surfaces defined by the map

$$s^k = f^k(k \cdot m, u),$$

where f^k and u are arbitrary functions define massless extremals. They describe the propagation of massless fields in the direction of k: the fields are periodic with a period $\lambda = 2\pi/k$ so that only k and
its integer multiples are possible wavevectors. The polarization associated with various induced gauge fields depends on the position in \((m^1, m^2)\)-plane and is in the direction of the gradient of \(u\). Field equations involve tensor contractions of the energy momentum tensor and gauge current but these are proportional to \(kk\) and \(k\) respectively and vanish by the light-likeness of \(k\). Linear superposition holds true only in a restricted sense since both the propagation direction and the polarization direction in each \((m^1, m^2) = const\) plane is fixed.

What is remarkable that these solutions are not solutions of the ordinary Maxwell equations in vacuum: Kähler current density \(J_K\) is in general non-vanishing(!) and proportional to the light like four-momentum \(k\). As a consequence, also a light-like electromagnetic current is in general (but not necessarily) present. The interpretation of the em current \(J\) as charged elementary particle current is impossible and the correct interpretation as a vacuum current associated with the induced gauge fields. The finite length of the microtubule plus the requirement that the total vacuum charge vanishes, implies that the Fourier decompositions of the massless fields contain only integer multiples of the basic four-momentum \(k\). The direct detection of the light-like vacuum current inside a microtubule would provide strong support for TGD.

The physical importance of these extremals is suggested by the fact they are in certain sense elementary particle like objects: in fact, the original interpretation was as a model for the exterior space-time of a topologically condensed massless particle. The solution set is also very general involving several arbitrary functions. Although the minimization of the Kähler action favors the formation of Kähler electric fields, massless extremals might well appear as space-time sheets of the effective space-time. These space-time sheets should not contain ordinary charges since their presence implies a transition to the Maxwell phase described in an excellent approximation by the ordinary Maxwell electrodynamics. Rather remarkably, massless extremals are also solutions of the field equations associated with the low energy effective action. This holds true in the absence of the topologically condensed matter, phenomenologically described using external currents. For instance, the term

\[
(T^\alpha_\beta - \frac{1}{16\pi G} G^\alpha_\beta D_\beta \partial_\alpha h^k) ,
\]

where \(#\) refers to the topologically condensed matter, reduces to

\[
\frac{1}{16\pi G} G^\alpha_\beta D_\beta \partial_\alpha h^k ,
\]

and vanishes identically because Einstein tensor is light like so that contraction with the second fundamental form vanishes. The vanishing of these terms in presence of matter is not possible since the gauge currents and energy momentum tensor associated with the topologically condensed matter are not light-like. Thus massless extremals correspond to vacuum space-time sheets with respect to the ordinary matter. Massless extremals can however interact with the ordinary matter via \(#\) contacts.

The fact that vacuum em current and vacuum Einstein tensor do not in general vanish, implies that massless extremals serve as sources of coherent photons and gravitons. It is not very economical to maintain BE condensates all the time. In ‘dormant’ states microtubules could correspond to MEs with vanishing em fields but non-vanishing \(Z^0\) fields or even vacuum extremals of the effective action with one-dimensional \(CP_2\) projection and having vanishing classical gauge fields. Massless extremals can also reduce to vacuum extremals of the Kähler action in the case that the \(CP_2\) projection is, in general two-dimensional, Legendre manifold of \(CP_2\). Also in this case massless extremals are however non-vacuum extremals of the effective action.

4.2.2 About the electro-weak and color fields associated with massless extremals

Space-time sheets carrying em fields carry usually also \(Z^0\) and \(W\) fields and it is not possible to speak about em or \(Z^0\) type MEs. It is however possible to speak about neutral and \(W\) MEs. The \(CP_2\) projection of ME is 2-dimensional and in a special case it reduces to a geodesic sphere. There are two kinds of geodesic spheres in \(CP_2\).

1. For space-time sheets for which \(CP_2\) projection is \(r = \infty\) homologically non-trivial geodesic sphere of \(CP_2\) one has
\[\gamma = \left(\frac{3}{4} - \frac{\sin^2(\theta_W)}{2} \right) Z^0 \approx \frac{5Z^0}{8} . \]

The induced \(W \) fields vanish in this case and they vanish also for all geodesic sphere obtained by \(SU(3) \) rotation.

2. For homologically trivial geodesic sphere a standard representative is obtained by using for the phase angles of standard complex \(CP^2 \) coordinates constant values. In this case induced \(Z \), and \(K \)ähler fields vanish but induced \(W \) fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can say that for non-vacuum extremals with 2-D \(CP^2 \) projection color rotations and weak symmetries commute.

The MEs corresponding to these two geodesic spheres could be called neutral and \(W \) MEs and they carry color fields for which the color group \(SU(3) \) reduces to some of its \(U(1) \) subgroups. Quite generally, the holonomy algebra of color group is Abelian since the induced color field is of the form \(g^{A}_{\alpha \beta} \propto H^A J_{\alpha \beta} \), where \(H^A \) denotes color Hamiltonian.

Neutral MEs are excellent candidates for mediating EEG type communications from the biological body to the magnetic body whereas charge entanglement induced by \(W \) MEs would be ideal for the realization of motor actions of the magnetic body by generating first superposition of exotically ionized states of atomic nuclei entangling magnetic and biological body [22]. State function reduction would lead to an exotically ionized state accompanied by dark plasma oscillation pattern. By Faraday law this pattern would induce electric fields at the space-time sheets containing ordinary matter which in turn would generate ohmic currents leading to various physiological effects.

MEs are excellent candidates for the space-time correlates of laser beams. Dark matter hierarchy implies that also MEs can be classified by the level of the dark matter hierarchy involved. A very general argument leads to the conclusion that dark space-time sheets, in particular MEs, at the \(k \)th level of the dark matter hierarchy correspond to space-time sheets defining \(\lambda^k \)-fold coverings of \(M^4 \) (recall that one has \(h(k) = \lambda^k h_0 \) and \(\lambda \approx 2^{11} \) [86, 22]. \(k = 0 \) MEs would correspond to the ordinary laser light.

4.2.3 How massless extremals generate coherent states of photons?

MEs can be in ‘dormant’ or active state according to whether the em current associated with the ME is vanishing or not. In active state MEs generate Bose Einstein condensate type state for ordinary photons. This means in TGD context the emission of (topological) vapor phase photons (\(CP^2 \) type extremals), which can condense on other condensate levels. MEs generate gravitonic BE condensate and the possible biological role of this condensate will be discussed later.

Assuming that the coupling of quantized photon field to the massless extremal is given by regarding the massless extremal as a classical background field one obtains QED with a light like source \(J^\alpha \):

\[
\begin{align*}
D_\beta F^{\alpha \beta} &= e J^\alpha , \\
J^\alpha &= J k^\alpha .
\end{align*}
\]

(4.2.2)

The system is equivalent with an infinite number of harmonic oscillators each driven by a harmonic external force and a basic exercise in the quantum mechanics shows that the solutions of the field equations give the new oscillator operators as sums of free oscillator operators plus c-number term, which is essentially the Fourier component of the light like current in the direction of the polarization.

In the limit that ME has infinite duration and is a cylindrical structure of finite length \(L \) (that is microtubule) one has for \(J \propto \sin(kz(t - z)) \)
Here \(p \) denotes the momentum of the photon and \(k \) the 4-momentum associated with the Fourier component of a light-like current. \(\epsilon(p) \) denotes the polarization of the photon. \(J(k_z,p_T) \) is essentially the 3-dimensional Fourier transform of the scalar function \(J \). The infrared behavior of \(J(k_z,p_T) \) as a function of the transversal momentum \(p_T \) can be deduced from the fact that the transverse dimension of the microtubule is small (about 25 nm) as compared to \(1/p_T \) so that the Fourier component is in good approximation independent of \(p_T \).

For the frequencies present in the Fourier decomposition of the massless extremal, the ordinary oscillator vacuum is transformed to a coherent state in the corresponding Fourier mode of the quantized photon field. The essential point is that the wave vectors of the radiation field and massless extremal are nonorthogonal. The radiation pattern resembles the ordinary antenna pattern associated with an ordinary dipole with \(J \). The phase difference between \(n \) and \(n+1 \) is small rather larger transversal distances are allowed by the requirement of constructive interference. In a more general situation also the orientations of microtubules can vary at resonant frequencies. Suffice it so say that the needed timing is extremely accurate: less than \(10^{-12} \) seconds! Since \(p_z \) is small rather larger transversal distances are allowed by the requirement of constructive interference. In a more general situation also the orientations of microtubules can vary in certain limits. Note that light-like energy momentum generates also gravitonic BE condensates at preferred frequencies.

4.2.4 Massless extremal is accompanied by a Bose-Einstein condensate of parallel photons

The interaction Lagrangian describing the interaction of photon field with the light-like vacuum current does not couple to the photons collinear with the vacuum current (light-like wave vector has vanishing length squared). Therefore the ground states of the system are degenerate since one can add to any coherent state generated by the vacuum current any number of photons collinear with the vacuum current and topologically condensed inside the massless extremal. This means Bose-Einstein condensation in collinear degrees of freedom.

Collinear Bose-Einstein condensates of photons are crucial for the model of the quantum correlates of the sensory qualia. Sensory quale is characterized partially by the BE condensate of photons associated with the massless extremal parallel to the axon. The existence of the BE condensate makes possible induced emission. For instance, Josephson currents generate photons with frequencies which are multiples of the Josephson frequency. If the potential difference in Josephson junction equals to a multiple of the cyclotron frequency of some super conducting ion, the current flows resonantly in the sense that Josephson current serves as a harmonic perturbation generating quantum jumps and...
4.3. Microtubules as quantum antennae

4.3.1 Linear structures as quantum antennae

The many-sheeted space-time concept of TGD indeed allows almost vacuum space-time sheets and these space-time sheets might be crucial for the understanding of the bio-systems. For instance, the weak interaction of these space-time sheets with the ordinary space-time sheets containing matter could provide representations of the external world in the physical properties of the almost vacuum space-time sheets. In particular, mind-like space-time sheets having finite time duration could generate coherent light and coherent light might make communication possible between mind-like space-time sheets and realize the idea of neuronal window discussed briefly in introduction [15]. The mind-like space-time sheets associated with various linear structures are especially natural candidates for

gives rise to a large dissipative current and also quantum jumps in either super conductor. Since the emission rate for photons by the current is proportional to N^2, where N is the number of photons already in the state, the presence of the BE condensate of photons with this frequency amplifies the emission rate. This kind of resonance mechanism is assumed in the model of sensory experience since it elegantly explains why given neuron corresponds to single quale. Since the potential difference over the Josephson junction can correspond to only single cyclotron frequency, the dominance of single quale is unavoidable even when all macroscopic quantum phases are present.

The existing BE condensate increases the probability of topological condensation of coherent photons generated by other massless extremals to the massless extremal. This mechanism could provide inter-neuronal communication mechanism and realize the metaphor about brain as a society of neurons, the notion of neuronal window idea and also give a more precise content to the music metaphor. In particular, neurons far away from each other could communicate using wavelengths in a narrow wave length range by this mechanism.

The wave vectors of the photons are multiples of $k = \pi/L$. This means that the length of the massless extremal correlates with the maximal allowed wavelength. For ELF photons associated with EEG frequencies of order 10 Hz the length of massless extremal is of order Earth’s circumference. This suggests that more general massless extremals with a topology of torus instead of linear topology could characterize the topological field quanta of ELF fields. It is however impossible to say, whether the field equations allow more general solutions resembling massless extremals.

4.2.5 MEs and exotic representations of p-adic Super Virasoro algebra

The exotic representations of p-adic Super Canonical and Super Virasoro algebras forming excellent candidate for a hierarchy of lifeforms are associated with MEs [30, 58]. For these representations mass squared of the particle is proportional to Virasoro generator L_0 having integer valued mass spectrum. When the value of the p-adic mass squared is power of p: $M^2 \propto p^n$, $n = 1, 2, \ldots$, the real counterpart of the mass squared is extremely small since it is proportional to $1/p^n$ in this case. These states are generated by a subalgebra of super-symplectic algebra in case of MEs since the conformal weight of the vacuum state vanishes (for ordinary elementary particles conformal weight of the vacuum is negative integer). Thus very special representations of p-adic Super Virasoro algebra are in question.

The degeneracy of states (number of states with same mass very small squared) is enormous for the physically interesting values of p-adic prime p. This means that these states provide huge negentropy resources. Thus exotic Super Virasoro representations be interpreted as quantum level articulation for the statement that TGD Universe is quantum critical quantum spin glass. Exotic Super Virasoro representations clearly provide an excellent candidate for an infinite hierarchy of life forms. These lifeforms are labelled by three integers (k, m, n): physically interesting primes correspond to $p \simeq 2^k$, whereas k prime and m are integers, and the power n appearing in $M^2 \propto p^n$. It is these lifeforms which make mind-like space-time sheets living creatures and these lifeforms emerge already in elementary particle length scales and become increasingly complex when the p-adic length scale increases. Life can be regarded as a symbiosis of these lifeforms. These lifeforms (‘mind’) interact with each other and ordinary matter via the classical gauge fields associated with MEs. A natural hypothesis is that the quantum phase transitions of the macroscopic quantum phases for the particles of the exotic Super Virasoro representations formed in classical fields of MEs (mind-like space-time sheets) give rise to some (but not all) qualia.
massless extremals serving as quantum antennae. Bio-systems are full of linear structures and the mind-like space-time sheets associated with microtubules, DNA and protein molecules are the most obvious candidates for quantum antennae.

4.3.2 Are microtubules accompanied by massless extremals?

The interior of the microtubule is by its cylindrical symmetry an ideal place for MEs whereas the axonal cell membranes must correspond to 'Maxwell phase', where ordinary Maxwell equations are satisfied in a good approximation but also a separate space-time sheet is possible candidate for a massless extremal. The function \(u(x, y) \) appearing in the general solution is most naturally \(u(x, y) = \sqrt{x^2 + y^2} \) for microtubules implying radial polarization. The explanation of the macroscopic quantum coherence in the brain would provide crucial support for the TGD based world picture since massless sources and vacuum currents are not possible in the ordinary QED.

There is analogy with the super radiance phenomenon \([20]\) : in this case however the photons radiated by the microtubule waveguide have momenta parallel to the microtubule so that the mechanism leading to the formation of the macroscopic BE condensate remains to be understood. The theories associating coherent photons with the microtubules typically assume that the coherent photons reside inside the microtubules: this leads to problems since Uncertainty Principle; the direct study of Maxwell equations also suggest that photons should have very large transversal momenta corresponding to the transversal dimension of the microtubule of order \(10^{-5}\) meters. In TGD this difficulty is avoided since only the sources of the coherent photons are restricted into the interior of microtubules whereas the photons can exists in vapor phase and condense on various space-time sheets of the topological condensate.

The necessary condition for the formation of the coherent states in the presence of the matter is that ME condensate level does not contain ordinary gauge charges. If ME corresponds to a larger space-time sheet 'below' the space-time sheet containing the ordered water, this requires that the gauge charges of the condensed matter do not flow to the interior of the ME space-time sheet. This is achieved if the condensed particles combine by join along boundaries bonds together to form a net like structure so that gauge fluxes can run along the join along boundaries bonds to the boundary of the ME region, where they can flow down to the ME condensate level. Ordered water is a good candidate for this join along boundaries condensate. Microtubules are known to be surrounded by ordered water and also the interior contains ordered water. The axial electric polarization of the microtubular surface suggests that there is a longitudinal electric gauge flux at the condensate level of the ordered water running to/from the ME condensate level at the ends of the microtubule. The wave lengths appearing in the Fourier expansion of \(J \) are of form \(L/n \), \(L \) being microtubule length.

In the active mode microtubule acts as a quantum antenna creating quantum coherent light unlike the ordinary antenna, which creates incoherent light. Also waveguide mode is possible for the topologically condensed photons but antenna mode is crucial for the generation of the macroscopic coherent states. The following argument suggests that he dielectric properties of the microtubule surface can change the antenna pattern somewhat. The dipoles of the microtubule are known to be parallel to the axis of the microtubule. The interaction energy of a dipole \(p \) with the radiation field is proportional to the quantity \(p \cdot E = p \cos(\theta) \) so that the effect of the dielectric is largest, when the wave vector of the photon is orthogonal to the axis of the microtubule. As a consequence, the dipole pattern should concentrate in the forward direction.

The em current in the interior transforms ordinary QED vacuum to a coherent state in the resonating Fourier modes of the photon field. In ME mode the resonance energies come as multiples of \(E_0 = 2\pi/L \) and wavelength \(L/n \), where \(L \) is the length of the microtubule whereas in VE mode the spectrum is continuous. Biophotons \([27]\) with energy of order one eV might be regarded as evidence for BE states associated with the shortest microtubules (such as centriole and basal bodies). The average length of the neuronal microtubules is about \(10^{-5} \) m and corresponding IR radiation is more energetic than thermal IR radiation with a wavelength of order \(10^{-4} \) m.

In the ME mode the resonances at energies \(E_n = nE_0, E_0 = 2\pi/L \), provide ideal communication channels. Microtubules with different lengths provide independent communication channels so that very effective communication in principle becomes possible. This process could orchestrate axonal microtubules as well as the microtubules belonging to different neurons to form a larger macroscopic quantum state. An optimal performance is obtained if the microtubules belonging to same group are parallel and their lengths are quantized with a common multiple. The microtubules of the neighboring
neurons indeed tend to be parallel. Axonal microtubules are also parallel whereas the microtubules inside the ordinary cells are in radial configurations. The grey matter in brain has a columnar structure so that the microtubules tend to be in the direction of the columns: this should favor the formation of a quantum resonance between different microtubules. Furthermore, the model of [36], described in Tuscon II, for the microtubule interactions predicts that the microtubules of even far away neurons are parallel. The average length of the neuronal microtubules is about 10^{-5} m and it is known that the response of 3T3 cells to weak IR radiation is maximum at this wavelength. Neurons could be able to tune their microtubules to the desired infrared stations by controlling their orientation and length. The upper bound about 10^{-4} meters for the length of the axonal microtubules can be understood: for the longer microtubules the thermal IR radiation becomes important and makes communication impossible. In long axons this problem is avoided by joining shorter microtubules in series via Microtubule Associated Proteins (MAPs).

Since the time scale for the change of the tubulin polarization is of order 10^{-10} seconds and the period of the IR radiation is of order 10^{-13} seconds, amplitude modulated IR transmissions are possible. The mechanism of the amplitude modulation could be simply a change of the microtubule interior gauge field from active to dormant ME mode. Amplitude becomes vanishing if this field becomes ordinary sourcefree em field or Z_0 field. IR transmissions could be based on some kind of binary code resembling genetic code. There is indeed concrete proposal of Koruga for this code motivated by the geometric structure of the microtubule surface. [38], [31]. One possibility is that the propagating modes of dipole and conformational oscillations perform elementary AM modulations. These modes could correspond to elemental language expressions at the level of the microtubules.

Microtubules can also absorb photons coming from an external source at resonance energies. If Bose-Einstein condensate of N photons in some mode is present, the absorption probability is amplified roughly by the factor N^2 as shown in appendix. This suggests that microtubules containing BE condensate of photons in some mode are able to 'see' in some elementary sense. Of course, receiving antenna containing the BE condensate need not be microtubule. Centrioles (T shaped pair of microtubules inside animal cells) could provide cell with infrared eye and there is experimental evidence for this in the case of monocellular organisms [13]. Also the radial microtubules could have elementary sense of vision. Note that all eucaryotic cells have radial structure of microtubules in their cytoskeleton.

4.3.3 How macroscopic quantum coherence is generated?

The big problem is the creation of constructive interference between the coherent states associated with different microtubules. The problem looks exceedingly difficult: microtubules should be able to tune up the frequency and phase associated with light like current inside microtubule with those of other microtubules contributing to the coherent state. Frequency tuning, or equivalently length tuning, involves time scales smaller than 10^{-13} seconds in case of infrared light associated with longest microtubules. The simplest solution to come into mind is that there exist some pacemaker keeping the microtubules in rhythm. One can imagine several mechanisms important for the tuning, each involving the special properties of the TGD space-time crucially.

Topological field quantization

TGD space-time surface decomposes into regions characterized by vacuum quantum numbers, which are frequencies and integers related to the time and angle dependences of the phase angles associated with the two complex CP_2 coordinates. Typically one has $\Phi = \omega t + \text{Fourier expansion}$ so that space-time surface vibrates with frequency ω. This vibration is an ideal candidate for a pacemaker for the physical systems inside a given space-time region. In fact, the vacuum quantum numbers characterize partially also the order parameter of a super conductor. Vacuum frequencies could also be special frequencies for the Maxwell fields.

The increased understanding about topological field quanta as classical and quantum coherence regions of em field is consistent with and generalizes this view. When topological field quanta are joined by join along boundaries bond generated in quantum jump they fuse to form a larger region of classical and quantum coherence. This suggests a general mechanism for how various axons/microtubules can generate phase coherent em fields. What is needed is that there is larger space-time sheet connected by join along boundaries bonds to the massless extremals associated with various axons/microtubules.
This larger space-time sheet is most naturally the geometrical counterpart of higher level self so that consciousness is what creates synchrony rather than vice versa!

A further important aspect in the generation of synchrony is self-organization. The subsystems of self quantum self-organize and end up to asymptotic self-organization patterns selected by dissipation. These patterns are simple and typically involve spatially repeating patterns and synchronous oscillations (Benard flow is simple example of this). It is consciousness which implies synchrony and coherence whereas in standard approaches to quantum consciousness synchrony and coherence are believed to be prerequisites for consciousness.

Phase locking for the system of Josephson junctions

Japanese physicist Yoshiki Kuramoto from the University of Kyoto has shown that the solutions of the differential equations describing Josephson junctions tend to a state in which there is single collective oscillation frequency. A.T. Winfree from the University of Arizona has shown that a phase transition to single collective oscillation frequency analogous to the freezing of liquid occurs in this kind of system.

The solutions of the differential equations describing Josephson junctions model quantum self-organization and synchronization can be interpreted as an instance of the selection of asymptotic self-organization patterns selected by dissipation and occurring always in quantum self-organization. Of course, the quantum jumps can occur only provided the system of Josephson junction belongs to a system having self so that consciousness is again prerequisite for synchrony rather than vice versa! In any case, the fact that entire brain is hierarchy of space-time sheets such that the space-time sheets at various levels are connected by Josephson junctions makes this result rather encouraging.

Gap junctions and MAPs

As noticed, the formation of the join along bonds is the basic prerequisite for the formation of the macroscopic quantum systems. The so called gap junctions can be regarded as join along boundaries bonds between the cell membranes (understood as 3-surfaces in TGD picture) of the neighboring cells. They could have a key role in synchronous firing of neuron groups. Gap junctions could also force the vacuum quantum numbers of the neighboring cell membranes to be identical as well as provide the bridges for the propagation of the Maxwell type fields between neighboring cells. It is known that the coherently firing neuron groups in brain possibly responsible for the generation of sensory experience are gap junction connected. It is not however obvious whether gap junctions have anything to do with the synchronizing of the vacuum currents: the difference between the time scales involved is indeed huge. Also Microtubule Associated Proteins could act as join along boundaries bonds guaranteeing quantum coherence between microtubules inside same cell.

4.3.4 Are nerve pulse patterns coded into vacuum currents and coherent light?

It has turned out that TGD based model for memetic code leads to the same interpretation of nerve pulse patterns as suggested by neuroscience. Nerve pulse/no nerve pulse corresponds to true/false Boolean statement or 1/0 value of binary digit. Fundamental coding of nerve pulse patterns is the coding into temporal sequences of cognitive neutrino pairs associated with cell membrane such that the spin of the cognitive antineutrino codes for true/false (1/0). Of course, bits could code also for binary digits in the binary expansion and code for the intensity of the primitive sensory experience associated with the neuron. It is natural to ask whether nerve pulse patters could be also coded to some other representations. Light-like currents are indeed optimal in this respect.

The dependence of the light-like current on the longitudinal coordinate of massless extremal is arbitrary and therefore light-like current provides ideal tool of classical communication of information with light velocity as well as coding of this information to coherent light received by other massless extremals. The first bio-application to come into mind is that the instantaneous nerve pulse patterns propagating along the axon could be coded into the pattern of the vacuum current. The velocity of propagation for the nerve pulse pattern is extremely small as compared to light velocity but this is not a problem if the coding takes place in the region where nerve pulses are generated. What happens is that same temporal pattern of pulses propagates with different velocities. This coding in turn implies
coding of nerve pulses to coherent states of photons and in principle the communication of nerve pulse pattern to other neurons.

The relationship between memetic and genetic code is that between two hierarchy levels of a computer program. This suggests that nerve pulse patterns representing memetic codons could serve as transcription factors at gene level. This requires the communication of nerve pulse patterns to nucleus. Even more, communication mechanism must treat different presynaptic inputs as different inputs. Modulation of the vacuum current could make possible communication of the nerve pulse patterns to the cell nucleus along the massless extremals associated with the radial microtubules which in case of neurons have direct contact with the cell membrane. The fact, that some anesthetics seem to affect microtubules and that some brain diseases involve changes of microtubules could also be explained as a breaking of the cell membrane-nucleus communication link. That this kind of communication link might exist is suggested by the fact that ELF em fields have direct effect on genetic expression [24].

4.4 Masless extremals and information molecules

The notion of information molecule is central for the understanding of biological control. There are however several rarely asked questions related to the notion of information molecule: in particular, the phenomenon of pleiotropy is not easy to understand on basis of pure chemistry [45]. TGD inspired view about biocontrol and coordination suggests a general answer to these questions and leads to a general model of biological control based on both MEs and information molecules with massless extremals (MEs) serving as actual information carriers and information molecules having a a role analogous to that of computer passwords.

4.4.1 Questions about information molecules

Central nervous system (CNS), endocrine system and immune system are three basic systems involved with bio-control and -communication. The work of Candace Pert and other neuroscientists has led to a general notion of information molecule described in popular manner by Candace Pert [36]. Neural transmitters and modulators associated with CNS are only special cases of information molecules. Also neuropeptides and various hormones are involved. It has become clear that emotions are closely related with the activity of information molecules and that both brain, endocrine system and immune system communicate intensively with each other. One could regard even brain as a big gland. Of course, one could also consider various glands and organs as mini-brains.

The interactions of the information molecules involve the formation of receptor-information molecule complex either at cell surface or in the cell plasma inside cell. Receptor-information molecule complex inside cell can move to genome and induce gene transcription. In case that the complex is formed at the surface of cell, second messenger action is involved. One can also speak about N:th messenger action. There are many poorly understood aspects related to the mechanisms of information molecule action [15].

1. There are only few second messenger pathways and relatively few receptors but large number of different functions. This phenomenon is known as pleiotropy or multi-functionality. For instance, given second messenger causes different effects depending on the hormone that activated it (the phenomenon is somewhat analogous to the phenomenon in which message can be understood in several manners depending on the state of receiver). At purely chemical level the problem is how second messenger knows what hormone activated it? In steroid action the complex formed by information molecule and receptor in turn activates some gene. Now the question is: How the activated RNA polymerase knows which gene has to be activated? Pleiotropy appears also at level of hormones. Same hormone can have multiple effects and the border between hormone, neuropeptide or even neurotransmitter is unclear. For instance, hormone which by definition transmits long distance communications, can have effects in nearby cells and thus acts like a neuropeptide. How hormone knows what function it must perform? Also drugs and treatments can have different effects and side effects.

2. There is also functional redundancy: the same function is performed by several second messenger molecules. For instance, glucagon, growth hormone, adrenaline and corticosteroids elevate
glucose levels. This suggests that there is deeper level of communication involved and that second messenger molecules are more like computer passwords than subprogram calls. Now the question is: What these subprogram calls do correspond physically?

3. Biological functions can be initiated also in nonchemical manner. The phenomena of healing by touch and the effects of meditation and biofeedback are examples of biological self-organization processes are initiated in nonchemical manner. Even other treatments like massage, acupuncture or meditation can decrease or inhibit pain. These observations suggest that chemical level is not the deepest level involved with biological functions and the question is: What is this deeper control level?

Simple lock and key mechanism cannot provide answer to the questions raised above. Rather, computer password might provide better metaphor for the second messenger action whereas receptor-information molecule complex would effectively generate subprogram call perhaps carried by the second messenger molecule or possibly broadcasted. It seems that information molecules act more like signs or symbols rather than being purely chemical agents. These symbols are interpreted by cell level intelligences and the interpretation depends on context.

4.4.2 A model of biological self-organization based on quantum antenna hypothesis

The view that self hierarchy is present already at molecular level and realized in terms of MEs provides rather straightforward interpretation of pleiotropy and redundancy. The phenomenon of pleiotropy suggests there is nonchemical communication between receptor-peptide complex and cell nucleus. The most natural TGD inspired candidate for the communication is wake-up of genome subself by general wake-up mechanism in which classical em field associated with ME induces quantum jumps leading to quantum phase transition which could correspond to the transcription process. The almost-determinism of the transcription process would be due to the Darwinian selection caused by dissipative effects.

These considerations suggest that information molecule-receptor complex could generate ME carrying classical gauge fields and vacuum current. Vacuum current is excellent candidate for coding the information and can lead to a generation of coherent light.

1. The first possibility is broadcasting. The ME associated with information molecule receptor-complex acts as active quantum antenna and activated structure, say genome, serves as a passive quantum antenna receiving the coherent light. Classical fields and/or coherent light would induce quantum jumps serving as seeds of quantum phase transitions leading to a wake-up of conscious and self-organizing subself inside receiver.

2. Alternatively, second messenger molecule could carry the information carrying ME with itself as a genuine message inducing the self-organization process in, say, genome.

A natural hypothesis is that the states of the exotic Super Virasoro representations define the macroscopic quantum phases in question: the reason is that these representations are present in all length scales. The information molecule-receptor pair corresponds to a definite frequency, or more generally, combination of frequencies, coding the corresponding function. For instance, genes might be coded to harmonics of Super Virasoro frequencies associated with various p-adic length scales. All information molecule-receptor combinations initiate some function determined by these frequencies and pleiotropy emerges as a basic prediction of the model. Second messenger pathway is like a password to computer, universal key, together with the frequency or even entire ME specifying the function in question: this initiates the desired self-organization process waking-up proper subself.

These ideas suggest the following general framework for understanding biological self-organization.

1. Biological programs consist of self-organization patterns generated by classical gauge fields associated with MEs at specific resonance frequencies inducing quantum jumps leading to quantum phase transitions. These resonance frequencies serve as names of the genetic subprograms. Messenger molecules in turn serve in the role of computer passwords.
2. Self-organization processes are associated with MEs and generated by special frequencies, which could be harmonics of the fundamental frequencies associated with various exotic Super Virasoro representations. For instance, combinations of harmonics of various Super Virasoro transition frequencies could define ‘name of gene’. The fact that these frequencies are constants of Nature means that the model is immediately testable. Of course, also other transition frequencies, in particular, magnetic and Z^0 magnetic transition frequencies, could be important.

3. The ability of a biological system to act effectively like a deterministic computer is due to the Darwinian selection of the asymptotic patterns of self-organization caused by dissipation in systems which are fed by energy.

4. The four-dimensionality of this self-organization process is also an important element. The frequency of ME defines time scale $T = 1/f$ which defines the duration of biological chronon. With this interval of geometric time entire 4-dimensional space-time surface changes in self-organization process.

4.5 Evidence for quantum antenna hypothesis

In the following some evidence for quantum MEs and quantum antenna hypothesis is discussed. It must be emphasized that there is also other evidence discussed in other chapters of the book (for instance, see the chapters [30, 58, 61].

4.5.1 TGD inspired model for sonoluminescence

Sonoluminescence [25] is a peculiar phenomenon, which might provide an application for the hydrodynamical hierarchy. The radiation pressure of a resonant sound field in a liquid can trap a small gas bubble at a velocity node. At a sufficiently high sound intensity the pulsations of the bubble are large enough to prevent its contents from dissolving in the surrounding liquid. For an air bubble in water, a still further increase in intensity causes the phenomenon of sonoluminescence above certain threshold for the sound intensity. What happens is that the minimum and maximum radii of the bubble decrease at the threshold and picosecond flash of broad band light extending well into ultraviolet is emitted. Rather remarkably, the emitted frequencies are emitted simultaneously during very short time shorter than 50 picoseconds, which suggests that the mechanism involves formation of coherent states of photons. The transition is very sensitive to external parameters such as temperature and sound field amplitude. In the following only the rough hydrodynamical characteristics of the phenomenon are considered from the point of view of p-adic length scale hypothesis. Also an attempt to understand the mechanism behind quantum coherence in terms of light-like vacuum currents associated with massless extremals is made.

Sonoluminescence and hydrodynamical hierarchy

A plausible explanation for the sonoluminescence is in terms of the heating caused by shock waves launched from the boundary of the adiabatically contracting bubble [25]. The temperature jump across a strong shock is proportional to the square of Mach number and increases with decreasing bubble radius. After the reflection from the minimum radius $R_0(\text{min})$ the outgoing shock moves into the gas previously heated by the incoming shock and the increase of the temperature after focusing is approximately given by $T/T_0 = M^4$, where M is Mach number at focusing and $T_0 \sim 300 \text{ K}$ is the temperature of the ambient liquid. The observed spectrum of sonoluminescence is explained as a bremsstrahlung radiation emitted by plasma at minimum temperature $T \sim 10^5 \text{ K}$.

The model reproduces nicely the time development of the bubble and sonoluminescence spectrum and explains sensitivity to the external parameters [25]. The problem is to understand how the length scales are generated and explain the jumpwise transition to sonoluminescence and the decrease of the bubble radius at sonoluminescence: ordinary hydrodynamics predicts continuous increase of the bubble radius. The length scales are the ambient radius R_0 (radius of the bubble, when gas is in pressure of 1 atm) and the minimum radius $R_0(\text{min})$ of the shock wave determining the temperature reached in shock wave heating. Zero radius is certainly not reached since since shock front is susceptible to instabilities.
Since p-adic length scale hypothesis introduces a hierarchy of hydrodynamics with each hydrodynamics characterised by a p-adic cutoff length scale there are good hopes of achieving a better understanding of these length scales in TGD. The change in bubble size in turn could be understood as a change in the ‘primary’ condensation level of the bubble.

1. The bubble of air is characterized by its primary condensation level \(k \). The minimum size of the bubble at level \(k \) must be larger than the p-adic length scale \(L(k) \). This suggests that the transition to photoluminescence corresponds to the change in the primary condensation level of the air bubble. In the absence of photoluminescence the level can be assumed to be \(k = 163 \) with \(L(163) \sim 76 \mu m \) in accordance with the fact that the minimum bubble radius is above \(L(163) \). After the transition the primary condensation level of the air bubble is \(k = 157 \) with \(L(157) \sim 0.7 \mu m \). In the transition the minimum radius of the bubble decreases below \(L(163) \) but should not decrease below \(L(157) \): this hypothesis is consistent with the experimental data [25].

2. The particles of hydrodynamics at level \(k \) have minimum size \(L(k) \). For \(k = 163 \) one has \(k_{prev} = 157 \) and for \(k = 157 \) \(k_{prev} = 151 \) with \(L(151) \sim 11.8 nm \). It is natural to assume that the minimum size of the particle at level \(k \) gives also the minimum radius for the spherical shock wave since hydrodynamic approximation fails below this length scale. This means that the minimum radius of the shock wave decreases from \(R_s(min, 163) = L(157) \) to \(R_s(min, 157) = L(151) \) in the transition to sonoluminescence. The resulting minimum radius is 11 nm and much smaller than the radius 1 \(\mu m \) needed to explain the observed radiation if it is emitted by plasma.

A quantitative estimate goes along lines described in [25].

1. The radius of the spherical shock is given by

\[
R_s = At^\alpha ,
\]

where \(t \) is the time to the moment of focusing and \(\alpha \) depends on the equation of state (for water one has \(\alpha \sim 0.7 \)).

2. The collapse rate of the adiabatically compressing bubble obeys

\[
\frac{dR}{dt} = c_0 \left(\frac{2}{3\gamma} \frac{\rho_0}{\rho} \left(\frac{R_m}{R_0} \right)^3 \right)^{1/2} ,
\]

where \(c_0 \) is the sound velocity in gas, \(\gamma \) is the heat capacity ratio and \(\rho_0/\rho \) is the ratio of densities of the ambient gas and the liquid.

3. Assuming that the shock is moving with velocity \(c_0 \) of sound in gas, when the radius of the bubble is equal to the ambient radius \(R_0 \) one obtains from previous equations for the Mach number \(M \) and for the radius of the shock wave

\[
M = \frac{dR_s}{c_0} = (t_0/t)^{\alpha-1} ,
\]

\[
R_s = R_0(t/t_0)^\alpha ,
\]

\[
t_0 = \frac{\alpha R_0}{c_0} .
\]

where \(t_0 \) is the time that elapses between the moment, when the bubble radius is \(R_0 \) and the instant, when the shock would focus to zero radius in the ideal case. For \(R_0 = L(167) \) (order of magnitude is this) and for \(R_s(min) = L(151) \) one obtains \(R_0/R_s(min) = 256 \) and \(M \simeq 10.8 \) at the minimum shock radius.
4. The increase of the temperature immediately after the focusing is approximately given by

$$\frac{T}{T_0} \simeq M^4 = \left(\frac{R_0}{R_s}\right)^{4(1-\alpha)} \simeq 1.3 \cdot 10^4.$$ \hfill (4.5.4)

For $T_0 = 300 \, K$ this gives $T \simeq 4 \cdot 10^6 \, K$: the temperature is far below the temperature needed for fusion.

In principle the further increase of the temperature can lead to further transitions. The next transition would correspond to the transition $k = 157 \rightarrow k = 151$ with the minimum size of particle changing as $L(k_{\text{prev}}) \rightarrow L(149)$. The next transition corresponds to the transition to $k = 149$ and $L(k_{\text{prev}}) \rightarrow L(141)$. The values of the temperatures reached depend on the ratio of the ambient size R_0 of the bubble and the minimum radius of the shock wave. The fact that R_0 is expected to be of the order of $L(k_{\text{next}})$ suggests that the temperatures achieved are not sufficiently high for nuclear fusion to take place.

The model of sonoluminescence by Buzzacchi, del Giudice and Preparata

The coherence of the light generated in sonoluminescence looks rather mysterious from the viewpoint of standard physics. There is very interesting paper of Buzzacchi, del Giudice and Preparata about sonoluminescence with title 'Sonoluminescence Unveiled?' \cite{25}. The study of this paper revealed that the physical picture behind microtubule as quantum antenna hypothesis leads to a model for sonoluminescence and that sonoluminescence could be interpreted as a direct evidence for light-like vacuum currents generating coherent photons in TGD. Needless to say, vacuum currents are a purely TGD based phenomenon and implied by the induced gauge field concept deriving from the hypothesis that space-time is 4-dimensional surface in certain 8-dimensional space.

The assumptions of the work of Buzzacchi, del Giudice and Preparata \cite{25} are following.

1. The energy of the coherent radiation created in sonoluminescence results from the latent heat 0.26 eV per molecule for gas to liquid phase transition occurring at the final stage of the bubble collapse. In \cite{25} the latent heat is used to deduce the width Γ of the energy spectrum of photons.

2. When shock wave is formed during the collapse of bubble (collapse velocity becomes supersonic), a front of layers with distance that between water molecules is formed. The average distance of molecules in tangential direction are much larger but gets smaller during the collapse of bubble. One can say that there is vapor layer looking like water in radial direction but in transversal directions the layer is much less dense. When the radius of the bubble reaches certain critical value (so that density is about 1/3 of the density of liquid phase), condensation in the transversal directions to liquid occurs. Note that this means that there is preferred direction suggesting cylindrical symmetry for the condensing regions.

3. The phase transition is assumed to occur in coherent regions with size of order $\lambda \simeq 500$ Angstroms, which is not far from the diameter of microtubules. In these regions there is a coherent planewave electromagnetic field with frequency $\omega = 2\pi/\lambda$ and the decay of this field produces the highly synchronized light flash of duration of less than 10^{-11} seconds.

4. The physical origin of the coherent regions is somewhat mysterious in standard physics but authors propose that QED is enough to explain the mystery. Authors identify the source of coherent light as resulting from the transitions between two different molecular energy states with energy difference $\Delta E \simeq 12$ eV. One could criticize this assumption as ad hoc. In any case, classical current must be defined as expectation value, which vanishes unless the two energy eigen states get mixed by interactions.
TGD inspired model for sonoluminescence

Consider now the TGD based modification of this model based on the same assumptions 1), 2), 3) about the origin of the coherent light as related to the liquid-gas phase transition but with different identification for the mechanism producing the coherent light. The model is based on the idea that bubble collapse might involve the sequential formation of several new space-time sheets with p-adic primes \(p \approx 2^k \), \(k = 163, 157, 151, 149 \) characterizing their typical sizes. The importance of the many-sheeted space-time concept was realized already in the previous rough model of the phenomenon just suggesting the identification of the basic scales of the problem in terms of the p-adic length scale hypothesis but involved no model for the generation of coherent light.

a) Light like vacuum currents generate coherent light

What is known is that the light flash emitted is coherent light. All frequencies are emitted simultaneously. The temporal widths of various frequencies do not depend on the nature of the gas. Thus the spectrum is certainly not genuine black body spectrum and the production mechanism must involve macroscopic quantum coherence. In TGD there indeed exists a unique mechanism leading to the generation of coherent light and is based on so called 'massless extremals' carrying light-like vacuum currents generating coherent light in a resonant like manner. Clearly, this mechanism predicts no dependence of the spectrum on the chemical nature of the gas in bubble. Of course, the gas can affect the spectrum by absorbing some frequencies and this indeed seems to occur. It is also known that the presence of noble gases is favorable for sonoluminescence: this is perhaps understandable from the fact that presence of noble gases (no absorption) reduces the effect of other gases by reducing their densities. In TGD inspired theory of bio-systems as macroscopic quantum systems massless extremals correspond to almost empty space-time sheets associated with microtubules and possibly also other linear bio-structures and create coherent photons (perhaps biophotons of Popp [57]).

b) Vapor-liquid phase transition in regions of microtubular size occurs

Following [25], it will be assumed shockwave formation leads to the formation of vapor layers with the mutual distance \(a \approx 3.2 \) Angstroms equal to the average distance between liquid molecules and that condensation to liquid occurs when the transversal distance between the molecules of the layer becomes smaller than some critical distance \(a < a_T < a_0 \), where \(a_0 \approx 3.2 \times 10^{-7} \) meters is the transversal distance of the molecules when shockwave is generated. In the model of [25] \(a_T \approx \sqrt{3}a \) holds true: in TGD based model p-adic argument gives \(a_T = 2a \). In TGD framework the formation of liquid phase is assumed to mean the formation of new cylindrical space-time sheets of size of order 500 Angstroms, when the transversal distance between \(H_2O \) molecules becomes critical (3 times the distance in liquid phase). At these space-time sheets water molecules are condensed into liquid phase. The length scale 500 Angstroms is suggested by [25] and in TGD framework the justification for this length scale is that it corresponds to the diameter of microtubules: these cylindrical structures could serve as templates for the formation of microtubules). Rather flat cylinders with radius equal to height are in question: of course, one can consider also cubic geometry.

c) p-Adic length scale hypothesis

p-Adic length scale hypothesis makes this picture more quantitative. Before the phase transition vapor phase is join along boundaries condensate of \(k = 151 \) space-time sheets glued to \(k = 157 \) sheets. Note that \(L(151) \approx 10^{-8} \) meters corresponds to the thickness of the cell membrane: now however the sheets are larger having size of order 500 Angstroms. Gas-to liquid phase transition is identified as a phase transition changing the value of the p-adic prime \(p \); most naturally \(k = 151 \rightarrow k = 149 \). This implies \(a_T = 2a_0 \) rather than \(\sqrt{3}a_0 \) as in the model of [25]. Therefore the critical density is \(\rho^* = \rho(\text{liquid})/4 \) instead of \(\rho(\text{liquid})/3 \) of [25]. Using the relationship

\[
a_T(t) = a_0 \frac{R(t)}{R_0}, \tag{4.5.5}
\]

where \(R_0 \approx 4.5\mu m \) is the radius of the bubble when contraction velocity becomes supersonic one obtains for the transversal distance \(a_T^* \) at criticality:

\[
a_T^* \approx 2a = a_0R^*/R_0
\]
giving $R^* \simeq 0.9 \mu m$ to be compared with $R^* \simeq 8 \mu m$ of 25.

One can estimate the thickness of the condensing shell from the requirement that the number of molecules in the shell with inner and outer radii R^* and R_0 at time t_0 is same as the number of molecules in the thin liquid shell at time when condensation to liquid has occurred. This gives for the thickness T of the liquid shell

$$T \simeq \frac{R_0^2 \omega^3}{R^2 \omega_0^3} (1 - \frac{R^3}{R_0^3})R_0 ,$$

(4.5.6)
giving $T \simeq 10^{-7}$ meters which is \textit{two(!)} times the size of the coherence domain as suggested by the transversal size of microtubules.

\textit{d) Topological details of the phase transition process}

Consider next the topological details of the process. The transversal size of $k = 151$ sheets is (most naturally) halved in the phase transition and the join along boundaries bonds connecting $k = 151$ sheets to each other are probably split. According to the basic rules of p-adic TGD, space-time sheets with different p-adic prime p can have only wormhole contacts as stable contacts. This means that, for a p-changing phase transition to take place, the bonds connecting $k = 151$ sheets belonging to different sides of the shock front must be split, probably immediately after the formation of the shock wave. The inward flow of the newly formed $k = 149$ sheets slows down whereas the flow of $k = 151$ sheets behind them continues: the molecules condensed on them cannot however follow the flow since they collide with the liquid phase. Therefore these sheets become thus almost vacuum space-time sheets and the $k = 149$ sheets containing liquid phase topologically condense on them. At this stage the vacuum currents are generated on these almost empty $k = 151$ sheets.

\textit{e) Generation of coherent light}

In the last stage of the process vacuum currents are generated on the almost empty $k = 151$ sheets and they generate the coherent light giving rise to the flash. The experience with microtubules as quantum antennae hypothesis suggests that massless extremals carrying classical light-like vacuum currents flowing in radial direction are in question. The vacuum current, possible only in TGD context, generates coherent photons and the flux of coherent photons from the system creates the coherent flash of photons. The frequency spectrum for the current associated with the massless extremals comes in multiples of the basic frequency π/L, L being the length of the cylinder, which is roughly equal to the thickness of H$_2$O layer condensing to liquid (this length is expected to have some distribution). The dependence of the vacuum current on transversal and longitudinal coordinate, which is not specified by the field equations for the vacuum extremals, in principle determines the energy spectrum. The model for the sonoluminescence should be able to predict the form of the vacuum current but this requires a model for the coupling between the parameters of the vacuum current and ordinary matter.

The model of 25 suggests that only the lowest frequency $\omega_0 = 2\pi/L$ is effectively present. The spectrum of 25 is of form

$$\frac{1}{V} \frac{dE}{d\omega} = \frac{3\omega_0^3}{16\pi^3} \frac{1}{|c_1|^2} |F(\omega)|^2 \frac{\omega^2}{(\omega - \omega_0)^2 + 1/4} ,$$

$$|c_1|^2 \simeq 1.8 ,$$

$$F(\omega) = exp(-1.4 \frac{\omega^2}{\omega_0^2}) .$$

(4.5.7)

It is of considerable interest to verify that a spectrum, which is product of a form factor and resonance factor, results also now. The presence of the form factor $F(\omega)$ reflects the dependence of the vacuum current on transversal coordinate, which for cylindrical geometry is radial coordinate. The dependence on the transversal coordinate is left completely open by the field equations and the unknown coupling of the vacuum current with matter should determine it. The resonance factor has a purely kinematical origin: the energy spectrum for photons has form $1/(\omega - \omega_0)^2$ resulting from the fact that matrix element for photon emission involves the overlap integral $\int exp[i(\omega - \omega_0)t]dt$ over a finite time-interval. One must take dissipation into account so that the real spectrum is proportional to
1/[(\omega - \omega_0)^2 + \Gamma^2/4]. The resonance width is of order \Gamma \approx 18 eV and in [25] it is determined by the requirement that total energy output equal to the latent heat. 28 eV per molecule.

The order of magnitude for the duration of the flash can be estimated from the radial contraction velocity \(dR/dt(t_0) \approx 1.5 \times 10^3 m/s = 10^{-5}c/2 \) of the bubble at the moment \(t_0 \) when the phase transition begins (according to [25]) and from the length \(l \leq 500 \) Angstroms, which the empty \(k = 151 \) sheets must travel before \(k = 149 \) sheets can condense on them. This gives the estimate \(t(\text{flash}) \geq 3 \times 10^{-11} \) seconds which is less than the experimental upper bound \(t(\text{flash}) < 5 \times 10^{-11} \) seconds.

To summarize: sonoluminescence could provide a direct verification for the concept of massless extremal and light-like vacuum currents. Gas-liquid phase transitions could quite generally involve the formation of massless extremals. Perhaps massless extremals of microtubular size are always present in liquid phase but carry very weak vacuum currents and bio-systems are perhaps able to amplify them. One could perhaps understand all phase transitions as formation of new space-time sheets involving p-changing phase transition.

4.5.2 Stirred and shaken

Japanese chemist Kazamuri Dozen and his colleagues have observed mysterious splitting of water into hydrogen and oxygen at room temperature using a simple catalyst (copper oxide in powder form) and by stirring the liquid [15, 15]. The quicker the container is stirred the more hydrogen and oxygen are produced. Usually the dissociation occurs at temperature of about 3000 °C and is driven by light: the photon density of thermal radiation has maximum at \(E \sim 4T \) giving the estimate \(E \sim 1.32 \) eV: which gives an estimate for the energy of O–H bond possibly lowered by the presence of a catalyst. Notice that the photons in question correspond to visible light. Domen believes that direct transformation of the kinetic energy of the liquid motion to chemical energy must take place; standard wisdom allows only the transformation kinetic energy → thermal energy → chemical energy. There is no idea about the underlying mechanism. According to [15, 15] already 1980 analogous direct transformation of acoustic energy to chemical energy was discovered and gave rise to the field of sonochemistry. An attractive possibility is that liquid motion somehow generates coherent light which in turn drives the reaction. Similar mechanism might be at work in sonochemistry. Since sonoluminescence involves the transformation of mechanical energy into coherent light, quantum antenna hypothesis is an obvious guide line in the attempt to identify the mechanism.

The simplest TGD based mechanism explaining the anomalous splitting of hydrogen is following.

1. Stirring creates linear cylindrical vortex like structures, which are accompanied by space-time sheets carrying light like vacuum currents. The splitting to oxygen and hydrogen is driven by the coherent light emitted by the vacuum currents associated with cylindrical structures of length \(L \). The energies for the photons of the coherent light come as multiples of \(E_0 = \pi/L \) (or of \(E_1 = 2\pi/L \) if periodic boundary conditions are assumed). For \(E \approx E_0 \approx 1.32 \) eV this gives the estimate \(L \sim 47 \cdot 10^{-6} \) meters. This length scale is not too far from the \(p \)-adic length scale \(L(163) \sim 64 \cdot 10^{-6} \) meters assuming that \(L(151) \) corresponds to cell membrane thickness \(L(151) \approx 10^{-7} \) meters.

2. The rotational motion creates classical \(Z^0 \) magnetic fields realized as \(Z^0 \) magnetic flux tubes and a natural expectation is that these flux tubes are accompanied by cylindrical space-time sheets carrying light like vacuum currents. Since quarks feed their \(Z^0 \) gauge fluxes to the space-time sheets having typically twice the cell size, the naive expectation for the length of the cylindrical structures in question would be of order \(L(169) \sim 5 \cdot 10^{-6} \) meters, which is however almost by one order of magnitude too large. This of course does not exclude the possibility that \(Z^0 \) magnetic flux tubes are in question. The generation of \(Z^0 \) magnetic flux tubes was suggested already many years ago to explain the observed loss of the super fluidity at much smaller critical rotational velocity than predicted by standard physics [37].

3. A possible function of the catalyst powder is to lower the O–H bonding energy, so that it is nearer to the energy of the photons of the coherent light.

What is interesting from the point of view of consciousness theorizing is that in gel-phase vigorous streaming of intracellular liquid occurs. Furthermore, the coherent photons causing dissociation would correspond to visible light. Therefore one can wonder whether the generation of light-like vacuum
current emitting coherent biophotons \[57\] could be one function of the streaming. A possible test for this hypothesis is to look for an additional sink of metabolic energy inside cell.

4.5.3 Evidence for quantum antenna hypothesis in living systems

It is known that some monocellulars possess elementary vision based on the microtubules \[13\]. The emergence of the multicellulars during the Cambrian explosion was preceded by the appearance of the microtubules. If the emergence of the microtubules meant the emergence of the visual consciousness in the length scale of the cell, then the formation of the multicellulars as cell societies can be understood as a natural consequence. The length distribution of the microtubules in the rods and cones of the eye is concentrated in the region of the visible wavelengths. The coherent light in question could be identifiable as bio-photons of Popp \[57\].

A further piece of evidence comes from the work of Callahan about the sense of smell of insects \[16\]. Many insects, such as moths and ants, are known to be attracted by light, say candles and electric lamps and Callahan took as his challenge to understand what is involved. Callahan discovered that insect’s olfaction is not based on chemistry but to a maser like emission of infrared light generated by various molecules such as pheromones, scent molecules and many other biomolecules. Thus insects would see rather than chemically perceive the sources of the infrared light. The sensillae of the insects serve as receiving antennas and amplify the incoming infrared radiation. Callahan also observed that the oscillation of insect antennae induce maser like emission from scent/etc. molecules by creating an oscillating emf. Thus sensory experiencing seems to involve active participation from the part of insect. The results of Callahan suggest that coherent light could be important also in our neuronal sensory experiencing.

Quite remarkably, pheromones are known to mediate sexual and social signals also in case of many mammals. For instance, certain chemical messages from female mouse can make male mouse to mate immediately while certain chemical messages from other males make him aggressive. Many mammals, for instance rodents, are known to possess vomeronasal organs, small cigar like sacks containing neurons and having length of order few millimeters \[\Pi\], giving rise to an accessory olfactory system, which is known to have much more primitive structure and to work in different way than the ordinary olfactory system. It is also known that this systems bypasses cerebral cortex in rodents. There is evidence that even humans have the ability to sniff certain chemicals mediating social and sexual signals without being aware of it and there is already now an entire perfume industry based on this evidence. The chemicals giving rise to sexual attraction are probably pheromones. The fact that pheromones mediate sexual signals in case of both insects and mammals, is hardly an accident and suggests that the sensory mechanism must be the same and be based on the infrared emissions by pheromones. If the response is at neuronal level and if the cortex is not involved, one could understand why these messages are not experienced consciously. One could test this hypothesis by finding whether coherent infrared radiation at frequencies emitted by pheromones can affect the behavior of higher mammals including humans.

There is a further peculiar co-incidence: the cascade of transduction events occurring in the absorption of photon in retina is repeated in a remarkably similar way in olfactory receptor cells, which respond to odors whereas the receptor cells that respond to sound use a very different system \[\Pi\]. Could this mean that also the experience of odor primarily involves the detection of (also) infrared light so that humans would not basically differ from insects or that olfactory system has evolved from the receptor neurons originally sensing infrared light? This would conform with the idea that the Kähler field generated in ear corresponds to classical \(Z^0\) field, which does not generate coherent photons but couples with neutrinos. One must however notice that the resemblances between visual and linguistic imagery suggest that some part of ear generates cognitive representation based on coherent light and experienced by the secondary sensory organs in the thalamus.

In CASYS’2000 conference Peter Marcer reviewed the work done by him in collaboration with Russian group \[25\] providing experimental evidence for the hypothesis that DNA acts as receiving and sending quantum antenna. What was observed that irradiation of DNA with visible laser light induced emission of coherent light with both visible and radio frequencies. The emitted radiation was also modulated in time scale of about \(0.01\) seconds. The modulation could be due to propagation of soliton sequences propagating along Josephson junction formed by the strands of DNA or due to nonpropagating spatially constant Josephson current: both cases are mathematically equivalent with gravitational pendulum.
4.5.4 Biefeld-Brown effect

Biefeld-Brown effect was invented as early as 1926 and is one of the oldest poorly understood electromagnetic anomalies [3, 4, 15]. The basic experiments are following.

1. Capacitor is balanced on beam balance and then charged. If the positive pole of the capacitor points upwards, the condenser moves up. If it points down the condenser moves down.

2. Capacitor is placed in free suspension such that the normal orthogonal to the plane of capacitor plates is horizontal and then charged. Capacitor is found to exhibit a horizontal thrust in the direction of the positive plate.

Thus it seems that when capacitor is provided with large charge, a force acting on capacitor in direction normal to the plane of the capacitor is observed. The motion takes place to the direction of the positively charged plate. The larger the surface area A of the capacitor, the shorter the distance d between the plates, the larger the mass M between the capacitor plates, the higher the relative dielectric constant ϵ of the dielectric, the larger the voltage V used, the larger is the size the effect. This behavior can be understood if the size of the effect is proportional to the total electric energy $E_e = \epsilon \frac{AV^2}{d}$ between capacitor plates. It is difficult to understand this effect in standard physics framework.

Consider first experiment 1) in which the normal of the capacitor plane is in vertical direction. This experiment could be understood in the general conceptual framework described in the chapter [77]. Capacitor generates some net gravitational flux. This flux is in general fed to several space-time sheets, although most of it goes to the "standard" sheet at which the gravitational field of Earth resides. One could understand the result of the experiment a) in terms of a redistribution of these gravitational fluxes. When the positive plate points upwards/downwards the flux $\phi_{gr}(Earth)$ fed to the "standard" space-time sheet is reduced/increased. Therefore the effective weight of the capacitor decreases/increases. The dependence of $\phi_{gr}(Earth)$ on the relative orientation of the gravitational field and electric field is not surprising from TGD point of view since classical gravitational and electric fields are very closely related in TGD framework. If classical Z^0 electric force contributes to the effective gravitational force significantly, then similar mechanism in case of Z^0 electric flux could contribute significantly to the change of the effective weight of the capacitor.

It seems that this mechanism cannot explain the result of the second experiment in which capacitor moves to horizontal direction. Rather it seems that two effects must be involved. there must be some mechanism giving for the capacitor momentum in the direction of the electric field. The TGD based general mechanism of energy production relying on the generation of space-time sheets with negative time orientation and carrying negative energies could explain this aspect of Biefeld-Brown effect.

1. Suppose that the charging of capacitor involves generation of space-time sheet with negative time orientation. The energy density associated with classical fields at this space-time sheet is negative. Energy conservation requires that capacitor receives compensating energy which in case of Biefeld-Brown effect is partially realized as kinetic energy associated with center of mass motion.

2. The classical gauge fields associated with the negative energy space-time sheet can carry also momentum and compensating momentum must be developed at the space-time sheet of the capacitor. Therefore condenser is forced to move. The momentum density of em field is proportional to the cross product $E \times B$ of the electric and magnetic fields. This momentum density gives rise to a net field momentum in the direction orthogonal to the plane of condenser plates if E and B are in directions parallel to the plates. This resembles somewhat the situation encountered in the case of Hall effect.

A working hypothesis worth of studying is that the negative energy space-time sheet associated with the capacitor corresponds to a massless extremal with E and B fields propagating from positive to negative plate (field momentum is in this direction).

1. Momentum conservation implies that the space-time sheet of the capacitor generates opposite momentum so that capacitor must move in the direction normal to the plane of the plates. What remains to be understood why the direction of motion is towards the positively charged plate.
4.5. Evidence for quantum antenna hypothesis

The light-likeness of 4-momentum gain together with the presence of Fourier components with single direction of wave vector means that momentum gain per energy gain is maximal. Therefore generation of negative energy "massless extremals" is optimal mechanism of propulsion. Massless extremals can have also net angular momentum since polarized Fourier components carry spin. Therefore capacitor can gain internal angular momentum in some form.

2. Assuming that the entire momentum of the classical field on negative energy space-time sheet is compensated by the momentum gain of capacitor, one obtains for the total energy gain

\[E_t = M \beta, \]

where \(M \) is total mass of the capacitor and \(\beta \) is its velocity (the units \(\hbar = 1, \ c = 1 \) are used). This means quite large energy gain. For instance, for \(M = .01 \) kg and \(\beta = 10^{-12} \), one has \(E_t \sim 10^2 \) Joule. The energy \(\Delta E \), which is not realized as kinetic energy, is given by

\[\Delta E = M\beta(1 - \frac{\beta}{2}). \]

Obviously, only a small fraction of the energy is realized as kinetic energy of the capacitor.

The ratio of the energy to thermal energy is given by

\[\frac{E_t}{E_{th}} \sim A \frac{m_p \beta}{T}, \]

where \(A \) denotes atomic number. This ratio is much smaller than one for \(\beta \ll T/A m_p \). In room temperature this gives \(\beta \ll 10^{-11}/A \). An estimate for the magnitude of the electric field is obtained from \(E_t = P \). Expressing everything in terms of integrals of energy and momentum densities, one obtains \(E B \sim \rho \beta \). Since \(E = B \) holds true for massless extremals, one has \(B \sim \sqrt{\rho \beta} \). In condensed matter densities one has \(\rho \sim A m_p/a^3 \), where \(a \) is Bohr radius. This gives \(B \sim \sqrt{10^2 A^3/a^2} \). B is roughly about one \(\sqrt{A} \) Tesla for \(\beta \sim 10^{-12} \). Very strong electric and magnetic fields are clearly involved.

The proposed mechanism might also make possible to understand how living systems are able to generate coherent motions.

1. The ability of bio-systems (70 per cent of water!) to generate coherent motions is complete mystery from the point of view of standard physics describing bio-system as a soup of randomly moving atoms and molecules. The generation of massless extremals provides an optimal mechanism for coherent motion. Negative energies are not absolutely essential for generating coherent motions. However, if massless extremals have positive energies, the efficiency of energy usage is however very low, approximately \(\beta/2 \), where \(\beta \) is the velocity generated: something like \(10^{-8} \) if velocity is of order one meter per second. It could quite well be that massless extremal is created only for the period of time that motion lasts: this in accordance with the idea that classical counterparts of virtual particles are in question. Since the surplus energy generated on the material space-time sheet is partially dissipated during this time interval, this mechanism requires that metabolism feeds energy to the system to compensate this loss. Thus there is no contradiction with the general wisdom about the necessity of metabolic energy feed.

2. Brown observed that capacitors had definite effects on plants and animals. This is not surprising if TGD picture about bio-systems is correct. Coherent light is generated and this coherent light can affect the communications of neuronal society.

3. If bio-systems can generate negative energy massless extremals, a very efficient generation of metabolic energy from vacuum becomes possible. There is a lot of anecdotal evidence about the ability of yogis and mystics to survive without eating [42] . The explanation often proposed by yogis themselves [42] is that the energy of light replaces the usual sources of the metabolic energy. Standard science sceptics of course "know" and ridicule all this but, against the background of new physics predicted by TGD, I cannot avoid asking myself whether there might be some seed of truth behind these claims.
4.6 Quantum hologramy and MEs

The idea about hologrammic brain, advocated by Karl Pribram [38] and other pioneers, has several very attractive features, one of them being the robustness of the information storage due to the nonlocality of the representation. The notion of the classical hologram does not however seem to be enough as such. It is difficult to imagine how static holograms could be realized in brain. How to store simultaneously memories over entire life cycle into the same hologram at given time value is also a problem. This problem is common to all theories identifying subjective, experienced time with the geometric time of physicist: the unavoidable prediction is that brain state at given value of time must code also information about brain states at earlier times.

Peter Marcer and Walter Schempp have been advocating the notion of quantum holography as crucial for the understanding of consciousness and biocontrol [44]. Motivated by certain experimental findings Peter Gariaev and collaborators have proposed the notion wave DNA based on the idea that coherent electromagnetic fields and DNA holograms are crucial for the biocontrol [25].

Inspired by the talks of Peter Marcer in CASYS2000 and CASYS2001 conferences [26, 25], I decided to take a fresh look on how quantum holography might be realized in TGD framework, where superconducting magnetic flux tubes and massless extremals (MEs) provide an exact Bohr orbit representation of em fields and play a key role in quantum control and coordination of biomatter at atomic space-time sheets. It soon became clear that MEs are indeed tailor-made for quantum holography and teleportation in the sense as it is defined in quantum information theory [5]. Quantum holography conceptualization inspires much more detailed views about how bio-systems process information and how this information becomes conscious.

Also a profound connection with the notion of holography as it is defined in quantum gravity and string models emerges [4], and allows to deepen the vision about what the Universe predicted by quantum TGD looks like. One can also refine the formulation of quantum TGD to take properly into account the classical non-determinism of Kähler action. In particular, the intuition that the supersymplectic and superconformal symmetries of light cone boundary $\delta M^4_4 \times CP_2$, which are cosmological symmetries, generalize to approximate macroscopic symmetries acting on the light-like boundaries of the space-time sheets inside future light cone and are broken by quantum gravity, can be justified more rigorously. A rather concrete demonstration for the power of quantum holography thinking was the realization that the general ansatz for MEs should generalize followed by the observation that it indeed does so!

4.6.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture [7] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational context [4], quantum holography principle states that quantum gravitational interactions at high energy limit in AdS can be described using a topological field theory reducing to a conformal (and nongravitational) field theory defined at the time-like boundary of the AdS. Thus the time-like boundary plays the role of a dynamical hologram containing all information about correlation functions of $d+1$ dimensional theory. This reduction also conforms with the fact that blackhole entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD but there are overall important delicacies involved.

1. If the action principle assigning space-time surface to a given 3-surface at light cone boundary were completely deterministic, four-dimensional general coordinate invariance would reduce the construction of the configuration geometry for the space of 3-surfaces in $M^4_4 \times CP_2$ to the construction of the geometry at the boundary of the configuration space consisting of 3-surfaces in $\delta M^4_4 \times CP_2$ (moment of big bang). Also the quantum theory would reduce to the boundary of the future light cone.

2. The classical non-determinism of Kähler action however implies that quantum holography in this strong form fails. This is indeed as it should be. The classical non-determinism (determinism in generalized sense is achieved by generalizing the notion of 3-surface by allowing unions of space-like 3-surfaces with time-like separations) is absolutely crucial for the ordinary elementary
particle physics. Indeed, the quaternion-conformal symmetries responsible for the ordinary elementary particle quantum numbers act in degrees of freedom which do not contribute at all to the configuration space metric line element at all. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical non-determinism is also absolutely essential for quantum consciousness and makes possible conscious experiences with contents localized into finite time interval despite the fact that quantum jumps occur between entire quantum histories.

3. Forgetting for a moment the effects of the classical non-determinism, cosmological light cone boundary $\delta M_4 \times CP_2$ takes the role of a quantum hologram. An important difference to AdS case is that the time-like direction of AdS boundary is replaced with light-like direction implying the metric two-dimensionality of the light cone boundary. This makes possible infinite-dimensional group of conformal symmetries in case of 4-dimensional Minkowski space. Thus the theory is much more structured than in AdS case and there is a direct connection with 2-dimensional critical systems expected on basis of quantum criticality of the TGD Universe.

4. The educated guess is that the cosmological super-symplectic and superconformal symmetries associated with the light cone boundary generalize to approximate symmetries for the sub-light cones of the cosmological light cone broken presumably only by quantum gravitational interactions. As a matter fact, not only sub-light cone boundaries but all light-like 3-dimensional boundaries inside future light cone, in particular the boundaries of massless extremals (MEs), can take the role of the cosmological light cone and define approximate super-symplectic symmetries. Hence it seems that the construction of the configuration space geometry taking into account the delicacies caused by the classical non-determinism could be achieved by generalizing the construction at $\delta M_4 \times CP_2$ to apply also at the light-like boundaries created after big bang.

5. The generalized super-symplectic symmetries commute with Poincare symmetries apart from the effects due to quantum gravitation. Therefore the states inside super-symplectic representations decompose into gigantic multiplets of almost degenerate states ideal for representing biologically relevant information. MEs are especially interesting carriers of super-symplectic representations. In the following this picture is discussed in more detail.

4.6.2 Generalization of the solution ansatz defining massless extremals (MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles the solution ansatz for the CP_2 type extremals and has direct interpretation in terms of geometric optics. Equally remarkable is that the latest generalization based on the introduction of the local light cone coordinates was inspired by quantum holography principle.

The solution ansatz for MEs has developed gradually to an increasingly general form and the following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles the solution ansatz for the CP_2 type extremals and has direct interpretation in terms of geometric optics. Equally remarkable is that the latest generalization based on the introduction of the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition of M_4^4 tangent space localizing the decomposition of Minkowski space to an orthogonal direct sum $M^2 \oplus E^2$ defined by light-like wave vector and polarization vector orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by m^i the linear Minkowski coordinates of M^4. Let (S_+, S_-, E_1, E_2) denote local coordinates of M_4^4 defining a local decomposition of the tangent space M_4^4 of M_4^4 into a direct orthogonal sum $M_4^4 = M^2 \oplus E^2$ of spaces M^2 and E^2. This decomposition has interpretation in terms of the longitudinal and transversal degrees of freedom defined by local light-like four-velocities $v_\pm = \nabla S_\pm$ and polarization vectors $\epsilon_i = \nabla E_i$ assignable to light ray.
2. In accordance with this physical picture, S_+ and S_- define light-like curves and thus satisfy the equation:

$$(\nabla S_\pm)^2 = 0 \ .$$

The gradients of S_\pm are obviously analogous to local light like velocities $v = (1, \pi)$ and $\hat{v} = (1, -\pi)$. These equations are also obtained in geometric optics from Hamilton Jacobi equation by replacing photon’s four-velocity with the gradient ∇S: this is consistent with the interpretation of MEs as Bohr orbits of EM field.

3. With these assumptions the coordinates (E_i, S_\pm) define local light cone coordinates with the metric element having the form

$$ds^2 = g_{S_\pm} S_+ dS_+ dS_- + g_{11} dE_1^2 + g_{22} dE_2^2 \ .$$

Conformal transformations of M^2_\pm leave the general form of this decomposition invariant. The task is to find all possible local light cone coordinates defining one-parameter families 2-surfaces defined by the condition $S_i = constant, i = + or = -$, dual to each other and expanding with light velocity.

A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form $S_\pm = k \cdot m$ giving as a special case $S_\pm = m^0 \pm m^3$. For more general solutions of from

$$S_\pm = m^0 \pm f(m^1, m^2, m^3) \ , \ (\nabla_3 f)^2 = 1 \ ,$$

where f is an otherwise arbitrary function, this relationship reads as

$$S_+ + S_- = 2m^0 \ .$$

This condition defines a natural rest frame. One can integrate f from its initial data at some two-dimensional $f = constant$ surface and solution describes curvilinear light rays emanating from this surface and orthogonal to it. The flow velocity field ∇f is irrotational so that closed flow lines are not possible in a connected region of space and the condition $\nabla_1^2 = 1$ excludes also closed flow line configuration with singularity at origin such as $v = 1/\rho$ rotational flow around axis.

One can identify E^2 as a local tangent space spanned by polarization vectors and orthogonal to the flow lines of the velocity field $\nabla = \nabla f(m^1, m^2, m^3)$. Since the metric tensor of any 3-dimensional space allows always diagonalization in suitable coordinates, one can always find coordinates (E_1, E_2) such that (f, E_1, E_2) form orthogonal coordinates for $m^0 = constant$ hyperplane. Obviously one can select the coordinates E_1 and E_2 in infinitely many manners.

Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates $\{S_\pm = m^0 \pm f(m^1, m^2, m^3), E_i\}$ define the only possible compositions $M^2 \oplus E^2$ with the required properties, remains an open question. The best that one might hope is that any function S_+ defining a family of light-like curves defines a local decomposition $M^4 = M^2 \oplus E^2$ with required properties.

1. Suppose that S_+ and S_- define light-like vector fields which are not orthogonal (proportional to each other). Suppose that the polarization vector fields $\epsilon_i = \nabla E_i$ tangential to local E^2 satisfy the conditions $\epsilon_i \cdot \nabla S_+ = 0$. One can formally integrate the functions E_i from these condition since the initial values of E_i are given at $m^0 = constant$ slice.

2. The solution to the condition $\nabla S_+ \cdot \epsilon_i = 0$ is determined only modulo the replacement

$$\epsilon_i \to \tilde{\epsilon}_i = \epsilon_i + k \nabla S_+ \ ,$$

where k is any function. With the choice
Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition

\[k = \frac{\nabla E_i \cdot \nabla S_-}{\nabla S_+ \cdot \nabla S_-} \]

one can satisfy also the condition \(\hat{\epsilon}_i \cdot \nabla S_- = 0 \).

3. The requirement that also \(\hat{\epsilon}_i \) is gradient is satisfied if the integrability condition

\[k = k(S_+) \]

is satisfied: in this case \(\hat{\epsilon}_i \) is obtained by a gauge transformation from \(\epsilon_i \). The integrability condition can be regarded as an additional, and obviously very strong, condition for \(S_- \) once \(S_+ \) and \(E_i \) are known.

4. The problem boils down to that of finding local momentum and polarization directions defined by the functions \(S_+, S_- \) and \(E_1 \) and \(E_2 \) satisfying the orthogonality and integrability conditions

\[\langle \nabla S_+ \rangle^2 = \langle \nabla S_- \rangle^2 = 0 \; , \; \nabla S_+ \cdot \nabla S_- \neq 0 \; , \]

\[\nabla S_+ \cdot \nabla E_i = 0 \; , \quad \frac{\nabla E_i \cdot \nabla S_+}{\nabla S_+ \cdot \nabla S_-} = k_i(S_+) \; . \]

The number of integrability conditions is 3+3 (all derivatives of \(k_i \) except the one with respect to \(S_+ \) vanish): thus it seems that there are not much hopes of finding a solution unless some discrete symmetry relating \(S_+ \) and \(S_- \) eliminates the integrability conditions altogether.

A generalization of the spatial reflection \(f \rightarrow -f \) working for the separable Hamilton Jacobi function \(S_{\pm} = m^0 \pm f \) ansatz could relate \(S_+ \) and \(S_- \) to each other and trivialize the integrability conditions. The symmetry transformation of \(M_{\pm}^2 \) must perform the permutation \(S_+ \leftrightarrow S_- \), preserve the light-likeness property, map \(E^2 \) to \(E^2 \), and multiply the inner products between \(M^2 \) and \(E^2 \) vectors by a mere conformal factor. This encourages the conjecture that all solutions are obtained by conformal transformations from the solutions \(S_{\pm} = m^0 \pm f \).

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition of \(M_2^4 \) tangent space has been found.

1. Let \(E(S_+ , E_1 , E_2) \) be an arbitrary function of its arguments: the gradient \(\nabla E \) defines at each point of \(E^2 \) an \(S_+ \)-dependent (and thus time dependent) polarization direction orthogonal to the direction of local wave vector defined by \(\nabla S_+ \). Polarization vector depends on \(E^2 \) position only.

2. The most general MEs correspond to the solution family of the field equations having the general form

\[s^k = f^k(S_+, E) \; , \]

where \(s^k \) denotes \(CP_2 \) coordinates and \(f^k \) is an arbitrary function of \(S_+ \) and \(E \). The solution represents a wave propagating with light velocity and having definite \(S_+ \)-dependent polarization in the direction of \(\nabla E \). By replacing \(S_+ \) with \(S_- \) one obtains a dual solution. Field equations are satisfied because energy momentum tensor and Kähler current are light-like so that all tensor contractions involved with the field equations vanish: the orthogonality of \(M^2 \) and \(E^2 \) is essential for the light-likeness of energy momentum tensor and Kähler current.

3. The simplest solutions of the form \(S_{\pm} = m^0 \pm m^3 \), \((E_1, E_2) = (m^1, m^2) \) and correspond to a cylindrical MEs representing waves propagating in the direction of the cylinder axis with light velocity and having polarization which depends on point \((E^1, E^2) \) and \(S_+ \) (and thus time). For these solutions four-momentum is light-like: for more general solutions this cannot be the case. Polarization is in general case time dependent so that both linearly and circularly polarized
waves are possible. If \(m^3 \) varies in a finite range of length \(L \), then 'free' solution represents geometrically a cylinder of length \(L \) moving with a light velocity. Of course, ends could be also anchored to the emitting or absorbing space-time surfaces.

4. For the general solution the cylinder is replaced by a three-dimensional family of light like curves and in this case the rectilinear motion of the ends of the cylinder is replaced with a curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing space-time surfaces. The non-rotational character of the velocity flow suggests that the freely moving particle like 3-surface defined by ME cannot remain in an infinite spatial volume. The most general ansatz for MEs should be useful in the intermediate and nearby regions of a radiating object whereas in the far away region radiation solution is excepted to decompose to cylindrical ray like MEs for which the function \(f(m^1, m^2, m^3) \) is a linear linear function of \(m^i \).

4.6.3 Quantum holography in non-cosmological length scales

Quantum holography principle naturally generalizes to an approximate principle expected to hold true also in non-cosmological length and time scales.

1. The most general ansatz for MEs (inspired by the quantum holographic thinking) relies on the introduction of the notion of local light cone coordinates \(S_+ , S_-, E_1, E_2 \). The gradients \(\nabla S_+ \) and \(\nabla S_- \) define two light-like directions just like Hamilton Jacobi functions define the direction of propagation of wave in geometric optics. The two polarization vector fields \(\nabla E_1 \) and \(\nabla E_2 \) are orthogonal to the direction of propagation defined by either \(S_+ \) or \(S_- \). Since also \(E_1 \) and \(E_2 \) can be chosen to be orthogonal, the metric of \(M_4^1 \) can be written locally as \(ds^2 = g_{+-}dS_+dS_- + g_{12}dE_1^2 + g_{22}dE_2^2 \). In the earlier ansatz \(S_+ \) and \(S_- \) where restricted to the variables \(k \cdot m \) and \(k \cdot m \), where \(k \) and \(\tilde{k} \) correspond to light-like momentum and its mirror image and \(m \) denotes linear \(M^4 \) coordinates: these MEs describe cylindrical structures with constant direction of wave propagation expected to be most important in regions faraway from the source of radiation.

2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light-like direction (\(S_+ \) or \(S_- \) is constant). This means that the boundary of ME has metric dimension \(d = 2 \) and is characterized by an infinite-dimensional super-symplectic and superconformal symmetries just like the boundary of the imbedding space \(M_4^1 \times CP_2 \): The boundaries are like moments for mini big bangs (in TGD based fractal cosmology big bang is actually replaced with what might be called a silent whisper amplified to not necessarily so big bang). Quantum holography would mean that effectively 2-dimensional conformal field theory at the boundary of \(M_4^1 \) region determined by ME determines what happens in the interior at QFT limit when space-time surface is not regarded as a dynamical object.

3. These observations inspire the conjecture that boundary conditions for \(M^4 \) like space-time sheets fixed by the condition that the preferred extremals are critical in the sense that they allow an infinite number of deformations with a vanishing second variation of Kähler action quite generally require that space-time boundaries correspond to light-like 3-surfaces with metric dimension equal to \(d = 2 \). Quantum holography principle would state that the dynamics related to the metric of the configuration space, that is genuine quantum gravitation, would reduce to the boundaries of space-time sheets. The dynamics in zero modes and quaternion conformal degrees of freedom crucial for elementary particle physics would not however allow this kind of reduction. This would be consistent with the fractality which is expected to be a basic characteristic of the quantum critical Universe predicted by TGD. The approximate super-symplectic and conformal symmetries would be associated with the light-like boundaries of the space-time sheets. Super-symplectic invariance would be broken only by quantum gravitational effects at the level of the configuration space by the fact that the boundaries of space-time surfaces are actually dynamical rather than fixed. The cosmological light cone boundary would be however non-dynamical and this would guarantee the exactness of the cosmological super-symplectic invariance.
4.6. Quantum holography and MEs

4.6.4 Super-symplectic representations, quantum holography, and consciousness

Super-symplectic representations are genuine quantum gravitational states since they correspond to functionals in the space of 3-surfaces (the world of worlds) and thus correspond to higher abstraction level than ordinary elementary particles. This has motivated the assignment of the so-called non-geometric qualia (colors, tactile senses,...) to the quantum phase transitions associated with the super-symplectic states \[30\].

MEs are natural carriers of super-symplectic representations obtained by multiplying ordinary physical states by configuration space Hamiltonians (functions of \(CP^2\) coordinates and coordinates \(E_1, E_2\) and \(S_+\) or \(S_-\) which can obviously be arranged into irreducible representations of the color group \(SU(3)\)) and define an excellent candidate for a hierarchy of higher level life forms. The intuitive belief that quantum gravitation is crucial for higher level consciousness can be indeed justified in this framework: the ‘worlds about worlds’ aspect of higher level consciousness is what requires genuine quantum gravitational states.

The boundary of ME having one light-like direction gives rise to conformal quantum hologram representing quantum correlation functions for quantum field theory defined in the interior of ME. This 3-dimensional dynamical quantum hologram should code for conscious information about external world. This information could be determined by coherent light and gravitons scattered from the outer boundaries of other space-time sheets and could provide a quantum representation for the geometry of the boundaries of the other space-time sheets.

The standard manner to see the evolution of organism is as an initial value problem with data given at time=constant space-like section of Minkowski space. This view is definitely wrong in TGD framework, where the classical non-determinism of Kähler action is absolutely essential for the understanding of bio-systems and consciousness. Rather, one should see the problem as a boundary value problem with data given at light-like surfaces bounding MEs analogous to light cone boundary identifiable as the moment of big bang. This view conforms nicely with the active intentional aspects of the biological evolution: system can decide what it will be and life is more like a narrative with definite goals than random Brownian zigzag curve. The life cycle of the organism is specified by posing some requirements which it must satisfy in the form of boundary conditions and organism does it best to satisfy them.

4.6.5 Quantum holography and quantum information theory

Sokolov and collaborators \[5\] have proposed a model of quantum holographic teleportation in which the classical photocurrents from the sender to receiver take the role of a dynamical hologram. The connection with MEs is obvious.

1. MEs are carriers of classical light-like vacuum currents (one of the basic differences between TGD and Maxwell theory). This suggests that MEs could be interpreted also as classical holograms, which are dynamical as in quantum information theory. Light-like current would be like a dynamical (four-dimensional) diffraction grating. Light-like vacuum currents and vacuum Einstein tensor generate also coherent states of photons and gravitons and MEs serve as templates for the topological condensation of photons and gravitons to the Bose-Einstein condensate of photons collinear with ME. The Bose-Einstein condensation of collinear photons (or their generalizations to ‘configuration space photons’) should affect the vacuum current by adding to the reference current what might be called evoked response. This condensation process could generate conscious experience and higher level qualia. Thus it would seem that MEs have a triple role as receiving and sending quantum antennae as well as classical holograms.

2. The proposal of \[5\] generalizes to the case of MEs provided one can device a method of coding quantum states of photon field to the vacuum currents. The high efficiency photodetector matrix is in which each pixel gives rise to a photocurrent \[5\], is replaced with ME or set of parallel MEs. The neural window hypothesis \[60\] states that neuronal axons are accompanied by parallel MEs carrying information between sensory organs and brain and various parts of brain. This is only a less standard manner to say that ME represents classical dynamical hologram. The possibility of local light cone coordinates allows also MEs which define curved deformations of the simplest cylindrical MEs.
The concrete realization of holographic teleportation proposed in [5] brings strongly in mind the architecture of the visual pathways. Thus one can wonder whether brain is performing internal teleportation of photonic quantum states with spike patterns being directly coded to the pattern of the vacuum currents flowing along MEs. If spike patterns code the dynamical hologram, a surprisingly close relationship with Pribram’s views about hologrammic brain results. Nerve pulse patterns could be seen as specifying the necessary classical aspects of the quantum teleportation (in TGD classical physics is essential part of quantum physics, rather than some effective theory).

3. Vacuum current at a 3-dimensional time-like section of ME as a function function of time defines a dynamical 3-dimensional hologram. This is consistent with the fact that our visual experience is two-dimensional: the information is always about outer boundaries of the objects of the perceptive field. The values of the vacuum current at a given point are non-deterministic which means that vacuum current is ideal for coding information. Classical data also propagate without dispersion with light velocity obeying the laws of geometric optics and MEs imply channelling so that MEs are tailor-made for classical information transfer.

4. Space-time sheets can have both positive and negative time orientations and the sign of energy depends on time orientation in TGD framework. This means that classical communication can occur both in the direction of the geometric future and past: this is essential for the classical model of the long term memories as a question communicated to the geometric past followed by answer. The dynamical nature of the holograms means that there is no need to combine 2- or 3-dimensional holograms associated with several moments of geometric time to single hologram. To remember is to perceive an object located in the geometric past. Of course, fractality might make possible temporally scaled down versions of the geometric past but the principle would remain the same.

5. Quantum hologram view suggests that the super-symplectic representations at the light-like boundaries of MEs characterized by gigantic almost-degeneracies are the real carriers of biological information. According to the general theory of qualia [30], this information would become conscious since elementary qualia would correspond to quantum jumps for which increments of the quantum numbers correspond to the quantum numbers labelling super-symplectic generators in the complement of Cartan algebra. In this view superconducting magnetic flux tubes could perhaps be seen as intermediate level in the control circuitry controlled by MEs and controlling atomic level.

6. This picture leaves open whether there is a level controlling the thicknesses of the magnetic flux tubes and thus also magnetic transition frequency scales, and what this level might be. The entainment of the endogenous frequencies to exogenous frequencies explains water memory and the effects of homeopathic remedies [54], [13], and could make possible also endogenous NMR spectroscopy and chemical senses. The key to the puzzle might be a purely mathematical problem: how the boundary conditions at the boundaries of the magnetic flux tubes can be satisfied? It might be that the induced metric must become degenerate at the boundaries ($\sqrt{g} = 0$) implying a degeneracy of the induced metric at the boundary of the magnetic space-time sheet. This need not however mean that the M^4 projection of the boundary is a light-like surface: the projection could well be completely static. This supports the view that the boundaries do not carry super-symplectic representations, which are associated with the imbedding space projection of the boundary rather than the boundary itself. One can imagine that ME with the same transversal section as magnetic flux tube is glued to the magnetic flux tube along this section: this kind of gluing results in a singular 4-surface analogous to the vertex region of Feynman diagram and some kind of smoothing-out procedure is needed. The smoothed-out vertex region would make possible for ME to control magnetic flux tube thickness by varying its own transversal thickness.

4.6.6 MEs and qualia

The properties of super-symplectic representations suggests strongly that our non-geometric qualia (colors, odors...) are associated with the super-symplectic phase transitions assignable with the light-like boundaries of MEs. If so, qualia would be parameterized by the quantum number increments in
the transition. The simplest qualia are in one-one correspondence with superalgebra generators which
correspond to Hamiltonians labelled by spin and color quantum numbers. The notion of 'configuration
space photon' defined as a ME carrying photonic Fock state and characterized by a Hamiltonian
labelled by color and spin quantum numbers suggests itself. Sensory input could give rise to con-
figuration space photons BE condensing on larger MEs. Thus photons could be genuinely colored
('qualed')!

Also magnetic quantum phase transitions give rise to qualia but it is quite possible that these
qualia are not our qualia but primitive chemical qualia in much shorter length scales, say cell length
scale. Magnetic qualia can however have higher level counterparts. For instance, MEs could make
possible endogenous NMR and generalizations of it, and the coherent light emitted in the magnetic
quantum phase transitions could BE condense on MEs and give rise to our chemical qualia.

Zero modes associated with the light-like boundaries of MEs correspond to purely geometric in-
formation about space-time surfaces and the increments of zero modes are expected to code for the
purely geometric qualia (position, velocity, etc.).

Long term memories do not differ radically from ordinary qualia, the only difference being that
the object of the perceptive field is in the geometric past. The light-like boundaries of ME defining
the geometric correlates of selves realize this vision concretely.

4.6.7 Connection with the notion of wave-DNA

Peter Gariaev and his group have observed several interesting effects related to the interaction of
DNA and coherent light [25]. There is evidence that the irradiation of DNA with polarized coherent
light at visible wavelengths generates a radio wave response with the same polarization. Also the
modulation of photon polarization by the molecules of DNA preparation is claimed to occur. There
are also indications that the resulting radio waves have strange biological effects. For instance, a
dramatic increase in the growth rate of potatoes irradiated by the radio waves is claimed in [25].

The notion of wave-DNA

These observations have led Gariaev group to propose that DNA is accompanied by a series of dy-
namical laser mirrors somehow storing a sequence dynamical holograms. For instance, there could be
one hologram for each nucleotide pair. These effects could be indeed understood as resulting from the
reading of DNA hologram by applying laser wave at a correct frequency and inducing the generation
of coherent light at radio frequencies. Wave DNA hypothesis would provide a reason why for the
biophotons of Popp [20].

Visible-to-radio frequency transmutation suggests that the interaction of visible photons with
DNA involves the coupling of radio wave-modulated em gauge potential at visible frequencies to
Dirac spinor. This coupling indeed induces a fermionic em current containing also radio frequency
Fourier components in turn emitting photons at radio frequencies. The observed correlation between
the polarization of the laser beam at visible frequencies with the polarization of the radio waves could
be understood as reflecting the entanglement of coherent photons at these wavelengths. Note that the
reduction of this entanglement in quantum jump would correspond to generation of ME self in TGD
framework.

DNA MEs as counterparts of wave DNA

In standard physics framework a possible objection against this scenario is that the wavelengths of
the visible photons are almost one micrometer and much longer than the transversal DNA length
scale. In TGD framework the laser mirrors associated with DNA could be single or double sheeted
MEs orthogonal to DNA. Since these MEs represent space-time sheets, their length could quite well
be measured in multiples of visible light wavelength. Note that the thickness of chromosomes is of
order E^{-7} meters, not far from visible wavelengths.

DNA MEs would be analogous the ELF MEs assumed to drift along cortex and scan and control
the state of various brain regions [30]. The variation of the magnetic field along DNA would induce the
drifting force. Of course, DNA MEs need not drift. DNA MEs could be like pages of a book [25] with
each page storing its own independent dynamical hologram realized as a light-like classical vacuum
current. The local polarization direction of the classical em field inside ME varies continuously and
depends on the light-like coordinate S_+ (on S_- for dual ME). This means that a dynamical orientation field in plane can be represented by single ME. The local polarization of the coherent light is indeed proposed to be carrier of bio-information in [25].

DNA ME would describe a sawtooth like zigzag curve in space-time. At the turning points it would be glued to other space-time sheets representing matter: vacuum current and information content would be determined by what happens at these two-dimensional regions.

Quantum gravitational hologram principle says that the quantum information about the development of the organism is stored by the super-symplectic representations which can be thought of as localized to the light-like boundaries of MEs. The immense almost degeneracies of super-symplectic states would indeed mean huge information storage capacities and almost infinite adaptivity already at DNA level. The information stored by the genome would be only a tiny part of the information and comparable to the read-only-memory burnt into the hardware of computer.

DNA solitons and phantom DNA effect as evidence for superconducting DNA space-time sheets

According to [25] there is also evidence for electro-acoustic soliton sequences propagating along DNA and inducing a local opening of DNA double strand. In TGD framework these soliton sequences could be seen as scaled-down versions of nerve pulse patterns. They would be induced from the Sine-Gordon soliton sequences (the simplest soliton sequences are equivalent with a rotational motion of gravitational pendulum propagating with sub- or superluminal phase velocity). The solitons would be associated with electron (most naturally) Josephson currents running between DNA strand space-time sheets connected by Josephson junctions idealizable with a continuous Josephson junction. In accordance with homeostasis as an ionic flow equilibrium idea, stochastic resonance could induce acoustic solitons at atomic space-time sheets involving the local opening of DNA. MEs, in particular DNA MEs, could serve as ultimate quantum controllers inducing electron super currents at various space-time sheets associated with DNA and thus affecting the ionic flow equilibrium at the atomic space-time sheets.

MEs and superconducting magnetic flux tubes associated with DNAs could also explain the phantom DNA effect [47]. Some of the magnetic flux tubes would be left to chamber after removal of DNA and provide a representation of quantum control level of DNA. The intensity of the radiation generated in phantom DNA effect would give an estimate for the density of ions at the superconducting magnetic flux tube space-time sheets. Water memory would be also based on similar structures.

4.6.8 p-Adic cognition and the existence of double-sheeted MEs and wormhole magnetic fields

By the inherent non-determinism of the p-adic differential equations, p-adic space-time sheets represent a natural candidate for the geometric correlates of imagination. The transformation of thought into action corresponds in p-adic-to-real phase transition in this conceptual framework. TGD predicts that space-time sheets with negative time orientation carry negative energies. Thus conservation laws allow p-adic–real transitions for pairs of space-time sheets having opposite energies and momenta. Presumably it is also easier to satisfy the boundary conditions at the ends of the double sheeted structures of finite length.

In particular, the MEs associated with cognition should be double sheeted structures with vanishing net energy. In this case the classical fields could be precise time reversals (phase conjugates) of each other. The analogy with DNA double sheet is obvious. Also DNA MEs could be double sheeted and represent cognitive structures at molecular level.

The double sheeted MEs could represent dynamical holograms associated with long term memory: negative energy ME would represent a question communicated to the geometric past and positive energy ME would represent the answer of self woken up in geometric past and by self-organization generating the answer. To remember would be to make a quantum jump generating this kind of double sheeted ME. Subjectively this would be completely instantaneous process and could involve the generation of entanglement between self geometrically now and self in geometric past and its reduction in quantum jump. Communication/long term memory could be seen as a four-dimensional quantum measurement.
MEs are not the only double-sheeted cognitive structures one can imagine. The so called wormhole magnetic fields are formed by pairs of space-time sheets carrying opposite magnetic fields and are analogous to double sheeted MEs and DNA double strands. Magnetic space-time sheets are connected by extremely tiny wormhole contacts. The wormhole throats of the wormhole contact carry opposite classical em charges and rotating wormhole contacts induce opposite magnetic fields at two flux tube space-time sheets. Bio-systems might be able to generate both double sheeted MEs and wormhole magnetic fields at will by p-adic-real phase transitions since energetic constraints would not pose any restrictions. The p-adic versions of wormhole magnetic fields would serve as cognitive representations for Earth’s magnetic field and the magnetic circulation associated with body could involve also wormhole magnetic fields. Quite generally, TGD Universe might be mimicking itself by constructing double-sheeted zero energy copies of single sheeted structures representing matter. This process might be an essential aspect of water memory and homeopathy [87].

4.6.9 Connection with quantum holography involved with NMR

A highly abstract and refined form of quantum holography appears also in the mathematical formulation of NMR spectroscopy by Walter Schempp [39]. In this formulation coherent photon states are identified as states in the irreducible unitary representations of the Heisenberg group generated by a bosonic oscillator operator, its conjugate and identity operator. The vision about homeostasis as many-sheeted ionic flow equilibrium encourages the idea that endogenous NMR and its generalizations to arbitrary magnetic transitions make possible chemical senses.

1. The ultracold magnetic flux tubes carrying superconducting ions and molecules are ideal for NMR. The contact with ME perturbs the magnetic field inside a magnetic flux tube by superposing to it a rotating transversal component. The perturbations of Earth’s magnetic field have frequencies in EEG range (by purely geometric arguments). More generally, the inverse of the geometric size scale for the flux tubes defines the minimum frequency for the perturbations. The temperature is extremely low so that the ratio \(\frac{N_+}{N_-} = \exp(-\Delta E/kT) \) of ions with different spin directions in magnetic field associated with magnetic flux tube (of say Earth’s magnetic field) deviates strongly from unity. This makes possible to avoid the immense reduction of NMR signal intensity (proportional to \(\exp(-\Delta E/kT) - 1 \)) occurring in the ordinary NMR spectroscopy. If magnetic quantum transitions occur coherently for the superconducting BE condensate, the rate for quantum transition is proportional to the square of the number of superconducting ions and this gives an additional amplification factor. The rate for the BE condensation of the coherent light generated in the magnetic quantum phase transition is also amplified by the presence of the collinear BE condensed photons at MEs acting as receiving quantum antennae.

2. If the magnetic flux tube thickness varies along the flux tube, the strength of the magnetic field and magnetic transition frequency scale vary too. In this kind of situation the interaction produces NMR spectroscopy for superconducting ions at superconducting magnetic flux tubes. The resonance frequency spectrum place-code various ionic concentrations in the sense that each ion would give to a conscious resonance located at a particular position of the magnetic flux tube. This would be one example about the coding of abstract geometric data (now ionic concentrations) to magnetic field strength to position along magnetic flux tube.

3. Magnetic phase transitions could represent some kind of primitive chemical qualia, much more primitive than the qualia associated with the transitions of genuinely quantum gravitational super-symplectic states at MEs (non-trivial functionals in the world of worlds, space of 3-surfaces). The magnetic qualia need not be conscious to us since the characteristic length scale given by the magnetic length is cell length scale in the case of endogenous magnetic field \(B_{end} = .2 \) Gauss which has same order of magnitude as Earth’s magnetic field with nominal value \(B_E = .5 \) Gauss. The value of \(B_{end} \) comes from the explanation for the effects of ELF em fields on vertebrate in terms of cyclotron transitions. The BE condensation of the coherent light emitted in the magnetic phase transitions on MEs could however lead to higher level variants of the chemical qualia.

4. In the many-sheeted ionic flow equilibrium superconducting ion densities are related to the ionic densities at the atomic space-time sheets. This means that the information about ionic
densities at the atomic space-time sheets could be coded into vacuum currents and MEs could contain holographic representation of the biochemical state of the organism. The possibility of Z^0 magnetic flux tubes would also make possible to code information about the densities of neural atoms and molecules to Z^0 MEs. Unless massless exotic variants of Z^0 bosons are possible, higher level variants of Z^0 type chemical qualia are not possible.

4.6.10 Summary

It seems that the vision about quantum control and experiencing is becoming rather concrete and beautiful overall pattern is emerging. At least following anomalies from standard physics point of view pieces fit together.

1. The paradoxical results related to the ionic channels and pumps \cite{48} give very strong support for ionic flow equilibrium in many-sheeted space-time.

2. Water memory and homeopathy fits with this picture. The results of Cyril Smith \cite{54} about homeopathic effects at various frequencies as well as the findings of Benveniste \cite{22, 23} and recent findings of a collaboration involving four laboratories about water memory \cite{11} support this view. The observed effects of ELF em fields on biomatter \cite{17} are also consistent with the assumption that ELF em fields affect directly the control circuitry at superconducting space-time sheets. The biophotons of Popp \cite{20} should also be mentioned as also the puzzles related to the interaction of biomolecules (hormones, second messengers) with cell nucleus (pleiotropy) suggesting that non-chemical communication mechanisms are involved.

3. A common answer to the questions ‘Why liquid crystals?’, ‘Why electrets?’, ‘Why DC currents of Becker \cite{11}?’, ‘Why collagen networks?’, is that otherwise the many-sheeted control circuitry is not possible.

4. The healing of bone fractures by electric currents discovered by Becker \cite{11} could also be a manner to re-establish super current patterns leading to many-sheeted ionic flow equilibrium and healing. Note the possible applications in nanotechnology: the generation of an appropriate supra current pattern could force ionic flow equilibrium leading to the healing of fractures in electromechanical systems.

5. The recent empirical findings \cite{40} provide strong support for the belief that NDE experiences and thus consciousness are possible even when brain is clinically dead and it is interesting to ponder what this might mean in TGD framework. Both MEs and magnetic flux tube structures form a fractal hierarchy. Rather interestingly, the magnetic fields associated with eyes have cyclotron time scale varying from hour to year roughly. This is necessary for higher abstraction levels of consciousness since they involve subjective memories in time scale much longer than the 1 seconds of sensory experience. Flux tubes are of thickness of order millimeter in this case: the size scale of iris!

Very rough estimates suggest that the magnetic crystals contained by brain (say those in pineal gland) could generate fields in the range $10^{-2} - 1$ fT, flux tube thickness would be in the range 1 – 10 cm and cyclotron time scale would vary from years to hundred years (life summary during NDE). This provokes several questions. Could these magnetic flux tubes connect near relatives, like umbilic cords (meeting of relatives during NDEs)? Could they give rise to tunnel experience involved with NDEs: magnetic flux tube self experiencing fractal hierarchy of sub-flux tubes as mental images (my own ‘tunnel like’ visual experiences after sitting and writing resemble incompressible fluid flow, $\nabla \cdot B = 0$)? Is this magnetic consciousness what remains after physical death: are our bodies sensory and motor organs of huge fractal magnetic circuitry (‘light being’) living in symbiosis with MEs?

4.7 Appendix: A model for the topological condensation of coherent vapor phase photons

In ordinary QED classical gauge fields can have only ordinary charged particles as their sources. In TGD genuine vacuum currents are possible. The coupling of the quantum field to the classical em
field with a non-vanishing vacuum source implies the generation of a coherent state of photons such that each Fourier component present in the classical gauge current gives rise to an eigen state of the corresponding photonic annihilation operator. In case of light-like vacuum currents allowed by TGD, the coherent state is generated in resonant-like manner so that light-like vacuum current acts as an ideal quantum antenna.

If one introduces a second space-time sheet, which contains BE condensate of photons for some modes of the photon field, a stimulated topological condensation of both coherent vapor phase photons and transfer of coherent condensed photons from other space-time sheets to this space-time sheet occurs. This effect makes possible the the action of the second space-time sheet as an optimal receiving antenna. In the following calculation the consideration is restricted to the stimulated condensation of vapor phase photons.

In biological context microtubules could server both as senders and receivers of coherent photons. According to the proposed identification of coherent photons as the quantum correlate of vision, the microtubules contain BE condensate of photons in some some modes would have the ability to see in some primitive manner.

4.7.1 The action

The simplest model for the situation is based on Maxwell action for electromagnetic field regarded as an induced field obtained from superposition of the classical emf in CP_2 degrees of freedom and second quantized free emf in $M^4_+ \times CP_2$ having only M^4 components and depending on M^4_+ coordinates only and having decomposition into vapor phase and condensate parts ($h = 1$ and $c = 1$ will defined the units used in the following).

\[
F_{\mu \nu} = F_{\mu \nu}^{(cl)} + F_{\mu \nu}^{(qu)} , \\
F_{\mu \nu}^{(cl)} = F_{k l}(cl) \partial_{\mu} s^k \partial_{\nu} s^l , \\
F_{\mu \nu}^{(qu)} = F_{k l}(qu) \partial_{\mu} m^k \partial_{\nu} m^l , \\
F_{k l}(qu) = \partial_k A_l(qu) - \partial_l A_k(qu) , \\
A_k (qu) = A_k (qu, v) + A_k (qu, c) .
\]

\[F_{k l}(qu)\] satisfies empty space Maxwell equations. m^k and s^k refer to M^4_+ and CP_2 coordinates and v and c refer to vapor phase and condensate.

Maxwell action density can be transformed to a sum of a total divergence reducing to mere boundary term, to be neglected, plus free part and two interaction terms in the following manner:

\[
\frac{L}{\sqrt{g}} = \sum_i L_{\text{free}, i} + L_1 (\text{int}) + L_2 (\text{int}) , \\
L_{\text{free}, i} = \frac{1}{4} F_{\mu \nu}^{(qu), i} F_{\mu \nu}^{(qu), i} , \quad i = c, v . \\
L_1 (\text{int}) = \frac{1}{2} j^\mu (cl) \sum_i A_\mu (qu, i) , \\
L_2 (\text{int}) = \frac{1}{2} \sum_i J^\mu (qu, i) A_{\mu \nu} (cl) , \\
J^\mu (qu, i) = F^\mu_k (i) M_{\nu}^{k^\nu} + F^\nu_k (i) M_{\mu}^{k^\nu} , \quad i = c, v , \\
M_{\beta \gamma}^k = D_\beta \partial_\gamma m^k .
\]

$L_{\text{free}, i}$ denotes the free action for the classical emf and vapor phase and condensed quantum emfs and defines photon propagators. Standard propagator is obtained, when Minkowski coordinates are used for space-time surface.

$L_1 (\text{int})$ corresponds to the action of the vapor phase and condensed quantum emf with the vacuum current and leads to generation of coherent state of photons in vapor phase and condensate.

$L_2 (\text{int})$ is non-vanishing only, when the M^4_+ part of the second fundamental form $M_{\alpha \beta}^k$ for 4-surface is non-vanishing: in this case the em current associated with $A_{\mu \nu} (qu)$ is non-vanishing despite the fact
that it vanishes for $A_k(qu)$! This term describes the external curvature of the 4-surface as opposed to the internal curvature described by the curvature tensor. In general case, the external curvature can be large even when the gravitational field vanishes. It must be however emphasized that this term is proportional to the metric of CP^2 and, in case of the massless extremals, this term is significant only if the dependence of CP^2 coordinates on the transversal coordinates of M_4^+ is strong: this in turn requires huge value for the light-like Einstein tensor. This term will be neglected in the sequel.

The representation

$$A_+(k, \lambda) = \sqrt{2\pi} a^\dagger(k, \lambda) ,$$

$$[a(k_1, \lambda_1), a^\dagger(k_2, \lambda_2)] = \delta^3(k_1 - k_2)\delta_{\lambda_1, \lambda_2} ,$$

for which the density of states factor for photon states is $dN = d^3k$, will be used in the sequel.

4.7.2 Coherent state is generated in resonant-like manner for light-like vacuum currents

The presence of the vacuum current leads to the generation of coherent state of photons both in vapor phase and condensate. Coherent states states are eigen states of the photonic annihilation operators and in the estimates for the rate of topological condensation, one in a good approximation one can replace $A_\mu(qu, i), i = cond, vap$, with the classical photon field $A_\mu(coh, i)$ having classical vacuum current as its source and serving as order parameters for the coherent state. The Fourier component of a vector potential describing the eigenvalue of the annihilation operator part of the photon field is for given momentum k and polarization direction λ given by

$$A^\mu(\text{coh}, v|\lambda, k) = \sum_n c(k, k_n) \frac{\lambda_\mu J^\mu(k_n)\lambda^\mu}{k^2_n} ,$$

$$\exp(-ik \cdot m) = \sum_n c(k, k_n)\exp(-ik_n \cdot m) .$$

If the classical vacuum current is associated with a ‘massless extremal’, em current is light-like and this implies resonance for those frequencies for which photon wave vector corresponds to the wave vectors appearing in the vacuum current. The resonance is smoothed out by the finite spatial size of the space-time sheet containing the light-like vacuum current. At the limit of an infinitely large spatial size for the space-time sheet, one obtains infinitely large amplitude since one has $k^2_n = k^2 = 0$ at this limit.

4.7.3 Stimulated topological condensation

The presence of the coherent state of photons implies the possibility of the topological condensation of photons. If the device contains $N(k, \lambda)$ photons in the the state (k, λ), stimulated topological condensation, completely analogous to the stimulated emission, occurs and the condensation rate is proportional to $(N(k, \lambda) + 1)^2$.

Assume that there exists a coherent state generated by quantum antenna of possibly astrophysical dimension and associate label ‘1’ with this space-time sheet. Assume also a second space-time sheet and associate with it label ‘2’. In the lowest order the matrix element for the topological condensation of single photon can be obtained as the matrix element of the creation operator part of the interaction term of the action.
4.7. Appendix: A model for the topological condensation of coherent vapor phase photons

\[iS_+ = \frac{i}{2} \int_{V_2} dV_2 j^\mu_+ (co, 1) A_{\mu,+} (\text{cond, 2}) \]
\[= \frac{i}{2} \sum_{X} \int d^3 k_2 X(k_2, \lambda_2) a^\dagger(k_2, \lambda_2) , \]
\[X(k_2, \lambda_2) = \sqrt{\frac{2\pi}{\omega_2}} \sum_{\lambda_1} \int d^3 k_1 Y(k_1, \lambda_1, k_2, \lambda_2) , \]
\[Y(k_1, \lambda_1, k_2, \lambda_2) = j(co, 1|k_1, \lambda_1) c(k_1, k_2) e_{\lambda_1} \cdot e_{\lambda_2} , \]
\[c(k_1, k_2) = \int_{V_2} dV_2 \exp [i(k_1 - k_2) \cdot m] , \]
(4.7.5)

between the initial and final states. \(j^\mu(co, 1) \) is just the transversal part of the classical vacuum current creating the coherent state. The latter expression is obtained by using Fourier expansions for \(j \) and \(A_+ \), which denotes the creation operator part of the free photon field projected to the space-time surface representing the device: Minkowski coordinates are used for both source regions and device).

In case that the region \(V_1 \) is box of length \(L \) in the direction of the vacuum current, the explicit calculation, writing the light-like vacuum current as \(j^\mu = Jp^\mu \), \(p^0 = p^z = 1 \), leads to the following expression for the Fourier component \(j(coh, 1|k_1, \lambda_1) \):

\[j(coh, 1|k, \omega, \lambda) = j^\mu(coh, 1|k, \omega) e^\lambda, \]
\[= \sum_n \exp[i(k_1 L) - 1] J(\omega_n, k_T)p \cdot e^\lambda \delta(k^0 - \omega_n) , \]
\[\omega_n = \frac{n\pi}{L} . \]
(4.7.6)

Delta-function expresses the fact that only discrete frequencies are allowed for the vacuum current and one can write the condensation amplitude as a sum \(iS_+ = i \sum_n iS_+ n \) over the allowed frequencies \(\omega_n \). \(k_T \) refers to the transversal part of the wave vector orthogonal to the light-like vacuum current.

From this expression one can deduce the probability for the topological condensation of photon \((k, \lambda) \) to a state containing \(N(k, \lambda) \) photons as

\[|S(k, \lambda)|^2 = |\sum_n S_+ n|^2 \frac{N(k, \lambda) + 1}{2} , \]
(4.7.7)

Clearly, \((N(k, \lambda) + 1)^2 \) factor corresponds to the induced condensation. By a standard trick one can eliminate the square of the delta-function by replacing the condensation probability with condensation rate \(R(k, \lambda) \) obtained by dividing condensation probability with \(T \to \infty \) eliminating one deltafunction. Furthermore, one can calculate the transition rate to a set of final states by multiplying the expression thus obtained with the density of states factor \(dN = d^3 k \), which after the elimination of the second delta function effectively reduces to \(\omega_n^2 d\Omega \). In this manner one obtains for the differential condensation rate a rather neat expression in terms of the vacuum current

\[\frac{dR(k, \lambda, n)}{d\Omega} = \frac{2\omega_n L^2}{M(k, \lambda)} |M(k, \lambda)|^2 (N(k, \lambda) + 1)^2 , \]
\[M(k, \lambda) = i \sum_{X} \int d^3 k_1 \gamma(k, k_1^\lambda) c(k^1, k) X(k_1, \lambda_1) , \]
\[X(k_1, \lambda_1) = \frac{\exp[i(k_1 L)] - 1}{ik_1 L} p \cdot e_{\lambda_1} \cdot e_{\lambda} . \]
(4.7.8)

From this expression it is clear that resonance indeed occurs and at the limit \(L \to \infty \) the rate for condensation diverges as \(L^2 \). In this expression the overlap integral \(c(k_1, k_2) \) carries information about the geometry of the space-time sheet associated with the 'device' whereas \(J(\omega_n, k_T) \) characterizes the vacuum current and the remaining factor \(X \) is a purely 'kinematic' factor.
Books related to TGD

239

Theoretical Physics

Condensed Matter Physics

[1] Burning salt water. [hyperlink]

[2] Copper. [hyperlink]

[5] Fractional quantum Hall Effect. [hyperlink]

[6] High temperature and other unconventional superconductors. [hyperlink]

[7] Lense flare. [hyperlink]

[8] Liquid crystals on line. [hyperlink]

[10] Percolation. [hyperlink]

[12] Spontaneous human combustion. [hyperlink]

[14] Scientists Detect 'Fingerprint' of High-temperature Superconductivity Above Transition Temperature. [hyperlink]

Fringe Physics

Biology

[3] Earth’s magnetic field regions of weakness correlated to sites of political unrest and war: the paradigm quaking measurements of professor Phil Callahan. http://www.acacialand.com/Callahan.html

Neuroscience and Consciousness

Chapter 5

Wormhole Magnetic Fields

5.1 Introduction

Topological field quantization has turned out to be fundamental for the understanding of quantum TGD and TGD inspired theory of consciousness. What makes topological field quantization so important is that it provides very precise classical representation for the quantum aspects of the theory. Even virtual particles have geometric counterparts. In TGD the sign of the classical energy correlates with the time orientation of the space-time sheet and this makes possible pairs of space-time sheets of finite duration having vanishing total energy. This suggest an astonishingly simple mechanism for the formation of cognitive representations: direct mimicry in which classical fields in some region of the material space-time sheet are realized at the two mind-like space-time sheets of opposite time orientation! This realization would make physicist’s universe analogous to the computer scientist’s universe filled with computers emulating each other. Concerning the understanding of how intelligent consciousness is realized, the implications would be highly nontrivial.

The fact that em fields oscillating with multiples of the cyclotron frequencies of various charged particles in Earth’s magnetic fields have effects on living matter [41] could indeed mean that biomatter mimics Earth’s magnetic field by forming double sheeted structures, wormhole magnetic fields, with magnetic field strength equal to that of Earth’s magnetic field. This observation could serve as a good motivation for the modelling of wormhole magnetic fields. This was not the original motivation for studying wormhole magnetic fields. Rather, it was the modelling of homeopathy in terms mind-like space-time sheets, which led to the discovery of the astonishing possibility of a direct mimicry performed by mind-like space-time sheets. Note that also more abstract cognitive representations are possible. In particular, various oscillation frequencies of material space-time sheets could be transferred to mind-like space-time sheets and the counterparts of FM and AM modulation would provide obvious cognitive representations.

Topological field quantization originates from the fact that given classical gauge field configuration does not allow global representation as an induced gauge field but space-time splits into separate regions, topological field quanta. Typically, magnetic field reduces to a bundle of disjoint flux tubes flowing along field lines of classical field, which in TGD context are cylindrical regions of 3-space with outer boundaries. There is no doubt about the fundamental importance of topological field quanta for biosystems if TGD is correct and the natural working hypothesis is that topologically quantized classical gauge field configurations belong to the basic tools of biocontrol and that the vacuum quantum numbers characterizing topological field quanta (for the definition of vacuum quantum numbers see the Appendix) carry bio-information.

It has also become clear, that the closely related concepts of many-sheeted space-time and charged wormhole play crucial role in biosystems. Wormholes feed gauge fluxes from a smaller sheet of 3-space to a larger one and are located near the boundary of the smaller 3-space sheet and have size of order CP_2 length of order 10^4 Planck lengths as do also ordinary elementary particles. Not only electromagnetic but also Z^0 wormholes are possible in TGD since long range classical Z^0 fields are unavoidable in TGD context. Wormhole throat can have also magnetic charge. Furthermore, the topology of the wormhole throat, being characterized by the genus of the 2-surface in question, gives rise to a degeneracy analogous to the family replication of elementary fermions.
Wormhole concept leads naturally to the concept of *wormhole flux tube*, which by assumption contains no ordinary matter inside it and is forced by Maxwell equations to be a *hollow cylinder*. Maxwell’s equations require rotating charge carrier densities with opposite total charges on the inner and outer boundaries of this cylinder. Since ordinary charges are excluded, the only possibility is that these charge carriers are charged wormholes. Since the wormhole behaves like a gauge charge $\pm Q$ on the two space-time sheets respectively, there is return flux on the second space-time sheet. Wormhole flux tubes need not be closed unlike ordinary flux tubes: at the end point magnetic flux just flows from 'upper' space-time sheet to the 'lower' space-time sheet via magnetic wormhole behaving as magnetic charge $\pm Q_m$ on the two space-time sheets respectively. Charged wormhole flux tubes can form arbitrary complicated net like structures. Since wormholes form *BE condensate* and behave as super conductor, the classical field is transformed in TGD context to a macroscopic quantum system, *wormhole magnetic field*. It has become clear that electronic and neutrino superconductivity might play fundamental role in biosystems: it might be even possible to identify the quantum correlates of sensory qualia as coherent photons and gravitons, wormhole BE condensate and BE condensates of electronic and neutrino Cooper pairs. What is important is that wormhole magnetic fields seem to provide a topological representation for the defects of fermionic super conductors.

Quantum antenna hypothesis states that the lightlike vacuum currents associated with microtubules, and possibly also other linear structures, serve as sources of quantum coherent photon fields \[^{[51]}\], in particular of bio-photons. The phenomenon of sonoluminescence has an explanation in terms of light-like vacuum currents underlying the quantum antenna hypothesis and that microtubular diameter provides a natural intrinsic length scale of hydrodynamics of water. One of the many challenges is to understand how wormholes and coherent photons interact. In this chapter a model for this interaction is proposed. The model leads to possible explanations of Comorosan effect \[^{[17,51]}\] and phantom DNA effect \[^{[49]}\]. Also the effect of homeopathy could reduce to that of mind-like space-time sheets associated with the drug if these mind-like space-time sheets mimic directly the classical gauge field structure of the drug.

The concept of wormhole magnetic field is proposed as a possible explanation for claimed psychokinetic effects (PK). Topologically quantized wormhole magnetic field, being a macroscopic quantum system, can give rise to PK effect via *magnetic levitation*, if external object is wormhole super conductor and if the density of charged wormholes on its boundary is sufficiently high to generate Meissner effect. This same structure could enlarge DNA and other basic structures to macroscopic quantum systems with size much larger than the basic object consisting of ordinary matter. One could even imagine that the structure of DNA sequences could be coded into the structure of the topologically quantized magnetic field created by it.

An alternative model of psychokinesis is based on the possibility of space-time sheets having negative time orientation and carrying therefore negative classical energy. It is not clear whether the space-time sheets associated with the wormhole magnetic fields could have opposite time orientations. This kind of mechanism of energy production might explain claimed poltergeist type effects involving spontaneous gain of kinetic energy. Many-sheeted space-time concept makes possible also psychokinesis based on levitation: what is needed that subsystem is able to topologically condense to a sufficiently large space-time sheet carrying very weak gravitational fields.

This chapter describes the view about wormhole contacts as it was for more than decade ago. The recent identification of wormhole contacts is as bosons with positive and negative energy fermion and antifermion at the opposite light-like throats of the contact. This allows to identify also virtual gauge bosons as pairs of on mass shell fermions. Virtual fermions could correspond to wormhole contacts with second contact identifiable as Fock vacuum. Also super-symmetric partners of these states obtained by applying fermionic oscillator operator algebra correspond to particle like states. Therefore wormhole contacts might not represent completely new physics and be identifiable as gauge boson like or Higgs like states. If the wormhole throat carries magnetic flux it could define a dyonlike partner of ordinary gauge boson or Higgs.

5.2 Basic conceptual framework

The notions of topological condensate and p-adic length scale hierarchy are in a central role in TGD and for a long time it seemed that the physical interpretation of these notions is relatively straightforward. The evolution of number theoretical ideas however forced to suspect that the implications for physics
might be much deeper and involve not only a solution to the mysteries of dark matter but also force to bring basic notions of TGD inspired theory of consciousness. At this moment the proper interpretation of the mathematical structures involving typically infinite hierarchies generalizing considerably the mathematical framework of standard physics is far from established so that it is better to represent just questions with some plausible looking answers.

5.2.1 Basic concepts

It is good to discuss the basic notions before discussing the definition of gauge charges and gauge fluxes.

CP_2 type vacuum extremals

CP_2 type extremals behave like elementary particles (in particular, light-likeness of M^4 projection gives rise to Virasoro conditions). CP_2 type vacuum extremals have however vanishing four-momentum although they carry classical color charges. This raises the question how they can gain elementary particle quantum numbers.

In topological condensation of CP_2 type vacuum extremal a light-like causal horizon is created. Number theoretical considerations strongly suggest that the horizon carries elementary particle numbers and can be identified as a parton. The quantum numbers or parton would serve as sources of the classical gauge fields created by the causal horizon.

In topological evaporation CP_2 type vacuum extremal carrying only classical color charges is created. This would suggest that the scattering of CP_2 type vacuum extremals defines a topological quantum field theory resulting as a limit of quantum gravitation (CP_2 is gravitational instanton) and that CP_2 type extremals define the counterparts of vacuum lines appearing in the formulation of generalized Feynman diagrams.

Wormhole contacts as parton pairs

The earlier view about wormhole (#) contacts as passive mediators of classical gauge and gravitational fluxes is not quite correct. The basic modification is due to the fact that one can assign parton or parton pair to the # contact so that it becomes a particle like entity. This means that an entire p-adic hierarchy of new physics is predicted.

1. Formally # contact can be constructed by drilling small spherical holes S^2 in the 3-surfaces involved and connecting the spherical boundaries by a tube $S^2 \times D^1$. For instance, CP_2 type extremal can be glued to space-time sheet with Minkowskian signature or space-time sheets with Minkowskian signature can be connected by # contact having Euclidian signature of the induced metric. Also more general contacts are possible since S^2 can be replaced with a 2-surface of arbitrary genus and family replication phenomenon can be interpreted in terms of the genus. The # contact connecting two space-time sheets with Minkowskian signature of metric is accompanied by two "elementary particle horizons", which are light-like 3-surfaces at which the induced 4-metric becomes degenerate. Since these surfaces are causal horizons, it is not clear whether # contacts can mediate classical gauge interactions. If there is an electric gauge flux associated with elementary particle horizon it tends to be either infinite by the degeneracy of the induced metric. It is not clear whether boundary conditions allow to have finite gauge fluxes of electric type. A similar difficulty is encountered when one tries to assign gravitational flux to the # contact: in this case even the existence of flux in non-singular case is far from obvious. Hence the naive extrapolation of Newtonian picture might not be quite correct.

2. Number theoretical considerations suggests that the two light-like horizons associated with # contacts connecting space-time sheets act as dynamical units analogous to shock waves or light fronts carrying quantum numbers so that the identification as partons is natural. Quantum holography would suggest itself in the sense that the quantum numbers associated with causal horizons would determine the long range fields inside space-time sheets involved.

3. # contacts can be modelled in terms of CP_2 type extremals topologically condensed simultaneously to the two space-time sheets involved. The topological condensation of CP_2 type extremal
creates only single parton and this encourages the interpretation as elementary particle. The
gauge currents for CP_2 type vacuum extremals have a vanishing covariant divergence so that
there are no conserved charges besides Kähler charge. Hence electro-weak gauge charges are
not conserved classically in the region between causal horizons whereas color gauge charges are.
This could explain the vacuum screening of electro-weak charges at space-time level. This is
required since for the known solutions of field equations other than CP_2 type extremals vacuum
screening does not occur.

4. In the special case space-time sheets have opposite time orientations and the causal horizons
carry opposite quantum numbers (with four-momentum included) the # contact would serve
the passive role of flux mediator and one could assign to the contact generalized gauge fluxes as
quantum numbers associated with the causal horizons. This is the case if the contact is created
from vacuum in topological condensation so that the quantum numbers associated with the
horizons define naturally generalized gauge fluxes. Kind of generalized quantum dipoles living
in two space-times simultaneously would be in question. # contacts in the ground state for space-
time sheets with opposite time orientation can be also seen as zero energy parton-antiparton
pairs bound together by a piece of CP_2 type extremal.

5. When space-time sheets have same time orientation, the two-parton state associated with the
contact has non-vanishing energy and it is not clear whether it can be stable.

#$_B$ contacts as bound parton pairs

Besides # contacts also join along boundaries bonds (JABs, #$_B$ contacts) are possible. They can
connect outer boundaries of space-time sheets or the boundaries of small holes associated with the
interiors of two space-time sheets which can have Minkowskian signature of metric and can mediate
classical gauge fluxes and are excellent candidates for mediators of gauge interactions between space-
time sheet glued to a larger space-time sheet by topological sum contacts and join along boundaries
contacts. The size scale of the causal horizons associated with parton pairs can be arbitrary whereas
the size scale of # contacts is given by CP_2 radius.

The existence of the holes for real space-time surfaces is a natural consequence of the induced
gauge field concept: for sufficiently strong gauge fields the imbeddability of gauge field as an induced
gauge field fails and hole in space-time appears as a consequence. The holes connected by #$_B$ contacts
obey field equations, and a good guess is that they are light-like 3-surfaces and carry parton quantum
numbers. This would mean that both # and #$_B$ contacts allow a fundamental description in terms
of pair of partons.

Magnetic flux tubes provide a representative example of #$_B$ contact. Instead of #$_B$ contact also
more descriptive terms such as join along boundaries bond (JAB), color bond, and magnetic flux tube
are used. #$_B$ contacts serve also as a space-time correlate for bound state formation and one can
even consider the possibility that entanglement might have braiding of bonds defined by # contacts
as a space-time correlate [84] .

It seems difficult to exclude join along boundaries contacts between between holes associated with
the two space-time sheets at different levels of p-adic hierarchy. If these contacts are possible, a
transfer of conserved gauge fluxes would be possible between the two space-time sheets and one could
speak about interaction in conventional sense.

Wormhole contacts as bosons and their super partners

The original interpretation of wormhole contacts was as genuinely new kind of particle like objects.
With the emergence of zero energy ontology it gradually became clear that ordinary gauge bosons
and Higgs particle and their super partners can be identified as wormhole contacts. Free fermions and
their super-partners would be identified as CP_2 type vacuum extremals glued to a space-time sheet
with a Minkowskian signature of the induced metric and thus possessing only single wormhole throat
identified as a light-like 3-surface.

This identification has far reaching implications. For instance, off mass shall particles can be
interpreted as pairs of on mass shell positive and negative energy states at the opposite throats of the
wormhole contact. This representation of virtual particles is crucial for the generalization of twistor
formalism to TGD framework [85] . Also the notion of bosonic emergence made possible by this
interpretation and simplifies dramatically the formulation of QFT limit and also of quantum TGD itself [54].

A possible interpretation of wormhole contacts in living matter is as scaled up variants of bosons having much smaller mass and massless below confinement scale and appropriate p-adic length scale. This would mean the existence of scaled up copies of QCD type physics and electro-weak physics. These phases could be dark and characterized by a large value of Planck constant.

Topological condensation and evaporation

Topological condensation corresponds to a formation of # or #$_B$ contacts between space-time sheets. Topological evaporation means the splitting of # or #$_B$ contacts. In the case of elementary particles the process changes almost nothing since the causal horizon carrying parton quantum numbers does not disappear. The evaporated CP_2 type vacuum extremal having interpretation as a gravitational instanton can carry only color quantum numbers.

As # contact splits partons are created at the two space-time sheets involved. This process can obviously generate from vacuum space-time sheets carrying particles with opposite signs of energies and other quantum numbers. Positive energy matter and negative energy anti-matter could be thus created by the formation of # contacts with zero net quantum numbers which then split to produce pair of positive and negative energy particles at different space-time sheets having opposite time orientations. This mechanism would allow a creation of positive energy matter and negative energy antimatter with an automatic separation of matter and antimatter at space-time sheets having different time orientation. This might resolve elegantly the puzzle posed by matter-antimatter asymmetry.

The creation of # contact leads to an appearance of radial gauge field in condensate and this seems to be impossible at the limit of infinitely large space-time sheet since it involves a radical instantaneous change in field line topology. The finite size of the space-time sheet can however resolve the difficulty.

If all quantum numbers of elementary particle are expressible as gauge fluxes, the quantum numbers of topologically evaporated particles should vanish. In the case of color quantum numbers and Poincare quantum numbers there is no obvious reason why this should be the case. Despite this the cancellation of the interior quantum numbers by those at boundaries or light-like causal determinants could occur and would conform with the effective 2-dimensionality stating that quantum states are characterized by partonic boundary states associated with causal determinants. This could be also seen as a holographic duality of interior and boundary degrees of freedom [70].

5.2.2 Gauge charges and gauge fluxes

The concepts of mass and gauge charge in TGD has been a source of a chronic headache. There are several questions waiting for a definite answer. How to define gauge charge? What is the microscopic physics behind the gauge charges necessarily accompanying long range gravitational fields? Are these gauge charges quantized in elementary particle level? Can one associate to elementary particles classical electro-weak gauge charges equal to its quantized value or are all electro-weak charges screened at intermediate boson length scale? Is the generation of the vacuum gauge charges, allowed in principle by the induced gauge field concept, possible in macroscopic length scales? What happens to the gauge charges in topological evaporation? Should Equivalence Principle be modified in order to understand the fact that Robertson-Walker metrics are inertial but not gravitational vacua.

How to define the notion of gauge charge?

In TGD gauge fields are not primary dynamical variables but induced from the spinor connection of CP_2. There are two manners to define gauge charges.

1. In purely group theoretical approach one can associate non-vanishing gauge charge to a 3-surface of finite size and quantization of the gauge charge follows automatically. This definition should work at Planck length scales, when particles are described as 3-surfaces of CP_2 size and classical space-time mediating long range interactions make no sense. Gauge interactions are mediated by gauge boson exchange, which in TGD has topological description in terms of CP_2 type extremals [11].
2. Second definition of gauge charge is as a gauge flux over a closed surface. In this case quantization
is not obvious nor perhaps even possible at classical level except perhaps for Abelian charges. For
a closed 3-surface gauge charge vanishes and one might well argue that this is the case for finite 3-
surface with boundary since the boundary conditions might well generate gauge charge near the
boundary cancelling the gauge charge created by particles condensed on 3-surface. This would
mean that at low energies (photon wavelength large than size of the 3-surfaces) the 3-surfaces
in vapor phase look like neutral particles. Only at high energies the evaporated particles would
behave as ordinary elementary particles. Furthermore, particle leaves in topological evaporation
its gauge charge in the condensate.

The alternative possibility that the long range $\frac{1}{r}$ gauge field associated with particle disappears
in the evaporation, looks topologically impossible at the limit when larger space-time sheet has
infinite size: only the simultaneous evaporation of opposite gauge charges might be possible
in this manner at this limit. Topological evaporation provides a possible mechanism for the
generation of vacuum gauge charges, which is one basic difference between TGD and standard
gauge theories.

There is a strong temptation to draw a definite conclusion but it is better to be satisfied with
a simplifying working hypothesis that gauge charges are in long length scales definable as gauge
fluxes and vanish for macroscopic 3-surfaces of finite size in vapor phase. This would mean that
the topological evaporation of say electron as an electromagnetically charged particle would not be
possible except at CP_2 length scale: in the evaporation from secondary condensation level electron
would leave its gauge charges in the condensate. Vapor phase particle still looks electromagnetically
charged in length scales smaller than the size of the particle surface if the neutralizing charge density
is near (or at) the boundary of the surface and gauge and gravitational interactions are mediated by
the exchange of CP_2 type extremals.

In what sense could # contacts feed gauge fluxes?

One can associate with the # throats magnetic gauge charges $\pm Q_i$ defined as gauge flux running to or
from the throat. The magnetic charges are of opposite sign and equal magnitude on the two space-time
sheets involved. For Kähler form the value of magnetic flux is quantized and non-vanishing only if the the$t = \text{constant}$ section of causal horizon corresponds to a non-trivial homology equivalence class in
CP_2 so that # contact can be regarded as a homological magnetic monopole. In this case # contacts
can be regarded as extremely small magnetic dipoles formed by tightly bound # throats possessing
opposite magnetic gauge charges. # contacts couple to the difference of the classical gauge fields
associated with the two space-time sheets and matter-# contact and # contact-# contact interaction
energies are in general non-vanishing.

Electric gauge fluxes through # throat evaluated at the light-like elementary particle horizon X^3_l
tend to be either zero or infinite. The reason is that without appropriate boundary conditions the
normal component of electric $E^{tn}\sqrt{(g_4)/g^2}$ either diverges or is infinite since g^{tt} diverges by the
effective three-dimensionality of the induced metric at X^3_l. In the gravitational case an additional
difficulty is caused by the fact that it is not at all clear whether the notion of gravitational flux is
well defined. It is however possible to assign gravitational mass to a given space-time sheets as will
be found in the section about space-time description of charge renormalization.

The simplest conclusion would be that the notions of gauge and gravitational fluxes through #
contacts do not make sense and that # contacts mediate interactions in a more subtle manner. For
instance, for a space-time sheet topologically condensed at a larger space-time sheet the larger space-
time sheet would characterize the basic coupling constants appearing in the S-matrix associated with
the topologically condensed space-time sheets. In particular, the value of \hbar would characterize the
relation between the two space-time sheets. A stronger hypothesis would be that the value of \hbar is
coded partially by the Jones inclusion between the state spaces involved. The larger space-time sheet
would correspond to dark matter from the point of view of smaller space-time sheet.39,23

One can however try to find loopholes in the argument.

1. It might be possible to pose the finiteness of $E^{tn}\sqrt{g_4}/g^2$ as a boundary condition. The variation
principle determining space-time surfaces implies that space-time surfaces are analogous to Bohr
orbits so that there are also hopes that gauge fluxes are quantized.
2. Another way out of this difficulty could be based on the basic idea behind renormalization in TGD framework. Gauge coupling strengths are allowed to depend on space-time point so that the gauge currents are conserved. Gauge coupling strengths \(g^2/4\pi \) could become infinite at causal horizon. The infinite values of gauge couplings at causal horizons might be a TGD counterpart for the infinite values of bare gauge couplings in quantum field theories. There are however several objections against this idea. The values of coupling constants should depend on space-time sheet only so that the situation is not improved by this trick in \(CP_2 \) length scale. Dependence of \(g^2 \) on space-time point means also that in the general case the definition of gauge charge as gauge flux is lost so that gauge charges do not reduce to fluxes.

It seems that the notion of a finite electric gauge flux through the causal horizon need not make sense as such. Same applies to the notion of gravitational gauge flux. The notion of gauge flux seems however to have a natural quantal generalization. The creation of a # contact between two space-time sheets creates two causal horizons identifiable as partons and carrying conserved charges assignable with the states created using the fermionic oscillator operators associated with the second quantized induced spinor field. These charges must be of opposite sign so that electric gauge fluxes through causal horizons are replaced by quantal gauge charges. For opposite time orientations also four-momenta cancel each other. The particle states can of course transform by interactions with matter at the two-space-time sheets so that the resulting contact is not a zero energy state always.

This suggests that for gauge fluxes at the horizon are identifiable as opposite quantized gauge charges of the partons involved. If the the net gauge charges of # contact do not vanish, it can be said to possess net gauge charge and does not serve as a passive flux mediator anymore. The possibly screened classical gauge fields in the region faraway from the contact define the classical correlates for gauge fluxes. A similar treatment applies to gravitational flux in the case that the time orientations are opposite and gravitational flux is identifiable as gravitational mass at the causal horizon.

Internal consistency would mildly suggest that # contacts are possible only between space-time sheets of opposite time orientation so that gauge fluxes between space-time sheets of same time orientation would flow along \(#_B \) bonds.

Are the gauge fluxes through # and \(#_B \) contacts quantized?

There are good reasons (the fact that the extremals are critical in the sense that they allow an infinite number of deformations with a vanishing second variation of Kähler action plus maximization of the Kähler function) to expect that the gauge fluxes through # (if well-defined) and \(#_B \) contacts are quantized. The most natural guess would be that the unit of electric electromagnetic flux for # contact is 1/3 since this makes it possible for the electromagnetic gauge flux of quarks to flow to larger space-time sheets. Anyons could however mean more general quantization rules \[84\]. The quantization of electromagnetic gauge flux could serve as a unique experimental signature for # and \(#_B \) contacts and their currents. The contacts can carry also magnetic fluxes. The case of \(#_B \) contacts the flux quantization would be dynamical and analogous to that appearing in super conductors.

Hierarchy of gauge and gravitational interactions

The observed elementary particles are identified as \(CP_2 \) type extremals topologically condensed at space-time sheets with Minkowski signature of induced metric with elementary particle horizon being responsible for the parton aspect. This suggests that at \(CP_2 \) length scale gauge and gravitational interactions correspond to the exchanges of \(CP_2 \) type extremals with light-like \(M^4 \) projection with branching of \(CP_2 \) type extremal serving as the basic vertex as discussed in \[1\]. The gravitational and gauge interactions between the partons assignable to the two causal horizons associated with # contact would be mediated by the # contact, which can be regarded as a gravitational instanton and the interaction with other particles at space-time sheets via classical gravitational fields.

Gauge fluxes flowing through the \(#_B \) contacts would mediate higher level gauge and interactions between space-time sheets rather than directly between \(CP_2 \) type extremals. The hierarchy of flux tubes defining string like objects strongly suggests a p-adic hierarchy of "strong gravities" with gravitational constant of order \(G \sim L_p^2 \), and these strong gravities might correspond to gravitational fluxes mediated by the flux tubes.
5.2.3 The relationship between inertial gravitational masses

Whether the relationship between inertial and gravitational masses is same as in General Relativity has been a long standing poorly understood question and I have seriously considered the possibility that Equivalence Principle fails in TGD framework. The difficulties were resolved after the formulation of quantum TGD in terms of the modified Dirac action having a measurement interaction term coupling quantum numbers associated with isometry Cartan algebra to classical dynamics. This led to the realization that Einstein’s equations hold true only at the long length scale limit [80]. Equivalence Principle however reduce to the coset representation for the super-Virasoro algebras associated with the super-symplectic algebra acting in $\delta CD \times CP_2$ and the super-Kac Moody algebra assignable to light-like 3-surfaces.

Modification of the Equivalence Principle?

The imbeddings of Robertson-Walker cosmologies to $M^4 \times CP_2$ are vacuum extremals [80]. Gravitational mass density does not however vanish for vacuum extremals. This forces to ask whether Equivalence Principle fails in TGD Universe. General arguments at the level of representations of super-conformal algebras however allow to deduce Equivalent Principle. One can also deduce Equivalence Principle in the standard form at the long length scale limit of the theory so that there should exist a natural interpretation for the strange looking result.

In zero energy ontology all conserved (that is Noether-) charges of the Universe vanish identically and their densities should vanish in cosmological length scales at least if one approximates parallel pairs of positive and negative energy space-time sheets with single space-time sheet. This observation allows to imagine two ways out of the problem associated with Equivalence Principle.

1. The first interpretation is that vacuum extremals are only approximate representations of the physical situation and that small fluctuations around them give rise to an inertial four-momentum identifiable as gravitational four-momentum identifiable in terms of Einstein tensor. Equivalence Principle would hold true in the sense that the average gravitational four-momentum would be determined by the Einstein tensor assignable to the vacuum extremal. Zero energy ontology would explain the local non-conservation of average energies and other conserved quantum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations. Classical gravitation should have a thermodynamical description if this interpretation is correct. The average values of the quantum numbers assignable to a space-time sheet would depend on the size of CD and possibly also its location in M^4. If the temporal distance between the tips of CD is interpreted as a quantized variant of cosmic time, the non-conservation of energy-momentum defined in this manner follows.

2. Second interpretation is based on a modification of Equivalence Principle suggested by zero energy ontology. The idea would be that in a given scale Robertson-Walker cosmology actually corresponds to a pair of positive and negative energy space-time sheets for which energies and also other conserved quantum numbers sum up to zero. Vacuum extremals could be interpreted as the vanishing of net energy density for a pair of space-time sheets separated by a distance of order CP_2 scale. The simplest generalization of the Equivalence Principle would be that gravitational four-momentum equals to the difference inertial four-momentum for positive and negative energy space-time sheet and would thus not conserved in general. Gravitational mass would not be conserved and is non-vanishing even for vacuum extremals. It seems that the first option is the realistic one.

An interesting question is whether inertial-gravitational duality generalizes to the case of color gauge charges so that color gauge fluxes would correspond to "gravitational" color charges and the charges defined by the conserved currents associated with color isometries would define "inertial" color charges. Since the induced color fields are proportional to color Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in accordance with "gravitational" color confinement.
Gravitational mass is necessarily accompanied by non-vanishing gauge charges

The experience from the study of the extremals of the Kähler action [7] suggests that for non-vacuum extremals at astrophysical scales Kähler charge doesn’t depend on the properties of the condensate and is apart from numerical constant equal to the gravitational mass of the system using Planck mass as unit:

\[Q_K = \epsilon_1 \frac{M_{gw}}{m_{proton}}. \]

(5.2.1)

The condition \(\frac{\epsilon_1}{\sqrt{\alpha_K}} < 10^{-19} \) must hold true in astrophysical length scales since the long range gauge force implied by the Kähler charge must be weaker than gravitational interaction at astrophysical length scales. It is not clear whether the 'anomalous' Kähler charge can correspond to a mere Z\(_0\) gauge or em charge or more general combination of weak charges.

Also for the imbedding of Schwartzschild and Reissner-Nordström metrics as vacuum extremals non-vanishing gravitational mass implies that some electro-weak gauge charges are non-vanishing [7]. For vacuum extremals with \(\sin^2(\theta_W) = 0 \) em field indeed vanishes whereas Z\(_0\) gauge field is non-vanishing.

If one assumes that the weak charges are screened completely in electro-weak length scale, the anomalous charge can be only electromagnetic if it corresponds to ordinary elementary particles. This however need not be consistent with field equations. Perhaps the most natural interpretation for the "anomalous" gauge charges is due to the elementary charges associated with dark matter. Since weak charges are expected to be screened in the p-adic length scale characterizing weak boson mass scale, the implication is that scaled down copies of weak bosons with arbitrarily small mass scales and arbitrarily long range of interaction are predicted. Also long ranged classical color gauge fields are unavoidable which forces to conclude that also a hierarchy of scaled down copies of gluons exists.

One can hope that photon and perhaps also Z\(_0\) and color gauge charges in Cartan algebra could be quantized classically at elementary particle length scale (\(p \leq M_{127}, \) say) and electromagnetic gauge charge in all length scales apart from small renormalization effects. One of the reasons is that classical electromagnetic fields make an essential part in the description of, say, hydrogen atom.

The study of the extremals of Kähler action and of the imbeddings of spherically symmetric metrics [7, 80] shows that the imbeddings are characterized by frequency type vacuum quantum numbers, which allow to fix these charges to pre-determined values. The minimization of Kähler action for a space-time surface containing a given 3-surface leads to the quantization of the vacuum parameters and hopefully to charge quantization. This motivates the hypothesis that the electromagnetic charges associated with the classical gauge fields of topologically condensed elementary particles are equal to their quantized counterparts. The discussion of dark matter leads to the conclusion that electro-weak and color gauge charges of dark matter can be non-vanishing [23, 21].

5.2.4 Can one regard \# resp. \#_B contacts as particles resp. string like objects?

\#-contacts have obvious particle like aspects identifiable as either partons or parton pairs. \#_B contacts in turn behave like string like objects. Using the terminology of M-theory, \#_B contacts connecting the boundaries of space-time sheets could be also seen as string like objects connecting two branes. Again the ends holes at the ends of \#_B contacts carry well defined gauge charges.

\# contacts as particles and \#_B contacts as string like objects?

The fact that \# contacts correspond to parton pairs raises the hope that it is possible to apply p-adic thermodynamics to calculate the masses of \# contact and perhaps even the masses of the partons. If this the case, one has an order of magnitude estimate for the first order contribution to the mass of the parton as \(m \sim 1/L(p_i), i = 1, 2 \). It can of course happen that the first order contribution vanishes: in this case an additional factor \(1/\sqrt{p_i} \) appears in the estimate and makes the mass extremely small.

For \# contacts connecting space-time sheets with opposite time orientations the vanishing of the net four-momentum requires \(p_1 = p_2 \). According to the number theoretic considerations below it is possible to assign several p-adic primes to a given space-time sheet and the largest among them, call
it p_{max}, determines the p-adic mass scale. The milder condition is that p_{max} is same for the two space-time sheets.

There are some motivations for the working hypothesis that # contacts and the ends of #$_B$ contacts feeding the gauge fluxes to the lower condensate levels or vice versa tend to be located near the boundaries of space-time sheets. For gauge charges which are not screened by vacuum charges (em and color charges) the imbedding of the gauge fields created by the interior gauge charges becomes impossible near the boundaries and the only possible manner to satisfy boundary conditions is that gauge fluxes flow to the larger space-time sheet and space-time surface becomes a vacuum extremal of the Kähler action near the boundary.

For gauge bosons the density of boundary #$_B$ contacts should be very small in length scales, where matter is essentially neutral. For gravitational #$_B$ contacts the situation is different. One might well argue that there is some upper bound for the gravitational flux associated with single # or #$_B$ contact (or equivalently the gravitational mass associated with causal horizon) given by Planck mass or CP_2 mass so that the number of gravitational contacts is proportional to the mass of the system.

The TGD based explanation for Podkletnov effect [14] is based on the assumption that magnetically charged # contacts are carries of gravitational flux equal to Planck mass and predicts effect with correct order of magnitude. The model generalizes also to the case of #$_B$ contacts. The lower bound for the gravitational flux quantum must be rather small: the mass $1/L(p)$ determined by the p-adic prime associated with the larger space-time sheet is a first guess for the unit of flux.

Could # and #$_B$ contacts form Bose-Einstein condensates?

The description as # contact as a parton pair suggests that it is possible to assign to # contacts inertial mass, say of order $1/L(p)$, they should be describable using d’Alembert type equation for a scalar field. # contacts couple dynamically to the geometry of the space-time since the induced metric defines the d’Alembertian. There is a mass gap and hence # contacts could form a Bose-Einstein (BE) condensate to the ground state. If # contacts are located near the boundary of the space-time surface, the d’Alembert equation would be 3-dimensional. One can also ask whether # contacts define a particular form of dark matter having only gravitational interactions with the ordinary matter.

Also the probability amplitudes for the positions of the ends of #$_B$ contacts located at the boundary of the space-time sheet could be described using an order parameter satisfying d’Alembert equation with some mass parameter and whether the notion of Bose-Einstein condensate makes sense also now. The model for atomic nucleus assigns to the ends of the #$_B$ contact realized as a color magnetic flux tube quark and anti-quark with mass scale given by $k = 127$ (MeV scale) [71].

This inspires the question whether # and #$_B$ contacts could be essential for understanding biosystems as macroscopic quantum systems [14]. The BE condensate associated with the # contacts behaves in many respects like super conductor: for instance, the concept of Josephson junction generalizes. As a matter fact, it seems that #$_B$ contacts, join along boundaries, or magnetic flux tubes could indeed be a key element of not only living matter but even nuclear matter and condensed matter in TGD Universe.

5.2.5 TGD based description of external fields

The description of a system in external field provides a nontrivial challenge for TGD since the system corresponds now to a p-adic space-time sheet k_1 condensed on background 3-surface $k_2 > k_1$. The problem is to understand how external fields penetrate into the smaller space-time sheet and also how the gauge fluxes inside the smaller space-time sheet flow to the external space-time sheet. One should also understand how the penetrating magnetic or electric field manages to preserve its value (if it does so). A good example is provided by the description of system, such as atom or nucleus, in external magnetic or electric field. There are several mechanisms of field penetration:

Induction mechanism

In the case of induction fields are mediated from level k_1 to levels $k_2 \neq k_1$. The external field at given level k_1 acts on # and #$_B$ throats (both accompanied by a pair of partons) connecting levels k_2 and k_1. The motion of # and #$_B$ contacts, induced by the gauge and gravitational couplings of partons involved to classical gauge and gravitational fields, creates gauge currents serving as sources
of classical gauge field at the space-time sheets involved. This mechanism involves "dark" partons not predicted by standard model.

A good example is provided by the rotation of charged # throats induced by a constant magnetic field, which in turn creates constant magnetic field inside a cylindrical condensate space-time sheet. A second example is the polarization of the charge density associated with the # throats in the external electric field, which in turn creates a constant electric field inside the smaller space-time sheet.

One can in principle formulate general field equations governing the penetration of a classical gauge field from a given condensate level to other levels. The simplified description is based on the introduction of series of fields associated with various condensate levels as analogs of H and B and D and E fields in the ordinary description of the external fields. The simplest assumption is that the fields are linearly related. A general conclusion is that due to the delicacies of the induced field concept, the fields on higher levels appear in the form of flux quanta and typically the field strengths at the higher condensate levels are stronger so that the penetration of field from lower levels to the higher ones means a decomposition into separate flux tubes.

The description of magnetization in terms of the effective field theory of Weiss introduces effective field H, which is un-physically strong: a possible explanation as a field consisting of flux quanta at higher condensate levels. A general order of magnitude estimate for field strength of magnetic flux quantum at condensate level k is as $1/L^2(k)$.

Penetration of magnetic fluxes via # contacts

At least magnetic gauge flux can flow from level p_1 to level p_2 via # contacts. These surfaces are of the form $X^2 \times D^1$, where X^2 is a closed 2-surface. The simplest topology for X^2 is that of sphere S^2. This leads to the first nontrivial result. If a nontrivial magnetic flux flows through the contact, it is quantized. The reason is that magnetic flux is necessarily over a closed surface.

The concept of induced gauge field implies that magnetic flux is nontrivial only if the surface X^2 is homologically nontrivial: CP_2 indeed allows homologically nontrivial sphere. Ordinary magnetic field can be decomposed into co-homologically trivial term plus a term proportional to Kähler form and the flux of ordinary magnetic field comes only from the part of the magnetic field proportional to the Kähler form and the magnetic flux is an integer multiple of some basic flux.

The proposed mechanism predicts that magnetic flux can change only in multiples of basic flux quantum. In superconductors this kind of behavior has been observed. Dipole magnetic fields can be transported via several # contacts: the minimum is one for ingoing and one for return flux so that magnetic dipoles are actual finite sized dipoles on the condensed surface. Also the transfer of magnetic dipole field of, say neutron inside nucleus, to lower condensate level leads to similar magnetic dipole structure on condensate level. For this mechanism the topological condensation of elementary particle, say charged lepton space-time sheet, would involve at least two # contacts and the magnetic moment is proportional to the distance between these contacts. The requirement that the magnetic dipole formed by the # contacts gives the magnetic moment of the particle gives an estimate for the distance d between # throats: by flux quantization the general order of magnitude is given by $d \sim \frac{2\pi m}{Q_{em} B}$.

Penetration of electric gauge fluxes via # contacts

For # contact for the opposite gauge charges of partons define the value of generalized gauge electric flux between the two space-time sheets. In this case it is also possible to interpret the partons as sources of the fields at the two space-time sheets. If the # contacts are near the boundary of the smaller space-time sheet the interpretation as a flow of gauge flux to a larger space-time sheet is perfectly sensible. The partons near the boundary can be also seen as generators of a gauge field compensating the gauge fluxes from interior.

The distance between partons can be much larger than p-adic cutoff length $L(k)$ and a proper spatial distribution guarantees homogeneity of the magnetic or electric field in the interior. The distances of the magnetic monopoles are however large in this kind of situation and it is an open problem whether this kind of mechanism is consistent with experimental facts.

An estimate for the electric gauge flux Q_{em} flowing through the # contact is obtained as $n \sim \frac{F}{Q_{em}(k)}$: $Q \sim E L^2(k)$, which is of same order of magnitude as electric gauge flux over surface of are $L^2(k)$. In magnetic case the estimate gives $Q_M \sim B L^2(k)$: the quantization of Q_M is consistent
with homogeneity requirement only provided the condition \(B > \frac{\Phi_0}{L^2(k)} \), where \(\Phi_0 \) is elementary flux quantum, holds true. This means that flux quantization effects cannot be avoided in weak magnetic fields. The second consequence is that too weak magnetic field cannot penetrate at all to the condensed surface: this is certainly the case if the total magnetic flux is smaller than elementary flux quantum. A good example is provided by the penetration of magnetic field into cylindrical super conductor through the end of the cylinder. Unless the field is strong enough the penetrating magnetic field decomposes into vortex like flux tubes or does not penetrate at all.

The penetration of flux via dipoles formed by \# contacts from level to a second level in the interior of condensed surface implies phenomena analogous to the generation of polarization (magnetization) in dielectric (magnetic) materials. The conventional description in terms of fields \(H, B, M \) and \(D, E, P \) has nice topological interpretation (which does not mean that the mechanism is actually at work in condensed matter length scales). Magnetization \(M \) (polarization \(P \)) can be regarded as the density of fictitious magnetic (electric) dipoles in the conventional theory: the proposed topological picture suggests that these quantities essentially as densities for \# contact pairs. The densities of \(M \) and \(P \) are of opposite sign on the condensed surface and condensate. \(B = H - M \) corresponds to the magnetic field at condensing surface level reduced by the density \(-M\) of \# contact dipoles in the interior. \(H \) denotes the external field at condensate level outside the condensing surface, \(M \) (\(-M\)) is the magnetic field created by the \# contact dipoles at condensate (condensed) level. Similar interpretation can be given for \(D, E, P \) fields. The penetrating field is homogenous only above length scales larger than the distance between \# throats of dipoles: \(p \)-adic cutoff scale \(L(k) \) gives natural upper bound for this distance: if this is the case and the density of the contacts is at least of order \(n \sim \frac{1}{L^3(k)} \) the penetrating field can be said to be constant also inside the condensed surface.

In condensed matter systems the generation of ordinary polarization and magnetization fields might be related to the permanent \# contacts of atomic surfaces with, say, \(k = 139 \) level. The field created by the neutral atom contains only dipole and higher multipoles components and therefore at least two \# contacts per atom is necessary in gas phase, where join along boundaries contacts between atoms are absent. In the absence of external field these dipoles tend to have random directions. In external field \# throats behave like opposite charges and their motion in external field generates dipole field. The expression of the polarization field is proportional to the density of these static dipole pairs in static limit. \# contacts make possible the penetration of external field to atom, where it generates atomic transitions and leads to the emission of dipole type radiation field, which gives rise to the frequency dependent part of dielectric constant.

Penetration via \#B contacts

The field can also through \#B contacts through the boundary of the condensed surface or through the small holes in its interior. The quantization of electric charge quantization would reduce to the quantization of electric gauge flux in \#B contacts. If there are partons at the ends of contact they affect the gauge gauge flux.

The penetration via \#B contacts necessitates the existence of join along boundaries bonds starting from the boundary of the condensed system and ending to the boundary component of a hole in the background surface. The field flux flows simply along the 3-dimensional stripe \(X^2 \times D^1 \): since \(X^2 \) has boundary no flux quantization is necessary. This mechanism guarantees automatically the homogeneity of the penetrating field inside the condensed system.

An important application for the theory of external fields is provided by bio-systems in which the penetration of classical electromagnetic fields between different space-time sheets should play central role: what makes the situation so interesting is that the order parameter describing the \# and \#B Bose-Einstein condensates carries also phase information besides the information about the strength of the normal component of the penetrating field.

5.2.6 Number theoretical considerations

Number theoretical considerations allow to develop more quantitative vision about the how \(p \)-adic length scale hypothesis relates to the ideas just described.
5.2. Basic conceptual framework

How to define the notion of elementary particle?

p-Adic length scale hierarchy forces to reconsider carefully also the notion of elementary particle. p-Adic mass calculations led to the idea that particle can be characterized uniquely by single p-adic prime characterizing its mass squared. It however turned out that the situation is probably not so simple.

The work with modelling dark matter suggests that particle could be characterized by a collection of p-adic primes to which one can assign weak, color, em, gravitational interactions, and possibly also other interactions. It would also seem that only the space-time sheets containing common primes in this collection can interact. This leads to the notions of relative and partial darkness. An entire hierarchy of weak and color physics such that weak bosons and gluons of given physics are characterized by a given p-adic prime \(p \) and also the fermions of this physics contain space-time sheet characterized by same p-adic prime, say \(M_{89} \) as in case of weak interactions. In this picture the decay widths of weak bosons do not pose limitations on the number of light particles if weak interactions for them are characterized by p-adic prime \(p \neq M_{89} \). Same applies to color interactions.

The p-adic prime characterizing the mass of the particle would perhaps correspond to the largest p-adic prime associated with the particle. Graviton which corresponds to infinitely long ranged interactions, could correspond to the same p-adic prime or collection of them common to all particles. This might apply also to photons. Infinite range might mean that the join along boundaries bonds mediating these interactions can be arbitrarily long but their transversal sizes are characterized by the p-adic length scale in question.

The natural question is what this collection of p-adic primes characterizing particle means? The hint about the correct answer comes from the number theoretical vision, which suggests that at fundamental level the branching of boundary components to two or more components, completely analogous to the branching of line in Feynman diagram, defines vertices [73, 1].

1. If space-time sheets correspond holographically to multi-p p-adic topology such that largest \(p \) determines the mass scale, the description of particle reactions in terms of branchings indeed makes sense. This picture allows also to understand the existence of different scaled up copies of QCD and weak physics. Multi-p p-adicity could number theoretically correspond to \(q \)-adic topology for \(q = m/n \) a rational number consistent with p-adic topologies associated with prime factors of \(m \) and \(n \) (1/p-adic topology is homeomorphic with p-adic topology).

2. One could also imagine that different p-adic primes in the collection correspond to different space-time sheets condensed at a larger space-time sheet or boundary components of a given space-time sheet. If the boundary topologies for gauge bosons are completely mixed, as the model of hadrons forces to conclude, this picture is consistent with the topological explanation of the family replication phenomenon and the fact that only charged weak currents involve mixing of quark families. The problem is how to understand the existence of different copies of say QCD. The second difficult question is why the branching leads always to an emission of gauge boson characterized by a particular p-adic prime, say \(M_{89} \), if this p-adic prime does not somehow characterize also the particle itself.

What effective p-adic topology really means?

The need to characterize elementary particle p-adically leads to the question what p-adic effective topology really means. p-Adic mass calculations leave actually a lot of room concerning the answer to this question.

1. The naivest option is that each space-time sheet corresponds to single p-adic prime. A more general possibility is that the boundary components of space-time sheet correspond to different p-adic primes. This view is not favored by the view that each particle corresponds to a collection of p-adic primes each characterizing one particular interaction that the particle in question participates.

2. A more abstract possibility is that a given space-time sheet or boundary component can correspond to several p-adic primes. Indeed, a power series in powers of given integer \(n \) gives rise to a well-defined power series with respect to all prime factors of \(n \) and effective multi-p-adicity could emerge at the level of field equations in this manner.
One could say that space-time sheet or boundary component corresponds to several p-adic primes through its effective p-adic topology in a hologram like manner. This option is the most flexible one as far as physical interpretation is considered. It is also supported by the number theoretical considerations predicting the value of gravitational coupling constant \[\text{[73]} \].

An attractive hypothesis is that only space-time sheets characterized by integers \(n_i \) having common prime factors can be connected by join along boundaries bonds and can interact by particle exchanges and that each prime \(p \) in the decomposition corresponds to a particular interaction mediated by an elementary boson characterized by this prime.

The physics of quarks and hadrons provides an immediate test for this interpretation. The surprising and poorly understood conclusion from the p-adic mass calculations was that the p-adic primes characterizing light quarks u,d,s satisfy \(k_q < 10^7 \), where \(k = 107 \) characterizes hadronic space-time sheet \[\text{[48]} \].

1. The interpretation of \(k = 107 \) space-time sheet as a hadronic space-time sheet implies that quarks topologically condense at this space-time sheet so that \(k = 107 \) cannot belong to the collection of primes characterizing quark.

2. Quark space-time sheets must satisfy \(k_q < 10^7 \) unless \(\hbar \) is large for the hadronic space-time sheet so that one has \(k_{eff} = 107 + 22 = 129 \). This predicts two kinds of hadrons. Low energy hadrons consists of u, d, and s quarks with \(k_q < 10^7 \) so that hadronic space-time sheet must correspond to \(k_{eff} = 129 \) and large value of \(\hbar \). One can speak of confined phase. This allows also \(k = 127 \) light variants of quarks appearing in the model of atomic nucleus \[\text{[71]} \]. The hadrons consisting of c,t,b and the p-adically scaled up variants of u,d,s having \(k_q > 10^7 \), \(\hbar \) has its ordinary value in accordance with the idea about asymptotic freedom and the view that the states in question correspond to short-lived resonances.

Do infinite primes code for q-adic effective space-time topologies?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies such as the hierarchy of infinite primes \[\text{[73]} \], hierarchy of Jones inclusions \[\text{[86]} \], hierarchy of dark matters with increasing values of \(\hbar \) \[\text{[23, 21]} \], the hierarchy of extensions of given p-adic number field, and the hierarchy of selves and quantum jumps with increasing duration with respect to geometric time. There are good reasons to expect that these hierarchies are closely related.

1. Some facts about infinite primes

The hierarchy of infinite primes can be interpreted in terms of an infinite hierarchy of second quantized super-symmetric arithmetic quantum field theories allowing a generalization to quaternionic or perhaps even octonionic context \[\text{[73]} \]. Infinite primes, integers, and rationals have decomposition to primes of lower level.

Infinite prime has fermionic and bosonic parts having no common primes. Fermionic part is finite and corresponds to an integer containing and bosonic part is an integer multiplying the product of all primes with fermionic prime divided away. The infinite prime at the first level of hierarchy corresponds in a well defined sense a rational number \(q = m/n \) defined by bosonic and fermionic integers \(m \) and \(n \) having no common prime factors.

2. Do infinite primes code for effective q-adic space-time topologies?

The most obvious question concerns the space-time interpretation of this rational number. Also the question arises about the possible relation with the integers characterizing space-time sheets having interpretation in terms of multi-p-adicity. On can assign to any rational number \(q = m/n \) so called q-adic topology. This topology is not consistent with number field property like p-adic topologies. Hence the rational number \(q \) assignable to infinite prime could correspond to an effective q-adic topology.

If this interpretation is correct, arithmetic fermion and boson numbers could be coded into effective q-adic topology of the space-time sheets characterizing the non-determinism of Kähler action in the relevant length scale range. For instance, the power series of \(q > 1 \) in positive powers with integer coefficients in the range \([0, q) \) define q-adically converging series, which also converges with respect to the prime factors of \(m \) and can be regarded as a p-adic power series. The power series of \(q \) in negative powers define in similar converging series with respect to the prime factors of \(n \).
I have proposed earlier that the integers defining infinite rationals and thus also the integers \(m \) and \(n \) characterizing finite rational could correspond at space-time level to particles with positive resp. negative time orientation with positive resp. negative energies. Phase conjugate laser beams would represent one example of negative energy states. With this interpretation super-symmetry exchanging the roles of \(m \) and \(n \) and thus the role of fermionic and bosonic lower level primes would correspond to a time reversal.

1. The first interpretation is that there is single \(q \)-adic space-time sheet and that positive and negative energy states correspond to primes associated with \(m \) and \(n \) respectively. Positive (negative) energy space-time sheets would thus correspond to \(p \)-adicity (\(1/p \)-adicity) for the field modes describing the states.

2. Second interpretation is that particle (in extremely general sense that entire universe can be regarded as a particle) corresponds to a pair of positive and negative energy space-time sheets labelled by \(m \) and \(n \) characterizing the \(p \)-adic topologies consistent with \(m- \) and \(n- \)adicities. This looks natural since Universe has necessary vanishing net quantum numbers. Unless one allows the non-uniqueness due to \(m/n = m'r/n'r \), positive and negative energy space-time sheets can be connected only by \# contacts so that positive and negative energy space-time sheets cannot interact via the formation of \# \(B \) contacts and would be therefore dark matter with respect to each other.

Positive energy particles and negative energy antiparticles would also have different mass scales. If the rate for the creation of \# contacts and their CP conjugates are slightly different, say due to the presence of electric components of gauge fields, matter antimatter asymmetry could be generated primordially.

These interpretations generalize to higher levels of the hierarchy. There is a homomorphism from infinite rationals to finite rationals. One can assign to a product of infinite primes the product of the corresponding rationals at the lower level and to a sum of products of infinite primes the sum of the corresponding rationals at the lower level and continue the process until one ends up with a finite rational. Same applies to infinite rationals. The resulting rational \(q = m/n \) is finite and defines \(q \)-adic effective topology, which is consistent with all the effective \(p \)-adic topologies corresponding to the primes appearing in factorizations of \(m \) and \(n \). This homomorphism is of course not 1-1.

If this picture is correct, effective \(p \)-adic topologies would appear at all levels but would be dictated by the infinite-\(p \) \(p \)-adic topology which itself could refine infinite-\(P \) \(p \)-adic topology \[73\] coding information too subtle to be catched by ordinary physical measurements.

Obviously, one could assign to each elementary particle infinite prime, integer, or even rational to this a rational number \(q = m/n \). \(q \) would associate with the particle \(q \)-adic topology consistent with a collection of \(p \)-adic topologies corresponding to the prime factors of \(m \) and \(n \) and characterizing the interactions that the particle can participate directly. In a very precise sense particles would represent both infinite and finite numbers.

Under what conditions space-time sheets can be connected by \# \(B \) contact?

Assume that particles are characterized by a \(p \)-adic prime determining it mass scale plus \(p \)-adic primes characterizing the gauge bosons to which they couple and assume that \# \(B \) contacts mediate gauge interactions. The question is what kind of space-time sheets can be connected by \# \(B \) contacts.

1. The first working hypothesis that comes in mind is that the \(p \)-adic primes associated with the two space-time sheets connected by \# \(B \) contact must be identical. This would require that particle is many-sheeted structure with no other than gravitational interactions between various sheets. The problem of the multi-sheeted option is that the characterization of events like electron-positron annihilation to a weak boson looks rather clumsy.

2. If the notion of multi-\(p \) \(p \)-adicity is accepted, space-time sheets are characterized by integers and the largest prime dividing the integer might characterize the mass of the particle. In this case a common prime factor \(p \) for the integers characterizing the two space-time sheets could be enough for the possibility of \# \(B \) contact and this contact would be characterized by this prime. If no common prime factors exist, only \# contacts could connect the space-time sheets.
This option conforms with the number theoretical vision. This option would predict that the transition to large h phase occurs simultaneously for all interactions.

5.3 Model for topologically quantized magnetic field

5.3.1 Topological field quantization

Topological field quantization [37] implies that various notions of quantum field theory have rather precise classical analogies. Topological field quantization provides the correspondence between the abstract Fock space description of elementary particles and the description of the elementary particles as concrete geometric objects detected in the laboratory. In standard quantum field theory this kind of correspondence is lacking since classical fields are regarded as a phenomenological concept only. Topological field quanta define regions of coherence for the classical fields and classical coherence is the prerequisite of the quantum coherence.

The energies and other classical charges of the topological field quanta are quantized by the criticality of the preferred extremals making classical space-time surfaces the counterparts of the Bohr orbits. Feynman diagrams become classical space-time surfaces with lines thickened to 4-manifolds. For instance, "massless extremals" representing topologically quantized classical radiation fields are the classical counterparts of gravitinos and photons. Topologically quantized non-radiative nearby fields give rise to various geometric structures such as magnetic and electric flux tubes.

The virtual particles of quantum field theory have also classical counterparts. In particular, the virtual particles of quantum field theory can have negative energies: this is true also for the TGD counterparts of the virtual particles. The fundamental difference between TGD and GRT is that in TGD the sign of energy depends on the time orientation of the space-time sheet: this is due to the fact that in TGD energy current is vector field rather than part of tensor field. Therefore space-time sheets with negative energies are possible. This could have quite dramatic technological consequences: consider only the possibility of generating energy from vacuum and classical signalling backwards in time along negative energy space-time sheets [51, 52]. Also bio-systems might have invented negative energy space-time sheets: in fact, so called "massless extremals" provide an ideal manner to generate coherent motions as recoil effects caused by the creation of negative energy massless extremals [52, 53]. An interesting possibility is that quantum entanglement has the formation of the join along boundaries bonds as its geometric correlate.

The crucial question is of course ‘How to make this idea quantitative?’ An attractive possibility is that topological field quanta identified as material or mind-like space-time sheets could be regarded as counterparts of oscillator operators of free fields in quantum field theory. This would mean that one could make order of magnitude estimates for the probabilities for the presence of various numbers of both material and mind-like space-time sheets using quantum field theoretical intuition. The coefficient of a particular state in the expansion of the creation operators of the outgoing interacting quantum fields in terms of the creation and annihilation operators of free quantum fields could provide an estimate for the probability that a particular configuration containing topological field quanta with positive and negative energies results in quantum jump between quantum histories. Since mind-like space-time sheets are correlates for virtual particles, this would also mean a deep connection between quantum field theory and cognition.

Topological field quanta could serve as templates for the formation of the bio-structures. Thus topologically quantized classical electromagnetic fields could be equally important for the functioning of the living systems as the structures formed by the visible bio-matter and the visible part of bio-system might represent only a dip of an ice berg.

Topological field quantization of magnetic field means that given classical magnetic field is replaced with a bundle of flux tubes flowing along the field lines of classical magnetic field. In TGD context magnetic flux tubes are really what they look, that is cylindrical 3-surfaces with boundary. The boundary of the flux tube must by Maxwell equations contain rotating em or Z^0 charges creating the magnetic field in the interior (just like an induction coil creates an axial magnetic field inside it). The concept of topological field quantum generalizes also to the case of classical fields generated by wormholes.

In case of wormhole super conductivity 'charge carriers' are wormholes. Wormhole looking like charge $+Q$ on the 'upper' sheet looks like charge $-Q$ on the 'lower' sheet; when looked from the wider
Figure 5.1: Topological field quantization for magnetic field replaces flux lines with flux tubes having outer boundary as 3-surfaces.

perspective (imbedding space), wormhole behaves as a dipole with extremely small dipole strength. The currents associated with wormholes are of opposite sign on the two space-time sheets and magnetic flux tube consists of two fluxes: the flux on the 'upper' space-time sheet and return flux on the 'lower' space-time sheet. Closed wormhole flux tube can be visualized as two circles above each other and having Planck distance; the circles carry opposite magnetic fluxes. This visualization turns out to be useful later.

5.3.2 Mind like space-time sheets

The original formulation of quantum TGD led to the conclusion that there are two kinds of space-time sheets: material space-time sheets and mind-like space-time sheets so that one can say that Matter Mind duality is realized in geometrical sense: of course, Mind is understood in the sense of cognitive representations only. What one means with mind like space sheets is however not at all obvious.

1. The original proposal was that mind like space-time sheets have by definition a finite temporal extension. In zero energy ontology this holds true for all space-time sheets so that all space-time sheets would be mind-like. This could make perfect sense. For instance, the fermionic part of zero energy state can be regarded as a logical rule $A \rightarrow B$ with the instances of A and B represented as positive and negative energy fermion states in Fock basis: the Fock basis for many-fermion states indeed defines a representation of Boolean logic.

2. Mind like space-time sheets could be also interpreted as p-adic space-time sheets responsible for cognition whereas real space-time sheets would be matter like in the sense that they define the space-time correlates of sensory experience. The intersection of p-adic and real worlds is along rational and common algebraic points of the imbedding space and is discrete (note that this statement assumes the identification of preferred imbedding space coordinates). p-Adic space-time sheets could serve as natural correlates of cognition and intentionality and their interaction with real space-time sheets could give rise to effective p-adic topology crucial for the interpretation of p-adic mass calculations. p-Adic space-time sheets have infinite size in real topology so that cognition and intentionality could not be localized in brain. Only the cognitive representations defined by the intersections of real and p-adic space-time sheets allow this localization.
3. p-Adic space-time sheets can be mapped to real space-time sheets via a generalization of the canonical identification map which is continuous and maps rationals \(m/n, m, n < p^k, k > 0 \) to rationals. The explicit form of the map is \(m/n \rightarrow I_k(m)/I_k(n) \), with \(I_k(m) \) defined as

\[
x = \sum x np^{nk} \rightarrow \sum x np^{-nk}.
\]

This map could define the effective p-adic topology for real space-time sheets in finite measurement resolution reducing to discretized real topology above distances defined by the p-adic length scale corresponding to \(p^k \). Below the resolution length scale the impossibility to well-order p-adic numbers would correspond to the impossibility to order space-time points by physical measurements. What makes this map attractive is that it commutes with the discrete counterparts of various space-time symmetries in the resolution defined by \(p^k \) and is also continuous.

4. In zero energy ontology two scales emerges naturally. The scale of causal diamond comes as an octave of \(CP_2 \) scale and corresponds to secondary p-adic length scale. The primary p-adic length scale characterizing elementary particles is essentially square root of this scale. In case of electron the latter scale is of order electron Compton length and the first one equals to .1 seconds defining the fundamental bio-rhythm. This suggests that MEs and magnetic flux tubes corresponding to secondary p-adic scale and having size of order \(CD \) size could be interpreted as mind-like space-time sheets. This interpretation will be adopted in the sequel.

5.3.3 Do mind-like space-time sheets perform simple mimicry?

Mind-like space-time sheets serve as quantum correlates of selves and are made possible by the classical non-determinism of the Kähler action and their defining property is finite temporal extension. mind-like space-time sheets are absolutely crucial for TGD inspired theory of consciousness since their presence is what makes possible conscious experiences with contents localized in a finite time interval, which characterized by the duration of the mind-like space-time sheet: without mind-like space-time sheets the contents of conscious experiences would not be temporally localized. Topological field quantization suggests the identification of the mind-like space-time sheets as classical counterparts of virtual particles, in particular, virtual photons. This suggests that some (not all) mind-like space-time sheets could be topological correlates of the internal (photon) lines of Feynman diagram and thus have naturally finite time duration.

Rather remarkably, TGD based notion of energy correlates the sign of energy with time orientation and allows mind-like space-time sheets to have also negative energy. Also wormhole-magnetic fields could be analogous to virtual particle pairs with vanishing total energy if the space-time sheets associated with the wormhole magnetic field have opposite time orientation. Mind-like space-time
sheets provide cognitive representations and the simplest representation is direct mimicry. Hence one cannot exclude the possibility that wormhole magnetic fields form cognitive representations of the surrounding world in an extremely concrete manner: the magnetic field strength is the same as the field strength of the 'real' magnetic field. This could hold true quite generally: pairs of space-time sheets with opposite time orientation could form cognitive representations of the external world such that the field strengths are same as those of the external world.

A concrete manner to achieve this mimicry is to glue mind-like space-time sheet pairs on the boundaries of the material space-time sheets by connecting the material space-time sheet by join along boundaries bond to the mind-like space-time sheet with a positive time orientation. This would mean that universe would be mimicking itself at classical level and in very concrete manner: note that this mimicry would resemble the emulation of Turing machines performed by Turing machines. In particular, the effect of em radiation on living matter at cyclotron frequencies of ions in Earth’s magnetic field (or modulated by these frequencies) [41] could be due to the fact that some ions 'drop' (or rather, flow along join along boundaries bonds) to the space-time sheets of wormhole magnetic fields providing cognitive representation for Earth’s magnetic field.

An interesting possibility is that cell membranes correspond to Z_0 wormhole magnetic fields glued to the boundaries of the cellular space-time sheets, or rather, are between and glued to the boundaries of cellular and extracellular space-time sheets characterized by same p-adic prime. The model for hearing and cognition is consistent with but does not require this assumption [30, 32, 57].

This view reflects my thinking for more than decade ago. In particular, the notion of mind-like space-time sheet is based on the observation that determinism in its standard form fails and the idea that one can save determinism by allowing 3-surfaces consisting of union of disjoint space-time sheets with time-like separations. In zero energy ontology providing a more rigorous formulation for the generalized notion of classical determinism causal diamonds (CDs) defined as intersections of future and past directed light-cones play a key role. Space-time sheets connect the two light-like boundaries of CDs carrying opposite net quantum numbers. Mind-like space-time sheets could be identified as to space-time sheets associated with sub-CDs and would be analogous to radiative corrections in quantum field theory picture. One can of course argue that all space-time sheets are mind-like in this framework. For instance, the fermionic oscillator operators at the ends of space-time sheet provide a representation of Boolean algebra and zero energy states could be interpreted as Boolean statements of type A implies B.

One should not confuse mind-like space-time sheets with cognitive space-time sheets identified as p-adic counterparts of space-time sheets and having literally infinite size in real sense and a discrete intersection with real space-time sheets consisting of rational points and points in some algebraic extension of rationals.

5.3.4 Model for wormhole flux tube as a hollow cylinder

In the absence of ordinary matter the electric part of gauge field is sourceless in the interior of the flux tube and one must assume the geometry of a hollow cylinder for the flux tube to avoid singularities. The wormhole charge densities on the inner and outer boundaries of the cylinder are of opposite sign and sourceless radial electric field is created in the interior of the cylinder. Rotational motion of the wormholes creates axial magnetic fluxes of opposite sign on the two space-time sheets. Clearly, the magnetic flux runs along the cylinder; goes to 'lower' space-time sheet via magnetic wormhole, and returns along the 'lower' space-time sheet (see Fig. [5.3.4]). It is perhaps needless to add that hollow cylindrical structures are very frequent in bio-systems: representative examples are provided by microtubules and axons.

5.3.5 Wormhole flux tubes need not be closed in ordinary sense

The wormhole flux tube can apparently have an end unlike ordinary magnetic flux tube. At the end point the magnetic flux from the 'upper' sheet flows to the 'lower' sheet through magnetic wormhole, which looks like a magnetic monopole, when viewed from either sheet of 3-space. From imbedding space perspective, one has extremely weak magnetic dipole, with monopoles located at Planck distance. Note that magnetic flux lines are closed as they should be.

The simplest expectation is that also wormhole flux tubes run along the closed field lines of the average classical magnetic field associated with the wormhole flux tube configuration. Wormhole
5.3.6 Wormhole flux tubes form a macroscopic quantum system

Since wormholes populate the boundaries of the flux tubes and since they form BE condensate, the entire exotic magnetic field configuration can be regarded as a macroscopic quantum system. Thus, according to TGD inspired theory of consciousness, flux tube configurations should be indeed controllable by quantum jumps and quantum mechanical free will becomes possible in the entire region covered by the exotic magnetic field configuration. One might even say, that wormhole condensate makes classical field a potential conscious being. This suggests that wormhole magnetic fields are crucial for the understanding the behavior of bio-systems as systems possessing free will.

The simplest possibility is that only the fluxes of the magnetic fluxes inside flux tubes are controlled by free will. As a consequence, psychokinetic effects on objects, which are wormhole super conductors, are in principle possible via a voluntary control of Meissner force (levitation). As found in [37], magnetic fluxes associated with flux tubes are in general quantized so that control occurs in discrete steps.
5.3. Model for topologically quantized magnetic field

5.3.7 The interaction of coherent light with wormhole flux tubes

To understand Comorosan effect and phantom DNA effect to be considered in next section, one must construct a model for the interaction of wormholes with laser light. Needless to say, this interaction is fundamental for the TGD based description of bio-systems as macroscopic quantum systems.

1. Wormholes have coupling to the difference ΔA of the quantized gauge potentials describing photons (Planck size 3-surfaces) of topologically condensed coherent light on the two space-time sheets of the wormhole flux tube. This is due to the fact that wormhole behaves as a pair of two opposite charges on the two parallel space-time sheets connected by it.

2. The absorption of laser light can induce topology change for a closed wormhole flux tube. It is useful to visualize wormhole flux tubes as two one-dimensional closed circles above each other (within distance of Planck length). Clearly, the circles span in the initial situation annulus. The absorption of laser light can induce a pinching process in which the two circles are deformed so that they touch each other momentarily. At the moment of touching the circles are cut and the ends can recombine in two different manners to form a single circle. Either the upper and lower ends of circle on the same side recombine to give single circle which spans annulus with cut. Or the upper and lower ends belonging to different sides recombine to form a circle with a twist of π, which spans a twisted annulus, known as Möbius strip, which is non-orientable, single-sided surface. The model for Comorosan and phantom DNA effects relies on the process $\text{annulus} \rightarrow \text{twisted annulus}$.

5.3.8 Quantum antenna hypothesis and wormholes

Quantum antenna hypothesis states that microtubules create a coherent state of photons (in particular bio-photons) and possibly also of gravitons. If the proposed model for the interaction between wormholes and coherent light is correct, then the presence of quantum coherent light in bio-system is necessary for the generation of currents in wormhole flux tube structures associated with DNA.

These currents correspond to phase gradients and the integer valued quantum numbers characterizing the phase increments around closed loops have been proposed to provide a coding of biological information and a model of memory [14]. Although the model was constructed assuming that bio-system is ordinary super conductor, it works also for wormhole super conductor option. Note also, that the previous model fixes also the interaction between coherent photons and wormholes associated with the lipid layers of cell membrane, which is only one example of hollow cylinder like configurations frequent in bio-systems. An interesting possibility is that bio-system uses the twisted and untwisted configurations of closed flux tubes to store binary data.

Combining these ideas with the suggested identification for the quantum correlates of the sensory qualia, a definite picture of bio-system as a macroscopic quantum in which both wormholes and wormhole magnetic fields, coherent light electronic and neutrino Cooper pairs have essential roles, seems to emerge. [To be honest, this is actually quite an old discovery: the basic concepts of Hindu yoga are prana channels (wormhole flux tubes) and light (coherent photons)!!].

5.3.9 Phantom DNA effect, Comorosan effect, DNA as a conductor, ORMEs: four peculiar effects with a common explanation

The concept of closed wormhole flux tube provides explanation for Comorosan effect and phantom DNA effect as also the conductivity of DNA [35] described in [12, 13]. The irradiation of biomatter using visible laser light with certain preferred frequencies is crucial for all these effects. The interpretation is that irradiation transfers electron from one space-time sheet to another one (and creates automatically wormhole) and since the energy of electron is quantized, the preferred frequencies correspond to energy differences of electron on the two space-time sheets associated with the wormhole flux tube. This in turn provides support for the exotic atom concept providing explanation for the properties of ORMEs [8].
5.4 Comorosan effect, phantom DNA effect and homeopathy

5.4.1 Comorosan effect

The first model for Comorosan effect was based on superconductivity and the formation of Josephson junctions between interacting organic molecules assumed to contain closed superconducting current loops. The model reproduced the basic formula of Comorosan effect but not all aspects related to the interaction of laser light with organic molecule were understood. Wormhole superconductivity leads to much more precise model for this interaction and wormhole superconductivity is strongly favored over ordinary superconductivity as an explanation of the effect.

The effect

Comorosan effect [17, 51] demonstrates rather peculiar looking facts about the interaction of organic molecules with visible laser light at wavelength $\lambda = 546 \, \text{nm}$. As a result of irradiation molecules seem to undergo a transition $S \rightarrow S^*$. S^* state has anomalously long lifetime and stability in solution. $S \rightarrow S^*$ transition has been detected through the interaction of S^* molecules with different biological macromolecules, like enzymes and cellular receptors.

The typical result in the enzyme-substrate interaction is represented by the enhancement of the enzymic rate, when the respective enzyme substrate is previously irradiated for certain sharply defined times. These efficient (irradiation) times are enzyme dependent and can also depend on the biological origin of the enzyme. They are always of the following type $t_i = i \times 5 \, \text{sec}$, where i is certain integer. The general formula for the effective times is $t_k = t_m + (k-1)\tau_n$, $k = 1, 2, \ldots, 6$, where t_m is the minimum radiation time inducing the first effect and τ_n is the period between two consecutive effects $[17, 51]$.

$t_m = m_E t_1$ and $\tau_n = n_E t_1$ are multiples of the basic time scale $t_1 = 5 \, \text{sec}; t_k = (m_E + (k-1)n_E)t_1$. The integers m_E and n_E can be regarded as enzyme characteristics, depending however on the biological origin of the enzyme.

Consider the specific enzymic interaction $E + S \leftrightarrow ES \leftrightarrow E + P$, where E stands for enzyme, S for substrate and P interaction product. Assume that substrate S is subject to a sequence of distinct irradiations lasting for times t_a, t_b, ... The following rules are found to hold true.

1) The irradiations of the substrate performed after an irradiation with efficient time have no effect on the enzyme-substrate interaction.
2) Any arbitrary irradiation of the substrate with irradiation time less than sixth efficient time t_6 performed prior to any other efficient time, is irrelevant for the enzyme-substrate interaction.
3) Any arbitrary irradiation of the substrate lasting more than the sixth efficient time t_6 and performed prior to an efficient time precludes all other subsequent effects in enzyme-substrate interaction.

The work of Comorosan demonstrates that all irradiation times have nontrivial effect on organic molecules but that for effective times something very special must occur. One must understand what this 'very special' is, derive Comorosan formula from a physical model and find physical interpretation for the integers m_E and n_E appearing in the formula as well as explain the special role of $t > t_6$ irradiation times.

Model for the interaction of laser light with organic molecule

The model reproduces the basic formula of Comorosan effect but there were also some not so well understood aspects.

1. Effect occurs for preferred frequencies only. This can be understood if the process the interaction of laser light with wormhole flux tube involves transfer of electron from one condensate level to another one and thus a change of energy level. The transfer of electron leads to a creation of a wormhole.

2. The intensity of laser light does not matter. What is needed is that the intensity is above certain threshold. The original explanation in terms of saturation of effect (for large intensities of laser light the effect of laser light on organic molecules does not depend on the intensity) has turned to be unsatisfactory. It seems that laser light just initiates some process which itself does not depend on the laser light.
3. The assumption that laser light stimulates the increase of a phase angle increment type variable defined over a loop, which is effectively cut in process, explains the preferred radiation times. What happens is that the phase increment increases linearly with time and for preferred radiation times the increase of phase angle is multiple of 2π so that the loop can close back again. The experience with super conductivity suggests the identification of the phase angle gradient as quantized momentum: the problem is to identify the carrier of this momentum.

An elegant explanation for these aspects of Comorosan effect results if one assumes that wormhole super conductivity is in question and that laser light induces a transformation of a closed wormhole tube spanning an annulus to that spanning a twisted annulus. Since the characteristic time scale is defined by the frequency of laser light, the process in question occurs very rapidly as compared to the time scale of order 5 seconds of the laser irradiation. What is important is that the reverse process in which a twisted annulus transforms to an untwisted annulus cannot occur if the wormholes possess momentum k which is not multiple of $2\pi/L$ (by the quantization of momentum propagating in closed loop) and the wave length of laser length is large compared to the size of the loop.

The twisted annulus configuration leads to the acceleration of the wormholes and generation of longitudinal wormholes currents. If the initial, annulus type configuration of the flux tube contains constant wormhole charge density, then for the twisted annulus the charge density is of constant magnitude and of opposite sign on the different sides of each kink since the twist interchanges the ‘upper’ and ‘lower’ space-time sheets. Half of the structure corresponds to positive, and half of the structure to negative wormhole charge density (see Fig. 5.4.1).

One must assume that both kinks contain additional wormhole charges of opposite sign generated from vacuum, when the twisted annulus configuration is created in the interaction with the laser light. The creation of a twisted annulus is necessary in order to get a pair of opposite charges with large distance along the flux tube. These wormhole charges serve as sources of additional electric fields. Most of the electric flux flows in the radial direction of the flux tube but a small fraction $E_L = eE_{\text{max}}$ of the maximal flux $E_{\text{max}} = e/2S$, where S is the transverse area of the tube, is assumed to flow along the flux tube surface. E_L has constant magnitude and is of opposite sign on the ‘upper’ and ‘lower’ space-time sheets.

E_L accelerates the wormholes. The acceleration is of opposite sign at the opposite sides of the kinks and leads to the flow of the wormholes to the kink, where they must annihilate topologically.

Newton’s equation for the wormhole in external field gives wormhole momentum $k(t)$ as a function of time

$$\frac{dk}{dt} = e2cE, \quad E = \frac{e}{2S} \text{sign}(x).$$

$$\text{sign}(x) = \begin{cases} -1, & x < 0 \\ +1, & x > 0 \end{cases}$$

(5.4.1)

Here $|x|$ measures the distance from the twist. The factor 2 in Coulomb force comes from the identical contributions of the two space-time sheets to the Coulomb force. The momentum of wormhole as function of time can also be obtained from the quantization condition

$$k - 2eA_L = 0,$$

(5.4.2)

stating that wormhole order parameter is covariantly constant in the longitudinal direction. Since $A_L = E_L t$ holds true, one obtains same result as from Newton’s equation.

Wormhole momentum increases linearly as a function of time since constant force is in question apart from the effect caused by the gradually decreasing density of wormholes caused by wormhole pair annihilation in kinks; this effect is however completely negligible since the time scale is so slow. In an excellent approximation the momentum gained by the wormholes in time t is
Figure 5.4: The interaction with laser light is assumed to induce the transformation of annulus configuration of wormhole flux tube to twisted annulus and creation of at least one wormhole pair with opposite charges. The members of wormhole pair go to separate kinks and create small longitudinal electric field.

\[
\begin{align*}
 k(t) &= \frac{e^2}{S} t = \frac{2\pi}{L} t_0, \\
 t_0 &= \frac{1}{\alpha} \frac{S}{2\pi L}, \\
 \alpha &= \frac{e^2}{4\pi}.
\end{align*}
\] (5.4.3)

Here \(t_0 \) is the time during which \(k \) achieves a value allowing the transitions back to the untwisted flux tube configuration. In agreement with the experimental data, the time scale \(t_0 \) does not depend on the intensity of irradiation; \(t_0 \) should be of the order of 5 seconds. \(L \) should be considerably smaller than the wavelength of the visible light in case of Comorosan effect. For \(\sqrt{S} \) and \(L \) of order \(10^{-9} \) and \(10^{-8} \) meters respectively one obtains the estimate \(\epsilon \sim 10^{-16} \) so that the longitudinal fraction of electric gauge flux is extremely small.

For \(t = t_n = nt_0 \) wormholes have gained momentum \(k = n2\pi/L \), for which the return to the ordinary closed untwisted flux tube configuration is possible. Laser light stimulates automatically transitions to the untwisted configuration. If laser light stimulation is not continued after \(t_n \), a certain fraction of molecules is left to the closed untwisted loop state with wormhole momentum \(k = n2\pi/L \). It is the presence of these loops carrying wormhole super current, which explains the change in the
interactions of with organic molecules if interaction involves the formation of Josephson junctions between interacting molecules. If the stimulation is continued, also the closed untwisted loops suffer a re-transition to the twisted state and the momentum \(k \) continues to increase and the effect remains small. If stimulation ceases at such moment of time that \(k \) fails badly to satisfy the quantization condition the loops remain in twisted configuration and transitions to untwisted configuration are rare.

The explanation for Comorosan formula

It is assumed that organic molecules are wormhole super conductors containing closed wormhole flux tubes. The explanation as such does not differentiate between ordinary and wormhole super conductors.

If wormhole order parameter is proportional to a spatially non-constant phase factor then the flux tubes of the wormhole magnetic field carry longitudinal wormhole supra currents proportional to the gradient of the phase factor. The increment of the phase factor around any closed loop is \(n \pi \), \(n \) integer, and the momentum associated with the wormhole is proportional to \(n \). These supra currents are created with the interaction of the wormhole flux tubes with laser light by a mechanism already considered.

Assume that enzyme contains a loop carrying wormhole supra current characterized by an enzyme specific integer \(m_E \) and created by the previously described interaction with the laser light. Assume that the substrate contains a similar loop, characterized by integer \(n_S \). Assume further that in the enzyme-substrate interaction \(n_E \) Josephson junctions between the identical loops are formed and that the Josephson junctions are evenly spaced in \(\Phi \) and there are either \(n_E = 2s + 1 \) or \(n_E = 2s \) junctions corresponding to ODD and and EVEN receptors defined by Comorosan \[51\]. Assume that the directions of the wormhole supra currents are same. The phase difference between the ends of the Josephson junction gives phase factor \(\exp(i(N_E - N_S)\Phi) \) to the current flowing through \(n \):th junction and destructive interference in general occurs for the sum of Josephson currents. If the junctions are identical Josephson current is proportional to quantity \(U \) defined as a sum of phase factors

\[
U = \sum_{k=0,...,n_E} \exp((m_E - n_S)\frac{k\pi}{n_E})
\]

\[
n_E = 2s + 1 \quad (ODD \ receptor) \\
n_E = 2s \quad (EVEN \ receptor)
\]

All phase factors are trivial and constructive interference occurs, when the condition

\[
n_S = m_E + (k - 1)n_E, \quad k = 1, 2, ...
\]

is satisfied. This is just the condition for for Comorosan effect to occur. Therefore, if the occurrence of constructive interference leads to enhanced enzymatic effect, that is ‘reading’ of the substrate state in terminology of Comorosan, the model reproduces the experimental results of Comorosan for \(k \leq 6 \) and gives interpretation for \(m_E \) as angular momentum like quantum number associated with super current and \(n_E \) as the number of Josephson junctions.

Note that Comorosan defines UP-type receptors as a receptor which read only ODD states with \(t_k \) odd multiple of \(t_1 \) \[51\]. These correspond to odd value of \(m_E \) and even value of \(n_E \). DOWN-type receptors read only DOWN-type states with \(t_k \) even multiple of \(t_1 \); these correspond to even values of \(m_E \) and \(n_E \). UP-DOWN receptors correspond to odd values of \(m_E \) and \(n_E \).

The model reproduces the basic experimental regularity observed by Comorosan with single exception. Comorosan has observed no effect for \(t_{rad} > t_6 \): according to the model the effect should be observed for all odd values of \(k \) and depend on \(k_1 = k \ mod \ n_E \) only so that \(k \) and \(k + n_E \) ought to lead to same effect. The problem looks difficult since \(t_6 \) is enzyme dependent parameter. The only manner to explain this observation seems to be following. Assume that substrate contains several loops \(L_i \), one loop for each enzyme type \(E_i \) studied and that each loop is radiation detector in the sense already described. Assume that \(E_i \)-loop ceases to respond to irradiation, when the value of \(\Delta \Phi \) exceeds the critical limit corresponding to \(n_{cr}(E) = m_E + 5n_E \). One explanation for this behavior is
that the supra current exceeds critical value and wormhole super conductivity is lost. The shorter the loop the smaller the critical value of $n_{cr}(E)$ is expected to be.

This model suggest that organic molecules are able to store memories into the integer valued vacuum quantum numbers associated with their supra current loops and that the interaction with coherent light, bio-photons perhaps, provides a mechanism of memory storage. The enzyme-substrate interactions in turn code this information to chemical form.

What is the origin of the 5 second time scale?

The time scale $\tau = 5$ seconds associated with the Comorosan effect has remained a teasing mystery for almost a decade. In particular, p-adic length scale hypothesis does not explain the time scale, and it does not correspond to any obvious time scale associated with magnetic transitions.

Only the model for quantum dark matter \[66\] inspired by the fascinating findings that planetary orbits obey Bohr rules analogous to those for hydrogen atom but with a huge value of Planck constant equal to $\hbar_{pl} = GM\hbar/v$, where v/c is a harmonic or sub-harmonic of $v_0/c = 4.8233 \times 10^{-4}$, led to a progress in the understanding of the time scale τ.

The idea about astro-quantal dark matter as a fundamental bio-controller by its gigantic value of Planck constant, inspires the guess that τ could relate to a quantal dark matter structure topologically condensed around a magnetic flux tube around a planetary Bohr orbit of radius R via the correspondence $\tau = R/c$. As observed by \[4\], $n = 1$ orbit for $v_0 \rightarrow 3v_0$ corresponds in a good approximation to the solar radius and thus to a time scale of 2.18 seconds. Since Earth’s orbit corresponds to the principal quantum number $n = 5$, $n = 1$ orbit corresponds for $v_0 \rightarrow 2v_0$ to $\tau = AU/(4 \times 25) = 4.992$ seconds: here $R = AU$ is the astronomical unit equal to the average distance of Earth from Sun. The deviation from $\tau _C = 5$ is only one per cent and of the same order of magnitude as the variation of the radius for the orbit due to orbital eccentricity $(a - b)/a = .0167$ \[1\].

An alternative explanation emerged with the discovery of dark matter hierarchy based on the scaled up values of M^4 and CP_2 Planck constants given as $h(M^4) = n_a \hbar_0$ and $h(CP_2) = n_a \hbar_0$, $n_i > 2$ \[25\]. Typical quantum times and lengths, say Compton length and time, scale as n_a. The integers n_i have number theoretically preferred values which correspond to n-polygons constructible using only ruler and compass. These integers are given as $n = 2^k \prod F_s$, where each Fermat prime F_s can appear only once in the product. F_s has the form $F_s = 2^{2^s} + 1$. The known Fermat primes are 3, 5, 17, 257, and $2^{16} + 1$. If one scales the fundamental biological time scale $T_2 = 127 = .1$ s by $n_F = 3 \times 17$ one obtains the time scale $T = 5.1$ s.

5.4.2 Phantom DNA effect

The phenomenon of phantom DNA \[2,49\] suggests that physical vacuum can have some additional structure with no obvious identification in the standard physics context. What is studied, is the scattering of the laser light on chamber, which is either empty or contains DNA. The autocorrelation function for scattered laser light is measured. This means in practise a linear array of detectors, which measure the number of scattered photons during certain time interval. There are three subsequent stages in the experiment.

1. Scattering chamber is empty. In this case autocorrelation function is random. The numbers of photons detected by various detectors are essentially random.

2. One adds the DNA in the chamber and finds that autocorrelation function is decaying exponential, which oscillates. This is due to the scattering of laser light on DNA.

3. One removes the DNA and instead of random autocorrelation finds that autocorrelation function exhibits exponential decay and oscillations also now! The numbers of photons detected are many orders of magnitude smaller but it is clear that something in the structure of vacuum, call it phantom DNA, serves as an effective scatterer of the laser light. For phantom DNA effect to occur it is essential that DNA in chamber is illuminated with laser light before its removal. The effect is long lasting, phantom DNA is detected even after period of months!
Is the mechanism explaining Comorosan effect behind phantom DNA effect?

The mechanism explaining Comorosan effect could explain also phantom DNA effect. Assume that the presence of DNA creates wormhole magnetic field, that is a net of wormhole flux tubes. This configuration is indeed vacuum configuration from the point of view of standard physics since the only 'particles' are wormholes on the boundaries of the flux tubes. Laser light transforms closed untwisted flux tubes to twisted ones and accelerates wormholes so that they get net momentum.

When DNA is removed from the chamber, part of the wormhole magnetic field remains in chamber. If the chamber is now irradiated with laser light, the wormhole supra currents created in the irradiation of DNA interact with the laser light. Before the irradiation these currents vanish so that there is no effect. More quantitative argument goes as follows. Coupling is just the standard coupling of charged scalar field to the difference of topologically condensed coherent photon fields so that the interaction term is of the general form $\bar{\Psi} \Delta A \nabla \Psi$. In Fourier basis the couplings are of the form $e^{(k_i + k_f)} A(k_i - k_f)$. If A is slowly varying, one has in good approximation $k_i = k_f$ for the allowed transitions, and transition matrix element is proportional to k. Thus the value of momentum k and thus coupling is appreciable only if DNA is irradiated before its removal.

The transfer of electron between the space-time sheets must be crucial for the process acceleration process. Otherwise, the irradiation of mere wormhole flux tube structure, 'phantom DNA', would accelerate the wormholes creating supra currents and would eventually lead to stimulated emission.

Other explanations

With the development of the model for the bio-system as a macroscopic quantum system are also other possible explanations of the phantom DNA effect have emerged.

1. Perhaps the simplest explanation would be that a small fraction of DNA molecules drops to the magnetic flux tubes of Earth’s magnetic field and scatters the coherent light.

2. The hypothesis that liquid crystal water blobs can mimic the electromagnetic body of the DNA molecule in the sense that some parts of the electromagnetic spectrum represented by MEs are more or less identical with that of DNA, could explain the phantom DNA effect in terms of the liquid crystal blobs remaining when DNA is removed. The explanation would be same as for the effect of the homeopathic remedies. The explanation requires that LC water blobs are able to mimic the electromagnetic spectrum of DNA at visible frequencies. This is not at all obvious since water is transparent for visible light and thus does not have intense spectral lines in the visible frequency range.

5.4.3 Mind-like space-time sheets, mimicry and homeopathy

Homeopathy resembles phantom DNA effect in the sense that the repeated dilution of some drugs seems to give rise to a concentration of a 'phantom drug' affecting the patient in some nonchemical manner. Standard science refuses to take homeopathy seriously. As often is the case with the paranormal phenomena, the refusal is based on very simple argument: standard science does not allow this kind of effect. TGD however framework allows room for homeopathy and homeopathy provides evidence for the notion of mind-like space-time sheet absolutely crucial for TGD based theory of consciousness as also for the general hypothesis that magnetic and Z_0 transition frequencies are quantum correlates of consciousness.

In TGD inspired theory of consciousness mind-like space-time sheets, which by definition have finite time duration, are geometric correlates of selves. TGD inspired theory of consciousness predicts that self hierarchy starts already from the elementary particle level and that the typical duration of self is given by the p-adic time scale $T_p = l \times L_p/c, l \simeq 10^4$ Planck lengths. For elementary particle selves the duration of wake-up time is of order Compton time and extremely short in human standards but extremely long when using the average duration of single quantum jump of order l/c as standard; elementary particle performs roughly \sqrt{p} quantum jumps during its wake-up period and the values of p-adic prime are huge (electron has $p = 2^{127} - 1$).

If this scenario is correct, mind-like space-time sheets should accompany all forms of matter. Against this background it would not be too surprising that given drug would be characterized, not only by its chemistry, but also by the mind-like space-time sheets associated with its subselves. When
the drug is dissolved into water, it can happen that mind-like space-time sheets associated with the drug lose their original owner and become (potential) subselves of the solvent. If this really happens, a concentration of mind-like space-time sheets associated with the 'drug selves', remains into the solution, even when the drug is diluted to practically zero concentration. Water need not be a mere passive receiver of the mind-like space-time sheets of the drug but can also generate new mind-like space-time sheets mimicking the mind-like space-time sheets of drug. The effect of the drug on living organism involves self-organization and therefore also consciousness at some level. Thus is would not be surprising if 'drug selves' were the effective component of some drugs and that the chemistry would only determine what 'drug selves' and their effects are. This is indeed expected, since mind-like space-time sheets provide cognitive representations for the properties of the material space-time sheets associated with the drug.

One can imagine several options for how mind-like space-time sheets represent the relevant properties of drug. If cognitive space-time sheets perform direct mimicry of the material space-time sheets this scenario becomes even more plausible since mind-like space-time sheet and drug space-time sheets would not differ much in their electromagnetic properties. For instance, disease could involve the inability of some subselves of the organism to stay awake and self-organize: brisk new drug selves could simply replace these sleepish subselves and initiate the self-organization processes again! Note that direct mimicry might be involved also with the phantom DNA effect. The wormhole magnetic fields (or massless extremals) associated with DNA could mimic the classical fields associated with DNA molecule. TGD based concept of space-time allows in principle non-vanishing vacuum currents so that also the smoothed out charge distribution of DNA might be mimicked. If this indeed occurs, the interaction of the coherent light with DNA could resemble to some degree to its interaction with real DNA.

'Direct mimicry' understood as a generation of a copy about classical fields associated with the material space-time sheet (note that the sheet is 4-dimensional!) might be too strong a requirement. A more abstract mimicry is restricted on regeneration of dominating frequencies associated with the classical fields: this could be enough since it is resonance frequencies rather than amplitudes which are crucial for quantum control and coordination. The effects of ELF modulated em fields on living matter [41] suggest that also amplitude modulation could be involved with the formation of the cognitive representations. mind-like space-time sheets associated with water could simply mimic the drug in frequency domain by reproducing the frequencies generated by the drug molecules or corresponding mind-like space-time sheets. That this might be the case is supported by the following arguments.

1. There are well documented effects related to the ability of water to absorb and transmit frequencies [29]. The ability of water to absorb and transmit frequencies could rely on the generation of mind-like space-time sheets oscillating with the same frequency as stimulus. Water would form cognitive representation for the stimulus, mimic it.

2. The hypothesis that magnetic and Z^0 magnetic transitions frequencies are basic correlates of consciousness [30] suggests that the effects of at least some drugs are quantum control effects and basically frequency mediated and that chemical effects are only secondary. If the effect of a drug indeed relies on its ability to generate an oscillation (say ELF em field) with some frequency and if this oscillation is generated by mind-like space-time sheets associated with water, then the mechanism of homeopathy could be understood.

Rather interestingly, subject persons allergic to a particular substance exposed to the substance and frequency at the same time develop after a short association period an allergic response to the frequency alone [29]. A patient who has developed allergic response to certain frequency has also allergic response to water treated by the same frequency. Thus the water in human body together with central nervous system seems to have cognitive abilities, in particular ability to form associations. This suggests the possibility of associative medicine: the effect of drug is conditioned with frequency: in this manner the undesired side effects of the chemical drug could be circumvented.
5.5 Subcellular control and wormhole flux tubes

5.5.1 Intracellular bio-control and memory

Wormhole magnetic fields could provide a tool of quantum bio-control below cell length scales. For instance, cell nucleus could control from distance the motion of cell organelles using magnetic and Z\(^0\) magnetic fields generated by wormholes. In \([14]\) it is suggested that the winding numbers associated with closed wormhole flux tubes, which actually correspond to quantized momenta for wormhole supra currents, might provide a memory, which is very stable against perturbations. It must be however emphasized that the TGD based model of long term memory does not require any memory storage since memories are essentially re-experienced episodes of geometric past. Wormhole supra currents, and the entire zoo of various supra-currents predicted by quantum TGD, might however form cognitive representations and an important brain function would be the construction of this kind of representations as caricatures of the conscious experience.

5.5.2 Coding of genetic information to topologically quantized fields?

The mechanisms behind ontogeny leading from single cell do an adult individual are poorly known. The wormhole flux tubes represent spatial extension of bio-system to a larger quantum system via magnetic fields so that long distance control via topologically quantized magnetic field becomes possible. As suggested in \([12, 13]\), either the flux tubes of ordinary or wormhole magnetic field could serve as templates of bio-structures: more specifically, wormhole flux tubes could provide topological representation for defects of various bio-super conductors.

Various bio-structures are expected to be surrounded by a characteristic flux tube network extending over a spatial region considerably larger than structure itself and bio-structure could control the fluxes inside the individual flux tubes. The field configuration would somehow control the ontogeny. By the previous considerations also the coherent photons created by microtubules and possibly other linear structures, could control the state of magnetic flux tubes. Note that also ordinary super conductivity with topologically quantized wormhole flux tubes representing defects might be involved. In this case the wormhole magnetic field cancels the penetrating field in the larger space-time sheet and recreates it in the smaller space-time sheet.

One can wonder how the genetic information is coded into extended spatial structures and to what extend wormholes flux tubes and various related structures represent something genuinely new. The p-adic hierarchy of space-time sheets certainly breaks naive reductionistic philosophy so that that the dynamics wormhole flux tubes and related structures is probably not completely determined by the genetic code. The idea about the flux tubes of magnetic field as templates for bio-structures does not support (or at least, does not require) the idea about the coding of the magnetic structure to DNA and flux tube structure could be a result of self-organization process and topological field quantization. For instance, in case of DNA the structure of the topologically quantized wormhole magnetic field surrounding DNA (with quantized magnetic flux) can depend only on the general properties of the DNA sequence since only few topological quantum numbers are involved and it indeed seems that these quantum numbers are determined by the dynamics at larger length scales in accordance with Slaving Principle. On the other hand, the structure of the wormhole magnetic fields in length scales shorter than DNA could be determined completely by the structure of DNA sequence.

5.5.3 Are magnetic and wormhole magnetic fields involved with the control of gene expression?

The development of organism is a complicated self-organization process during which gene expression is controlled by the feedback from long length scales. The mechanism of this ‘biofeedback’ is poorly understood. It is not even known whether it is really chemical. In fact, it is known that besides the chemical transcription factors (proteins) controlling gene expression, there are nonchemical transcription factors called silencers and enhancers, whose action mechanism is not known \([10, 13]\). Magnetic and wormhole magnetic fields could indeed be involved with the control of gene expression performed by growing organism using Josephson currents.

1. As suggested in \([52, 53]\), magnetic and perhaps also wormhole magnetic fields could be involved with the gene expression via Josephson currents and make possible biological alarm
clocks 'waking-up' gene self and initiating gene expression. Complicated circuits, involving pattern recognizers, comparison circuits and novelty detectors could serve as building bricks of logical circuits conditioning the gene expression to begin only when certain conditions are satisfied.

2. The realization of the alarm clock would be following. Ions and electrons form in the magnetic fields or wormhole magnetic fields bound states characterized by cyclotron frequencies. When the potential difference between the space-time sheets representing two weakly couple superconductor connected by the join boundaries bonds representing Josephson junctions equals to a magnetic transition frequency of a charge carrier in either superconductor, quantum jumps occur and 'wakes-up' the 'clock self' and initiate thus self-organization process.

3. One can imagine that the genetic alarm clock is formed by Josephson junction formed by one of the many space-time sheets associated with the many-sheeted DNA and the space-time sheet of the growing organ [40]. The size of the space-time sheet correlates with the vacuum frequency ω_1 of the space-time sheet (there are two frequency type quantum numbers denoted by ω_1 and ω_2 [8] and a natural assumption is that the difference of the frequencies ω_1 associated with the gene space-time sheet and organ's space-time sheet corresponds to the electromagnetic potential difference over Josephson junction: $\Delta \omega_1 = ZeV$. When this difference equals to the energy difference for the states localized in either super conductor, the superconductor 'wake up'. Thus a precise timing for the wake-up results and the initiation of the gene expression correlates in a precise manner with the size of the organ. This is something highly nontrivial: chemical transcription factors are concentrations and it is very difficult to imagine how concentrations, which carry purely local information, could code precise information about the size of the organ and even use it to control purposes.

4. If the states are cyclotron states confined in (wormhole) magnetic fields, the energy difference is in general case difference for multiples of the corresponding cyclotron frequencies. This flow of charge would eventually lead to the 'wake-up' of the gene and initiate the self-organization process leading to gene expression.

5.5.4 Wormhole flux tubes as templates of bio-structures

One aspect of control of ontogeny is that part of a flux tube structure could serve as a template in the sense that bio-matter gathers around flux tubes during ontogeny. According the considerations of [12, 13], magnetic or wormhole magnetic fields could provide general representation for the defects of super conductors. Microtubules, axons and very many other basic bio-structures are indeed hollow cylinders identifiable as defects of super conductors of type II (electronic super conductors). It is also known that macroscopic cylindrical bio-structures such as legs are characterized by winding numbers (for rather peculiar consequences, see [12]): this suggests that wormhole condensates associated with the boundaries of bio-sub-structures of all sizes play important role in bio-control. The stripe like structures (cell membranes, epithelial sheets, larger bi-layered structures of brain) could in turn correspond to defects of super conductors of type I (neutrino super conductors):

Ordinary atom could topologically condense on the interior of the flux tubes and topological condensation could become stable if one or more valence electrons is dropped on the 'lower' space-time sheet of the flux tube. The resulting atom would be 'exotic atom' with chemical properties those of atom having Z smaller by one unit (electronic alchemy!). As a matter of fact, the potential importance of the wormhole concept became clear from the attempt to explain the peculiar properties of so called ORMEs [8] in terms of the concept of exotic atom [12, 13].

The formation of exotic atoms might have been the basic step from the ordinary chemical evolution to bio-evolution. The process would be amplified by the presence of wormholes on the magnetic flux tube just like the formation of BE condensate is catalyzed by the presence of already existing seed of BE condensate (condensation probability is proportional to N^2, where N is the number of bosons in ground state). The possibility that Na, K, Ca ions in cell could be really exotic atoms with s wave valence electron(s) dropped on the lower space-time sheet, is not excluded.
5.6 TGD inspired models for psychokinesis

The reality of psychokinesis (PK) as of other psi phenomena is subject to a continuous debate and it seems that opinions are not always based on rational arguments. I am personally neither believer nor non-believer of psi phenomena but regard it as important (and also entertaining) to try to find rational testable models for psi rather than ridiculing or mystifying it. Indeed, in the following a TGD inspired model of psychokinesis is considered.

The basic philosophy of the model is following. PK is not just some isolated exotic phenomenon but only a special case of the voluntary control of bodily motions, which we all routinely perform. The only difference is that the range of voluntary control extends over the boundaries of the body in case of PK. This leads to an important conclusion: PK phenomena must involve classical long range fields, which give for bio-systems spatial extension larger than what is visible (that is hands with which to grasp on external object!). According to TGD inspired theory of consciousness, cell and even DNA can be conscious and perform choices. Thus the model should also provide understanding about small scale bio-control such as the (voluntary!) control of the motion of cell organelles performed by cell nucleus. A related problem is how genetic code is transformed into spatial structures during ontogeny, and the idea that each DNA sequence corresponds to a characteristic classical field configuration, is attractive. Thus the model in question is not meant to be an ad hoc solution of a particular problem called PK but a general solution of several basic problems in biology.

5.6.1 Wormhole magnetic fields and psychokinesis

The model for psychokinesis is fixed to a rather high degree by the following arguments.

PK as a special case of voluntary action

Our subjective experience tells that our bodily motions are controlled by our free will. Only the fact, that we are so familiar with this PK in the scale of our own body, makes us believe that nothing peculiar is involved. This suggests that PK-able persons differ from ordinary people in that they can perform PK also in length scales larger than their own body. PK is probably possible and probably occurs also below cell length scales, say in the control of motions of cellular organelles by nucleus. Also DNA and microtubules could perform PK. The only logical conclusion is that PK, as well as voluntary control of motion, involves long range classical fields effectively giving for PK-able system hands with which to grasp on the external object.

Quantum entanglement and PK

Quantum entanglement plays basic role in TGD inspired theory of consciousness and this is especially so for TGD inspired model of psi phenomena such as telepathy. Therefore it is assumed that PK mechanism involves quantum entanglement of some part of brain B with some part S of body such that S has ability to generate some classical field, which affects the material object. The field depends sensitively on quantum state of S so that the control becomes possible via B-S entanglement and quantum jumps reducing the entanglement. The most promising classical fields are magnetic fields (ordinary or Z0-).

p-Adic considerations might exclude the possibility of PK in many cases. Suppose that, as strongly suggested by QFT limit of TGD, the space-time sheets indeed have effective p-adic topology characterized by p-adic prime. The tensor product for p-adic state spaces with different p-adic primes p_1 and p_2 gives rise to R_p valued state space, where p is the p-adic prime associated with the entire system. There are some reasons to believe that $p_1 \neq p_2$ quantum entanglement is rare phenomenon: if true this implies the decomposition of the space-time into separate space-time sheets labelled by primes and behaving more or less classically with respect to each other: this is certainly in accordance with the everyday intuition. An immediate consequence is that subsystems of brain can get quantum entangled mostly with subsystems having same p. Furthermore, the space-time sheet for the object of PK should be such that magnetic field created by PK is on the space-time sheet at which it the object has suffered topological condensation.
Bio-systems and classical \(Z^0 \) fields

Bio-matter must be in special position as far as PK is considered and thus cell length scale should be somehow in special role in the possible explanation of PK. Indeed, TGD predicts that the prime \(p \approx 2^{166} \) corresponds to the primary condensation level of neutrinos (on basis of data from latest neutrino mass experiments \[41\]). The corresponding p-adic length scale corresponds to cell size. This p-adic condensation level is also the p-adic condensation level at which nuclei must feed their \(Z^0 \) charges, where they in turn are screened by neutrinos (this requirement is necessitated by the stability of condensed matter against classical long range \(Z^0 \) force). In this manner one also avoids the large parity breaking effects caused by classical \(Z^0 \) fields, if present in atomic length scales.

Thus neutrinos and classical \(Z^0 \) force correspond to the new TGD-based physics emerging at cell length scale. TGD neutrinos are predicted to be super-conducting and classical \(Z^0 \) magnetic fields break the super conductivity: an attractive possibility is that cell membranes and endoplasm membranes correspond to the defects in the resulting superconductor of type I. The explanation of chirality selection \[23\] in terms of \(Z^0 \) magnetic fields and neutrinos and of tritium beta decay anomaly \[71\] provide strong support for this picture. The additional important piece of new physics important for bio-systems is related to wormhole contacts. For instance, wormhole contacts are created when electrons of ordinary atom drops from atomic space-time sheet to a larger space-time sheet parallel to it. This process leads to so called exotic atom \[12, 13\] explaining the peculiar properties of so called ORMEs \[8\]. In fact, the dropping of electron on larger space-time sheet might have been a (perhaps even the!) crucial step in transforming chemical evolution to bio-evolution. Also the penetration of classical electric and magnetic fields from a space-time sheet to another one requires the presence of charged wormholes and classical em fields are known to be very important in bio-systems.

Magnetic levitation as a basic mechanism of PK

The simplest possibility is PK effect is based on magnetic levitation. Both classical magnetic and \(Z^0 \) magnetic fields can give rise to the effect. This requires that all objects which can be moved by PK, must be diamagnetic and repel from their interior external magnetic fields by generating currents on their boundaries. If they behave like superconductors (in some sense) this is indeed the case.

Wormholes feed the gauge flux from a smaller p-adic space time sheet to a larger one and the throats of the wormhole look like classical charges of opposite sign coupling to the difference of classical fields associated with the two space-time sheets. When looked from imbedding space context, they can be regarded as extremely weak dipoles and their coupling to vapor phase photons is extremely weak, which explains why they have not been observed via radiation. Wormhole Bose-Einstein condensates are a purely TGD-based phenomenon. \(Z^0 \) wormholes have classical \(Z^0 \) interaction with atomic nuclei screened by neutrinos and this in turn couples them to phonons and electromagnetic interactions indirectly. If \(Z^0 \) are in thermal equilibrium with ordinary matter then wormhole Bose-Einstein condensates are possible in the length scales below \(L = 1/T \) \((T \) is temperature, in room temperature \(L \) is about \(10^{-5} - 10^{-4} \) meters).

Wormhole BE-condensate behaves in many respects like super conductor. Thus wormhole superconductivity is a possible candidate for a mechanism behind PK. What is required is that the density of wormholes on the boundary of the object is high enough so that surface currents can cancel external magnetic field and magnetic levitation becomes possible. Charged wormholes provide also a mechanism of electronic bio-super conductivity and also this might be involved in PK as it possibly appears in bio-control.

Topological field quantization could make possible precise quantum control of magnetic fields

Bio-system must has an ability to create and control in precise manner magnetic fields. The only manner to achieve this is to construct magnetic field from magnetic flux tubes with quantized magnetic fluxes. Actually, the decomposition into flux tubes with quantized magnetic fluxes occurs automatically for any magnetic field in TGD \[37\]. This is due to the induced gauge field concept: the imbedding of classical gauge field as induced gauge field in general fails outside some region and 3-surface with boundary is generated (in \[37\] these regions were christened as topological field quanta). Since wormholes form a Bose-Einstein condensate on the boundaries of flux tubes, topological field quantization actually makes the classical magnetic field quantum object and potential conscious being
TGD inspired models for psychokinesis

If TGD inspired theory of consciousness is correct! Control of the magnetic field occurs via the control of the order parameter describing the state of the wormhole condensate.

PK mechanism could be at work below cell length scale for ordinary magnetic fields and it is tempting to speculate that this kind of PK is one of the basic mechanisms of intracellular control. For instance, cell nucleus could control from distance the motion of cell organelles using magnetic and Z0 magnetic fields generated by wormholes. Also microtubules and perhaps even DNA could apply PK mechanism for control purposes. In longer length scales, much above the cell length scale, Z0 type wormhole magnetic fields might be important.

Order of magnitude estimates

One can imagine several mechanisms for the penetration of the magnetic and wormhole magnetic fields. If the size of the object is small as compared to the thickness of the flux tube, the wormhole magnetic field at either sheet can penetrate (or try to penetrate in present case!) to the space-time sheet of an object topologically condensed at the space-time sheet of the flux tube. When the size of the object is larger than the thickness of the magnetic flux tube, situation is more complicated: a similar microscopic mechanism could however be at work also in this case since the object contains hierarchy of smaller space-time sheets topologically condensed on it. The following discussion neglects these complications and treats the (wormhole) magnetic field as ordinary classical fields: intuitively the idealization of the flux tube structure with ordinary classical magnetic field seems natural.

The energy for creating and changing magnetic or wormhole magnetic fields must come from the metabolism. Dissipation effects are expected to be small since wormholes behave as a super conductor. Super conductivity (perfect diamagnetism) is not necessary, also nonperfect diamagnets can levitate. In case of superconducting object the strength of the magnetic field must be smaller than the critical field destroying the super conductivity; this condition is a crucial limitation for PK based on super conductivity.

A rough order of magnitude estimate for the needed magnetic field strengths is obtained in the following manner. Meissner force is the gradient of the magnetic field energy regarded as a function of the position of the object located in the field. For simplicity, assume that (wormhole) magnetic field depends linearly on the coordinate z in the direction of gravitational field

$$B = B_0(1 + \frac{z}{h}) ,$$

where h is the characteristic scale of variation for the wormhole magnetic field.

The Meissner force experienced by an object having size much smaller than scale h, so that the magnetic field is essentially constant in the volume of the object, is from a rough order of magnitude estimate

$$F \sim -\frac{dE_{magn}}{dz} ,$$

$$E_{magn}(z) \simeq \frac{1}{2} B^2 V = \frac{B_0^2}{2} V (1 + \frac{z}{h})^2 ,$$

where E_{magn} is the magnetic field energy contained in the volume V of the object. For the lifting of an object with mass m in the gravitational field, this force must have a magnitude larger than the gravitational force $F = mg$, where g is gravitational acceleration. This gives an order of magnitude estimate for the minimum magnetic field B_0 making the lifting of the object possible:

$$B_0 \sim \sqrt{\rho gh} ,$$

where ρ is the density of the object. Note that in the approximation that magnetic field is essentially constant in the volume of the object, the estimate does not depend on the size or form of the object. More generally, the gradient of B is roughly the gravitational force divided by the average magnetic field B_0: $\frac{dB}{dz} \sim \frac{mg}{B_0}$.
An order of magnitude estimate is obtained by putting \(\rho \sim 10^3 \text{ kg/m}^3 \) (density of water roughly) and \(h \sim 10^{-2} \text{ meters} \) (object could be a sheet considerably thinner than one centimeter). In this case magnetic field \(B_0 \) of order \(10^{-5} \text{ Tesla} \) is needed.

Consider first ordinary superconductivity and ordinary magnetic fields (assuming object to be super conductor). Hudson claims that the critical magnetic fields for ORME superconductivity are of the order of Earth’s magnetic field, about \(10^{-7} \text{ Tesla} \). The claim concerns ordinary magnetic field, not wormhole magnetic fields, and thus electronic superconductivity should be in question. If the claim gives general order of magnitude then the needed magnetic field would destroy the electronic superconductivity. By reducing the thickness of the object to the cell length scale of order \(10^{-6} \text{ meters} \), one finds that the needed magnetic field is of order \(10^{-7} \text{ Tesla} \) so that the effect might be possible below cell length scales and cell nucleus might control the motion of cell organelles by PK based on the ordinary magnetic fields and electronic super conductivity.

Second case corresponds to wormhole super conductivity (object must be wormhole super conductor). Since wormhole magnetic fields are new physics, one can make only order of magnitude guesses. 'Ordinary' wormhole magnetic fields can exist in arbitrarily short p-adic length scales and there is no obvious upper bound for the critical wormhole magnetic field in this case. Since \(\mathbb{Z}^0 \) classical fields appear only in the p-adic length scales not smaller than the cell length scale, p-adic length scale hypothesis suggests that the critical wormhole magnetic field is in this case at most of the order \(1/L_{\text{cell}}^2 \) in units \((h = c = 1)\). This gives \(B_0 \leq 10^{-4} \text{ Tesla} \). This would be enough in the previous example with a sheet like object having the density of water and thickness below one centimeter. Note that thin sheets are ideal objects for the experimental verification of the effect.

5.6.2 Alternative models of psychokinesis

The manner TGD solves the energy problem of GRT is simple: energy momentum tensor is replaced by a vector field so that the energy defined as an integral over 3-space is coordinate independent scalar quantity. Vector field nature however implies that the sign of the energy depends on the time orientation of the space-time sheet and one can quite well consider the possibility that the time orientation of the space-time sheet is not always same as the natural time orientation of the future lightcone. This would make possible negative energies and "buy now, pay later" type mechanism of energy production by the generation of negative energy space-time sheets of possibly finite time duration. One can even consider the possibility that entire universe is generated from vacuum and has vanishing total quantum numbers.

In [80] this mechanism is discussed as an explanation for certain peculiar looking claims about energy production occurring with efficiency larger than one. (the N-machine of DePalma [5] and the space energy generator of [2] [2]). The model also explains why the rotation of a system consisting of a conductor disk rigidly attached to a cylindrical magnet generates potential difference between the axis and rim of the conducting disk. This effect, observed already by Faraday, has no satisfactory explanation in ordinary electrodynamics. In TGD framework the explanation is simple: the mere rotation of the 3-surface generates the radial electric field automatically. The divergence of the electric field associated with the Faraday disk is nonvanishing and gives rise to vacuum charge density and this in turn implies the necessity of second space-time sheet with opposite charge density and possibly opposite time orientation.

One can consider the possibility that mind-like space-time sheets could have negative time orientation so that pairs of space-time sheets with opposite time orientations could be the basic characteristic of living matter. In fact, only this option makes possible the realization of Boolean mind relying on electron positron pairs. Note that also wormhole magnetic fields could correspond to pairs of space-time sheets having opposite time orientation. If this picture is correct, psychokinetic effects could occur spontaneously in living systems when mind-like space-time sheets with negative time orientation are generated and material space-time sheet receives compensating positive energy. This mechanism would make possible "poltergeist" effects involving generation of kinetic energy from "nowhere" and would make possible to affect the physical world by mere thought! There also legends about the magic feats of the trained yogis. Sceptics have of course strong opinions concerning these stories: I would be happy if I could share with the sceptics their access to deeper knowledge making life so simple. I do not even know whether we might be affecting everyday that part of the physical world which we identify as our physical body by this mechanism!

TGD suggest also a third mechanism of PK. Space-time sheets form a hierarchy. Our space-time
sheet is usually glued to the space-time sheet of Earth so that we feel the gravitational force of Earth. One could however consider the possibility that 'our' space-time sheet could in some manner get glued to a larger space-time sheet at which Earth's gravitational field is not felt appreciably. This would make possible levitation. This kind of effect would also make the apparent fusion of solid bodies and an effect that might be called "Houdini effect". The occurrence of this effect in atomic length scales makes possible to bypass Coulomb walls and has been suggested as a mechanism of cold fusion in [71].

5.6.3 Experimental tests

The basic concept is topological field quantization implying the decomposition of magnetic field to flux tubes. This indeed occurs in super conductors. Actually, it might be that this phenomenon can be demonstrated using just child's toy magnet! The ferrite powder on table indeed concentrates on lines in the vicinity of magnet. I do not know whether this phenomenon has a more mundane explanation or is it really a direct manifestation of topological field quantization.

The simplest experimental proof for the wormhole flux tube idea is to make them visible! One could achieve the situation in which atoms are condensed on wormhole flux tubes and form exotic atoms so that also electronic alchemy occurs: one can hardly imagine more dramatic proof of the concept! A second possibility is the interaction of laser light with wormhole flux tubes if the proposed explanation of phantom DNA effect is correct. The recent progress in understanding of high T_c superconductivity [12, 13] gives indeed very strong indirect support for the notion of wormhole contact as parton-antiparton pair as well as for the notion of dark matter as large \hbar phase of ordinary matter.

There are two possible realizations for PK in the proposed model. Either in terms of ordinary topologically quantized magnetic field and super conductivity or in terms of wormhole super conductivity and corresponding magnetic fields, which always appear on two space-time sheets simultaneously and thus forming twin structures. The essential requirement is that magnetic field is on the space-time sheet at which the object has suffered topological condensation. Also the restrictions from p-adic quantum entanglement and from many-sheetedness of the space-time could be decisive and explain why the phenomenon is so rare.

The basic concept is topological field quantization implying the decomposition of the magnetic field to flux tubes. This indeed occurs in super conductors. It might be that this phenomenon can be demonstrated by child's toy magnet! The ferrite powder on table indeed concentrates on lines in the vicinity of magnet. I do not really know whether this phenomenon has a more mundane explanation or is it really a direct manifestation of topological field quantization.

If PK-able persons can control also ordinary magnetic fields created by ordinary charges then one can consider an experiment in which PK-able person tries to affect the state of an ordinary super conductor.

The simplest experimental proof for the wormhole flux tube idea is to make them visible. One could achieve the situation in which atoms are condensed on wormhole flux tubes and form exotic atoms so that also electronic alchemy occurs: one can hardly imagine more dramatic proof of the concept! A second possibility is the interaction of laser light with wormhole flux tubes if the proposed explanation of phantom DNA effect is correct.

Also an experiment in which PK-able person tries to affect the motion of ORMEs [8] (material possible containing exotic atoms predicted by TGD), could be considered. Actually, peculiar levitation effects have been claimed and also the proposed interpretations have been based on some kind of magnetic levitation and super conductivity. The original explanation was in terms of electronic super conductivity but on the light of recent results wormhole super conductivity seems to be a more plausible explanation. PK effect could be involved also with the claimed fluctuations in the weight of the ORMEs [8]. PK effect might lead to an fluctuations in the high precision measurements of the value of gravitational constant. An interesting possibility is whether also ORMEs exhibit phantom ORME effect analogous to phantom DNA effect [49] having explanation in terms of wormhole super conductivity.
Books related to TGD

Mathematics

Condensed Matter Physics

[1] Burning salt water. http://www.youtube.com/watch?v=aGg0ATfoBgo

303

Cosmology and Astro-Physics

Fringe Physics

Biology

Neuroscience and Consciousness

Part III

DARK MATTER AND LIVING MATTER
Chapter 6

Dark Nuclear Physics and Condensed Matter

6.1 Introduction

The unavoidable presence of classical long ranged weak (and also color) gauge fields in TGD Universe has been a continual source of worries for more than two decades. The basic question has been whether electro-weak charges of elementary particles are screened in electro-weak length scale or not. The TGD based view about dark matter assumes that weak charges are indeed screened for ordinary matter in electro-weak length scale but that dark electro-weak bosons correspond to much longer symmetry breaking length scale.

The large value of \hbar in dark matter phase implies that Compton lengths and -times are scaled up. In particular, the sizes of nucleons and nuclei become of order atom size so that dark nuclear physics would have direct relevance for condensed matter physics. It becomes impossible to make a reductionistic separation between nuclear physics and condensed matter physics and chemistry anymore.

In its original form this chapter was an attempt to concretize and develop ideas related to dark matter by using some experimental inputs with emphasis on the predicted interaction between the new nuclear physics and condensed matter. As the vision about dark matter became more coherent and the nuclear string model developed in its recent form, it became necessary to update the chapter and throw away the obsolete material. I have also divided the material to two chapters such that second chapter focuses to dark weak and color forces and their implications. I dare hope that the recent representation is more focused than the earlier one.

6.1.1 Dark rules

I have done a considerable amount of trials and errors in order to identify the basic rules allowing to understand what it means to be dark matter is and what happens in the phase transition to dark matter. It is good to try to summarize the basic rules of p-adic and dark physics allowing to avoid obvious contradictions.

Could basic quantum TGD imply the hierarchy of Planck constants?

The implications of the hierarchy of Planck constants depend on whether one assumes it as an independent additional postulate or as a consequence of basic quantum TGD. The first option originally motivated by physical anomalies would allow both singular coverings and factor spaces. The latter option, which emerged five years after the basic idea, would allow only singular coverings. They would provide only a convenient tool to describe the fact that the correspondence between canonical momentum densities and time derivatives of the imbedding space coordinates at the ends of space-time sheets is not one-to-one. As a matter fact, this observation forced the idea about quantum physics as classical physics in the "world of classical worlds" for two decades ago. The quantization of Planck constant as integer multiples of its standard value would be an effective phenomenon for this option.
holding true at the sheets of the covering. These options lead to different predictions and one can in principle test whether either of them is correct.

The notion of field body

The notion of "field body" implied by topological field quantization is essential piece of classical TGD. It seems possible to assign to physical systems field identities- that is separate magnetic and electric field bodies identifiable as flux quanta. This is not possible in Maxwell's electrodynamics. The first naive guess was that one can speak of separate em, \(Z^0 \), W, gluonic, and gravitonic field bodies, each characterized by its own p-adic prime. The tight constraints coming from the fact that the induced gauge fields are expressible in terms of \(CP_2 \) coordinates and their derivatives implies however strong correlations between classical gauge fields. For instance, the vanishing of classical Kähler field for vacuum extremals implies that em and \(Z^0 \) fields are proportional to each other. The non-vanishing of induced Kähler field in turn implies non-vanishing classical color fields. This gives rise at least to two basic types of field bodies predicting a lot of new physics even in macroscopic length scales. For instance, electric and magnetic flux tubes must have at their ends quarks and antiquarks serving as sources of classical color fields unless one believes that vacuum charge densities serve as sources of these fields. In the similar manner neutrinos and antineutrinos are needed to create classical \(Z^0 \) fields associated with almost vacuum extremal flux tubes. These fields could be interpreted also as vacuum polarization effects and one could distinguish them from fields created by genuine sources. For instance, the unavoidable classical color fields associated with the flux tubes of electromagnetic field body which is not vacuum extremal would represent vacuum polarization in macroscopic scale.

What is interesting that the conceptual separation of interactions to various types would have a direct correlate at the level of space-time topology. From a different perspective inspired by the general vision that many-sheeted space-time provides symbolic representations of quantum physics, the very fact that we make this conceptual separation of fundamental interactions could reflect the topological separation at space-time level.

The p-adic mass calculations for quarks encourage to think that the p-adic length scale characterizing the mass of particle is associated with its electromagnetic body and in the case of neutrinos with its \(Z^0 \) body. \(Z^0 \) body can contribute also to the mass of charged particles but the contribution would be small. It is also possible that these field bodies are purely magnetic for color and weak interactions. Color flux tubes would have exotic fermion and anti-fermion at their ends and define colored variants of pions. This would apply not only in the case of nuclear strings but also to molecules and larger structures so that scaled variants of elementary particles and standard model would appear in all length scales as indeed implied by the fact that classical electro-weak and color fields are unavoidable in TGD framework.

One can also go further and distinguish between magnetic field body of free particle for which flux quanta start and return to the particle and "relative field" bodies associated with pairs of particles. Very complex structures emerge and should be essential for the understanding the space-time correlates of various interactions. In a well-defined sense they would define space-time correlate for the conceptual analysis of the interactions into separate parts. In order to minimize confusion it should be emphasized that the notion of field body used in this chapter relates to those space-time correlates of interactions, which are more or less static and related to the formation of bound states.

What dark variant of elementary particle means

It is not at all clear what the notion of dark variant of elementary particle or of larger structures could mean.

1. Are only field bodies dark?

One variety of dark particle is obtained by making some of the field bodies dark by increasing the value of Planck constant. This hypothesis could be replaced with the stronger assumption that elementary particles are maximally quantum critical systems so that they are same irrespective of the value of the Planck constant. Elementary particles would be represented by partonic 2-surfaces, which belong to the universal orbifold singularities remaining invariant by all groups \(G_a \times G_b \) for a given choice of quantization axes. If \(G_a \times G_b \) is assumed to leave invariant the choice of the quantization axes, it must be of the form \(Z_{n_a} \times Z_{n_b} \subset SO(3) \times SU(3) \). Partonic 2-surface would belong to
$M^2 \times CP_2/U(1) \times U(1)$, where M^2 is spanned by the quantization axis of angular momentum and the time axis defining the rest system.

A different manner to say this is that the CP_2 type extremal representing particle would suffer multiple topological condensation on its field bodies so that there would be no separate "particle space-time sheet".

Darkness would be restricted to particle interactions. The value of the Planck constant would be assigned to a particular interaction between systems rather than system itself. This conforms with the original finding that gravitational Planck constant satisfies $\hbar = GM_1M_2/v_0$, $v_0 \approx 2^{-11}$. Since each interaction can give rise to a hierarchy dark phases, a rich variety of partially dark phases is predicted. The standard assumption that dark matter is visible only via gravitational interactions would mean that gravitational field body would not be dark for this particular dark matter.

Complex combinations of dark field bodies become possible and the dream is that one could understand various phases of matter in terms of these combinations. All phase transitions, including the familiar liquid-gas and solid-liquid phase transitions, could have a unified description in terms of dark phase transition for an appropriate field body. At mathematical level Jones inclusions would provide this description.

The book metaphor for the interactions at space-time level is very useful in this framework. Elementary particles correspond to ordinary value of Planck constant analogous to the ordinary sheets of a book and the field bodies mediating their interactions are the same space-time sheet or at dark sheets of the book.

2. Can also elementary particles be dark?

Also dark elementary particles themselves rather than only the flux quanta could correspond to dark space-time sheet defining multiple coverings of $H/G_a \times G_b$. This would mean giving up the maximal quantum criticality hypothesis in the case of elementary particles. These sheets would be exact copies of each other. If single sheet of the covering contains topologically condensed space-time sheet, also other sheets contain its exact copy.

The question is whether these copies of space-time sheet defining classical identical systems can carry different fermionic quantum numbers or only identical fermionic quantum numbers so that the dark particle would be exotic many-fermion system allowing an apparent violation of statistics (N fermions in the same state).

Even if one allows varying number of fermions in the same state with respect to a basic copy of sheet, one ends up with the notion of N-atom in which nuclei would be ordinary but electrons would reside at the sheets of the covering. The question is whether symbolic representations essential for understanding of living matter could emerge already at molecular level via the formation of N-atoms.

What happens in charge fractionization?

The hierarchy of Planck constants suggests strongly charge fractionization. What happens for binding energies is however not obvious. The first guess is that one just replaces \hbar with its scaled value in the standard formulas. One can however ask whether the resulting expression applies to single sheet of covering or to the sum of binding energies associated with the sheets of covering. In the case of factor space analogous problem is not encountered.

If the coverings follow from basic quantum TGD one can deduce unique rules for what happens. These rules can be assumed also in the more general case. Since the sheets of the singular covering coincide at the partonic 2-surfaces associated with ends of CD the time evolution and also "evolution" in space-like direction means instability of in the sense that partonic 2-surface decomposes to $r = \hbar/\hbar_0 = n/anb$ sheets. This implies fractionization of all total quantum numbers such as energy and momentum. From this one can also deduce what happens to various binding energies. For instance, the total (!) cyclotron energy is indeed multiplied by factor and the total(!) binding energy of dark hydrogen atom is what the naive scaling of \hbar would give. The reason is that the mass of particle is fractionized: $m \to m/anb$. Therefore the original guesses would be correct. In particular, the expression of the total gravitational binding energy essential for the original Bohr model of planetary orbits is consistent with the new more precise rules.
Criterion for the transition to dark phase

The naive criterion $\alpha Q_1 Q_2 > 1$ (or its generalization) for the transition to dark matter phase relates always to the interaction between two systems and the interpretation is that when the field strength characterizing the interaction becomes too strong, the interaction is mediated by dark space-time sheets which define $n = n(G_a) \times n(G_b)$-fold covering of $M^4 \times CP^2/G_a \times G_b$. The sharing of flux between different space-time sheets reduces the field strength associated with single sheet below the critical value.

For the option in which singular coverings follow from basic quantum TGD this criterion or its appropriate generalization has very concrete interpretation. At the ends of CD the partonic 2-surface is unstable against decay to n_a sheets when some of the quantum numbers of the partonic 2-surface are too large. A similar decay to n_b sheets would happen also when one moves in space-like direction.

One can ask whether this instability could have something to do with N-vertices of generalized Feynman diagrams in which decay of a partonic 2-surfaces to N-1 surfaces takes place. For instance, could it be that 3-vertex possibly the only fundamental vertex, correspond to this process and could higher vertices have an interpretation in terms of the hierarchy of Planck constants? This would mean analogy with Jones inclusions for which higher vertices have an interpretation in terms of the hierarchy of Planck constants. This would mean also the huge values of $n_a n_b$ disfavor this identification unless one restricts it to $n_a n_b = 2$.

The considerations of [25] suggest that in the vertices of generalized Feynman diagrams a redistribution of the sheets of the coverings can take place in such a manner that the total number of sheets is conserved. The leakage of between different sectors of WCW would in turn mean analogs of self-energy vertices in which n_a and n_b are replaced with their factors or with integers containing them as factors.

Mersenne hypothesis

The generalization of the imbedding space means a book like structure for which the pages are products of singular coverings or factor spaces of CD (causal diamond defined as intersection of future and past directed light-cones) and of CP^2 [25]. This predicts that Planck constants are rationals and that given value of Planck constant corresponds to an infinite number of different pages of the Big Book, which might be seen as a drawback. If only singular covering spaces are allowed the values of Planck constant are products of integers and given value of Planck constant corresponds to a finite number of pages given by the number of decompositions of the integer to two different integers.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for $r = h_i/h_0$. For the most general option the values of h are products and ratios of two integers n_a and n_b. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases $exp(i 2\pi/n_i)$, $i \in \{a, b\}$, in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors powers of two as values of r.

One can however ask whether a more precise characterization of preferred Mersennes could exist and whether there could exist a stronger correlation between hierarchies of p-adic length scales and Planck constants. Mersenne primes $M_k = 2^k - 1$, $k \in \{89, 107, 127\}$, and Gaussian Mersennes $M_{2,k} = (1+i)k - 1$, $k \in \{113, 151, 157, 163, 167, 239, 241\}$ are expected to be physically highly interesting and up to $k = 127$ indeed correspond to elementary particles. The number theoretical miracle is that all the four p-adic length scales with $k \in \{151, 157, 163, 167\}$ are in the biologically highly interesting range 10 nm-2.5 pm. The question has been whether these define scaled up copies of electro-weak and QCD type physics with ordinary value of h. The proposal that this is the case and that these physics are in a well-defined sense induced by the dark scaled up variants of corresponding lower level physics leads to a prediction for the preferred values of $r = 2^k$, $k_3 = k_1 - k_2$.

What induction means is that dark variant of exotic nuclear physics induces exotic physics with ordinary value of Planck constant in the new scale in a resonant manner: dark gauge bosons transform to their ordinary variants with the same Compton length. This transformation is natural since in length scales below the Compton length the gauge bosons behave as massless and free particles. As a consequence, lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about
EEG \cite{22} since it predicts a spectrum of preferred Josephson frequencies for a given value of membrane potential and also assigns to a given value of \(\hbar \) a fixed size scale having interpretation as the size scale of the body part or magnetic body. Also a vision about evolution of life emerges. Mersenne hypothesis is especially interesting as far as new physics in condensed matter length scales is considered: this includes exotic scaled up variants of the ordinary nuclear physics and their dark variants. Even dark nucleons are possible and this gives justification for the model of dark nucleons predicting the counterparts of DNA, RNA, tRNA, and aminoacids as well as realization of vertebrate genetic code \cite{81}. These exotic nuclear physics with ordinary value of Planck constant could correspond to ground states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of \(CP_2 \) near criticality to a phase transition changing Planck constant. Ordinary nuclear physics would correspond to homologically non-trivial geodesic sphere and far from vacuum extremal property. For vacuum extremals of this kind classical \(Z^0 \) field proportional to electromagnetic field is present and this modifies dramatically the view about cell membrane as Josephson junction. The model for cell membrane as almost vacuum extremal indeed led to a quantitative breakthrough in TGD inspired model of EEG and is therefore something to be taken seriously. The safest option concerning empirical facts is that the copies of electro-weak and color physics with ordinary value of Planck constant are possible only for almost vacuum extremals - that is at criticality against phase transition changing Planck constant.

6.1.2 Some implications

As already noticed, the detailed implications of the hierarchy of Planck constants depend on whether one brings in the hierarchy of singular coverings and factor spaces of the imbedding space as an independent postulate or whether one assumes that singular coverings emerge as an effective description from basic quantum TGD.

Dark variants of nuclear physics

One can imagine endless variety of dark variants of ordinary nuclei and every piece of data is well-come in attempts to avoid a complete inflation of speculative ideas. The book metaphor for the extended imbedding space is useful in the attempts to imagine various exotic phases of matter. For the minimal option atomic nuclei would be ordinary whereas field bodies could be dark and analogous to \(n \)-sheeted Riemann surfaces. One can imagine that the nuclei are at the "standard" page of the book and color bonds at different page with different p-adic length scale or having different Planck constant \(\hbar \). This would give two hierarchies of nuclei with increasing size.

Color magnetic body of the structure would become a key element in understanding the nuclear binding energies, giant dipole resonances, and nuclear decays. Also other field bodies are in a key role and there seems to be a field body for every basic interaction (classical gauge fields are induced from spinor connection and only four independent field variables are involved so that this is indeed required).

Nothing prevents from generalizing the nuclear string picture so that color bonds could bind also atoms to molecules and molecules to larger structures analogous to nuclei. Even hydrogen bond might be interpreted in this manner. Molecular physics could be seen as a scaled up variant of nuclear physics in a well-defined sense. The exotic features would relate to the hierarchy of various field bodies, including color bonds, electric and weak bonds. These field bodies would play key role also in biology and replaced molecular randomness with coherence in much longer length scale.

In the attempt to make this vision quantitative the starting point is nuclear string model \cite{2}, and the model of cold fusion based on it forcing also to conclude the scaled variants of electro-weak bosons are involved. The model of cold fusion requires the presence of a variant electro-weak interactions for which weak bosons are effectively massless below the atomic length scale.

\[k = 113 \] p-adically scaled up variant of ordinary weak physics which is dark and corresponds to \(\hbar = r \hbar_0, r = 2^{64}, k_d = 14 = 127 - 113 \) is an option consistent with Mersenne hypothesis and gives weak bosons in electron length scale. Another possibility is defined by \(k = 113 \) and \(k_d = 24 = 113 - 89 = 151 - 127 \) and corresponds to the p-adic length scale \(k = 137 \) defining atomic length scale. This would give rise to weak bosons with masses in keV scale and these would be certainly relevant for the physics of condensed matter.
Anomalies of water could be understood if one assumes that color bonds can become dark with suitable values of $r = 2k_d$ and if super-nuclei formed by connecting different nuclei by the color bonds are possible. Tetrahedral and icosahedral water clusters could be seen as magic super-nuclei in this framework. Color bonds could connect either proton nuclei or water molecules.

The model for partially dark condensed matter deriving from exotic nuclear physics and exotic weak interactions could allow to understand the low compressibility of the condensed matter as being due to the repulsive weak force between exotic quarks, explains large parity breaking effects in living matter (chiral selection), and suggests a profound modification of the notion of chemical bond having most important implications for bio-chemistry and understanding of bio-chemical evolution.

Could the notion of dark atom make sense?

One can also imagine several variants of dark atom. Book metaphor suggest one variant of dark atom.

1. Nuclei and electrons could be ordinary but classical electromagnetic interactions are mediated via dark space-time sheet "along different page of the book". The value of Planck constant would be scaled so that one would obtain a hierarchy of scaled variants of hydrogen atom. The findings of [39] could find an explanation in terms of a reduced Planck constant if singular factor spaces are assumed to be possible. An alternative explanation is based on the notion of quantum-hydrogen atom obtained as q-deformation of the ordinary hydrogen atom.

2. A more exotic variant if atom is obtained by assuming ordinary nuclei but dark, not totally quantum critical, electrons. Dark space-time surface is analogous to n-sheeted Riemann surface and if one assumes that each sheet could carry electron, one ends up with the notion of N-atom. This variant of dark atom is more or less equivalent with that following from the option for which the singular coverings of imbedding space are effective manner to describe the many-valuedness of the time derivatives of the imbedding space coordinates as functions of canonical momentum densities.

6.2 A generalization of the notion of imbedding space as a realization of the hierarchy of Planck constants

6.2.1 Hierarchy of Planck constants and the generalization of the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of Planck constant is summarized. The question is whether it might be possible in some sense to replace H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can consider two options: either M^4 or the causal diamond CD. The latter one is the more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a hierarchy of phases of matter with non-standard value of Planck constants was much faster than the evolution of mathematical ideas and quite a number of applications have been developed during last five years.

1. The starting point was the proposal of Nottale [4] that the orbits of inner planets correspond to Bohr orbits with Planck constant $h_{gr} = GMm/v_0$ and outer planets with Planck constant $h_{gr} = 5GMm/v_0$, $v_0/c \simeq 2^{-11}$. The basic proposal [66] was that ordinary matter condenses around dark matter which is a phase of matter characterized by a non-standard value of Planck constant whose value is gigantic for the space-time sheets mediating gravitational interaction. The interpretation of these space-time sheets could be as magnetic flux quanta or as massless extremals assignable to gravitons.
6.2. A generalization of the notion of imbedding space as a realization of the hierarchy of Planck constants

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton length meaning that the density of matter at these space-time sheets must be very slowly varying. The string tension of string like objects implies effective negative pressure characterizing dark energy so that the interpretation in terms of dark energy might make sense. TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical mass density and the "pressure" associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about standard space-time is. Particles with different Planck constant must belong to different worlds in the sense local interactions of particles with different values of \(\hbar \) are not possible. This inspires the idea about the book like structure of the imbedding space obtained by gluing almost copies of \(H \) together along common "back" and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different pages of the book like structure cannot appear in the same vertex of the generalized Feynman diagram. The phase transitions in which partonic 2-surface \(X^2 \) during its travel along \(X^2 \) leaks to another page of book are however possible and change Planck constant. Particle (say photon -) exchanges of this kind allow particles at different pages to interact. The interactions are strongly constrained by charge fractionization and are essentially phase transitions involving many particles. Classical interactions are also possible. It might be that we are actually observing dark matter via classical fields all the time and perhaps have even photographed it.

5. The realization that non-standard values of Planck constant give rise to charge and spin fractionization and anyonization led to the precise definition of the prerequisites of anyonic phase. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of \(CD \), the matter at the surface is anyonic and particles are confined at this surface. Dark matter could be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the findings of Nottale can be understood. Dark matter would resemble to a high degree matter in black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size of order Schawrzschild radius \(r_S \) of order scaled up Planck length \(l_{Pl} = \sqrt{\hbar G} = GM \). Black hole entropy is inversely proportional to \(h \) and predicted to be of order unity so that dramatic modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents through cell membrane (low dissipation, quantal character, no change when the membrane is replaced with artificial one) has a natural explanation in terms of dark supra currents. This leads to a vision about how dark matter and phase transitions changing the value of Planck constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication and control tool of magnetic body containing dark matter and using biological body as motor instrument and sensory receptor. One especially amazing outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as nuclear strings.

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding space.

1. The fundamental group of the space for which one constructs a non-singular covering space or factor space should be non-trivial. This is certainly not possible for \(M^4, CD, CP_2 \), or \(H \). One can however construct singular covering spaces. The fixing of the quantization axes implies a selection of the sub-space \(H_4 = M^2 \times S^2 \subset M^4 \times CP_2 \), where \(S^2 \) is geodesic sphere of \(CP_2 \). \(M^4 = M^4 \setminus M^2 \) and \(CP_2 = CP_2 \setminus S^2 \) have fundamental group \(Z \) since the codimension of the excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could naturally give rise to the desired situation.
2. CP_2 allows two geodesic spheres which left invariant by $U(2 \text{ resp. } SO(3))$. The first one is homologically non-trivial. For homologically non-trivial geodesic sphere $H_4 = M^2 \times S^2$ represents a straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred extremal). One can argue that the many-valuedness of \hbar is un-acceptable for non-vacuum extremals so that only homologically trivial geodesic sphere S^2 would be acceptable. One could go even further. If the extremals in $M^2 \times CP_2$ can be preferred non-vacuum extremals, the singular coverings of M^4 are not possible. Therefore only the singular coverings and factor spaces of CP_2 over the homologically trivial geodesic sphere S^2 would be possible. This however looks a non-physical outcome.

(a) The situation changes if the extremals of type $M^2 \times Y^2$, Y^2 a holomorphic surface of CP_3, fail to be hyperquaternionic. The tangent space M^2 represents hypercomplex sub-space and the product of the modified gamma matrices associated with the tangent spaces of Y^2 should belong to M^2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled up coordinates for M^4 so that metric is continuous at $M^2 \times CP_2$ but CDs with different size have different sizes differing by the ratio of Planck constants and would thus have only piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian products of singular coverings and factor spaces. These options can be denoted by $C = C$, $C - F$, $F - C$, and $F - F$, where C (F) signifies for covering (factor space) and first (second) letter signifies for CD (CP_2) and correspond to the spaces $(CD \times G_2) \times (CP_2 \times G_2)$, $(CD \times G_2) \times CP_2/G_2$, $CD/G_2 \times (CP_2 \times G_2)$, and $CD / G_2 \times CP_2 / G_2$.

4. The groups G_4 could correspond to cyclic groups Z_n. One can also consider an extension by replacing M^2 and S^2 with its orbit under more general group G (say tetrahedral, octahedral, or icosahedral group). One expects that the discrete subgroups of $SU(2)$ emerge naturally in this framework if one allows the action of these groups on the singular sub-manifolds M^2 or S^2. This would replace the singular manifold with a set of its rotated copies in the case that the subgroups have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in the ADE correspondence). For instance, in the case of M^2 the quantization axes for angular momentum would be replaced by the set of quantization axes going through the vertices of tetrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase transition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at $M^2 \times CP_2$ takes place? It would seem that the covariant metric of CD factor proportional to \hbar^2 must be discontinuous at the singular manifold since only in this manner the idea about different scaling factor of CD metric can make sense. On the other hand, one can always scale the M^4 coordinates so that the metric is continuous but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous change of the size of partonic 2-surface in M^4 degrees of freedom. This is not the case. Light-likeness in $M^2 \times S^2$ makes sense only for surfaces $X^1 \times D^2 \subset M^2 \times S^2$, where X^1 is light-like geodesic. The requirement that the partonic 2-surface X^2 moving from one sector of H to another one is light-like at $M^2 \times S^2$ irrespective of the value of Planck constant requires that X^2 has single point of M^2 as M^2 projection. Hence no sudden change of the size X^2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum extremals of Chern-Simons action have two-dimensional CP_2 projection to homologically non-trivial geodesic sphere S^2_f. The deformation of the entire S^2_f to homologically trivial geodesic sphere S^2_{II} is not possible so that only combinations of partonic 2-surfaces with vanishing total
homology charge (Kähler magnetic charge) can in principle move from sector to another one, and this process involves fusion of these 2-surfaces such that CP_2 projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S^2_1 of CP_2 can be deformed to that of S^2_{ij} using 2-dimensional homotopy flattening the piece of S^2 to curve. If this homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms) are very relevant for the understanding of phase transitions changing Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers n_a and n_b defining the covering and factors spaces, is far from trivial and I have considered several options. The basic physical inputs are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD (that is Compton lengths) on one hand and the scaling of the gauge coupling strength $g^2/4\pi\hbar$ on the other hand.

1. One can assign to Planck constant to both CD and CP_2 by assuming that it appears in the commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck constants $\hbar(\text{CD})$ and $\hbar(\text{CP}_2)$ must define a homomorphism respecting multiplication and division (when possible) by G_i. This requires $r(X) = \hbar(X)\hbar_0 = n$ for covering and $r(X) = 1/n$ for factor space or vice versa.

2. If one assumes that $\hbar^2(X), X = M^4, CP_2$ corresponds to the scaling of the covariant metric tensor g_{ij} and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler action by dividing metric with $\hbar^2(CP_2)$, one obtains the scaling of M^4 covariant metric by $r^2 \equiv \hbar^2/\hbar_0^2 = \hbar_0^2(M^4)/\hbar^2(CP_2)$ whereas CP_2 metric is not scaled at all.

3. The condition that h scales as n_a is guaranteed if one has $h(\text{CD}) = n_a\hbar_0$. This does not fix the dependence of $h(\text{CP}_2)$ on n_b and one could have $h(\text{CP}_2) = \hbar_0/n_b$ or $h(\text{CP}_2) = \hbar_0/n_b$. The intuitive picture is that n_a-fold covering gives in good approximation rise to n_an_b sheets and multiplies YM action action by n_an_b which is equivalent with the $h = n_an_b\hbar_0$ if one effectively compresses the covering to $CD \times CP_2$. One would have $h(\text{CP}_2) = \hbar_0/n_b$ and $h = n_an_b\hbar_0$. Note that the descriptions using ordinary Planck constant and coverings and scaled Planck constant but contracting the covering would be alternative descriptions.

This gives the following formulas $r \equiv h/\hbar_0 = r(M^4)/r(CP_2)$ in various cases.

<table>
<thead>
<tr>
<th>$C-C$</th>
<th>$F-C$</th>
<th>$C-F$</th>
<th>$F-F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>n_an_b</td>
<td>n_a/n_b</td>
<td>n_b/n_a</td>
</tr>
</tbody>
</table>

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat polygons constructible using only ruler and compass and given as products $n_F = 2^k \prod F_s$, where $F_s = 2^{2^s} + 1$ are distinct Fermat primes, are favored. The reason would be that quantum phase $q = \exp(i\pi/n)$ is in this case expressible using only iterated square root operation by starting from rationals. The known Fermat primes correspond to $s = 0, 1, 2, 3, 4$ so that the hypothesis is very strong and predicts that p-adic length scales have satellite length scales given as multiples of n_F of fundamental p-adic length scale. $n_F = 2^{11}$ corresponds in TGD framework to a fundamental constant expressible as a combination of Kähler coupling strength, CP_2 radius and Planck length appearing in the expression for the tension of cosmic strings, and the powers of 2^{11} was proposed to define favored as values of n_a in living matter [22].

The hypothesis that Mersenne primes $M_k = 2^k - 1, k \in \{89, 107, 127\}$, and Gaussian Mersennes $M_{G,k} = (1 + i)k - 1, k \in \{113, 151, 157, 163, 167, 239, 241\}$ (the number theoretical miracle is that all the four p-adic length scales sit $h \in \{151, 157, 163, 167\}$ are in the biologically highly interesting range 10 nm-2.5 μm) define scaled up copies of electro-weak and QCD type physics with ordinary value of \hbar and that these physics are induced by dark variants of corresponding lower level physics leads to a prediction for the preferred values of $r = 2^{k_i}, k_{ij} = k_i - k_j$, and the resulting picture finds
support from the ensuing models for biological evolution and for EEG [22]. This hypothesis — to be referred to as Meremne hypothesis — replaces the rather ad hoc proposal \(r = \hbar/\hbar_0 = 2^{11k} \) for the preferred values of Planck constant.

How Planck constants are visible in Kähler action?

\(h(M^4) \) and \(h(CP_2) \) appear in the commutation and anticommutation relations of various superconformal algebras. Only the ratio of \(M^4 \) and \(CP_2 \) Planck constants appears in Kähler action and is due to the fact that the \(M^4 \) and \(CP_2 \) metrics of the imbedding space sector with given values of Planck constants are proportional to the corresponding Planck. This implies that Kähler function codes for radiative corrections to the classical action, which makes possible to consider the possibility that higher order radiative corrections to functional integral vanish as one might expect at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants that higher order radiative corrections to functional integral vanish as one might expect at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to the spectrum of \(\hbar \) coding for the scaled up values of Compton lengths and other quantal lengths and times. If so, large \(\hbar \) phases could be crucial for understanding of quantum critical superconductors, in particular high \(T_c \) superconductors.

A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional quantum Hall effect [5] at the level of basic quantum TGD as integer QHE for non-standard value of Planck constant. The formula for the quantized Hall conductance is given by

\[
\sigma = \nu \frac{e^2}{h},
\nu = \frac{n}{m}.
\]

(6.2.1)

Series of fractions in \(\nu = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13..., 5/3, 8/5, 11/7, 14/9, 4/3, 7/5, 10/7, 13/9, 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7... \) with odd denominator have been observed as are also \(\nu = 1/2 \) and \(\nu = 5/2 \) states with even denominator [5] .

The model of Laughlin [53] cannot explain all aspects of FQHE. The best existing model proposed originally by Jain is based on composite fermions resulting as bound states of electron and even number of magnetic flux quanta [50] . Electrons remain integer charged but due to the effective magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the observed fractions and also their relative intensities and the order in which they appear as the quality of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the current currying slab so that \(x \) varies in the direction of Hall current and \(y \) in the direction of the main current. For IQHE the value of Hall conductivity is given by \(\sigma = j_y/E_x = n_e e v / e B = n_e e / B = N e^2 / h B = N e^2 / m h \), where \(m \) characterizes the value of magnetized flux and \(N \) is the total number of electrons in the current. In the Landau gauge \(A_y = x B \) one can assume that energy eigenstates are momentum eigenstates in the direction of current and harmonic oscillator Gaussians in \(x \)-direction in which Hall current runs. This gives

\[
\Psi \propto \exp(ik y) H_n(x + k l^2) e^{x p(-\frac{(x + k l^2)^2}{2\sigma y})}, \quad l^2 = \frac{\hbar}{e B}.
\]

(6.2.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are important so that the momentum eigenvalues are in good approximation in the range \(0 \leq k \leq k_{\text{max}} = L_y / l^2 \). Using \(N = (L_y / 2\pi) \int_0^{k_{\text{max}}} dk \) one obtains that the total number of momentum eigenstates associated with the given value of \(n \) is \(N = e B d L_y L_y / \hbar = n \). If \(\nu \) Landau states are filled, the value of \(\sigma \) is \(\sigma = \nu e^2 / \hbar \).

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain also the fractionization of charge, spin, and electron number. There are \(2 \times 2 = 4 \) combinations of...
covering and factor spaces of CP_2 and three of them can lead to the increase or at least fractionization of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

$$\nu = \nu_0 \frac{\hbar}{\tau}, \quad \nu_0 = 1, 2, \ldots .$$

(6.2.3)

ν_0 denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether a singular covering or factor space of CD (CP_2) is in question. The observed filling fractions are consistent with options C-C, C-F, and F-C for which CD or CP_2 or both correspond to a singular covering space. The values of ν in various cases are given by the following table.

<table>
<thead>
<tr>
<th>Option</th>
<th>C-C</th>
<th>C-F</th>
<th>F-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>$\nu_0 \frac{n_a}{n_b}$</td>
<td>$\nu_0 \frac{n_b}{n_a}$</td>
<td>$\nu_0 \frac{n_b}{n_a}$</td>
</tr>
</tbody>
</table>

(6.2.4)

There is a complete symmetry under the exchange of CD and CP_2 as far as values of ν are considered.

3. All three options are consistent with observations. Charge fractionization allows only the options $C - C$ and $F - C$. If one believes the general arguments stating that also spin is fractionized in FQHE then only the option $C - C$, for which charge and spin units are equal to $1/n_a$ and $1/n_b$ respectively, remains. For $C - C$ option one must allow $\nu_0 > 1$.

4. Both $\nu = 1/2$ and $\nu = 5/2$ state has been observed [5, 32]. The fractionized charge is believed to be $e/4$ in the latter case [57, 55]. This requires $n_b = 4$ allowing only (C, C) and (F, C) options. $n_i \geq 3$ holds true if coverings and factor spaces are correlates for Jones inclusions and this gives additional constraint. The minimal values of (ν_0, n_a, n_b) are $(2, 1, 4)$ for $\nu = 1/2$ and $(10, 1, 4)$ for $\nu = 5/2$ for both $C - C$ and $F - C$ option. Filling fraction $1/2$ corresponds in the composite fermion model and also experimentally to the limit of zero magnetic field [50]. $n_b = 2$ would be inconsistent with the observed fractionization of electric charge for $\nu = 5/2$ and with the vision inspired by Jones inclusions implying $n_i \geq 3$.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values of m except $m = 2$ (Laughlin’s model predicts only odd values of m). A possible explanation is that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model) both n_a and n_b must be odd. This would require that $m = 2$ case differs in some manner from the remaining cases.

6. Large values of m in $\nu = n/m$ emerge as B increases. This can be understood from flux quantization. One has $e \int B dS = nh$. By using actual fractional charge $e_F = e/n_b$ in the flux factor would give for (C, C) option $e_F \int B dS = n a_h_0$ The interpretation is that each of the n_b sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet is not affected so that the build-up of multiple covering seems to keep magnetic field strength below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in 80 mK temperature corresponding roughly to a thermal energy of $T \sim 10^{-5}$ eV. For graphene the effect is observed at room temperature. Cyclotron energy for electron is (from $f_e = 6 \times 10^5$ Hz at $B = .2$ Gauss) of order thermal energy at room temperature in a magnetic field varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such
a low temperature. A possible explanation is that since FQHE involves several values of Planck constant, it is quantum critical phenomenon and is characterized by a critical temperature. The differences of single particle energies associated with the phase with ordinary Planck constant and phases with different Planck constant would characterize the transition temperature.

6.2.2 Could the dynamics of Kähler action predict the hierarchy of Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck constant could have large values in both astrophysical systems involving dark matter and also in biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor spaces of \(CD\) and \(CP^2\) emerged from consistency conditions. The formula for the Planck constant involves heuristic guess work and physical plausibility arguments. There are good arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with the hierarchy of infinite primes and \(p\)-adicization program based on the mathematical realization of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD rather than as a separate hypothesis. The following arguments suggest that this might be possible. One finds also a precise geometric interpretation of preferred extremal property interpreted as criticality in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy ontology at the 3-D surfaces located at the light-like boundaries of \(CD \times CP^2\).

1. In canonical quantization canonical momentum densities \(\pi^0_k \equiv \pi_k = \partial L_K / \partial (\partial_0 h^k)\), where \(\partial_0 h^k\) denotes the time derivative of imbedding space coordinate, are the physically natural quantities in terms of which to fix the initial values: once their value distribution is fixed also conserved charges are fixed. Also the weak form of electric-magnetic duality given by \(J^{03} \sqrt{g_4} = 4\pi\alpha_K J_{12}\) and a mild generalization of this condition to be discussed below can be interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to their quantized values since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole) throat. This condition alone need not characterize criticality, which requires an infinite number of deformations of \(X^4\) for which the second variation of the Kähler action vanishes and implies infinite number conserved charges. This in fact gives hopes of replacing \(\pi_k\) with these conserved Noether charges.

2. Canonical quantization requires that \(\partial_0 h^k\) in the energy is expressed in terms of \(\pi_k\). The equation defining \(\pi_k\) in terms of \(\partial_0 h^k\) is however highly non-linear although algebraic. By taking squares the equations reduces to equations for rational functions of \(\partial_0 h^k\). \(\partial_0 h^k\) appears in contravariant and covariant metric at most quadratically and in the induced Kähler electric field linearly and by multiplying the equations by \(\det g_4\) one can transform the equations to a polynomial form so that in principle \(\partial_0 h^k\) can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates as the coordinates of the spacetime surface so that the initial value conditions reduce to those for the canonical momentum densities associated with the remaining four coordinates. For instance, for space-time surfaces representable as map \(M^4 \rightarrow CP^2\) coordinates are natural and the time derivatives \(\partial_0 h^k\) of \(CP^2\) coordinates are multivalued. One would obtain four polynomial equations with \(\partial_0 h^k\) as unknowns. In regions where \(CP^2\) projection is 4-dimensional in particular for the deformations of \(CP^2\) vacuum extremals the natural coordinates are \(CP^2\) coordinates and one can regard \(\partial_0 n^k\) as unknows. For the deformations of cosmic strings, which are of form
$X^4 = X^2 \times Y^2 \subset M^4 \times CP_2$, one can use coordinates of $M^2 \times S^2$, where S^2 is geodesic sphere as natural coordinates and regard as unknowns E^2 coordinates and remaining CP_2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivatives in terms of other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions to obtain algebraic equations from which one solves then second variable. Obviously situation is very complex without additional symmetries. The criticality of the preferred extremals might however give additional conditions allowing simplifications. The reasons for giving up the canonical quantization program was following. For the vacuum extremals of Kähler action π_k are however identically vanishing and this means that there is an infinite number of value distributions for $\partial_k h^{b}$.

If one assumes that physics is characterized by the values of the conserved charges one must treat the many-valuedness of $\partial_0 h^{b}$. The most obvious guess is that one should replace the space of space-like 4-surfaces corresponding to different roots $\partial_0 h^k = F^k(\pi_l)$ with four-surfaces in the covering space of $CD \times CP_2$ corresponding to different branches of the many-valued function $\partial_0 h^k = F(\pi_l)$ co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of $\partial_0 h^k$ correspond to the coverings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces associated with the hierarchy of Planck constants. This would conform with quantum classical correspondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure the failure of the perturbation theory at quantum level. At classical level the multivaluedness of $\partial_0 h^k$ means a failure of perturbative canonical quantization and forces the introduction of the covering spaces. The interpretation would be that when the density of matter becomes critical the space-time surface splits to several branches so that the density at each branches is sub-critical. It is of course not at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis and one also consider modifications of this structure if necessary. The manner to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers assignable to CD and CP_2 degrees of freedom are however needed. How these two coverings could emerge?

 (a) One should fix also the values of $\pi_k^a = \partial L_K / \partial h_n^b$, where a refers to space-like normal coordinate at the wormhole throats. If one requires that charges do not flow between regions with different signatures of the metric the natural condition is $\pi_k^a = 0$ and allows also multi-valued solution. Since wormhole throats carry magnetic charge and since weak form of electric-magnetic duality is assumed, one can assume that CP_2 projection is four-dimensional so that one can use CP_2 coordinates and regard $\partial_0 m^k$ as un-knows. The basic idea about topological condensation in turn suggests that M^4 projection can be assumed to be 4-D inside space-like 3-surfaces so that here $\partial_0 m^k$ are the unknowns. At partonic 2-surfaces one would have conditions for both π_k^0 and π_k^n. One might hope that the numbers of solutions are finite for preferred extremals because of their symmetries and given by n_a for $\partial_0 m^k$ and by n_b for $\partial_0 b^k$. The optimistic guess is that n_a and n_b corresponds to the numbers of sheets for singular coverings of CD and CP_2. The covering could be visualized as replacement of space-time surfaces with space-time surfaces which have $n_a n_b$ branches. n_b branches would degenerate to single branch at the ends of diagrams of the generalized Feynman graph and n_a branches would degenerate to single one at wormhole throats.

 (b) This picture is not quite correct yet. The fixing of π_k^0 and π_k^n should relate closely to the effective 2-dimensionality as an additional condition perhaps crucial for criticality. One could argue that both π_k^0 and π_k^n must be fixed at X^3 and X^4 in order to effectively bring in dynamics in two directions so that X^3 could be interpreted as a an orbit of partonic 2-surface in space-like direction and X^4 as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody type conformal symmetries. The conditions for n^k_0 would give n_b branches in CP_2 degrees of freedom and the conditions for n^k_4 would split each of these branches to n_a branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for n^a_0) could relate also very closely to the slicing of the space-time sheets by string world sheets and partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time surface? The treatment as a single surface seems to be the correct thing to do. Classically the conserved changes would be $n_a n_b$ times larger than for single branch. Kähler action need not (but could!) be same for different branches but the total action is $n_a n_b$ times the average action and this effectively corresponds to the replacement of the h_0/g^2_K factor of the action with h/g^2_K, $r \equiv h/h_0 = n_a n_b$. Since the conserved quantum charges are proportional to h one could argue that $r = n_a n_b$ tells only that the charge conserved charge is $n_a n_b$ times larger than without multi-valuedness. h would be only effectively $n_a n_b$ fold. This is of course poor man’s argument but might catch something essential about the situation.

3. How could one interpret the condition $J^{03} \sqrt{g_4} = 4\pi a_K J_{12}$ and its generalization to be discussed below in this framework? The first observation is that the total Kähler electric charge is by $a_K \propto 1/(n_a n_b)$ same always. The interpretation would be in terms of charge fractionization meaning that each branch would carry Kähler electric charge $Q_K = n g_K / n_a n_b$. I have indeed suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding space metric. The assumption that the M^4 covariant metric is proportional to h^4 follows from the physical idea about h scaling of quantum lengths as what Compton length is. One can always introduce scaled M^4 coordinates bringing M^4 metric into the standard form by scaling up the M^4 size of CD. It is not clear whether the scaling up of CD size follows automatically from the proposed scenario. The basic question is why the M^4 size scale of the critical extremals must scale like $n_a n_b$? This should somehow relate to the weak self-duality conditions implying that Kähler field at each branch is reduced by a factor $1/r$ at each branch. Field equations should posses a dynamical symmetry involving the scaling of CD by integer k and $J^{03} \sqrt{g_4}$ and $J^{n0} \sqrt{g_4}$ by $1/k$. The scaling of CD should be due to the scaling up of the M^4 time interval during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular cuttings reduce to single-sheeted coverings at $M^2 \subset M^4$ for CD and to $S^2 \subset CP_2$ for CP_2. Here S^2 is any homologically trivial geodesic sphere of CP_2 and has vanishing Kähler form. Weak self-duality condition is indeed consistent with any value of h and implies that the vacuum property for the partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed requires. This condition however generalizes. In weak self-duality conditions the value of h is free for any 2-D Lagrangian sub-manifold of CP_2.

The branching along M^2 would mean that the branches of preferred extremals always collapse to single branch when their M^4 projection belongs to M^2. Magnetically charged light-light-like throats cannot have M^4 projection in M^2 so that self-duality conditions for different values of h do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition would mean that the M^4 projection becomes light-like geodesic. Straight cosmic strings would have M^4 as M^4 projection. Also CP_2 type vacuum extremals for which the random light-like projection in M^4 belongs to M^2 would represent this of situation. One can ask whether the degeneration of branches actually takes place along any string like object $X^2 \times Y^2$, where X^2 defines a minimal surface in M^4. For these the weak self-duality condition would imply $h = \infty$ at the ends of the string. It is very plausible that string like objects feed their magnetic fluxes to larger space-times sheets through wormhole contacts so that these conditions are not encountered.
6.3. General ideas about dark matter

In the sequel general ideas about the role of dark matter in condensed matter physics are described.

6.3.1 How the scaling of \hbar affects physics and how to detect dark matter?

It is relatively easy to deduce the basic implications of the scaling of \hbar.

1. If the rate for the process is non-vanishing classically, it is not affected in the lowest order. For instance, scattering cross sections for say electron-electron scattering and e^+e^- annihilation are not affected in the lowest order since the increase of Compton length compensates for the reduction of α_{em}. Photon-photon scattering cross section, which vanishes classically and is proportional to $\alpha_{em}^4 \hbar^2 / E^2$, scales down as $1/\hbar^2$.

2. Higher order corrections coming as powers of the gauge coupling strength α are reduced since $\alpha = g^2 / 4\pi \hbar$ is reduced. Since one has $\hbar_s/\hbar = \alpha Q_1 Q_2 / v_0$, $\alpha Q_1 Q_2$ is effectively replaced with a universal coupling strength v_0. In the case of QCD the paradoxical sounding implication is that α_s would become very small.

6.3.2 General view about dark matter hierarchy and interactions between relatively dark matters

The identification of the precise criterion characterizing dark matter phase is far from obvious. TGD actually suggests an infinite number of phases which are dark relative to each other in some sense and can transform to each other only via a phase transition which might be called de-coherence or its reversal and which should be also characterized precisely.

A possible solution of the problem comes from the general construction recipe for S-matrix. Fundamental vertices correspond to partonic 2-surfaces representing intersections of incoming and outgoing light-like partonic 3-surfaces.

1. If the characterization of the interaction vertices involves all points of partonic 2-surfaces, they must correspond to definite value of Planck constants and more precisely, definite groups G_a and G_b characterizing dark matter hierarchy. Particles of different G_b phases could not appear in the same vertex since the partons in question would correspond to vacuum extremals. Hence the phase transition changing the particles to each other analogous could not be described by a vertex and would be analogous to a de-coherence.

The phase transition could occur at the incoming or outgoing particle lines. At space-time level the phase transition would mean essentially a leakage between different sectors of imbedding space and means that partonic 2-surface at leakage point has CP_2 projection reducing to the orbifold point invariant under G or alternatively, its M_4^\perp projection corresponds to the tip of M_4^\perp. Relative darkness would certainly mean different groups G_a and G_b. Note that $h(M^4)$ resp. $h(CP_2)$ can be same for different groups G_a resp. G_b and that only the ratio of $h(M^4)/h(M^4)$ appears in the Kähler action.
2. One can represent a criticism against the idea that relatively dark matters cannot appear at the same interaction vertex. The point is that the construction of S-matrix for transitions transforming partonic 2-surfaces in different number fields involves only the rational (algebraic) points in the intersection of the 2-surfaces in question. This idea applies also to the case in which particles correspond to different values of Planck constant. What is only needed that all the common points correspond to the orbifold point in M^4 or CP_2 degrees of freedom and are thus intermediate between two sectors of imbedding space. In this picture phase transitions would occur through vertices and S-matrix would characterize their probabilities. It seems that this option is the correct one.

If the matrix elements for real-real transitions involve all or at least a circle of the partonic 2-surface as stringy considerations suggest [17], then one would have clear distinction between quantum phase transitions and ordinary quantum transitions. Note however that one could understand the weakness of the quantal interactions between relatively dark matters solely from the fact that the CP_2 type extremals providing space-time correlates for particle propagators must in this case go through an intermediate state with at most point-like CP_2 projection.

What does one mean with dark variants of elementary particle?

It is not at all clear what one means with the dark variant of elementary particle. In this respect p-adic mass calculations provide a valuable hint. According to the p-adic mass calculations [48], $k = 113$ characterizes electromagnetic size of u and d quarks, of nucleons, and nuclei. $k = 107$ characterizes the QCD size of hadrons. This is somewhat paradoxical situation since one would expect that quark space-time sheets would be smaller than hadronic space-time sheets.

The simplest resolution of the problem suggested by the basic characteristics of electro-weak symmetry breaking is that $k = 113$ characterizes the size of the electro-magnetic field body of the quark and that the prime characterizing p-adic mass scale labels the em field body of the particle. One can assign mass also the Z^0 body but this would be much smaller as the small scale of neutrino masses suggests. This size scale correspond to a length scale of order 10 μm, which conforms with the expectation that classical Z^0 force is important in biological length scales. The size of Z^0 body of neutrino could relate directly to the chirality selection in living matter. An interesting question is whether the Z^0 field bodies of also other elementary fermions are of this size.

If this picture is correct then dark variant of elementary particle would differ from ordinary only in the sense that its field body would be dark. This conforms with the general working hypothesis is that only field bodies can be dark.

Are particles characterized by different p-adic primes relatively dark?

Each particle is characterized by a collection of p-adic primes corresponding to the partonic 2-surfaces associate with the particle like 3-surface. Number theoretical vision supports the notion of multi-p p-adicity and the idea that elementary particles correspond to infinite primes, integers, or perhaps even rationals [28, 73]. To infinite primes, integers, and rationals it is possible to associate a finite rational $q = m/n$ by a homomorphism. This would suggest generalization of p-adicity with q-adicity (q-adic topology does not correspond to number field) but this does not seem to be a promising idea.

The crucial observation is that one can decompose the infinite prime, call it P, to finite and infinite parts and distinguish between bosonic and fermionic finite primes of which infinite prime can be said to consist of $[50, 73, 49]$. The interpretation is that bosonic and fermionic finite primes in the infinite part of P code for p-adic topologies of light-like partonic 3-surfaces associated with a given real space-time sheet whereas the primes in the finite part of P code for p-adic lightlike partonic 3-surfaces.

This raises two options.

1. Two space-time sheets characterized by rationals having common prime factors can be connected by a $\#_n$ contact and can interact by the exchange of particles characterized by divisors of m or n since in this case partonic 2-surface with same p-adic or effective p-adic topology can be found. This is the only possible interaction between them.

2. The number theoretic vision about the construction of S-matrix however allows to construct S-matrix also in the case that partons belong to different number fields and one ends up with a
very elegant description involving only finite number of points of partonic 2-surfaces belonging to their intersection consisting of rational (algebraic points of imbedding space), which by algebraic universality could apply also to diagonal transitions. Also now the interactions mediated between propagators connecting partons with different effective p-adic topologies might be very slow so that this would give rise to relative darkness.

Hierarchy of infinite primes and dark matter hierarchy

In previous consideration only the simplest infinite primes at the lowest level of hierarchy were considered. Simple infinite primes allow a symmetry changing the sign of the finite part of infinite prime. A possible interpretation in terms of phase conjugation. One can consider also more complex infinite primes at this level and a possible interpretation in terms of bound states of several particles. One can also consider infinite integers and rationals: the interpretation would be as many particle states. Rationals might correspond to states containing particles and antiparticles. At the higher levels of the hierarchy infinite primes of previous take the role of finite primes at the previous level and physically these states correspond to higher level bound states of the particles of the previous level.

Thus TGD predicts an entire hierarchy of dark matters such that the many particle states at previous level become particles at the next level. This hierarchy would provide a concrete physical identification for the hierarchy of infinite primes identifiable in terms of a repeated second quantization of an arithmetic super-symmetric QFT [73] including both free many-particle states and their bound states. The finite primes about which infinite prime is in a well defined sense a composite of would correspond to the particles in the state forming a unit of dark matter. Particles belonging to different levels of this hierarchy would obviously correspond to different levels of dark matter hierarchy but their interactions must reduce to the fundamental partonic vertices.

6.3.3 How dark matter and visible matter interact?

The hypothesis that the value of \(\hbar \) is dynamical, quantized and becomes large at the verge of a transition to a non-perturbative phase in the ordinary sense of the word has fascinating implications. In particular, dark matter, would correspond to a large value of \(\hbar \) and could be responsible for the properties of the living matter. In order to test the idea experimentally, a more concrete model for the interaction of ordinary matter and dark matter must be developed and here of course experimental input and the consistency with the earlier quantum model of living matter is of considerable help.

How dark photons transform to ordinary photons?

The transitions of dark atoms naturally correspond to coherent transitions of the entire dark electron BE condensate and thus generate \(N_{cr} \) dark photons and behave thus like laser beams. Dark photons do not interact directly with the visible matter. An open question is whether even ordinary laser beams could be identified as beams of dark photons: the multiple covering property at the level of imbedding space and the fact that MEs are possible in all sectors suggests that this is not the case. Note that the transition from dark to ordinary photons implies the scaling of wave length and thus also of coherence length by a factor \(n_b/n_a \).

Dark ↔ visible transition should have also a space-time correlate. The so called topological light rays ("massless extremals") represent a crucial deviation of TGD from Maxwell's ED and have all the properties characterizing macroscopic classical coherence. Therefore MEs are excellent candidates for the space-time correlate of BE condensate of dark photons.

MEs carry in general a superposition of harmonics of some basic frequency determined by the length of ME. A natural expectation is that the frequency of classical field corresponds to the generalized de Broglie frequency of dark photon and is thus \(h/h_b \) times lower than for ordinary photons. In completely analogous manner de Broglie wave length is scaled up by \(k = h_b/h \). Classically the decay of dark photons to visible photons would mean that an oscillation with frequency \(f \) inside topological light ray transforms to an oscillation of frequency \(f/k \) such that the intensity of the oscillation is scaled up by a factor \(k \). Furthermore, the ME in question could naturally decompose into \(1 < N_{cr} \leq 137 \) ordinary photons in the case that dark atoms are in question. Of course also MEs could decay to lower level MEs and this has an interpretation in terms of hierarchy of dark matters to be discussed next.
About the criterion for the transition increasing the value of Planck constant

An attractive assumption is that the transition to dark matter phase occurs when the interaction strength satisfies the criticality condition $Q_1 Q_2 \alpha \simeq 1$. A special case corresponds to self interaction with $Q_1 = Q_2$. This condition applies only to gauge interactions so that particles can be characterized by gauge charges. A more general characterization would be that transition occurs when perturbation theory ceases to converge. The criterion cannot be applied to phenomenological QFT description of strong force in terms of, say, pion exchange.

Some examples are in order to test this view.

1. Transition from perturbative phase in QCD to hadronic phase is the most obvious application. The identification of valence quarks and gluons as dark matter would predict for them QCD size ($k = 107$ space-time sheet) of about electron Compton length. This does not change the QCD cross sections in the lowest order perturbation theory but makes them excellent predictions. It also provides completely new view about how color force determines the nuclear strong force indeed manifesting itself as long ranged harmonic oscillator potential, the long range of which becomes manifest in the case of neutron halos of size of 2.5×10^{-14} m. One can also understand tetraneutron in this framework. This criterion applies also in QCD plasma and explains the formation of liquid like color glass condensate detected in RHIC.[27]. A possible interpretation for QCD size would be as a length of the cylindrical magnetic walls defining the magnetic body associated with u and d type valence quarks, nucleons, and nuclei.

2. QCD size of quark must be distinguished from the electromagnetic size of quark associated with $k = 113$ space-time sheets of u and d quarks and assignable to the height of the magnetic body and defining the length scale of join along boundaries contacts feeding quark charges to $k = 113$ space-time sheets.

3. In the case of atomic nuclei the criterion would naturally apply to the electromagnetic interaction energy of two nucleon clusters inside nucleus or to to self energy ($Q^2 \alpha_{em} = 1$). Quite generally, the size of the electromagnetic $k = 113$ space-time sheet would increase by a $n_F = 2^k \prod F_x$, where F_x are different Fermat primes (the known ones being 3, 5, 17, 257, 2^{16} + 1), in the transition to large h phase. Especially interesting values of n_F seem to be of form $n_F = 2^{k^2}$ and possibly also $n_F = 2^{k^{11}} \prod F_x$. Similar criterion would apply in the plasma phase. Note that many free energy anomalies involve the formation of cold plasma.[27].

The criterion would give in the case of single nucleus and plasma $Z \geq 12$ if the charges are within single space-time sheet. This is consistent with cold fusion involving Palladium nuclei.[32]. Since u and d quarks have $k = 113$, they both and thus both neutrons and protons could make a transition to large h phase. This is consistent with the selection rules of cold fusion since the production of 3He involves a phase transition $npd \rightarrow npn$ and the contraction of pd to p is made un-probable by the Coulomb wall whereas the transition $npd \rightarrow npn$ producing tritium does not suffer from this restriction.

Strong and weak physics of nuclei would not be affected in the phase transition. Electromagnetic perturbative physics of nuclei would not be affected in the process in the lowest order in h (classical approximation) but the height of the Coulomb wall would be reduced by a factor $1/n_F$ by the increase in the electromagnetic size of the nucleus. Also Pd nuclei could make the transition and Pd nuclei could catalyze the transition in the case the deuterium nuclei.

6.3.4 Could one demonstrate the existence of large Planck constant photons using ordinary camera or even bare eyes?

If ordinary light sources generate also dark photons with same energy but with scaled up wavelength, this might have effects detectable with camera and even with bare eyes. In the following I consider in a rather light-hearted and speculative spirit two possible effects of this kind appearing in both visual perception and in photos. For crackpotters I want to make clear that I love to play with ideas to see whether they work or not, and that I am ready to accept some convincing mundane explanation of these effects and I would be happy to hear about this kind of explanations. I was not able to find any such explanation from Wikipedia using words like camera, digital camera, lense, aberrations.[3].
Why light from an intense light source seems to decompose into rays?

If one also assumes that ordinary radiation fields decompose in TGD Universe into topological light rays ("massless extremals", MEs) even stronger predictions follow. If Planck constant equals to \(h = q \times h_0 \), \(q = n_a/n_b \), MEs should possess \(Z_{n_a} \) as an exact discrete symmetry group acting as rotations along the direction of propagation for the induced gauge fields inside ME.

The structure of MEs should somewhat realize this symmetry and one possibility is that MEs has a wheel like structure decomposing into radial spokes with angular distance \(\Delta \phi = 2\pi/n_a \) related by the symmetries in question. This brings strongly in mind phenomenon which everyone can observe anytime: the light from a bright source decomposes into radial rays as if one were seeing the profile of the light rays emitted in a plane orthogonal to the line connecting eye and the light source. The effect is especially strong if eyes are stirred. It would seem that focusing makes the effect stronger.

Could this apparent decomposition to light rays reflect directly the structure of dark MEs and could one deduce the value of \(n_a \) by just counting the number of rays in camera picture, where the phenomenon turned to be also visible? Note that the size of these wheel like MEs would be macroscopic and diffractive effects do not seem to be involved. The simplest assumption is that most of photons giving rise to the wheel like appearance are transformed to ordinary photons before their detection.

The discussions about this led to a little experimentation with camera at the summer cottage of my friend Samppa Pentikäinen, quite a magician in technical affairs. When I mentioned the decomposition of light from an intense light source to rays at the level of visual percept and wondered whether the same occurs also in camera, Samppa decided to take photos with a digital camera directed to Sun. The effect occurred also in this case and might correspond to decomposition to MEs with various values of \(n_a \) but with same quantization axis so that the effect is not smoothed out.

What was interesting was the presence of some stronger almost vertical "rays" located symmetrically near the vertical axis of the camera. In old-fashioned cameras the shutter mechanism determining the exposure time is based on the opening of the first shutter followed by closing a second shutter after the exposure time so that every point of sensor receives input for equally long time. The area of the region determining input is bounded by a vertical line. If macroscopic MEs are involved, the contribution of vertical rays is either nothing or all unlike that of other rays and this might somehow explain why their contribution is enhanced. The shutter mechanism is un-necessary in digital cameras since the time for the reset of sensors is what matters. Something in the geometry of the camera or in the reset mechanism must select vertical direction in a preferred position. For instance, the outer "aperture" of the camera had the geometry of a flattened square.

Anomalous diffraction of dark photons

Second prediction is the possibility of diffractive effects in length scales where they should not occur. A good example is the diffraction of light coming from a small aperture of radius \(d \). The diffraction pattern is determined by the Bessel function:

\[
J_1(x), \quad x = kdsin(\theta), \quad k = 2\pi/\lambda.
\]

There is a strong light spot in the center and light rings around whose radii increase in size as the distance of the screen from the aperture increases. Dark rings correspond to the zeros of \(J_1(x) \) at \(x = x_n \) and the following scaling law for the nodes holds true:

\[
sin(\theta_n) = x_n\frac{\lambda}{2\pi d}\text{per.}
\]

For very small wavelengths the central spot is almost point-like and contains most light intensity.

If photons of visible light correspond to large Planck constant \(h = q \times h_0 \) transformed to ordinary photons in the detector (say camera film or eye), their wavelength is scaled by \(q \), and one has:

\[
sin(\theta_n) \rightarrow q \times sin(\theta_n)
\]

The size of the diffraction pattern for visible light is scaled up by \(q \).

This effect might make it possible to detect dark photons with energies of visible photons and possibly present in the ordinary light.
1. What is needed is an intense light source and Sun is an excellent candidate in this respect. Dark photon beam is also needed and n dark photons with a given visible wavelength λ could result when dark photon with $h = n \times q \times \hbar_0$ decays to n dark photons with same wavelength but smaller Planck constant $\hbar = q \times \hbar_0$. If this beam enters the camera or eye one has a beam of n dark photons which forms a diffraction pattern producing camera picture in the de-coherence to ordinary photons.

2. In the case of an aperture with a geometry of a circular hole, the first dark ring for ordinary visible photons would be at $\sin(\theta) \approx (\pi/36)\lambda/d$. For a distance of $r = 2$ cm between the sensor plane ("film") and effective circular hole this would mean radius of $R \approx rsin(\theta) \approx 1.7$ micrometers for micron wave length. The actual size of spots is of order $R \approx 1$ mm so that the value of q would be around 1000: $q = 2^{10}$ and $q = 2^{11}$ belong to the favored values for q.

3. One can imagine also an alternative situation. If photons responsible for the spot arrive along single ME, the transversal thickness R of ME is smaller than the radius of hole, say of order of wavelength, ME itself effectively defines the hole with radius R and the value of $\sin(\theta_n)$ does not depend on the value of d for $d > R$. Even ordinary photons arriving along MEs of this kind could give rise to an anomalous diffraction pattern. Note that the transversal thickness of ME need not be fixed however. It however seems that MEs are now macroscopic.

4. A similar effect results as one looks at an intense light source: bright spots appear in the visual field as one closes the eyes. If there is some more mundane explanation (I do not doubt this!), it must apply in both cases and explain also why the spots have precisely defined color rather than being white.

5. The only mention about effects of diffractive aberration effects are colored rings around say disk like objects analogous to colors around shadow of say disk like object. The radii of these diffraction rings in this case scale like wavelengths and distance from the object.

6. Wikipedia contains an article from which one learns that the effect in question is known as lens flares [7]. The article states that flares typically manifest as several starbursts, circles, and rings across the picture and result in internal reflection and scattering from material inhomogeneities in lens (such as multiple surfaces). The shape of the flares also depends on the shape of aperture. These features conform at least qualitatively with what one would expect from a diffraction if Planck constant is large enough for photons with energy of visible photon.

The article [13] defines flares in more restrictive manner: lense flares result when non-image forming light enters the lens and subsequently hits the camera’s film or digital sensor and produces typically polygonal shape with sides which depend on the shape of lense diaphragm. The identification as a flare applies also to the apparent decomposition to rays and this dependence indeed fits with the observations.

The experimentation of Samppa using digital camera demonstrated the appearance of colored spots in the pictures. If I have understood correctly, the sensors defining the pixels of the picture are in the focal plane and the diffraction for large Planck constant might explain the phenomenon. Since I did not have the idea about diffractive mechanism in mind, I did not check whether fainter colored rings might surround the bright spot.

1. In any case, the readily testable prediction is that zooming to bright light source by reducing the size of the aperture should increase the size and number of the colored spots. As a matter fact, experimentation demonstrated that focusing brought in large number of these spots but we did not check whether the size was increased.

2. Standard explanation predicts that the bright spots are present also with weaker illumination but with so weak intensity that they are not detected by eye. The positions of spots should also depend only on the illumination and camera. The explanation in terms of beams of large Planck constant photons predicts this if the flux of dark photons from any light source is constant.
6.3.5 Dark matter and exotic color and electro-weak interactions

The presence of classical electro-weak and color gauge fields in all length scales is an unavoidable prediction of TGD and the interpretation in terms of p-adic and dark matter hierarchies is also more or less unavoidable. The new element in the interpretation is based on the observation that the quark and antiquarks at the ends of flux tubes serving as sources of classical color gauge fields could be seen as a vacuum polarization effect. In the same manner neutrino pairs at the ends of flux tubes serving as sources of classical Z^0 fields could be seen as a vacuum polarization effect.

One of the many open questions is whether also p-adic hierarchy defines a hierarchy of confinement scales for color interactions and screening scales for weak interactions or whether only the hierarchy of Planck constants gives rise to this kind of hierarchy. It would look strange if all flux tubes of macroscopic size scale would always correspond to a large value of \hbar and therefore singular covering and fractionized quantum numbers. Also the proposed dark rules involving hierarchy of Mersenne rules would support the view that both hierarchies are present and there is an interaction between them in the sense that phase transitions between dark and thus scaled up counterpart of p-adic length scale and non-dark scaled up p-adic length scale can take place. The proposed stability criteria certainly allow this.

Do p-adic and dark matter hierarchies provide a correct interpretation of long ranged classical electro-weak gauge fields?

For two decades one of the basic interpretational challenges of TGD has been to understand how the un-avoidable presence of long range classical electro-weak gauge fields can be consistent with the small parity breaking effects in atomic and nuclear length scales. Also classical color gauge fields are predicted, and I have proposed that color qualia correspond to increments of color quantum numbers [30]. The proposed model for screening cannot banish the unpleasant feeling that the screening cannot be complete enough to eliminate large parity breaking effects in atomic length scales so that one one must keep mind open for alternatives.

p-Adic length scale hypothesis suggests the possibility that both electro-weak gauge bosons and gluons can appear as effectively massless particles in several length scales and there indeed exists evidence that neutrinos appear in several scaled variants [6] (for TGD based model see [41]). This inspires the working hypothesis that long range classical electro-weak gauge and gluon fields are correlates for light or massless p-adically scaled up and dark electro-weak gauge bosons and gluons. Thus both p-adic and dark hierarchies would be involved. For the p-adic hierarchy the masses would be scaled up whereas for the dark hierarchy masses would be same. The essentially new element in the interpretation would be that these fields assignable to flux quanta could be seen as vacuum polarization effects in even macroscopic length scales. This vision would definitely mean new physics effects but the interpretation would be consistent with quantum field theoretic intuition.

1. In this kind of scenario ordinary quarks and leptons could be essentially identical with their standard counterparts with electro-weak charges screened in electro-weak length scale so that the problems related to the smallness of atomic parity breaking would be trivially resolved. The weak form of electric-magnetic duality allows to identify the screening mechanism as analog of confinement mechanism for weak isospin

2. In condensed matter blobs of size larger than neutrino Compton length (about 5 μm if $k = 169$ determines the p-adic length scale of condensed matter neutrinos) the situation could be different. Also the presence of dark matter phases with sizes and neutrino Compton lengths corresponding to the length scales $L(k)$, $k = 151, 157, 163, 167$ in the range 10 nm-2.5 μm are suggested by the number theoretic considerations (these values of k correspond to so called Gaussian Mersenne [35]). Only a fraction of the condensed matter consisting of regions of size $L(k)$ need to be in the dark phase.

3. Dark quarks and leptons would have masses essentially identical to their standard model counterparts. Only the electro-weak boson masses which are determined by a different mechanism than the dominating contribution to fermion masses [41] would be small or vanishing. Below the dark or p-adic length scale in question gauge bosons would behave like massless quanta.
4. The large parity breaking effects in living matter would be due to the presence of dark nuclei and leptons. Later the idea that super-fluidity corresponds to Z^0 super-conductivity will be discussed it might be that also super-fluid phase corresponds to dark neutron phase.

The basic prediction of TGD based model of dark matter as a phase with a large value of Planck constant is the scaling up of various quantal length and time scales. Mersenne hypothesis allows a wide range of scales so that very rich structures are possible.

Dark photon many particle states behave like laser beams decaying to ordinary photons by decoherence meaning a transformation of dark photons to ordinary ones. Also dark electro-weak bosons and gluons would be massless or have small masses determined by the p-adic length scale in question. The decay products of dark electro-weak gauge bosons would be ordinary electro-weak bosons decaying rapidly via virtual electro-weak gauge boson states to ordinary leptons. Topological light rays ("massless extremals") for which all classical gauge fields are massless are natural space-time correlates for the dark boson laser beams. Obviously this means that the basic difference between the chemistries of living and non-living matter would be the absence of electro-weak symmetry breaking in living matter (which does not mean that elementary fermions would be massless).

Criterion for the presence of exotic electro-weak bosons and gluons

Classical gauge fields directly are space-time correlates of quantum states. The gauge fields associated with massless extremals ("topological light rays") decompose to free part and a part having non-vanishing divergence giving rise to a light-like Abelian gauge current. Free part would correspond to Bose-Einstein condensates and current would define a coherent state of dark photons.

The dimension D of the CP_2 projection of the space-time sheet serves as a criterion for the presence of long ranged classical electro-weak and gluon fields. D also classifies the (possibly asymptotic) solutions of field equations [7].

1. For $D = 2$ induced gauge fields are Abelian and induced Kähler form vanishes for vacuum extremals: in this case classical em and Z^0 fields are proportional to each other. The non-vanishing Kähler field implies that induced gluon fields are non-vanishing in general. This raises the question whether long ranged color fields and by quantum classical correspondence also long ranged QCD accompany non-vacuum extremals in all length scales. This makes one wonder whether color confinement is possible at all and whether scaled down variants of QCD appear in all length scales.

The possibility to add constants to color Hamiltonians appearing in the expression of the classical color gauge fields allows to have vanishing color charges in the case of an arbitrary space-time sheet. The requirement that color quantum numbers of the generator vanish allows to add the constant only to the Hamiltonians of color hyper charge and isospin so that for $D = 2$ extremals color charges can be made vanishing. This might allow to understand how color confinement is consistent with long ranged induced Kähler field.

2. For $D \geq 3$ all classical long ranged electro-weak fields and non-Abelian color fields are present. This condition is satisfied when electric and magnetic fields are not orthogonal and the instanton density $A \wedge J$ for induced Kähler form is non-vanishing. The rather strong conclusion is that in length scales in which exotic electro-weak bosons are not present, one has $D = 2$ and gauge fields are Abelian and correspond trivially to fixed points of renormalization group realized as a hydrodynamic flow at space-time sheets [4].

Quantum classical correspondence suggests the existence of electro-weak gauge bosons with mass scale determined by the size of the space-time sheets carrying classical long range electro-weak fields. This would mean the existence of new kind of gauge bosons.

The obvious objection is that the existence of these gauge bosons would be reflected in the decay widths of intermediate gauge bosons. The remedy of the problem is based on the notion of space-time democracy suggested strongly by the fact that the interactions between space-time sheets possessing different p-adic topologies proceed with very slow rates simply because the number of common rational (algebraic) points of partonic 2-surfaces appearing in the vertex is small.

For light exotic electro-weak bosons also the corresponding leptons and quarks would possess a large weak space-time sheet but lack the ordinary weak partonic 2-surface so that there would be no
direct coupling to electro-weak gauge bosons. These space-time sheets are dark in weak sense but need not have a large value of \hbar. This picture implies the notion of partial darkness since any space-time sheets with different ordinary of Gaussian primes are dark with respect to each other.

Do Gaussian Mersennes define a hierarchy of dark electro-weak physics?

Gaussian Mersennes are defined as Gaussian primes of form $g_n = (1 + i)^n - 1$, where n must be prime. They have norm squared $g_n^2 = 2^n - 1$. The list of the first Gaussian Mersennes corresponds to the following values of n.

The Gaussian primes $k = 113, 151, 157, 163, 167$ correspond to length scales which are of most obvious interest but in TGD framework one cannot exclude the twin prime 239, 241 corresponds to length scales $L(k) \simeq 160$ km and 320 km. Also larger primes could be of relevance for bio-systems and consciousness. Also the secondary and higher length scales associated with $k < 113$ could be of importance and there are several length scales of this kind in the range of biologically interesting length scales. Physics and biology inspired considerations suggests that particular Gaussian primes correspond to a particular kind of exotic matter, possibly also to large \hbar phase.

If given space-time sheet couples considerably only to space-time sheets characterized by same prime or Gaussian prime, the bosons of these physics do not couple directly to ordinary particles, and one avoids consistency problems due to the presence of new light particles (consider only the decay widths of intermediate gauge bosons [44]) even in the case that the loss of asymptotic freedom is not assumed.

A question arises about the interpretation of structures of the predicted size. The strong interaction size of u and d quarks, hadrons, and nuclei is smaller than $L(k = 113) \simeq 2 \times 10^{-4}$ m for even heaviest nuclei if one accepts the formula $R \sim A^{1/3} \times 1.5 \times 10^{-15}$ m. A natural interpretation for this length scale would be as the size of the field body/magnetic body of system defined by its topologically quantized gauge fields/magnetic parts of gauge fields. The (possibly dark) p-adic length scale characterizes also the lengths of join along boundaries bonds feeding gauge fluxes from elementary particle to the space-time sheet in question. The delocalization due these join along boundaries bonds in p-adic length scale in question would determine the scale of the contribution to the mass squared of the system as predicted by p-adic thermodynamics.

6.3.6 Anti-matter and dark matter

The usual view about matter anti-matter asymmetry is that during early cosmology matter-antimatter asymmetry characterized by the relative density difference of order $r = 10^{-9}$ was somehow generated and that the observed matter corresponds to what remained in the annihilation of quarks and leptons to bosons. A possible mechanism inducing the CP asymmetry is based on the CP breaking phase of CKM matrix.

The TGD based view about energy [80, 77] forces the conclusion that all conserved quantum numbers including the conserved inertial energy have vanishing densities in cosmological length scales. Therefore fermion numbers associated with matter and antimatter must compensate each other. Therefore the standard option seems to be excluded in TGD framework.

The way out could be based on the many-sheeted space-time and the possibility of cosmic strings. One particular TGD inspired model involves a small matter-antimatter asymmetry induced by the Kähler electric fields of cosmic strings [19]. The topological condensation of fermions and antifermions at space-time sheets carrying Kähler electric field of say cosmic string gives rise to a binding energy
which is of different sign for fermions and antifermions and therefore should induce the asymmetry. The outcome of the annihilation period would be matter outside cosmic strings and antimatter inside them.

One can also imagine that in a given Kähler electric field matter develops large binding energy and antimatter large positive interaction energy which induces instability leading to the splitting of partonic 2-surfaces to dark space-time sheets implying fractionization and reduction of the energy at given sheet of the covering. Dark antimatter would interact very weakly with ordinary matter so that the non-observability of antimatter would find an elegant explanation. One can imagine also the generation of local asymmetries inside Kähler electric flux tubes leading to flux tube states with matter and antimatter condensed at the opposite ends of the flux tubes.

6.4 Dark variants of nuclear physics

The book metaphor for the extended imbedding space can be utilized as a guideline as one tries to imagine various exotic phases of matter. For the minimal option atomic nuclei can be assumed to be ordinary (in the sense of nuclear string model [19]) and only field bodies can be dark. If only singular coverings of M^4 and CP^2 are allowed the value of Planck constant is product of two integers. Ruler and compass hypothesis restricts these integers considerably and Mersenne hypothesis provides further constraints on the model. Nuclei can be visualized as residing at the "standard" pages of the book and dark color-/weak-/em- bonds are at different pages with different p-adic length scale or having different Planck constant. This would give two hierarchies of nuclei with increasing size.

6.4.1 Constraints from the nuclear string model

In the case of exotic nuclei nuclear string model [2], [2] is a safe starting point. In this model nucleons are connected by color flux tubes having exotic light fermion and antifermion at their ends. Whether fermion is quark or colored excitation of lepton remains open question at this stage. The mass of the exotic fermion is much smaller than 1 MeV (p-adic temperature $T = 1/n < 1$). This model predicts large number of exotic states since color bonds, which can be regarded as colored pions, can have em charges ($1,-1,0$). In particular, neutral variant of deuterium is predicted and this leads to a model of cold fusion explaining its basic selection rules. The earlier model for cold fusion discussed in [71], which served as a constraint in the earlier speculations, is not so simple than the model of [2], [2].

What is important that the model requires that weak bosons for which Compton length is of order atomic size are involved. Weak bosons would behave as massless particles below the Compton and the rates for the exchanges of weak bosons would be high in the length scales considered. Weak bosons would correspond to scaled up variants of the ordinary weak bosons: scaling could be p-adic in which mass scale is reduced and weak interaction rates even above Compton length would be scaled up as $1/M_W^4$. The scaling could result also from the scaling of Planck constant in which case masses of weak bosons nor weak interaction rates in the lowest order would not be affected. If only dark scaling is involved, weak interactions would be still extremely weak above dark Compton length of weak bosons. Of course, both scalings can be imagined.

The scale of the color binding energy is $E_s = .2$ MeV for ordinary ^4He strings [19]. $k = 151, 157, 163, 167$ define Gaussian Mersennes $G_{MA,k} = (1 + i)^k - 1$ and excellent candidates for biologically important p-adic length scales. There are also higher Gaussian Mersennes such as those corresponding to $k = 239, 241$ and also these seem to be interesting biologically (see [22] where a vision about evolution and generalized EEG based on Gaussian Mersennes is described). Let us assume that these scales and also those corresponding to $k = 89, 107, 113, 127$ allow scaled variants of electroweak and color interactions with ordinary value of Planck constant. If M_{127} is scaled up to Gaussian Mersenne $M_{G,167}$, one obtains cell-nucleus sized (2.58 μm) exotic nuclei and the unit of color binding energy is still .2 eV. For p-adic length scale of order 100 μm (size of large neuron) the energy scale is still around thermal energy at room temperature.

In the case of dark color bonds it is not quite clear how the unit E_s of the color binding energy scales. If color Coulombic energy is in question, one expects $1/h^2$ scaling. Rather remarkably, this scaling predicts that the unit for the energy of $A < 4$ color bond scales down to .5 eV which is the energy of hydrogen bond so that hydrogen bonds, and also other molecular bonds, might involve color bonds between proton and oxygen.
6.4.2 Constraints from the anomalous behavior of water

$H_{1.5}O$ behavior of water with respect to neutron and electron scattering is observed in attosecond time scale which corresponds to 3 Angstrom length scale, defining an excellent candidate for the size scale of exotic nuclei and Compton length of exotic weak interactions.

What happens to the invisible protons?

A possible explanation for the findings is that one fourth of protons forms neutral multi-proton states connected by possibly negatively charged color bonds of length differing sufficiently from the length of ordinary O-H bond. Although the protons are ordinary, neutron diffraction reflecting the crystal like order of water in atomic length scales would not see these poly-proton super-nuclei if they form separate closed strings.

1. For the ordinary nuclei the p-adic length scale associated with the color bonds between 4He corresponds to M_{127}, and one can imagine exotic nuclear strings obtained by connecting two ordinary nuclei with color bonds. If second exotic nucleus is neutral (the model of cold fusion assumes that D nucleus is neutral) this could work since the Coulomb wall is absent. If the exotic nuclei have opposite em charges, the situation improves further. New super-dense phases of condensed matter would be predicted.

If one fourth of hydrogen nuclei of water combine to form possibly neutral nuclear strings with average distance of nuclei of order $L(127)$, they are not visible in diffraction at atomic length scale because the natural length scale is shortened by a factor of order 32 but could be revealed in neutron diffraction at higher momentum exchanges. The transition between this kind of phase and ordinary nuclei would be rather dramatic event and the exchanges of exotic weak bosons with Compton lengths of order atomic size induce the formation of this kind of nuclei (this exchange is assumed in the model of cold fusion).

2. If dark color magnetic bonds are allowed, a natural distance between the building blocks of super-nuclei is given by the size scale of the color magnetic body. In nuclear string model the size scales of color magnetic bodies associated with nuclear strings consisting of 4He and $A < 4$ nuclei color magnetic bodies correspond to $k = 127$ and $k = 118$ whereas em magnetic body corresponds to $k = 116$ [2]. For dark variants of magnetic bodies the sizes of these magnetic bodies are scaled. There are several options to consider: consider only $k_d = 113 - 89 = 24$, $k_d = 127 - 107 = 20$ and $k_d = 107 - 89 = 18$. Table 1 below summarizes the effective dark p-adic length scales involved.

3. Consider $k_d = 24$ as an example. From Table 1 the scaled up p-adic length scales of the magnetic bodies would be $L(127 + 24 = 151) = 10$ nm, $L(118 + 24 = 142) = 4.4$ Angstrom, and $L(116 + 24 = 140) = 2.2$ Angstrom. The first scale equals to the thickness of cell membrane which suggests a direct connection with biology. The latter two scales correspond to molecular length scales and it is not clear why the protons of dark nuclear strings of this kind would not be observed in electron and neutron scattering. This would leave only nuclear strings formed from 4He nuclei into consideration.

The crucial parameter is the the unit E_s of the color binding energy. Since this parameter should correspond to color Coulombic potential it could transform like the binding energy of hydrogen atom and therefore scale as $1/\hbar^2$. This would mean that $E_s = 2.2$ MeV deduced from the deuteron binding energy would scale down to .12 eV for $r = 2^{24}$.

<table>
<thead>
<tr>
<th>k_d</th>
<th>24</th>
<th>20</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{eff} = 127 + k_d$</td>
<td>151</td>
<td>142</td>
<td>140</td>
</tr>
<tr>
<td>$k_{eff} = 118 + k_d$</td>
<td>142</td>
<td>138</td>
<td>136</td>
</tr>
<tr>
<td>$k_{eff} = 116 + k_d$</td>
<td>140</td>
<td>136</td>
<td>134</td>
</tr>
</tbody>
</table>

Table 1. The integers k_{eff} characterize the effective p-adic length scales for some dark variants of color magnetic bodies for 4He and $A < 4$ color magnetic bodies corresponding to $k \in \{127, 118\}$ and
for the dark variants of $k = 116$ electromagnetic body for nuclear strings. Dark variants correspond to $k_d \in \{24 = 113 - 89 = 151 - 127, 20 = 127 - 107, 18 = 107 - 89\}$ allowed by Mersenne hypothesis.

The transition between the dark and ordinary nuclei would be favored by the minimization of Coulomb energy and energy differences would be small because of darkness. The transitions in which ordinary proton becomes dark and fuses to super-nuclear string or vice versa could be the basic control mechanism of bio-catalysis. Metabolic energy quantum .5 eV should relate to this transition.

Magic nuclei could have fractally scaled up variants in molecular length scale and tedrahedral and icosahedral water clusters could correspond to $A = 8$ and $A = 20$ magic nuclei with color bonds connecting nucleons belonging to different dark nuclei.

About the identification of the exotic weak physics?

The model of cold fusion requires exotic weak physics with the range of weak interaction of order atomic radius.

One can consider the possibility of $k = 113$ dark weak physics with $r = 2^{24} (89 \rightarrow 113$ in Mersenne hypothesis) implying that the dark weak scale corresponds to p-adic length scale $k = 137$. Weak Compton length for $k = 113$ dark weak bosons would be about 3 Angstrom. Below $L(137)$ weak bosons would behave as massless particles. Above $L(137)$ weak bosons would have the mass scale $2^{-12}m_W \sim 25$ MeV and weak rates would be scaled up by 2^{48}. Bohr radius would represent a critical transition length scale and exotic weak force could have dramatic implications for the behavior of the condensed matter in high pressures when exotic weak force would become visible. In particular, chiral selection in living matter could be understood in terms of large parity breaking implied. These physics would manifest themselves only at criticality for the phase transitions changing Planck constant and would correspond to almost vacuum extremals defining a phase different from that assignable to standard model physics.

To sum up, it would seem that the variant of ordinary nuclear physics obtained by making color bonds and weak bonds dark is the most promising approach to the $H_{1.5}O$ anomaly and cold fusion.

6.4.3 Exotic chemistries and electromagnetic nuclear darkness

The extremely hostile and highly un-intellectual attitude of skeptics stimulates fear in anyone possessing amygdala, and I am not an exception. Therefore it was a very pleasant surprise to receive an email telling about an article published in April 16, 2005 issue of New Scientist [15]. The article gives a popular summary about the work of the research group of Walter Knight with Na atom clusters [40] and of the research group of Welford Castleman with Al atom clusters [24].

The article tells that during last two decades a growing evidence for a new kind of chemistry have been emerging. Groups of atoms seem to be able to mimic the chemical behavior of single atom. For instance, clusters of 8, 20, 40, 58 or 92 sodium atoms mimic the behavior of noble gas atoms [40]. By using oxygen to strip away electrons one by one from clusters of Al atoms it is possible to make the cluster to mimic entire series of atoms [24]. For aluminium cluster-ions made of 13, 23 and 37 atoms plus an extra electron are chemically inert.

One can imagine two explanations for the findings.

1. The nuclei are dark in the sense that the sizes of nuclear space-time sheets are scaled up implying the smoothing out of the nuclear charge.

2. Only electrons are dark in the sense of having scaled up Compton lengths so that the size of multi-electron bound states is not smaller than electron Compton length and electrons “see” multi-nuclear charge distribution.

If darkness and Compton length is assigned with the em field body, it becomes a property of interaction, and it seems impossible to distinguish between options 1) and 2).
6.4. Dark variants of nuclear physics

What one means with dark nuclei and electrons?

Can the idea about dark nuclei and electrons be consistent with the minimalist picture in which only field bodies are dark? Doesn’t the darkness of nucleus or electron mean that also multi-electron states with \(n \) electrons are possible?

The proper re-interpretation of the notion Compton length would allow a consistency with the minimalist scenario. If the p-adic prime labelling the particle actually labels its electromagnetic body as p-adic mass calculations for quark masses encourage to believe, Compton length corresponds to the size scale of the electromagnetic field body and the models discussed below would be consistent with the minimal scenario. Electrons indeed “see” the external charge distribution by their electromagnetic field body and field body also carries this distribution since \(CP_2 \) extremals do not carry it. One could also defend this interpretation by saying that electrons is operationally only what can be observed about it through various interactions and therefore Compton length (various Compton length like parameters) must be assigned with its field body (bodies).

Also maximal quantum criticality implies that darkness is restricted to field bodies but does not exclude the possibility that elementary particle like structures can possess non-minimal quantum criticality and thus possess multi-sheeted character.

Option I: nuclei are electromagnetically dark

The general vision about nuclear dark matter suggests that the system consists of super-nuclei analogous to ordinary nuclei such that electrons are ordinary and do not screen the Coulomb potentials of atomic nuclei.

The simplest possibility is that the electromagnetic field bodies of nuclei or quarks become dark implying delocalization of nuclear charge. The valence electrons would form a kind of mini-conductor with electrons delocalized in the volume of the cluster. The electronic analog of the nuclear shell model predicts that full electron shells define stable configurations analogous to magic nuclei. The model explains the numbers of atoms in chemically inert Al and Ca clusters and generalizes the notion of valence to the level of cluster so that the cluster would behave like single super-atom.

The electromagnetic \(k = 113 \) space-time sheets (em field bodies) of quarks could have scaled up size \(\sqrt{rL(113)} = L(113+k_d) = 2^{k_d/2} \times 2 \times 10^{-14} \) m. One would have atomic size scale .8 Angstroms for \(r = 2^{k_d}, k_d = 24 \) - an option already introduced. A suggestive interpretation is that the electric charge of nuclei or valence quarks assignable to their field bodies is delocalized quantum mechanically to atomic length scale. Electrons would in a good approximation experience quantum mechanically the nuclear charges as a constant background, jellium, whose effect is indeed modelable using harmonic oscillator potential.

One can test the proposed criterion for the phase transition to darkness. The unscreened electromagnetic interaction energy between a block of partially ionized nuclei with a net em charge \(Z \) with \(Z \) electrons would define the relevant parameter as \(r = Z^2/\alpha \). For the total charge \(Z \geq 12 \) the condition \(r \geq 1 \) is satisfied. For a full shell with 8 electrons this condition is not satisfied.

Option II: Electrons are electro-magnetically dark

Since the energy spectrum of harmonic oscillator potential is invariant under the scaling of \(\hbar \) accompanied by the opposite scaling of the oscillator frequency \(\omega \), one must consider also the em bodies of electrons are in large \(\hbar \) phase (one can of course ask whether they could be observed in this phase!). The rule would be that the size of the bound states is larger than the scaled up electron Compton length.

The Compton wavelength of electrons would be scaled up by a factor \(r \) where \(r \) is product of different Fermat primes and power of 2 for ruler and compass hypothesis. For Mersenne hypothesis one would have \(r = 2^{k_d} \). For \(k_d = 24 \) the effective p-adic scale of electron would be to about \(L(151) = 10 \) nm. The atomic cluster of this size would contain roughly \(10^6 \times (a_0/a)^3 \) atoms where \(a \) is atomic volume and \(a_0 = 1 \) Angstrom is the natural unit.

The shell model of nucleus is in TGD framework a phenomenological description justified by nuclear string model with string tension responsible for the oscillator potential. This leads to ask whether the electrons of jellium actually form analogs of nuclear strings with electrons connected by color bonds.
6.5 Has dark matter been observed?

In this section two examples about anomalies perhaps having interpretation in terms of quantized Planck constant are discussed. The first anomaly belongs to the realm of particle physics and hence does not quite fit the title of the chapter. Second anomaly relates to nuclear physics.

6.5.1 Optical rotation of a laser beam in a magnetic field

The group of G. Cantatore has reported an optical rotation of a laser beam in a magnetic field \[29\]. The experimental arrangement involves a magnetic field of strength \(B = 5 \text{ Tesla}\). Laser beam travels 22000 times forth and back in a direction orthogonal to the magnetic field travelling 1 m during each pass through the magnet. The wavelength of the laser light is 1064 nm (the energy is 1.1654 eV). A rotation of \((3.9 \pm 0.5) \times 10^{-12} \text{ rad/pass}\) is observed.

Faraday effect \[4\] is optical rotation which occurs when photon beam propagates in a direction parallel to the magnetic field and requires parity breaking guaranteeing that the velocities of propagation for two circular polarizations are different. Now however the laser beam is orthogonal to the magnetic field so that Faraday effect cannot be in question.

The proposed interpretation for the rotation would be that the component of photon having polarization parallel to the magnetic field mixes with QCD axion, one of the many candidates for dark matter. The mass of the axion would be about 1 meV. Mixing would imply a reduction of the corresponding polarization component and thus in the generic case induce a rotation of the polarization direction. Note that the laser beam could partially transform to axions, travel through a non-transparent wall, and appear again as ordinary photons.

The disturbing finding is that the rate for the rotation is by a factor \(2.8 \times 10^4\) higher than predicted. This would have catastrophic astrophysical implications since stars would rapidly lose their energy via axion radiation.

What explanations one could imagine for the observations in TGD framework if one accepts the hierarchy of Planck constants?

1. The simplest model that I have been able to imagine does not assume axion like states. The optical rotation would be due to the leakage of the laser photons to dark pages of the Big Book at the ends of the magnet where the space-time sheet carrying the magnetic field becomes locally a vacuum extremal. This explanation would not mean direct seeing of dark matter but the observation of a transformation of ordinary matter to dark matter. Quite generally, this experimental approach might be much better strategy to the experimental proof of the existence of the dark matter than the usual approaches and is especially attractive in living matter.

2. TGD could also provide a justification for the axion based explanation of the optical rotation involving parity breaking. TGD predicts the existence of a hierarchy of QCD type physics based on the predicted hierarchy of scaled up variants of quarks and also those of color excited leptons. The fact that these states are not seen in the decay widths of intermediate gauge bosons can be understood if the particles in question are dark matter with non-standard value of Planck constant and hence residing at different page of the book like structure formed by the imbedding space. I have discussed in detail the general model in the case of leptohadrons consisting of colored excitation of ordinary lepton and explaining quite an impressive bundle of anomalies \[79\]. Since leptopion has quantum numbers of axion and similar couplings, it is natural to propose that the claimed axion like particle -if it indeed exists- is a pion like state consisting either exotic light quarks or leptons.

The model would differ from the above model only in that the leakage to the dark sector would take place by a transformation of the laser photon to a pionlike state so that no parity breaking would take place. But the basic point is that vacuum extremals through which the leakage can occur, break the parity strongly by the presence of classical \(Z^0\) fields. The idea about leakage together with the non-constancy of pion-type field appearing in the coupling to the instanton density imply that that the space-time sheet representing the magnetic field is vacuum extremal -at least in some regions- and this assumption looks un-necessarily strong. Also detailed assumptions about the dependence of the basic parameters appearing in PCAC hypothesis must be made.
6.5. Has dark matter been observed?

What raised the hopes was the intriguing observation that the ratio of laser photon frequency to the cyclotron frequency of electron in the magnetic field considered equals to $r = 2^{11}$: this put bells ringing in the p-adically tuned mind and inspired the question whether one could have $\hbar/\hbar_0 = 2^{11}$. The assumption of cyclotron condensate of electron pairs at dark space-time sheet must be however justified and one must answer at least the question why it is needed. A possible answer would be that the leakage occurs via Bose-Einstein condensation to a coherent state of cyclotron photons. But this would mean return to the original model where laser photons leak! Obviously the model becomes too complicated for Occam and therefore I have dropped out the model.

The simplest model should start just from the finding that the linear polarization parallel to the magnetic field seems to leak with a certain rate as it traverses the magnet. The leakage of laser photons to a dark matter space-time sheet is what comes mind first in TGD context. A killer test for this explanation is to use polarization parallel to the magnetic field: in this case no optical rotation should take place.

1. The leakage should take place along the intersection of the pages of the Big Book which correspond to geodesically trivial geodesic sphere of CP_2 so that induced Kähler field vanishes and vacuum extremals or nearly vacuum extremals are in question. Leakage could occur within magnet or the ends of the magnet could involve this kind of critical membrane like region and as the photon passes through them the leakage could occur.

2. Since parity breaking takes place, the instanton density for the electromagnetic field provides a natural description of the situation. The interaction term is obtained by replacing either E in $E \cdot B$ with its quantized counterpart describing laser photons. This gives a linear coupling to photon oscillator operators completely analogous to a coupling to an external current and one can calculate the leakage rate using the standard rules.

3. The interaction term is total divergence and reduces to a 3-D Chern-Simons type term associated with the boundaries of the membrane like region or magnet in the general case and the leakage can be said to occur at the ends of the magnet for non-vacuum extremals.

One can ask whether one should use the instanton density of Kähler field rather than that of em field in the model. In this case Kähler gauge potential would couple the quantized em field via $U(1)$ part of em charge. One would not have gauge invariance since for the induced Kähler field gauge degeneracy is replaced with spin glass degeneracy and gauge transformations of the vacuum extremals induced by symplectic transformations of CP_2 deform the space-time surface. In this case E in $E \cdot A$ would be replaced with the radiation field at the ends of the magnet. In order to have a non-vanishing leakage the instanton density within magnet must be non-vanishing meaning that CP_2 projection of the magnet’s space-time sheet must be 4-D at least somewhere. For the first option it can be 2-D.

The coefficient K of the instanton term defining the action should depend on the value of Planck constant. $1/e^2$ proportionality of the ordinary Maxwell action means that the coefficient of the instanton term could be proportional to \hbar. The most general dependence $K = k(c^2\hbar/4\pi)/e^2 \equiv f(\alpha_{em}\tau)/e^2, \tau = \hbar/\hbar_0$. Since non-perturbative effect is in question $k((\alpha_{em}\tau) \propto 1/(\alpha_{em}\tau)$ is suggestive and guarantees that the leakage probability becomes small for large values of Planck constant.

This option will not be discussed further but it might have also relevance to the parity breaking in biology. In fact, I have proposed that the realization of genetic code based on nucleotide dependent optical rotation of polarization of photons proposed by Gariaev [25] could be based on Faraday effect or its analogy [28].

One can consider also a generalization of this model by assuming that photon transforms to dark pion-like state in the leakage. In this case the action does not however reduce to a total divergence and the condition that the entire magnet corresponds to vacuum extremal seems to be unrealistic.

6.5.2 Do nuclear reaction rates depend on environment?

Claus Rolfs and his group have found experimental evidence for the dependence of the rates of nuclear reactions on the condensed matter environment [10]. For instance, the rates for the reactions $^{50}V(p,n)^{50}Cr$ and $^{176}Lu(p,n)$ are fastest in conductors. The model explaining the findings has been tested for elements covering a large portion of the periodic table.
Debye screening of nuclear charge by electrons as an explanation for the findings

The proposed theoretical explanation \[10\] is that conduction electrons screen the nuclear charge or equivalently that incoming proton gets additional acceleration in the attractive Coulomb field of electrons so that the effective collision energy increases so that reaction rates below Coulomb wall increase since the thickness of the Coulomb barrier is reduced.

The resulting Debye radius

\[
R_D = 69 \sqrt{\frac{T}{n_{eff} \rho_a}},
\]

where \(\rho_a\) is the density of atoms per cubic meter and \(T\) is measured in Kelvins. \(R_D\) is of order .01 Angstroms for \(T = 373\) K for \(n_{eff} = 1, a = 10^{-10}\) m. The theoretical model \[20, 29\] predicts that the cross section below Coulomb barrier for \(X(p,n)\) collisions is enhanced by the factor

\[
f(E) = \frac{E}{E + U_e} \exp\left(\frac{\pi \eta U_e}{E}\right),
\]

\(E\) is center of mass energy and \(\eta\) so called Sommerfeld parameter and

\[
U_e = U_D = 2.99 \times 10^{-11}(Z(Z + 1))^{1/2} \times \left(\frac{n_{eff} \rho_a}{T}\right)^{1/2} \text{eV}
\]

is the screening energy defined as the Coulomb interaction energy of electron cloud responsible for Debye screening and projectile nucleus. The idea is that at \(R_D\) nuclear charge is nearly completely screened so that the energy of projectile is \(E + U_e\) at this radius which means effectively higher collision energy.

The experimental findings from the study of 52 metals support the expression for the screening factor across the periodic table.

1. The linear dependence of \(U_e\) on \(Z\) and \(T^{-1/2}\) dependence on temperature conforms with the prediction. Also the predicted dependence on energy has been tested \[10\].
2. The value of the effective number \(n_{eff}\) of screening electrons deduced from the experimental data is consistent with \(n_{eff}(\text{Hall})\) deduced from quantum Hall effect.

The model suggests that also the decay rates of nuclei, say beta and alpha decay rates, could be affected by electron screening. There is already preliminary evidence for the reduction of beta decay rate of \(^{22}\text{Na}\) \(\beta\) decay rate in Pd \[9\], metal which is utilized also in cold fusion experiments. This might have quite far reaching technological implications. For instance, the artificial reduction of half-lives of the radioactive nuclei could allow an effective treatment of radio-active wastes. An interesting question is whether screening effect could explain cold fusion \[32\] and sono-fusion \[18\]: I have proposed a different model for cold fusion based on large \(\hbar\) in \[71\].

Could quantization of Planck constant explain why Debye model works?

The basic objection against the Debye model is that the thermodynamical treatment of electrons as classical particles below the atomic radius is in conflict with the basic assumptions of atomic physics. On the other hand, it is not trivial to invent models reproducing the predictions of the Debye model so that it makes sense to ask whether the quantization of Planck constant predicted by TGD could explain why Debye model works.

TGD predicts that Planck constant is quantized in integer multiples: \(\hbar = nh_0\), where \(h_0\) is the minimal value of Planck constant identified tentatively as the ordinary Planck constant. The preferred values for the scaling factors \(n\) of \(\hbar\) correspond to \(n\)-polygons constructible using ruler and compass. The values of \(n\) in question are given by \(n_F = 2^k \prod_i F_i\), where the Fermat primes \(F_i = 2^{2^i} + 1\) appearing in the product are distinct. The lowest Fermat primes are 3, 5, 17, 257, 2^{11} + 1. In the model of living matter the especially favored values of \(\hbar\) come as powers \(2^{11}\) \[21, 22\].
It is not quite obvious that ordinary nuclear physics and atomic physics should correspond to the minimum value \hbar_0 of Planck constant. The predictions for the favored values of n are not affected if one has $h(\text{stand}) = 2^k h_0$, $k \geq 0$. The non-perturbative character of strong force suggests that the Planck constant for nuclear physics is not actually the minimal one \[71\]. As a matter fact, TGD based model for nucleus implies that its "color magnetic body" has size of order electron Compton length. Also valence quarks inside hadrons have been proposed to correspond to non-minimal value of Planck constant since color confinement is definitely a non-perturbative effect. Since the lowest order classical predictions for the scattering cross sections in perturbative phase do not depend on the value of the Planck constant one can consider the testing of this issue is not trivial in the case of nuclear physics where perturbative approach does not really work.

Suppose that one has $n = n_0 = 2^{k_0} > 1$ for nuclei so that their quantum sizes are of order electron Compton length or perhaps even larger. One could even consider the possibility that both nuclei and atomic electrons correspond to $n = n_0$, and that conduction electrons can make a transition to a state with $n_1 < n_0$. This transition could actually explain how the electron conductivity is reduced to a finite value. In this state electrons would have Compton length scaled down by a factor n_0/n_1. For instance, if one has $n_0 = 2^{11 k_0}$ as suggested by the model for quantum biology \[22\] and by the TGD based explanation of the claimed detection of dark matter \[29\], the Compton length $L_e = 2.4 \times 10^{-12}$ m for electron would reduce in the transition $k_0 \rightarrow k_0 - 1$ to $L_e = 2^{-11} L_e \approx 1.17$ fm, which is rather near to the proton Compton length since one has $m_p/m_e \approx 1.94 \times 2^{11}$. It is not too difficult to believe that electrons in this state could behave like classical particles with respect to their interaction with nuclei and atoms so that Debye model would work.

The basic objection against this model is that anyonic atoms should allow more states that ordinary atoms since very space-time sheet can carry up to n electrons with identical quantum numbers in conventional sense. This should have been seen.

Electron screening and Trojan horse mechanism

An alternative mechanism is based on Trojan horse mechanism suggested as a basic mechanism of cold fusion \[71\]. The idea is that projectile nucleus enters the region of the target nucleus along a larger space-time sheet and in this manner avoids the Coulomb wall. The nuclear reaction itself occurs conventionally. In conductors the space-time sheet of conduction electrons is a natural candidate for the larger space-time sheet.

At conduction electron space-time sheet there is a constant charged density consisting of n_{eff} electrons in the atomic volume $V = 1/n_a$. This creates harmonic oscillator potential in which incoming proton accelerates towards origin. The interaction energy at radius r is given by

$$V(r) = \alpha n_{\text{eff}} \frac{r^2}{2a^3},$$

(6.5.4)

where a is atomic radius.

The proton ends up to this space-time sheet by a thermal kick compensating the harmonic oscillator energy. This occurs below with a high probability below radius R for which the thermal energy $E = T/2$ of electron corresponds to the energy in the harmonic oscillator potential. This gives the condition

$$R = \sqrt{\frac{T}{a n_{\text{eff}} \alpha}}.$$

(6.5.5)

This condition is exactly of the same form as the condition given by Debye model for electron screening but has a completely different physical interpretation.

Since the proton need not travel through the nuclear Coulomb potential, it effectively gains the energy

$$E_e = Z \frac{\alpha}{R} = Z \frac{\alpha^{3/2}}{a} \sqrt{\frac{n_{\text{eff}}}{Ta}}.$$

(6.5.6)
which would be otherwise lost in the repulsive nuclear Coulomb potential. Note that the contribution of the thermal energy to \(E_e \) is neglected. The dependence on the parameters involved is exactly the same as in the case of Debye model. For \(T = 373 \) K in the \(^{176}\)Lu experiment and \(n_{\text{eff}}(\text{Lu}) = 2.2 \pm 1.2 \), and \(a = a_0 = .52 \times 10^{-10} \) m (Bohr radius of hydrogen as estimate for atomic radius), one has \(E_e = 28.0 \) keV to be compared with \(U_e = 21 \pm 6 \) keV of \(^{10}\) (\(a = 10^{-10} \) m corresponds to \(1.24 \times 10^4 \) eV and 1 K to \(10^{-4} \) eV). A slightly larger atomic radius allows to achieve consistency. The value of \(\hbar \) does not play any role in this model since the considerations are purely classical.

An interesting question is what the model says about the decay rates of nuclei in conductors. For instance, if the proton from the decaying nucleus can enter directly to the space-time sheet of the conduction electrons, the Coulomb wall corresponds to the Coulomb interaction energy of proton with conduction electrons at atomic radius and is equal to \(an_{\text{eff}}/a \) so that the decay rate should be enhanced.

6.6 Water and new physics

In this section the previous ideas are applied in an attempt to understand the very special properties of water.

6.6.1 The 41 anomalies of water

The following list of 41 anomalies of water taken from \([20]\) should convince the reader about the very special nature of water. The detailed descriptions of the anomalies can be found in \([20]\). As a matter fact, the number of anomalies had grown to 63 when I made my last visit to the homepage of Chaplin.

The many anomalies of water need not be all due to the presence of the dark matter. As suggested already fifteen years ago, p-adic length scale hierarchy forces to replace ordinary thermodynamics with a p-adic fractal hierarchy of thermodynamics and this means that one must speak about thermodynamics in a given length scale rather than mere thermodynamics of continuous matter.

Instead of listing just the anomalies I suggest also a possible interpretation based on the assumption that some fraction of protons (and perhaps also \(\text{OH}^- \) ions) is dark. This hypothesis is motivated by the scattering data suggesting that \(H_{1.5}O \) is the proper chemical formula for water in attosecond time scale and explained by assuming that about 1/4 of protons are dark in the experimental situation. It is natural to assume that the increase of temperature or pressure reduces the dark portion. Unless the establishment of equilibrium ratio for dark and ordinary phase is very fast process, water can be regarded as a two-phase system mathematically. A continuous spectrum of metastable forms of water and ice distinguished by the ratio of the densities of ordinary and dark phase is expected. Complex phase diagrams is also a natural outcome.

Dark portion is expected to induce long range correlations affecting melting/boiling/critical points, viscosity, and heats of vaporization and fusion. Anomalous behaviors under the changes of temperature and pressure and anomalies in compressibility and thermal expansivity are expected. Specific heats and transport properties are affected by the presence of dark degrees of freedom, and the coupling of electromagnetic radiation to dark degrees of freedom influences the di-electric properties of water.

In order to systemize the discussion I have classified the anomalous to different groups.

1. Anomalies suggesting the presence of dark phase inducing long range correlations.

 (a) Water has unusually high melting point.

 (b) Water has unusually high boiling point.

 (c) Water has unusually high critical point.

 (d) Water has unusually high surface tension and can bounce.

 (e) Water has unusually high viscosity.

 (f) Water has unusually high heat of vaporization.

 Comment: The presence of dark portion implies long range correlations and they could help to restore solid/liquid phase, raise the the critical point, increase surface tension, increase viscosity and require more energy to achieve vaporization. The ability to bounce would suggest that dark
portion of water—at least near the surface—is in solid phase. Dark water is in rubber-like phase also in the interior below a length scale defined by the length of dark flux tubes.

2. Anomalies related to the effect of temperature increase.

(a) Water shrinks on melting.
(b) Water has a high density that increases on heating (up to 3.984°C).
(c) The number of nearest neighbors increases on melting.
(d) The number of nearest neighbors increases with temperature.
(e) Water shows an unusually large viscosity increase but diffusion decrease as the temperature is lowered.
(f) At low temperatures, the self-diffusion of water increases as the density and pressure increase.
(g) Water has a low coefficient of expansion (thermal expansivity).
(h) Water’s thermal expansivity reduces increasingly (becoming negative) at low temperatures.

Comment: The increase of temperature induces shrinking of the flux tubes connecting water molecules in the phase transition reducing Planck constant and brings the molecules closer to each other. This could explain shrinking on melting, the increase of the density in some temperature range above which the normal thermal expansion would win the shrinking tendency, the increase of nearest neighbors on melting and with the increase of temperature. Concerning the shrinking on melting one can however argue that the regular lattice like structure of ice is not that with minimum volume per molecule so that no new physics would be needed unless it is needed to explain why the volume per molecule is not minimum.

The unusually large viscosity increase with reduce temperature would be due to the increase of the large \(\hbar \) portion inducing long range correlations. If the diffusion takes place only in the normal phase the anomalous reduction of diffusion could be due to the reduction of the density of the normal phase. Similar explanation applies to the behavior of self-diffusion.

The low value of coefficient of thermal expansion could be understood in terms of the phase transitions reducing the flux tube lengths and bringing the molecules near to each other and thus reducing the normal thermal expansion. At low enough temperatures the expansivity would become negative since this effect would overcome the normal thermal expansion.

3. Anomalies related to the effects of pressure.

(a) Pressure reduces its melting point (13.35 MPa about 133.5 times the standard atmospheric pressure) gives a melting point of -1°C)
(b) Pressure reduces the temperature of maximum density.
(c) \(\text{D}_2\text{O} \) and \(\text{T}_2\text{O} \) differ from \(\text{H}_2\text{O} \) in their physical properties much more than might be expected from their increased mass; e.g. they have increasing temperatures of maximum density (11.185°C and 13.4°C respectively).
(d) Water’s viscosity decreases with pressure (at temperatures below 33°C).

Comment: The reduction of melting point, temperature of maximum density, and viscosity with pressure could be due to the decrease of the dark portion as pressure increases. Pressure would induce the phase transition reducing the value of Planck constant for the flux tubes connecting water molecules. That the situation is different for \(\text{D}_2\text{O} \) and \(\text{T}_2\text{O} \) could be understood if dark \(D \) and \(T \) are absent. The question is what happens in the transition to solid phase. The reduction of the density would conform with the idea that the portion of dark phase increases. The reduction of viscosity with pressure would follow from the reduction of dark phase causing long range correlations.

4. Anomalies related to compressibility.

(a) Water has unusually low compressibility.
(b) The compressibility drops as temperature increases down to a minimum at about 46.5°C. Below this temperature, water is easier to compress as the temperature is lowered.

Comment: The anomalously high compressibility below 46.5°C could be understood if only the standard phase responds to pressure appreciably. In this case the effective density is smaller than the net density and make it easier to compress the water as the temperature is lowered. The increase of temperature would increase the effective density as dark matter is transformed to ordinary one and reduce the compressibility. Above 46.5°C the effect of dark matter would be overcome by the increase of compressibility due to the increase of temperature.

(c) The speed of sound increases with temperature (up to a maximum at 73°C).

Comment: The speed of sound is given by the expression

\[c^2 = \frac{\partial p}{\partial \rho} . \]

Pressure \(p \) is essentially the density of thermal energy associate with the ordinary matter. When the fraction of ordinary matter increases the pressure effectively increases and this leads to the increase of \(c \).

(d) Under high pressure water molecules move further away from each other with increasing pressure.

Comment: The behavior under increasing high pressure is in conflict with the hypothesis that pressure tends to reduce the portion of dark phase. The question is why the increase of pressure at high enough pressures would induce phase transition increasing the value of Planck constant for the flux tubes connecting the molecules? If the dark matter does not respond to pressure appreciably, the increase of the portion of dark matter might allow the minimization of energy. Does this mean that the work done by the high enough pressure to reduce the volume is larger than the energy needed to induce the tunneling to the dark phase?

5. Anomalies related to the heat capacity.

(a) Water has over twice the specific heat capacity of ice or steam.

(b) The specific heat capacity (\(C_P \) and \(C_V \)) is unusually high.

(c) Specific heat capacity \(C_P \) has a minimum.

Comment: The anomalously high heat capacity of water could be understood in terms of dark non-translational degrees of freedom even if the dark phase is rubber-like below the length scale of the dark flux tubes. The energy pumped to the system would go to these degrees of freedom. The small heat capacity of solid phase would suggest that the freezing means also freezing of these degrees of freedom meaning the reduction of the contribution to heat capacity.

6. Anomalies related to phase transitions

(a) Supercooled water has two phases and a second critical point at about -91°C.

(b) Liquid water may be supercooled, in tiny droplets, down to about -70°C. It may also be produced from glassy amorphous ice between -123°C and -149°C and may coexist with cubic ice up to -63°C.

(c) Solid water exists in a wider variety of stable (and metastable) crystal and amorphous structures than other materials.

(d) The heat of fusion of water with temperature exhibits a maximum at -17°C.

Comment: The presence of both dark and ordinary phase with varying ratio of densities could help to understand the richness of the structures below freezing point. For instance, one can imagine that either the ordinary or dark phase is super-cooled and the other freezes.

7. Anomalies of solutions of water.
(a) Solutes have varying effects on properties such as density and viscosity.
(b) None of its solutions even approach thermodynamic ideality; even D$_2$O in H$_2$O is not ideal.
(c) The solubilities of non-polar gases in water decrease with temperature to a minimum and then rise.

Comment: The different interactions of solutes with the dark phase could explain these findings. For instance, the probability that the presence of solute induces a phase transition reducing the portion of the dark phase could depend on solute. The decrease of the solubilities of non-polar gases in water with temperature could be due to the fact that the solubility is at low temperatures basically due to the presence of the dark phase. At higher temperatures higher thermal energies of the solute molecules would increase the solubility.

8. Anomalies in transport properties.

(a) NMR spin-lattice relaxation time is very short at low temperatures.

Comment: The transfer of magnetic energy to the dark degrees of freedom could dominate the relaxation process. If synchrotron Bose-Einstein condensates are present in dark degrees of freedom this might make sense.

(b) Hot water may freeze faster than cold water; the Mpemba effect. For instance, water sample in 100 °C freezes faster than that in 35 °C.

Comment: This effect seems to be in conflict with thermodynamics and remains poorly understood. The possibility of having continuum of metastable two-phase systems suggests a possible solution to the mystery. The freezing of the dark portion of water should occur slower than the freezing of the ordinary portion since the heat transfer rate is expected to be lower a larger value of Planck constant. The very naive just-for-definiteness estimate is that the transfer rate for energy to the cold system is inversely proportional to $1/\hbar$. If the formation of dark phase is a slow process as compared to the transfer of energy to the cold phase, the freezing of hot water would lead to a metastable ice consisting mostly of ordinary water molecules and takes place faster than the freezing of cold water already containing the slowly freezing dark portion.

(c) Proton and hydroxide ion mobilities are anomalously fast in an electric field.

Comment: Mobility is of form $a\tau$, where a the acceleration a in the electric field times the characteristic time τ for motion without collisions. If part of protons move along dark flux tubes this time is longer. The high mobility of OH$^-$ ions would suggest that also these can be in dark phase.

(d) The electrical conductivity of water rises to a maximum at about 230°C and then falls.

Comment: Electrical conductivity is closely related to mobility so that the same argument applies.

(e) The thermal conductivity of water is high and rises to a maximum at about 130°C.

Comment: The anomalously high thermal conductivity could be due to the motion of heat carriers along dark flux tubes with low dissipation.

(f) Warm water vibrates longer than cold water.

Comment: This could be due to the faster transfer of vibrational energy to the dark vibrational of magnetic degrees of freedom. If the number of these degrees of freedom is higher than the number of ordinary degrees of freedom, one can understand also the anomalously high heat capacity. Vibration could continue in dark degrees of freedom in which case the effect would be apparent. If its only the ordinary water which vibrates in the original situation then equipartition of energy with dark degrees of freedom implies apparent dissipation.

(a) X-ray diffraction shows an unusually detailed structure.

Comment: This would not be surprising if two phases with possibly varying ratio are present. For instance, the different X-ray diffraction patterns for water obtained by a rapid
freezing from high and low temperatures could serve as a test for the proposed explanation of Mpemba effect.

(b) The dielectric constant is high and behaves anomalously with temperature.

Comment: This could relate to the interaction of photons with dark portion of water. Dielectric constant characterizes the coupling of radiation to oscillatory degrees of freedom and is sum of terms proportional to \(1/(\omega^2 - \omega_i^2)\), where \(\omega_i\) is resonance frequency. If the resonance frequencies \(\omega_i\) scale as \(1/\hbar\), dark portion gives a larger contribution at frequencies \(\omega < \omega_i\). In particular the static dielectric constant increases.

(c) The refractive index of water has a maximum value at just below 0°C.

Comment: It is not quite clear whether this maximum corresponds to room pressure or appears quite generally. Let us assume the first option. In any case the dependence of the freezing temperature on pressure is very weak. The maximal interaction with the dark portion of water at freezing point combined with the above argument would predict that refractive index increases down to the freezing point. The reduction of the density at freezing point would reduce the refractive index since dynamic susceptibility is proportional to the density of atom so that a maximum would be the outcome.

These examples might serve as a motivation for an attempt to build a more detailed model for the dark portion of water. The model to be discussed was one of the first attempts to understand the implications of the idea about hierarchy of Planck constants. Since five years have passed is badly in need of updating.

6.6.2 The model

Networks of directed hydrogen bonds \(H-O-H \cdots OH_2\) with positively charged \(H\) acting as a binding unit between negatively charged \(O\) (donor) and \(OH_2\) (acceptor) bonds explaining clustering of water molecules can be used to explain qualitatively many of the anomalies at least qualitatively [20].

The anomaly giving evidence for anomalous nuclear physics is that the physical properties \(D_2O\) and \(T_2O\) differ much more from \(H_2O\) than one might expect on basis of increased masses of water molecules. This suggests that dark protons could be responsible for the anomalies. That heavy water in large concentrations acts as a poison is consistent with the view that the macroscopic quantum phase of dark protons is responsible for the special biological role of water.

What proton darkness could mean?

In the experimental situation one fourth of protons of water are not seen in neither electron nor neutron scattering in atto-second time scale which translates 3 Angstrom wavelength scale suggesting that in both cases diffraction scattering is in question. This of course does not mean that the fraction of dark protons is always 1/4 and it is indeed natural to assume that it is reduced at higher temperatures. Both nuclear strong interactions and magnetic scattering contribute to the diffraction which is sensitive to the intra-atomic distances. The minimal conclusion is that the protons form a separate phase with inter-proton distance sufficiently different from that between water molecules and are not seen in neutron and electron diffraction in the atto-second time scale at which protons of water molecule are visible. The stronger conclusion is that they are dark with respect to nuclear strong interactions.

The previous considerations inspired by the model of nuclei as nuclear strings suggests possible explanations.

2. Nuclear protons form super-nuclei connected by dark color bonds or belong to such super-nuclei (possibly consisting of \(^4He\) nuclei). If color bonds are negatively charged, closed nuclear strings of this kind are neutral and not visible in electron scattering; this assumption is however unnecessarily strong for invisibility in diffractive scattering in atto-second time scale. Only the field bodies of proton carrying weak and color fields could be dark and electromagnetic field body has ordinary value of Planck constant so that dark protons could give rise to ordinary hydrogen atoms.
Could also the color flux tubes connecting quarks inside dark protons be dark?

The first option is that only the color flux tubes connecting protons are dark and of length of atomic size scale. The second possibility is that also the color flux tubes connecting quarks are dark and have length of order atomic size scale. Dark nucleons could be visualized as strings formed from three quarks of order atom size scale connected by color flux tubes. The generalization of the nuclear string model leads to a model of dark nucleon discussed in detail [2, 53, 31, 2]. Dark nucleons would in turn form dark nuclei as string like objects.

The amazing finding is that the states of nucleon assumed to be neutral (for definiteness) are in one-one-correspondence with DNA, RNA, mRNA, tRNA and aminoacids and that a physically natural pairing of DNA codons and aminoacids exists and consistent with vertebrate genetic code. Same applies also to nucleons having the charge of proton. The nuclear strings formed from either dark neutrons or dark protons could in principle realize genetic code. This realization would be more fundamental than the usual chemical realization and would force to modify profoundly the ideas about prebiotic evolution. The prebiotic evolution could be evolution of water and the recent evolution could involve genetic engineering based on virtual world experimentation with the dark variant variant of the genetic apparatus. The minimum requirement would be the transcription of at dark DNA defined by nuclear strings to ordinary DNA. Dark nuclear strings could be able to diffuse without difficulties through cell membranes and the transcription of the dark genes to ordinary ones followed by gluing and pasting to genome could make possible the genetic engineering at the level of germ cells.

Another natural hypothesis is that the magnetic bodies assignable to the nuclear strings are responsible for water memory [33] and that the mechanism of water memory relies on the mimicry of biologically active molecules by dark proton strings. The frequencies involved with water memory are low and nothing to do with molecular energy levels. This is consistent with the identification as cyclotron frequencies so that it would be enough to mimic only the cyclotron spectrum. The mechanism would be similar to that of entrainment of brain to external frequencies and based on the variation of the thickness of magnetic flux tubes or sheets inducing the change of magnetic field and cyclotron frequency. One could perhaps say that magnetic bodies of dark genes as living creatures with some amount of intelligence and ability to planned actions. The evolution of cells up to the neurons of cortex could be accompanied by the evolution of the magnetic bodies of dark nuclear strings realized as the emergence of higher values of Planck constant.

Concerning the mechanism of the debated homeopathic effect itself the situation remains unclear. Homeopathic remedy is obtained by a repeated dilution and succussion of the solution containing the molecules causing the symptoms of the disease [33]. If the cyclotron frequencies of the magnetic body alone are responsible for the biological effect, one can wonder why the homeopathic remedy does not have the same undesired effects as the original molecule. A more reasonable hypothesis is that the cyclotron frequency spectrums serves only as a signature of the molecule and the homeopathic remedy only activates the immune system of the organism by cheating it to believe that the undesired molecules are present. The immune system is known to be subject to very fast genetic evolution, and dark nuclear strings forming representations of biologically active molecules and dark genome could be actively involved with this evolution.

What inspires to take these speculations more than as a poor quality entertainment is that the recent findings of the group led by HIV Nobelist Montagnier related to water memory provide support for the hypothesis that a nonstandard realization of genetic code indeed exists [10]. These findings will be discussed later in this section.

Model for super-nuclei formed from dark protons

Dark protons could form super nuclei with nucleons connected by dark color bonds with \(h = r \hbar_0 \) with \(r = 2 \mathbf{k}_d, \mathbf{k}_d = 151 - 127 = 24 \). The large distance between protons would eliminate isospin dependent strong force so that multi-proton states are indeed possible. The interpretation would be that nuclear p-adic length scale is zoomed up to \(L(113 + 24 = 137) \sim 78 \) Angstroms. Dark color bonds could also connect different nuclei. The earlier hypothesis \(r = 2^{14} \) encourages to consider also \(k_d = 22 \), which is also one of the favored dark scalings allowed by Mersenne hypothesis \((22 = 18 + 4 = 107 - 89 + 167 - 163)\) giving p-adic scale \(39 \) Angstroms.

The predictions of the model for bond energy depend on the transformation properties of \(E_s \) under the scaling of \(\hbar \).
1. For small perturbations harmonic oscillator approximation \(V \propto kR^2/2 \) makes sense and is invariant under the scalings \(\alpha_s \rightarrow \alpha_s/r \) and \(R \rightarrow \sqrt{r}R \) -at least if the scalings are not too large. Bonds with different values of Planck constant have nearly identical energies, which would be indeed consistent with the idea about criticality against the change of Planck constant.

One can arrive the same conclusion follows also in different manner. The parameter \(\omega \) corresponds to a quantity of form \(\omega = v/L \), where \(L \) is a characteristic length scale and \(v \) a characteristic velocity. The scaling law of homeopathy \[33\] would suggest the dependence \(v = c/\sqrt{r} \) and \(L \propto \sqrt{r}L \) giving predicting that energy is invariant.

The result also conforms with the idea that classical perturbative theory does not involve Planck constant. This behavior does not however allow to identify hydrogen as color bonds since the resulting bond energies would be in MeV range.

2. The interpretation of \(E_s \) as color Coulombic potential energy \(\alpha_s/R \) would suggest that \(E_s \) behaves under scaling like the binding energy of hydrogen atom \((1/r^2 \) scaling). This interpretation implies non-perturbative effects since in semiclassical approximation energy should not depend on \(r \). Color force is non-perturbative so that one can defend this assumption.

(a) For \(k_d = 24 \) \(E_s \) would be about .12 eV and considerably lower than the nominal energy of the hydrogen bond.

(b) For \(k_d = 22 \) one would obtain energy .48 eV. This energy is same as the universal metabolic energy quantum so that the basic metabolic processes might involve transitions dark-ordinary transition for protons. This would however suggest that the length of color bond is same as that of hydrogen bond so that the protons in question would not be invisible in diffraction in atto-second time scale. The interpretation of color bonds between atoms as hydrogen bonds is much more attractive. Of course, for large values of Planck the invariance of oscillator spectrum implies very large force constant so that the color bond would become very rigid.

These two interpretations are not contradictory if one interprets the non-perturbative contribution to the color binding energy as an additional constant contribution to the harmonic oscillator Hamiltonian which does not contribute the spectrum of excitations energies but only to the ground state energy.

The notion of flux tube state

An approach based more heavily on first principles that the above order of magnitude estimates is inspired by two steps of progress several years after these speculations.

1. Weak form of electric-magnetic duality

The weak form of electric magnetic duality led to an identification of a concrete mechanism of electroweak screening based on the pairing of homological Kähler magnetic monopoles formed by fermion wormhole throats with oppositely magnetically charged wormhole throats carrying quantum numbers of neutrino pair and screening the weak isospin and leaving only electromagnetic charge.

1. The size scale of the Kähler magnetic flux tubes connecting the magnetic monopoles would be of order intermediate gauge boson Compton length. For dark variants of elementary fermions it would be scaled up by \(\sqrt{\hbar/\hbar_0} \). The new weak physics involving long range weak fields would be associated with magnetic flux tube like structures. Same conclusion applies also to new QCD type physics since also color confinement would be accompanied Kähler magnetic confinement. This allows to pose very strong restrictions on the models. For instance, it is quite possible that the notion of neutrino atom does not make sense expect if one can assume that the dark quarks feed their weak \(Z^0 \) gauge fluxes through a spherically symmetric flux collection of radial flux tubes allowing Coulombic \(Z^0 \) gauge potential as an approximate representation inside the radius defined by the length of the flux tubes.

2. It is important to notice that the screening leaves the vectorial coupling to classical \(Z^0 \) field proportional to \(\sin^2(\theta_W)Q_{em} \). This could have non-trivial physical implications perhaps allowing to kill the model.
(a) For space-time surfaces near vacuum extremals the classical Z^0 fields are strong due to the condition that the induced Kähler field is very weak. More explicitly, from the equations for classical induced gauge fields in terms of Kähler form and classical Z^0 field \[1\], \[1\]

\[\gamma = 3J - \frac{p}{2}Z^0 , \quad Q_Z = I_L^3 - pQ_{em} , \quad p = \sin^2(\theta_W) \]

(6.6.1)

it follows that for the vacuum extremals the part of the classical electro-weak force proportional to the electromagnetic charge vanishes for $p = 0$ so that only the left-handed couplings to the weak gauge bosons remain. The vanishing of induced Kähler form gives

\[Z^0 = -\frac{2}{p} \gamma . \]

(6.6.2)

The condition implies very large effective coupling to the classical electromagnetic field since electromagnetic charge is effectively replaced with

\[Q_{em,eff} = Q_{em} - \frac{2}{p}(I_L^3 - pQ_{em}) . \]

(6.6.3)

(b) The proposed model for cell membrane as a Josephson junction relies on almost vacuum extremals and dark nuclei in the sense that the weak space-time sheet associated with the nuclei of biological important ions (at least) are dark \[58\] . It is is assumed that quarks are dark in the length scale considered so that also their weak isospin remains unscreened. In the case of nuclei this means that there is contribution from the vectorial part of weak isospin given by $(Z - N)/4$ proportional to the difference of proton number and neutron number. The dominating contribution comes from Q_{em} term for heavier nuclei. It is essential that weak space-time sheets of electrons are assumed to be ordinary.

(c) One can ask whether the the nuclei could be ordinary nuclei. If so, one must still assume that the electrons of the nuclei do not couple to the classical fields assignable to the cell membrane space-time sheet since without this assumption the coupling to Z^0 field would be proportional to the total em charge of the ion rather than nuclear em charge. It is difficult to justify this assumption. In any case, for this option I_L^3 contribution would be totally absent. This affects the effective couplings of biologically important ions to the membrane potential somewhat and modifies the nice quantitative predictions of the model of photoreceptors predicting correctly the frequencies of visible light with maximal response.

2. The notion of flux tube state

The TGD inspired explanation for the finding that the measurement of Lamb shift for muonic hydrogen atom gives proton radius which is 4 per cent smaller than that deducible from ordinary hydrogen atom led to the notion of flux tube state in which muon or electric is confined inside flux tube \[44\] . In non-relativistic approximation based on Schrödinger equation, the model leads to wave functions expressible in terms of Airy and "Bairy" functions and WKB approximation allows to deduce an estimate for the energy eigenvalue spectrum. This model works as such also as a model for flux tubes states in which also classical electroweak and and color fields are involved. Color holonomy is quite generally Abelian for classical color fields and for 2-D CP_2 projection electroweak fields are also Abelian so that the model is expected to be mathematically reasonably simple even when induced spinors are assumed.

The concept of flux tube state is very general and allow to model at least some chemical bonds. In particular, valence bonds might allow description as flux tube states of valence electrons. Hydrogen bonds are responsible for the clustering of water molecules and an obvious question is whether these bonds could be modeled as dark flux tube states of valence electrons. The model is testable since one can predict the energy spectrum of excited states for given thickness of the flux tube and the value of electric flux through it. Also the flux tube states of say electrons assignable to the magnetic flux tubes assumed to connect DNA nucleotides and lipids of cell membrane in the model of DNA as topological quantum computer \[24\] could be relevant.
Two kinds of bonds are predicted

Suppose that dark bonds are associated with the electro-magnetic field body. If classical Z^0 field vanishes, em field is proportional to Kähler field as are also the components of the classical color field. The bonds involving classical color gauge fields could have quark and antiquark at the opposite ends of the flux tube as the source of the color gauge field. This is indeed assumed in the model of DNA as topological quantum computer.[24]

If one wants vanishing or very weak color gauge fields, one must allow almost vacuum extremals. This implies that classical Z^0 force is strong and the situation assumed to prevail for the cell membrane would hold also for hydrogen bonds. For almost vacuum extremals the ratio of electric and Z^0 fluxes is so small—of order 1/50 for the small value of Weinberg angle $p = .0295$ (rather than $p \simeq .23$) if appearing as the parameter of the model. The molecule can serve as the source of classical Z^0 and electromagnetic fields in two manners.

1. The almost vacuum flux tubes could have many neutrino state and its conjugate at the opposite ends of the flux tube acting as the source of the classical Z^0 field. This kind of flux tubes would traverse through the cell membrane.

2. The molecule would be accompanied by two kinds of flux tubes. Some of them would be almost vacuum extremals carrying an electric flux much smaller than elementary charge e. Some of them would be accompanied by very weak Z^0 field and electromagnetic field plus color gauge fields generated by the above mechanism. These flux tubes would connect cell membrane and genome.

Two kinds of hydrogen bonds

There is experimental evidence for two different hydrogen bonds. Li and Ross represent experimental evidence for two kinds of hydrogen bonds in ice in an article published in Nature 1993[54], and there is a popular article “Wacky Water” in New Scientist about this finding[56]. The ratio of the force constants K associated with the bonds is 1:2.

The proposed scaling law $\omega \rightarrow \omega/r$ predicts $\omega \propto 1/r$ so that $k_d \rightarrow k_d + 1$ would explain the reduction of the force constant by factor 1/2. The presence of two kinds of bonds could be also seen as a reflection of quantum criticality against change of Planck constant.

Can one understand the finding in terms of dark color bonds?

1. The model is consistent with the identification of the two bonds in terms different values of Planck constant. The proposed scaling law for ω predicts $\omega \propto 1/r$ so that $k_d \rightarrow k_d + 1$ would explain the reduction of the force constant by factor 1/2. above described general model for which bond energy contains perturbative harmonic oscillator contribution and non-perturbative Coulombic contribution.

2. The identification of hydrogen bond as dark color bond is however questionable. If bond energy contains a color binding energy scaling as $1/r^2$ contributing only constant shift to the harmonic oscillator Hamiltonian, the behavior of the force constant is consistent with the model. If one assumes that the harmonic oscillator spectrum remains invariant under large scalings of \hbar, the force constant becomes extremely strong and the color bond would be by a factor r^2 more rigid than hydrogen bond if one takes seriously the proposed estimates for the value of r. The alternative interpretation would be in terms of almost vacuum extremal property reducing the force constant to a very small value already from the beginning.

The possibility to divide the bonds to two kinds of bonds in an arbitrary manner brings in a large ground state degeneracy given by $D = 16!/((8!)^2$ unless additional symmetries are assumed and give for the system spin glass like character and explain large number of different amorphous phases for ice[20]. This degeneracy would also make possible information storage and provide water with memory.

Hydrogen bonds as color bonds between nuclei?

The original hypothesis was that there are two kinds of hydrogen bonds: dark and “ordinary”. The finding that the estimate for the energy of dark nuclear color bond with $k_d = 22$ equals to the energy
of typical hydrogen bond raises the question whether all hydrogen bonds are associated with color bonds between nuclei. Color bond would bind the proton to electronegative nucleus and this would lead to the formation of hydrogen bond at the level of valence electrons as hydrogen donates its electron to the electronegative atom. The electronic contribution would explain the variation of the bond energy.

If hydrogen bonds connect H-atom to O-atom to acceptor nucleus, if \(E_s \) for p-O bond is same as for p-n color bond, and if color bonds are dark with \(k_d = 22 \), the bond energy \(E_s = .5 \) eV. Besides this one must assume that the oscillator energy is very small and comparable to the energy of hydrogen bond - this could be due to almost vacuum extremal property.

Dark -possibly (almost unavoidably) colored or weakly charged- bonds could serve as a prerequisite for the formation of electronic parts of hydrogen bonds and could be associated also with other molecular bonds so that dark nuclear physics might be essential part of molecular physics. Dark color bonds could be also charged which brings in additional exotic effects. The long range order of hydrogen bonded liquids could due to the ordinary hydrogen bonds. An interesting question is whether nuclear color bonds could be responsible for the long range order of all liquids. If so dark nuclear physics would be also crucial for the understanding of the condensed matter.

In the case of water the presence of dark color bonds between dark protons would bring in additional long range order in length scale of order 10 Angstrom characteristic for DNA transversal scale: also hydrogen bonds play a crucial role in DNA double strand. Two kinds of bond networks could allow to understand why water is so different from other molecular liquids containing also hydrogen atoms and the long range order of water molecule clusters would reflect basically the long range order of two kinds of dark nuclei.

Recall that the model for dark nucleons predicts that nucleon states can be grouped to states in one-one correspondence with DNA, RNA, tRNA, and aminoacids and that the degeneracies of the vertebrate genetic code are predicted correctly. This led to suggestion that genetic code is realized already at the level of dark nuclei consisting of sequences of neutrons [2] [81] - [2]. Neutrons were assumed in order to achieve stability and could be replaced with protons.

Tedrahedral and icosahedral clusters of water molecules and dark color bonds

Water molecules form both tedrahedral and icosahedral clusters. \(^4\text{He}\) corresponds to tedrahedral symmetry so that tedrahedral cluster could be the condensed matter counterpart of \(^4\text{He}\). It the nuclear string model nuclear strings consist of maximum number of \(^4\text{He}\) nuclei themselves closed strings in shorter length scale.

The p-adic length scales associated with \(^4\text{He}\) nuclei and nuclear string are \(k = 116 \) and \(k = 127 \). The color bond between \(^4\text{He}\) units has \(E_s = .2 \) MeV and \(r = 2^{22} \) would give by scaling \(E_s = .05 \) eV which is the already familiar energy associated with cell membrane potential at the threshold for the nerve pulse generation. The binding energy associated with a string formed by \(n \) tedrahedral clusters would be \(n^2 E_s \). This observation raises the question whether the neural firing is accompanied by the re-organization of strings formed by the tedrahedral clusters and possibly responsible for a representation of information and water memory.

The icosahedral model [20] for water clusters assumes that 20 tedrahedral clusters, each of them containing 14 molecules, combine to form icosahedral clusters containing 280 water molecules. Concerning the explanation of anomalies, the key observation is that icosahedral clusters have a smaller volume per water molecule than tedrahedral clusters but cannot form a lattice structure.

The number 20 for the dark magic dark nuclei forming the icosahedron is also a magic number and a possible interpretation for tedrahedral and icosahedral water clusters would be as magic super-nuclei and the prediction would be that binding energy behaves as \(n^2 E_s \) rather than being just the sum of the binding energies of hydrogen bonds (\(nE_s \)).

It is interesting to compare this model with the model for hexagonal ice which assumes four hydrogen bonds per water molecule: for two of them the molecule acts as a donor and for two of them as an acceptor. Each water molecule in the vertices of a tedrahedron containing 14 hydrogen atoms has a hydrogen bond to a water molecule in the interior, each of which have 3 hydrogen bonds to molecules at the middle points of the edges of the tedrahedron. This makes 16 hydrogen bonds altogether. If all of them are of first type with bonding energy \(E_s = .5 \) eV and if the bond network is connected one would obtain total bond energy equal to \(n^2 E_s = 258 \times .5 \) eV rather than only \(nE_s = 16 \times .5 \) eV. Bonds of second type would have no role in the model.
Tedrahedral and icosahedral clusters and dark electrons

An interesting question is whether one could interpret tedrahedral and icosahedral symmetries in terms of symmetries of the singular coverings or factor spaces of \(CD \). This does not seem to be the case.

1. One cannot understand discrete molecular symmetries for factor space-space option since the symmetry related points of \(CD \) would correspond to one and same space-time point.

2. For the option allowing only singular coverings of \(CD \times CP_2 \) interpreted in terms of many-valuedness of the time derivatives of the imbedding space coordinates as functions of canonical momentum densities this interpretation is not possible.

3. One can also consider the possibility that the singular coverings are over \((CD/G_1) \times (CP_2/G_2) \) rather than \(CD \times CP_2 \). This would predict Planck constant to be of form \(r = n_a n_b \), with \(n_a = 3 \) for tedrahedral clusters and \(n_a = 5 \) for icosahedral clusters. \(n_a \) and \(n_b \) would correspond to the orders of maximal cyclic subgroups of the corresponding symmetry groups. There would be a deviation from the simplest proposal for preferred Planck constants. This option would require space-time surfaces to have exact discrete symmetries and this does not look plausible.

Note that synaptic contacts contain clathrin molecules which are truncated icosahedrons and form lattice structures and are speculated to be involved with quantum computation like activities possibly performed by microtubules. Many viruses have the shape of icosahedron.

It should be noticed that single nucleotide in DNA double strands corresponds to a twist of \(2\pi/10 \) per single DNA triplet so that 10 DNA strands corresponding to length \(L(151) = 10 \) nm (cell membrane thickness) correspond to \(3 \times 2\pi \) twist. This could be perhaps interpreted as evidence for group \(C_{10} \) perhaps making possible quantum computation at the level of DNA.

6.6.3 Further comments on 41 anomalies

Some clarifying general comments -now in more standard conceptual framework- about the anomalies are in order. Quite generally, it seems that it is the presence of new degrees of freedom, the presence of icosahedral clusters, and possibly also macroscopic quantum coherence of dark matter, which are responsible for the peculiar properties of water.

The hydrogen bonds assigned to tedrahedral and icosahedral clusters should be same so that if the hydrogen bonds are assignable to dark protons this is the case for all clusters. Perhaps the number of dark protons and -perhaps equivalently- hydrogen bonds per volume is what distinguishes between these clusters and that the disappearence of dark protons leads to the disappearence of hydrogen bonds. Since it is quite possible that no new physics of proposed kind is involved, the following the explanation of anomalies uses only the notions of icosahedral and tedrahedral clusters and dark protons are mentioned only in passing.

1. Anomalies relating to the presence of icosahedral clusters

Icosahedral water clusters have a better packing ratio than tedrahedral lattice and thus correspond to a larger density. They also minimize energy but cannot form a lattice [20].

1. This explains the unusually high melting point, boiling point, critical point, surface tension, viscosity, heat of vaporization, shrinking on melting, high density increasing on heating, increase of the number of nearest neighbors in melting and with temperature. It is also possible to understand why X-ray diffraction shows an unusually detailed structure.

The presence of icosahedral clusters allows to understand why liquid water can be super-cooled, and why the distances of water molecules increase under high pressure. The spin glass degeneracy implied by dark and ordinary hydrogen bonds could explain why ice has many glassy amorphous phases. The two phases of super-cooled water could correspond to the binary degree of freedom brought in by two different hydrogen bonds. For the first phase both hydrogen atoms of a given water molecule would be either dark or ordinary. For the second phase the first hydrogen atom would be dark and second one ordinary.

Since icosahedral clusters have lower energy than a piece of ice of same size, they tend to super-cool and this slows down the transition to the solid phase. The reason why hot water cools
faster would be that the number of icosahedral clusters is smaller: if cooling is carried with a sufficient efficiency icosahedral clusters do not form.

2. Pressure can be visualized as a particle bombardment of water clusters tending to reduce their volume. The collisions with particles can induce local transitions of icosahedral structures to tetrahedral structures with a larger specific volume and energy. This would explain the low compressibility of water and why pressure reduces melting point and the temperature of maximum density and viscosity.

3. The increase of temperature is expected to reduce the number of icosahedral clusters so that the effect of pressure on these clusters is not so large. This explains the increase of compressibility with temperature below 46.5°C. The fact that the collapse of icosahedral clusters opposes the usual thermal expansion is consistent with the low thermal expansivity as well as the change of sign of expansivity near melting point. Since the square of sound velocity is inversely proportional to compressibility and density, also the increase of speed of sound with temperature can be understood.

2. The presence of dark degrees of freedom and spin glass degeneracy

The presence of dark degrees of freedom and the degeneracy of dark nucleus ground states could explain the high specific heat capacity of water. The reduction of dark matter degrees of freedom for ice and steam would explain why water has over twice the specific heat capacity of ice or steam. The possibility to relax by dissipating energy to the dark matter degrees of freedom would explain the short spin-lattice relaxation time. The fact that cold water has more degrees of freedom explains why warm water vibrates longer than cold water.

Also the high thermal and electric conductivity of water could be understood. The so called Grotthuss [41] [20] explaining OH− and H+ mobilities (related closely to conductivities) is based on hopping of electron of OH− and H+ in the network formed by hydrogen bonds and generalizes to the recent case. The reduction of conductivity with temperature would be due to the storage of the transferred energy/capture of charge carriers to the water molecule clusters.

3. Macroscopic quantum coherence

The high value of dielectric constant could derive from the fact that dark nuclei and super-nuclei are quantum coherent in a rather long length scale. For curl free electric fields potential difference must be same along space-time sheets of matter and dark matter. The synchronous quantum coherent collective motion of dark protons (and possible dark electrons) in an oscillating external electric field generates dark photon laser beams (it is not clear yet whether these dark laser beams are actually ordinary laser beams) de-cohering to ordinary photons and yield a large dynamical polarization. As the temperature is lowered the effect becomes stronger.

6.6.4 Genes and water memory

After long time I had opportunity to read a beautiful experimental article about experimental biology. Yolene Thomas, who worked with Benveniste, kindly sent the article to me. The freely loadable article is Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from Bacterial DNA Sequences by Luc Montagnier, Jamal Aissa, Stephane Ferris, Jean-Luc Montagnier, and Claude Lavalle’e published in the journal Interdiscip. Sci. Comput. Life Sci. (2009) [40].

Basic findings at cell level

I try to list the essential points of the article. Apologies for biologists: I am not a specialist.

1. Certain pathogenic micro-organisms are objects of the study. The bacteria Mycoplasma Pirum and E. Choli belong to the targets of the study. The motivating observation was that some procedures aimed at sterilizing biological fluids can yield under some conditions the infectious micro-organism which was present before the filtration and absent immediately after it. For instance, one filtrates a culture of human lymphocytes infected by M. Pirum, which has infected human lymphocytes to make it sterile. The filters used have 100 nm and 20 nm porosities.
M. Pirum has size of 300 nm so that apparently sterile fluids results. However if this fluid is incubated with a mycoplasma negative culture of human lymphocytes, mycoplasma re-appears within 2 or 3 weeks! This sounds mysterious. Same happens as 20 nm filtration is applied to a minor infective fraction of HIV, whose viral particles have size in the range 100-120 nm.

2. These findings motivated a study of the filtrates and it was discovered that they have a capacity to produce low frequency electromagnetic waves with frequencies in good approximation coming as the first three harmonics of kHz frequency, which by the way plays also a central role in neural synchrony. What sounds mysterious is that the effect appeared after appropriate dilutions with water: positive dilution fraction varied between 10^{-7} and 10^{-12}. The uninfected eukaryotic cells used as controls did not show the emission. These signals appeared for both M. Pirum and E. Choli but for M. Pirum a filtration using 20 nm filter canceled the effect. Hence it seems that the nano-structures in question have size between 20 and 100 nm in this case.

A resonance phenomenon depending on excitation by the electromagnetic waves is suggested as an underlying mechanism. Stochastic resonance familiar to physicists suggests itself and also I have discussed it while developing ideas about quantum brain [61]. The proposed explanation for the necessity of the dilution could be kind of self-inhibition. Maybe a gel like phase which does not emit radiation is present in sufficiently low dilution but is destroyed in high dilutions after which emission begins. Note that the gel phase would not be present in healthy tissue. Also a destructive interference of radiation emitted by several sources can be imagined.

3. Also a cross talk between dilutions was discovered. The experiment involved two tubes. Donor tube was at a low dilution of E. Choli and "silent" (and carrying gel like phase if the above conjecture is right). Receiver tube was in high dilution (dilution fraction 10^{-9}) and "loud". Both tubes were placed in mu-metal box for 24 hours at room temperature. Both tubes were silent after his. After a further dilution made for the receiver tube it became loud again. This could be understood in terms of the formation of gel like phase in which the radiation does not take place. The effect disappeared when one interposed a sheath of mu-metal between the tubes. Emission of similar signals was observed for many other bacterial specials, all pathogenic. The transfer occurred only between identical bacterial species which suggests that the signals and possibly also frequencies are characteristic for the species and possibly code for DNA sequences characterizing the species.

4. A further surprising finding was that the signal appeared in dilution which was always the same irrespective of what was the original dilution.

Experimentation at gene level

The next step in experimentation was performed at gene level.

1. The killing of bacteria did not cancel the emission in appropriate dilutions unless the genetic material was destroyed. It turned out that the genetic material extracted from the bacteria filtered and diluted with water produced also an emission for sufficiently high dilutions.

2. The filtration step was essential for the emission also now. The filtration for 100 nm did not retain DNA which was indeed present in the filtrate. That effect occurred suggests that filtration destroyed a gel like structure inhibiting the effect. When 20 nm filtration was used the effect disappeared which suggests that the size of the structure was in the range 20-100 nm.

3. After the treatment by DNase enzyme inducing splitting of DNA to pieces the emission was absent. The treatment of DNA solution by restriction enzyme acting on many sites of DNA did not suppress the emission suggesting that the emission is linked with rather short sequences or with rare sequences.

4. The fact that pathogenic bacteria produce the emission but not "good" bacteria suggests that effect is caused by some specific gene. It was found that single gene - adhesin responsible for the adhesion of mycoplasma to human cells- was responsible for the effect. When the cloned gene was attached to two plasmids and the E. Choli DNA was transformed with the either plasmid, the emission was produced.
Some consequences

The findings could have rather interesting consequences.

1. The refinement of the analysis could make possible diagnostics of various diseases and suggests bacterial origin of diseases like Alzheimer disease, Parkinson disease, Multiple Sclerosis and Rheumatoid Arthritis since the emission signal could serve as a signature of the gene causing the disease. The signal can be detected also from RNA viruses such as HIV, influenza virus A, and Hepatitis C virus.

2. Emission could also play key role in the mechanism of adhesion to human cells making possible the infection perhaps acting as a kind of password.

The results are rather impressive. Some strongly conditioned skeptic might have already stopped reading after encountering the word "dilution" and associating it with a word which no skeptic scientist in his right mind should not say aloud: "homeopathy"! By reading carefully what I wrote above, it is easy to discover that the experimenters unashamedly manufactured a homeopathic remedy out of the filtrate! And the motivating finding was that although filtrate should not have contained the bacteria, they (according to authors), or at least the effects caused by them, appeared within weeks to it! This is of course impossible in the word of skeptic.

The next reaction of the skeptic is of course that this is fraud or the experimenters are miserable crackpots. Amusingly, one of the miserable crackpots is Nobelist Luc Montagnier, whose research group discovered AIDS virus.

How TGD could explain the findings?

Let us leave the raging skeptics for a moment and sketch possible explanations in TGD framework.

1. Skeptic would argue that the filtration allowed a small portion of infected cells to leak through the filter. Many-sheeted space-time suggests a science fictive variant of this explanation. During filtration part of the infected cells is "dropped" to large space-time sheets and diffused back to the original space-time sheets during the next week. This would explain why the micro-organisms were regenerated within few weeks. Same mechanism could work for ordinary molecules and explain homeopathy. This can be tested: look whether the molecules return back to the the diluted solution in the case of a homeopathic remedy.

2. If no cells remain in the filtrate, something really miraculous looking events are required to make possible the regeneration of the effects serving as the presence of cells. This even in the case that DNA fragments remain in the filtrate.

(a) The minimum option is that the presence of these structures contained only the relevant information about the infecting bacteria and this information coded in terms of frequencies was enough to induce the signatures of the infection as a kind of molecular conditioning. Experimentalists can probably immediately answer whether this can be the case.

(b) The most radical option is that the infecting bacteria were actually regenerated as experimenters claim! The information about their DNA was in some form present and was transcribed to DNA and/or RNA, which in turn transformed to proteins. Maybe the small fragment of DNA (adhesin) and this information should have been enough to regenerate the DNA of the bacterium and bacterium itself. A test for this hypothesis is whether the mere nanoparticles left from the DNA preparation to the filtrate can induce the regeneration of infecting molecules.

The notion of magnetic body carrying dark matter quantum controlling living matter forms the basic element of TGD inspired model of quantum biology and suggests a more concrete model. The discovery of nanotubes connecting cells with distance up to 300μ provides experimental support for the notion.

1. If the matter at given layer of the onion-like structure formed by magnetic bodies has large h, one can argue that the layer corresponds to a higher evolutionary level than ordinary matter.
with longer time scale of memory and planned action. Hence it would not be surprising if the magnetic bodies were able to replicate and use ordinary molecules as kind of sensory receptors and motor organs. Perhaps the replication of magnetic bodies preceded the replication at DNA level and genetic code is realized already at this more fundamental level somehow. Perhaps the replication of magnetic bodies induces the replication of DNA as I have suggested.

2. The magnetic body of DNA could make DNA a topological quantum computer \[24\]. DNA itself would represent the hardware and magnetic bodies would carry the evolving quantum computer programs realized in terms of braidings of magnetic flux tubes. The natural communication and control tool would be cyclotron radiation besides Josephson radiation associated with cell membranes acting as Josephson junctions. Cyclotron frequencies are indeed the only natural frequencies that one can assign to molecules in kHz range. There would be an entire fractal hierarchy of analogs of EEG making possible the communication with and control by magnetic bodies.

3. The values of Planck constant would define a hierarchy of magnetic bodies which corresponds to evolutionary hierarchy and the emergence of a new level would mean jump in evolution. Gel like phases could serve as a correlate for the presence of the magnetic body. The phase transitions changing the value of Planck constant and scale up or down the size of the magnetic flux tubes. They are proposed to serve as a basic control mechanism making possible to understand the properties and the dynamics of the gel phases and how biomolecules can find each other in the thick molecular soup via a phase transition reducing the length of flux tubes connecting the biomolecules in question and thus forcing them to the vicinity of each other.

Consider now how this model could explain the findings.

1. Minimal option is that the flux tubes correspond to "larger space-time sheets" and the infected cells managed to flow into the filtrate along magnetic flux tubes from the filter. This kind of transfer of DNA might be made possible by the recently discovered nanotubes already mentioned.

2. Maybe the radiation resulted as dark photons invisible for ordinary instruments transformed to ordinary photons as the gel phase assignable with the dark matter at magnetic flux tube network associated with the infected cells and corresponding DNA was destroyed in the filtration. This is not the only possible guess. A phase conjugate cyclotron radiation with a large value of Planck constant could also allow for the nanostructures in dilute solute to gain metabolic energy by sending negative energy quanta to a system able to receive them. Indeed the presence of ambient radiation was necessary for the emission.Maybe that for sufficiently dilute solute this mechanism allows to the nanostructures to get metabolic energy from the ambient radiation whereas for the gel phase the metabolic needs are not so demanding. In the similar manner bacteria form colonies when metabolically deprived. This sucking of energy might be also part of the mechanism of disease.

3. What could be the magnetic field inducing the kHz radiation as a synchrotron radiation?

(a) For instance, kHz frequency and its harmonics could correspond to the cyclotron frequencies of proton in magnetic field which field strength slightly above that for Earth’s magnetic field (750 Hz frequency corresponds to field strength of B_E, where $B_E = .5$ Gauss, the nominal strength of Earth’s magnetic field). A possible problem is that the thickness of the flux tubes would be about cell size for Earth’s magnetic field from flux quantization and even larger for dark matter with a large value of Planck constant. Of course, the flux tubes could make themselves thinner temporarily and leak through the pores.

(b) If the flux tube is assumed to have thickness of order 20-100 nm, the magnetic field for ordinary value of \hbar would be of order .1 Tesla from flux quantization and in the case of DNA the cyclotron frequencies would not depend much on the length of DNA fragment since the it carries a constant charge density. Magnetic field of order .2 Tesla would give cyclotron frequency of order kHz from the fact that the field strength of .2 Gauss gives frequency of about .1 Hz. This correspond to a magnetic field with flux tube thickness \sim 125 nm, which
happens to be the upper limit for the porosity. Dark magnetic flux tubes with large \hbar are however thicker and the leakage might involve a temporary phase transition to a phase with ordinary value of \hbar reducing the thickness of the flux tube. Perhaps some genes (adhesin) plus corresponding magnetic bodies representing DNA in terms of cyclotron frequencies depending slightly on precise weight of the DNA sequence and thus coding it correspond to the frequency of cyclotron radiation are the sought for nano-structures.

4. While developing a model for homeopathy based on dark matter I ended up with the idea that dark matter consisting of nuclear strings of neutrons and protons with a large value of \hbar and having thus a zoomed up size of nucleon could be involved. The really amazing finding was that nucleons as three quark systems allow to realize vertebrate code in terms of states formed from entangled quarks [2], [2] described also in this chapter! One cannot decompose codons to letters as in the case of the ordinary genetic code but codons are analogous to symbols representing entire words in Chinese. The counterparts of DNA, RNA, and aminoacids emerge and genetic code has a concrete meaning as a map between quantum states.

Without any exaggeration this connection between dark hadronic physics and biology has been one of the greatest surprises of my professional life. It suggests that dark matter in macroscopic quantum phase realizes genetic code at the level of nuclear physics and biology only provides one particular (or probably very many as I have proposed) representations of it. If one takes this seriously one can imagine that genetic information is represented by these dark nuclear strings of nanoscopic size and that there exists a mechanism translating the dark nuclei to ordinary DNA and RNA sequences and thus to biological matter. This would explain the claimed regeneration of the infected cells.

5. Genetic code at dark matter level would have far reaching implications. For instance, living matter - or rather, the magnetic bodies controlling it - could purposefully perform genetic engineering. This forces me to spit out another really dirty word, "Lamarckism"! We have of course learned that mutations are random. The basic objection against Lamarckism is that there is no known mechanism which would transfer the mutations to germ cells. In the homeopathic Universe of TGD the mutations could be however performed first for the dark nucleon sequences. After this these sequences would diffuse to germ cells just like homeopathic remedies do, and after this are translated to DNA or RNA and attach to DNA.

6.5 Burning water and photosynthesis

For a physicist liberated from the blind belief in reductionism, biology transforms to a single gigantic anomaly about which recent day physics cannot say much. During years I have constructed several models for these anomalies helping to develop a more detailed view about how the new physics predicted by quantum TGD could allow to understand biology and consciousness.

The basic problem is of course the absence of systematic experimentation so that it is possible to imagine many new physics scenarios. For this reason the article series of Mae-Wan Ho [48, 46, 44, 47] in ISIS was a very pleasant surprise, and already now has helped considerably in the attempts to develop the ideas further.

The first article "Water electric" [48] told about the formation of exclusion zones around hydrophilic surfaces, typically gels in the experiments considered [68]. The zones were in potential of about 100 meV with respect to surroundings (same order of magnitude as membrane potential) and had thickness ranging to hundreds of micrometers (the size of a large cell): the standard physics would suggests only few molecular layers instead of millions. Sunlight induced the effect. This finding allow to develop TGD based vision about how proto cells emerged and also the model for chiral selection in living matter by combining the finding with the anomalies of water about which I had learned earlier.

The article "Can water burn?" [44] tells about the discovery of John Kanzius -a retired broadcast engineer and inventor. Kanzius found that water literally burns if subjected to a radio frequency radiation at frequency of 13.56 MHz [1]. The mystery is of course how so low frequency can induce burning. The article "The body does burn water" [47] notices that plant cells burn water routinely in photosynthesis and that also animal cells burn water but the purpose is now to generate hydrogen peroxide which kills bacteria (some readers might recall from childhood how hydrogen peroxide was
used to sterilize wounds!). Hence the understanding of how water burns is very relevant for the understanding of photosynthesis and even workings of the immune system.

Living matter burns water routinely

Photosynthesis burns water by decomposing water to hydrogen and oxygen and liberating oxygen. Oxygen from CO$_2$ in atmosphere combines with the oxygen of H$_2$O to form O$_2$ molecules whereas H from H$_2$O combines with carbon to form hydrocarbons serving as energy sources for animals which in turn produce CO$_2$. This process is fundamental for aerobic life. There is also a simpler variant of photosynthesis in which oxygen is not produced and applied by an-aerobic life forms. The article "Living with Oxygen" by Mae-Wan Ho gives a nice overall view about the role of oxygen [45]. As a matter fact, also animals burn water but they do this to produce hydrogen peroxide H$_2$O$_2$ which kills very effectively bacteria.

Burning of water has been studied as a potential solution for how to utilize the solar energy to produce hydrogen serving as a natural fuel [46]. The reaction O$_2$ + H$_2$ → 2H$_2$O occurs spontaneously and liberates energy of about 1.23 eV. The reverse process 2H$_2$ → H$_2$O$_2$ + H$_2$ in the presence of sunlight means burning of water, and could provide the manner to store solar energy. The basic reaction 2H$_2$O + 4hν ↔ H$_2$O$_2$ + H$_2$ stores the energy of four photons. What really happens in this process is far from being completely understood. Quite generally, the mechanisms making possible extreme efficiency of bio-catalysis remain poorly understood. Here new physics might be involved. I have discussed models for photosynthesis and ADP ↔ ATP process involved with the utilization of the biochemical energy already earlier [36].

How water could burn in TGD Universe?

The new results could help to develop a more detailed model about what happens in photosynthesis. The simplest TGD inspired sketch for what might happen in the burning of water goes as follows.

1. Assume that 1/4 of water molecules are partially dark (in sense of nonstandard value of Planck constant) or at least at larger space-time sheets in atto-second scale [20, 17, 21, 60]. This would explain the H$_{1.5}$O formula explaining the results of neutron diffraction and electron scattering.

2. The question is what this exotic fraction of water precisely is. The models for water electret, exclusion zones and chiral selection lead to concrete ideas about this. Electrons assignable to the H atoms of (partially) dark H$_2$O reside at space-time sheet k_e = 151 (this p-adic length scale corresponds to 10 nm, the thickness of cell membrane). At least the hydrogen atom for this fraction of water molecules is exotic and findings from neutron and electron scattering suggest that both proton and electron are at non-standard space-time sheets but not necessarily at the same space-time sheet. The model for the burning requires that electron and proton are at different space-time sheets in the initial situation.

3. Suppose all four electrons are kicked to the space-time sheet of protons of the exotic hydrogen atoms labeled by k_p. This requires the energy $E_e = (1 - 2^{-n})E_0(k_p)$ (the formula involves idealizations). At this space-time sheet protons and electrons are assumed to combine spontaneously to form two H$_2$ atoms. Oxygen atoms in turn are assumed to combine spontaneously to form O$_2$.

4. For k_f = 148 and $n = 3$ minimum energy needed would be $4E_e = 4 \times .4 = 1.6$ eV. For $k_p = 149$ (thickness of lipid layer) and $n = 2$ one would have $4E_e = 4 \times .3462 = 1.385$ eV whereas $H_2O_2 + H_2 \rightarrow 2H_2O$ liberates energy 1.23 eV. Therefore the model in which electrons are at cell membrane space-time sheet and protons at the space-time sheet assignable to single lipid layer of cell membrane suggests itself. This would also mean that the basic length scales of cell are already present in the structure of water. Notice that there is no need to assume that Planck constant differs from its standard value.

There is no need to add, that the model is an unashamed oversimplification of the reality. It might however catch the core mechanism of photosynthesis.
Burning of salt water induced by RF radiation

Engineer John Kanzius has made a strange discovery \[1\]: salt water in the test tube radiated by radio waves at harmonics of a frequency \(f = 13.56 \text{ MHz}\) burns. Temperatures about 1500 K, which correspond to \(0.15 \text{ eV}\) energy have been reported. One can irradiate also hand but nothing happens. The original discovery of Kanzius was the finding that radio waves could be used to cure cancer by destroying the cancer cells. The proposal is that this effect might provide new energy source by liberating chemical energy in an exceptionally effective manner. The power is about 200 W so that the power used could explain the effect if it is absorbed in resonance like manner by salt water.

Mae-Wan Ho’s article “Can water Burn?” \[34\] provides new information about burning salt water \(\text{[1]}\), in particular reports that the experiments have been replicated. The water is irradiated using polarized radio frequency light at frequency 13.56 MHz. The energy of radio frequency quantum is \(E_{rf} = 0.561 \times 10^{-7} \text{ eV}\) and provides only a minor fraction \(E_{rf}/E = 0.436 \times 10^{-7}\) of the needed energy which is \(E = 1.23 \text{ eV}\) for single \(2\text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + \text{H}_2\) event. The structure of water has been found to change, in particular something happens to O-H bonds. The Raman spectrum of the water has changed in the energy range \([0.37, 0.43] \text{ eV}\). Recall that the range of metabolic energy quanta \(E(k, n) = (1 - 2^{-n})E_0(k)\) varies for electron in the range \([.35, .46] \text{ eV}\) in the model for the formation of exclusion zone induced by light. Therefore the photons assigned to changes in Raman spectrum might be associated with the transfer of electrons between space-time sheets.

The energies of photons involved are very small, multiples of \(5.6 \times 10^{-8} \text{ eV}\) and their effect should be very small since it is difficult to imagine what resonant molecular transition could cause the effect. This leads to the question whether the radio wave beam could contain a considerable fraction of dark photons for which Planck constant is larger so that the energy of photons is much larger. The underlying mechanism would be phase transition of dark photons with large Planck constant to ordinary photons with shorter wavelength coupling resonantly to some molecular degrees of freedom and inducing the heating. Microwave oven of course comes in mind immediately.

As I made this proposal, I did not realize the connection with photosynthesis and actual burning of water. The recent experimental findings suggest that dark radio frequency photons transform to photons inducing splitting of water as in photosynthesis so that that one should have \(r = \hbar/h_0 = E_{rf}/4E\). One could say that large number of radio wave photons combine to form a single bundle of photons forming a structure analogous to what mathematician calls covering space. In the burning event the dark photon would transform to ordinary photon with the same energy. This process would thus transform low energy photons to high energy protons with the ratio \(r = \hbar/h_0\).

Therefore the mechanism for the burning of water in the experiment of Kanzius could be a simple modification of the mechanism behind burning of water in photosynthesis.

1. Some fraction of dark radio frequency photons are dark or are transformed to dark photons in water and have energies around the energy needed to kick electrons to smaller space-time sheets \(4 \text{ eV}\). After this they are transformed to ordinary photons and induce the above process. Their in-elastic scattering from molecules (that is Raman scattering) explains the observation of Raman scattered photons. For a fixed value of \(h\) the process would occur in resonant manner since only few metabolic quanta are allowed.

2. How dark radio frequency photons could be present or could be produced in water? Cyclotron radiation assignable to say electrons in magnetic field comes in mind. If the cyclotron radiation is associated with electrons it requires a magnetic field of 4.8 Gauss the cyclotron frequency is 13.56 MHz. This is roughly ten times the nominal value \(B_E = 0.5\) Gauss of the Earth’s magnetic field and 24 times the value of dark magnetic field \(B_d = AB_E = 0.2\) Gauss needed to explain the effects of ELF em fields on vertebrate brain. Maybe dark matter at flux tubes of Earth’s magnetic field with Planck constant equal to \(h/h_0 = \frac{1}{4} E_{rf}/E_{rf}\) transforms radio frequency photons to dark photons or induces resonantly the generation of cyclotron photons, which in turn leak out from magnetic flux tubes and form ordinary photons inducing the burning of water. \(E_\gamma = 0.4\) eV would give \(h/h_0 = 1.063 \times 2^{15}\) and \(E_\gamma = 36 \text{ eV}\) would give \(h/h_0 = 0.920 \times 2^{21}\).

3. Magnetic fields of magnitude \(2\) Gauss are in central role in TGD based model of living matter and there are excellent reasons to expect that this mechanism could be involved also with processes involved with living matter. There is indeed evidence for this. The experiments of Gariaev demonstrated that the irradiation of DNA with \(2\) eV laser photons (which correspond
to one particular metabolic energy quantum) induced generation of radio wave photons having unexpected effects on living matter (enhanced metabolic activity) [27], and that even a realization of genetic code in terms of the time variation of polarization direction could be involved. TGD based model [10, 78] identifies radio-wave photons as dark photons with same energy as possessed by incoming visible photons so that a transformation of ordinary photons to dark photons would have been in question. The model assumed hierarchy of values of magnetic fields in accordance with the idea about onion like structure of the magnetic body.

There are several questions to be answered.

1. Is there some trivial explanation for why salt must be present or is new physics involved also here. What comes in mind are Cooper pairs dark \(\text{Na}^+ \) ions (or their exotic counterparts which are bosons) carrying Josephson currents through the cell membrane in the model of the cell membrane as a Josephson junction which is almost vacuum extremal of Kähler action. In the experimental arrangement leading to the generation of exclusion zones the pH of water was important control factor, and it might be that the presence of salt has an analogous role to that of protons.

2. Does this effect occur also for solutions of other molecules and other solutes than water? This can be tested since the rotational spectra are readily calculable from data which can be found at net.

3. Are the radio wave photons dark or does water - which is very special kind of liquid - induce the transformation of ordinary radio wave photons to dark photons by fusing \(r = \hbar/\hbar_0 \) radio wave massless extremals (MEs) to single ME. Does this transformation occur for all frequencies? This kind of transformation might play a key role in transforming ordinary EEG photons to dark photons and partially explain the special role of water in living systems.

4. Why the radiation does not induce spontaneous combustion of living matter which contains salt. And why cancer cells seem to burn: is salt concentration higher inside them? As a matter fact, there are reports about [12]. One might hope that there is a mechanism inhibiting this since otherwise military would be soon developing new horror weapons unless it is doing this already now. Is it that most of salt is ionized to \(\text{Na}^+ \) and \(\text{Cl}^- \) ions so that spontaneous combustion can be avoided? And how this relates to the sensation of spontaneous burning [11] - a very painful sensation that some part of body is burning?

5. Is the energy heating solely due to rotational excitations? It might be that also a "dropping" of ions to larger space-time sheets is induced by the process and liberates zero point kinetic energy. The dropping of proton from \(k=137 \) (\(k=139 \)) atomic space-time sheet liberates about \(.5 \text{ eV} \) (0.125 eV). The measured temperature corresponds to the energy .15 eV. This dropping is an essential element of remote metabolism and provides universal metabolic energy quanta. It is also involved with TGD based models of "free energy" phenomena. No perpetuum mobile is predicted since there must be a mechanism driving the dropped ions back to the original space-time sheets.

Recall that one of the empirical motivations for the hierarchy of Planck constants came from the observed quantum like effects of ELF em fields at EEG frequencies on vertebrate brain and also from the correlation of EEG with brain function and contents of consciousness difficult to understand since the energies of EEG photons are ridiculously small and should be masked by thermal noise.

6.7 Connection with mono-atomic elements, cold fusion, and sono-luminescence?

Anomalies are treasures for a theoretician and during years I have been using quite a bundle of reported anomalies challenging the standard physics as a test bed for the TGD vision about physics. The so called mono-atomic elements, cold fusion, and sonofusion represent examples of this kind of anomalies not taken seriously by most standard physicists. In the following the possibility that dark matter as large \(\hbar \) phase could allow to understand these anomalies.
Of course, I hear the angry voice of the skeptic reader blaming me for a complete lack of source criticism and the skeptic reader is right. I however want to tell him that I am not a soldier in troops of either skeptics or new-agers. My attitude is "let us for a moment assume that these findings are real..." and look for the consequences in this particular theoretical framework.

6.7.1 Mono-atomic elements as dark matter and high T_c super-conductors?

The ideas related to many-sheeted space-time began to develop for a decade ago. The stimulation came from a contact by Barry Carter who told me about so called mono-atomic elements, typically transition metals (precious metals), including Gold. According to the reports these elements, which are also called ORMEs ("orbitally rearranged monoatomic elements") or ORMUS, have following properties.

1. ORMEs were discovered and patented by David [8] are peculiar elements belonging to platinum group (platinum, palladium, rhodium, iridium, ruthenium and osmium) and to transition elements (gold, silver, copper, cobalt and nickel).

2. Instead of behaving as metals with valence bonds, ORMEs have ceramic like behavior. Their density is claimed to be much lower than the density of the metallic form.

3. They are chemically inert and poor conductors of heat and electricity. The chemical inertness of these elements have made their chemical identification very difficult.

4. One signature is the infra red line with energy of order $0.05 \, eV$. There is no text book explanation for this behavior. Hudson also reports that these elements became visible in emission spectroscopy in which elements are posed in strong electric field after time which was 6 times longer than usually.

The pioneering observations of David Hudson [8] - if taken seriously - suggest an interpretation as an exotic super-conductor at room temperature having extremely low critical magnetic fields of order of magnetic field of Earth, which of course is in conflict with the standard wisdom about superconductivity. After a decade and with an impulse coming from a different contact related to ORMEs, I decided to take a fresh look on Hudson’s description for how he discovered ORMEs [8] with dark matter in my mind. From experience I can tell that the model to be proposed is probably not the final one but it is certainly the simplest one.

There are of course endless variety of models one can imagine and one must somehow constrain the choices. The key constraints used are following.

1. Only valence electrons determining the chemical properties appear in dark state and the model must be consistent with the general model of the enhanced conductivity of DNA assumed to be caused by large h valence electrons with $r = h/\hbar_0 = n$, $n = 5, 6$ assignable with aromatic rings. $r = 6$ for valence electrons would explain the report of Hudson about anomalous emission spectroscopy.

2. This model cannot explain all data. If ORMEs are assumed to represent very simple form of living matter also the presence electrons having $h/\hbar_0 = 2^{k+1}$, $k = 1$, can be considered and would be associated with high T_c super-conductors whose model predicts structures with thickness of cell membrane. This would explain the claims about very low critical magnetic fields destroying the claimed superconductivity.

Below I reproduce Hudson’s own description here in a somewhat shortened form and emphasize that must not forget professional skepticism concerning the claimed findings.

Basic findings of Hudson

Hudson was recovering gold and silver from old mining sources. Hudson had learned that something strange was going on with his samples. In molten lead the gold and silver recovered but when "I held the lead down, I had nothing". Hudson tells that mining community refers to this as "ghost-gold", a non-assayable, non-identifiable form of gold.
Then Hudson decided to study the strange samples using emission spectroscopy. The sample is put between carbon electrodes and arc between them ionizes elements in the sample so that they radiate at specific frequencies serving as their signatures. The analysis lasts 10-15 seconds since for longer times lower electrode is burned away. The sample was identified as Iron, Silicon, and Aluminum. Hudson spent years to eliminate Fe, Si, and Al. Also other methods such as Cummings Microscopy, Diffraction Microscopy, and Fluorescent Microscopy were applied and the final conclusion was that there was nothing left in the sample in spectroscopic sense.

After this Hudson returned to emission spectroscopy but lengthened the time of exposure to electric field by surrounding the lower Carbon electrode with Argon gas so that it could not burn. This allowed to reach exposure times up to 300 s. The sample was silent up to 90 s after which emission lines of Palladium (Pd) appeared; after 110 seconds Platinum (Pt); at 130 seconds Ruthenium (Ru); at about 140-150 seconds Rhodium; at 190 seconds Iridium; and at 220 seconds Osmium appeared. This is known as fractional vaporization.

Hudson reports the boiling temperatures for the metals in the sample having in mind the idea that the emission begins when the temperature of the sample reaches boiling temperature inspired by the observation that elements become visible in the order which is same as that for boiling temperatures.

The boiling temperatures for the elements appearing in the sample are given by the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Ca</th>
<th>Fe</th>
<th>Si</th>
<th>Al</th>
<th>Pd</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_b/°C$</td>
<td>1420</td>
<td>1535</td>
<td>2355</td>
<td>2327</td>
<td>>2200</td>
<td>2500</td>
</tr>
<tr>
<td>Element</td>
<td>Ru</td>
<td>Pt</td>
<td>Ir</td>
<td>Os</td>
<td>Ag</td>
<td>Au</td>
</tr>
<tr>
<td>$T_b/°C$</td>
<td>4150</td>
<td>4300</td>
<td>>4800</td>
<td>>5300</td>
<td>1950</td>
<td>2600</td>
</tr>
</tbody>
</table>

Table 2. Boiling temperatures of elements appearing in the samples of Hudson.

Hudson experimented also with commercially available samples of precious metals and found that the lines appear within 15 seconds, then follows a silence until lines re-appear after 90 seconds. Note that the ratio of these time scales is 6. The presence of some exotic form of these metals suggests itself: Hudson talks about mono-atomic elements.

Hudson studied specifically what he calls mono-atomic gold and claims that it does not possess metallic properties. Hudson reports that the weight of mono-atomic gold, which appears as a white powder, is 4/9 of the weight of metallic gold. Mono-atomic gold is claimed to behave like superconductor.

Hudson does not give a convincing justification for why his elements should be mono-atomic so that in following this attribute will be used just because it represents established convention. Hudson also claims that the nuclei of mono-atomic elements are in a high spin state. I do not understand the motivations for this statement.

Claims of Hudson about ORMEs as super conductors

The claims of Hudson that ORMES are super conductors [8] are in conflict with the conventional wisdom about super conductors.

1. The first claim is that ORMEs are super conductors with gap energy about $E_g = .05 \text{ eV}$ and identifies photons with this energy resulting from the formation of Cooper pairs. This energy happens to correspond one of the absorption lines in high T_c superconductors.

2. ORMEs are claimed to be super conductors of type II with critical fields H_{c1} and H_{c2} of order of Earth’s magnetic field having the nominal value 5×10^{-4} Tesla [8]. The estimates for the critical parameters for the ordinary super conductors suggests for electronic super conductors critical fields, which are about 1 Tesla and thus by a factor $\sim 2^{12}$ larger than the critical fields claimed by Hudson.

3. It is claimed that ORME particles can levitate even in Earth’s magnetic field. The latter claim looks at first completely nonsensical. The point is that the force giving rise to the levitation is
roughly the gradient of the would-be magnetic energy in the volume of levitating superconductor. The gradient of average magnetic field of Earth is of order B/R, R the radius of Earth and thus extremely small so that genuine levitation cannot be in question.

Minimal model

Consider now a possible TGD inspired model for these findings assuming for definiteness that the basic Hudson’s claims are literally true.

1. **In what sense mono-atomic elements could be dark matter?**

 The simplest option suggested by the applicability of emission spectroscopy and chemical inertness is that mono-atomic elements correspond to ordinary atoms for which valence electrons are dark electrons with large value of $r = h/h_0$. Suppose that the emission spectroscopy measures the energies of dark photons from the transitions of dark electrons transforming to ordinary photons before the detection by de-coherence increasing the frequency by r. The size of dark electrons and temporal duration of basic processes would be zoomed up by r.

 Since the time scale after which emission begins is scaled up by a factor 6, there is a temptation to conclude that $r = 6$ holds true. Note that $n = 6$ corresponds to Fermat polygon and is thus preferred number theoretically in TGD based model for preferred values of h [25]. The simplest possibility is that the group G_6 is trivial group and $G_n = A_b$ or D_b so that ring like structures containing six dark atoms are suggestive.

 This brings in mind the model explaining the anomalous conductivity of DNA by large h valence electrons of aromatic rings of DNA. The zooming up of spatial sizes might make possible exotic effects and perhaps even a formation of atomic Bose-Einstein condensates of Cooper pairs. Note however that in case of DNA $r = 6$ not gives only rise to conductivity but not super-conductivity and that $r = 6$ cannot explain the claimed very low critical magnetic field destroying the super-conductivity.

2. **Loss of weight**

 The claimed loss of weight by a factor $p \approx 4/9$ is a very significant hint if taken seriously. The proposed model implies that the density of the partially dark phase is different from that of the ordinary phase but is not quantitative enough to predict the value of p. The most plausible reason for the loss of weight would be the reduction of density induced by the replacement of ordinary chemistry with $r = 6$ chemistry for which the Compton length of valence electrons would increase by this factor.

3. **Is super-conductivity possible?**

 The overlap criterion is favorable for super-conductivity since electron Compton lengths would be scaled up by factor $n_a = 6, n_b = 1$. For $r = h/h_0 = n_a = 6$ Fermi energy would be scaled up by $n_a^2 = 36$ and if the same occurs for the gap energy, T_c would increase by a factor 36 from that predicted by the standard BCS theory. Scalloped conventional super-conductor having $T_\text{c} \sim 10$ K would be in question (conventional super-conductors have critical temperatures below 20 K). 20 K upper bound for the critical temperature of these superconductors would allow 660 K critical temperature for their dark variants!

 For large enough values of r the formation of Cooper pairs could be favored by the thermal instability of valence electrons. The binding energies would behave as $E = v^2 Z_{\text{eff}}^2 E_0/n^2$, where Z_{eff} is the screened nuclear charge seen by valence electrons, n the principal quantum number for the valence electron, and E_0 the ground state energy of hydrogen atom. This gives binding energy smaller than thermal energy at room temperature for $r > (Z_{\text{eff}}/n)\sqrt{2E_0/3T_{\text{room}}} \approx 17.4 \times (Z_{\text{eff}}/n)$. For $n = 5$ and $Z_{\text{eff}} < 1.7$ this would give thermal instability for $r = 6$.

 Interestingly, the reported .05 eV infrared line corresponds to the energy assignable to cell membrane voltage at criticality against nerve pulse generation, which suggests a possible connection with high T_c superconductors for which also this line appears and is identified in terms of Josephson energy. .05 eV line appears also in high T_c superconductors. This interpretation does not exclude the interpretation as gap energy. The gap energy of the corresponding BCS super-conductor would be scaled down by $1/r^2$ and would correspond to 14 K temperature for $r = 6$.

 Also high T_c super-conductivity could involve the transformation of nuclei at the stripes containing the holes to dark matter and the formation of Cooper pairs could be due to the thermal instability of valence electrons of Cu atoms (having $n = 4$). The rough extrapolation for the critical temperature for
cuperate superconductor would be \(T_c(Cu) = \left(\frac{n_{Cu}}{n_{Rh}} \right)^2 T_c(Rh) = \left(\frac{25}{36} \right) T_c(Rh) \). For \(T_c(Rh) = 300 \) K this would give \(T_c(Cu) = 192 \) K; according to Wikipedia cuprate perovskite has the highest known critical temperature which is 138 K. Note that quantum criticality suggests the possibility of several values of \((n_a, n_b)\) so that several kinds of super-conductivities might be present.

ORMEs as partially dark matter, high \(T_c \) superconductors, and high \(T_c \) super-fluids

The appearance of .05 eV photon line suggest that same phenomena could be associated with ORMEs and high \(T_c \) super-conductors. The strongest conclusion would be that ORMEs are \(T_c \) super-conductors and that the only difference is that \(Cu \) having single valence electron is replaced by a heavier atom with single valence electron. In the following I shall discuss this option rather independently from the minimal model.

1. **ORME super-conductivity as quantum critical high \(T_c \) superconductivity**

ORMEs are claimed to be high \(T_c \) superconductors and the identification as quantum critical superconductors seems to make sense.

1. According to the model of high \(T_c \) superconductors as quantum critical systems, the properties of Cooper pairs should be more or less universal so that the observed absorption lines discussed in the section about high \(T_c \) superconductors should characterize also ORMEs. Indeed, the reported 50 meV photon line corresponds to a poorly understood absorption line in the case of high \(T_c \) cuprate superconductors having in TGD framework an interpretation as a transition in which exotic Cooper pair is excited to a higher energy state. Also Copper is a transition metal and is one of the most important trace elements in living systems. Thus the Cooper pairs could be identical in both cases. ORMEs are claimed to be superconductors of type II and quantum critical superconductors are predicted to be of type II under rather general conditions.

2. The claimed extremely low value of \(H_c \) is also consistent with the high \(T_c \) superconductivity. The supra currents in the interior of flux tubes of radius of order \(L_w = 4 \) \(\mu m \) are BCS type supra currents with large \(h \) so that \(T_c \) is by a factor \(2^{14} \) \((127 - 113 = 14\) is inspired by the Mersenne hypothesis for the preferred p-adic length scales) higher than expected and \(H_c \) is reduced by a factor \(2^{-10} \). This indeed predicts the claimed order of magnitude for the critical magnetic field.

3. The problem is that \(r = 2^{14} \) is considerably higher than \(r = 6 \) suggested by the minimum model explaining the emission spectroscopic results of Hudson. Of course, several values of \(h \) are possible so that internal consistency would be achieved if ORMEs are regarded as a very simple form of living matter with relatively small value of \(r \) and giving up the claim about the low value of critical magnetic field.

4. The electronic configurations of \(Cu \) and Gold are chemically similar. Gold has electronic configuration \([Xe, 4f^{14}5d^{10}6s] \) with one valence electron in \(s \) state whereas Copper corresponds to \(3d^{10}4s \) ground state configuration with one valence electron. This encourages to think that the doping by holes needed to achieve superconductivity induces the dropping of these electrons to \(k = 151 \) space-time sheets and gives rise to exotic Cooper pairs. Also this model assumes the phase transition of some fraction of \(Cu \) nuclei to large \(h \) phase and that exotic Cooper pairs appear at the boundary of ordinary and large \(h \) phase.

More generally, elements having one electron in \(s \) state plus full electronic shells are good candidates for doped high \(T_c \) superconductors. Both \(Cu \) and \(Au \) atoms are bosons. More generally, if the atom in question is boson, the formation of atomic Bose-Einstein condensates at Cooper pair space-time sheets is favored. Thus elements with odd value of \(A \) and \(Z \) possessing full shells plus single \(s \) wave valence electron are of special interest. The six stable elements satisfying these conditions are \(^{6}Li, ^{35}K, ^{63}Cu, ^{85}Rb, ^{133}Cs, \) and \(^{197}Au \).

2. **"Levitation" and loss of weight**

The model of high \(T_c \) superconductivity predicts that some fraction of \(Cu \) atoms drops to the flux tube with radius \(L_w = 4 \) \(\mu m \) and behaves as a dark matter. This is expected to occur also in the case of other transition metals such as Gold. The atomic nuclei at this space-time sheet have high
charges and make phase transition to large h phase and form Bose-Einstein condensate and superfluid behavior results. Electrons in turn form large h variant of BCS type superconductor. These flux tubes are predicted to be negatively charged because of the Bose-Einstein condensate of exotic Cooper pairs at the boundaries of the flux tubes having thickness $L(151)$. The average charge density equals to the doping fraction times the density of Copper atoms.

The first explanation would be in terms of super-fluid behavior completely analogous to the ability of ordinary superfluids to defy gravity. Second explanation is based on the electric field of Earth which causes an upwards directed force on negatively charged BE condensate of exotic Cooper pairs and this force could explain both the apparent levitation and partial loss of weight. The criterion for levitation causes an upwards directed force on negatively charged BE condensate of exotic Cooper pairs and this of ordinary superfluids to defy gravity. Second explanation is based on the electric field of Earth which doping fraction times the density of Copper atoms.

An objection against the explanation for the effective loss of weight is that it depends on the strength of electric field which varies in a wide range whereas Hudson claims that the reduction factor is constant and equal to 4/9. A more mundane explanation would be in terms of a lower density of dark Gold. This explanation is quite plausible since there is no atomic lattice structure since nuclei and electrons form their own large h phases.

4. **The effects on biological systems**

Some monoatomic elements such as White Gold are claimed to have beneficial effects on living systems[8]. 5 per cent of brain tissue of pig by dry matter weight is claimed to be Rhodium and Iridium. Cancer cells are claimed to be transformed to healthy ones in presence of ORMEs. The model for high T_c superconductivity predicts that the flux tubes along which interior and boundary supra currents flow has same structure as neuronal axons. Even the basic length scales are very precisely the same. On basis of above considerations ORMEs are reasonable candidates for high T_c superconductors and perhaps even super fluids.

The common mechanism for high T_c, ORME- and bio-super-conductivities could explain the biological effects of ORMEs.

1. In unhealthy state superconductivity might fail at the level of cell membrane, at the level of DNA or in some longer length scales and would mean that cancer cells are not anymore able to communicate. A possible reason for a lost super conductivity or anomalously weak super conductivity is that the fraction of ORME atoms is for some reason too small in unhealthy tissue.

2. The presence of ORMEs could enhance the electronic bio-superconductivity which for some reason is not fully intact. For instance, if the lipid layers of cell membrane are, not only wormhole-, but also electronic super conductors and cancer involves the loss of electronic super-conductivity then the effect of ORMEs would be to increase the number density of Cooper pairs and make the cell membrane super conductor again. Similar mechanism might work at DNA level if DNA:s are super conductors in "active" state.

5. **Is ORME super-conductivity associated with the magnetic flux tubes of dark magnetic field** $B_d = 0.2$ Gauss?

The general model for the ionic super-conductivity in living matter, which has developed gradually during the last few years and will be discussed in detail later, was originally based on the assumption that super-conducting particles reside at the super-conducting magnetic flux tubes of Earth’s magnetic field with the nominal value $B_E = .5$ Gauss. It became later clear that the explanation of ELF em fields on vertebrate brain requires $B_d = .2$ Gauss rather than $B_E = .5$ Gauss[22]. The interpretation was as dark magnetic field $B_d = .2$ Gauss. The model of EEG led also to the hypothesis that Mersenne primes and their Gaussian counterparts define preferred p-adic length scales and their dark counterparts. This hypothesis replaced the earlier $r = 2^{11k}$ hypothesis.

For $r = 2^{127−113k=14}$ the predicted radius $L_w = .4 \mu m$ is consistent with the radius of neuronal axons. If one assumes that the radii of flux tubes are given by this length scale irrespective of the value of r, one must replace the quantization condition for the magnetic flux with a more general condition in which the magnetic flux is compensated by the contribution of the supra current flowing...
around the flux tube: \(\oint (p - eA) \cdot dl = n \hbar \) and assume \(n = 0 \). The supra currents would be present inside living organism but in the faraway region where flux quanta from organism fuse together, the quantization conditions \(e \int B \cdot dS = n \hbar \) would be satisfied.

The most natural interpretation would be that these flux tubes topologically condense at the flux tubes of \(B_E \). Both bosonic ions and the Cooper pairs of electrons or of fermionic ions can act as charge carriers so that actually an entire zoo of super-conductors is predicted. There is even some support for the view that even molecules and macromolecules can drop to the magnetic flux tubes \(36 \).

Nuclear physics anomalies and ORMEs

At the homepage of Joe Champion \([13]\), information about claimed nuclear physics anomalies can be found.

1) The first anomaly is the claimed low temperature cold fusion mentioned at the homepage of Joe \([13]\), \([13]\), \([13]\). For instance, Champion claims that Mercury (\(Z = 80 \)) decays by emission of proton and neutrons to Gold with \(Z = 79 \) in the electrochemical arrangement described in \([13]\), \([13]\).

2) Champion mentions also the anomalous production of Cadmium isotopes electrochemically in presence of Palladium reported by Tadahiko Mizuno.

The simplest explanation of the anomalies would be based on genuine nuclear reactions. The interaction of dark nuclei with ordinary nuclei at the boundary between the two phases would make possible genuine nuclear transmutations since the Coulomb wall hindering usually cold fusion and nuclear transmutations would be absent (Trojan horse mechanism). Both cold fusion and reported nuclear transmutations in living matter could rely on this mechanism as suggested in \([71, 2, 21]\), \([2]\).

Possible implications

The existence of exotic atoms could have far reaching consequences for the understanding of biosystems. If Hudson’s claims about super-conductor like behavior are correct, the formation of exotic atoms in bio-systems could provide the needed mechanism of electronic super-conductivity. One could even argue that the formation of exotic atoms is the magic step transforming chemical evolution to biological evolution.

Equally exciting are the technological prospects. If the concept works it could be possible to manufacture exotic atoms and build room temperature super conductors and perhaps even artificial life some day. It is very probable that the process of dropping electron to the larger space-time sheet requires energy and external energy feed is necessary for the creation of artificial life. Otherwise the Earth and other planets probably have developed silicon based life for long time ago. Ca, K and Na ions have central position in the electrochemistry of cell membranes. They could actually correspond to exotic ions obtained by dropping some valence electrons from \(k = 137 \) atomic space-time sheet to larger space-time sheets. For instance, the \(k = 149 \) space-time sheet of lipid layers could be in question.

The status of ORMEs is far from certain and their explanation in terms of exotic atomic concept need not be correct. The fact is however that TGD predicts exotic atoms: if they are not observed TGD approach faces the challenge of finding a good explanation for their non-observability.

6.7.2 Connection with cold fusion?

The basic prediction of TGD is a hierarchy of fractally scaled variants of non-asymptotically free QCD like theories and that color dynamics is fundamental even for our sensory qualia (visual colors identified as increments of color quantum numbers in quantum jump). The model for ORMEs suggest that exotic protons obey QCD like theory in the size scale of atom. If this identification is correct, QCD like dynamics might be studied some day experimentally in atomic or even macroscopic length scales of order cell size and there would be no need for ultra expensive accelerators! The fact that Palladium is one of the ”mono-atomic” elements used also in cold fusion experiments as a target material \([31, 30]\) obviously puts bells ringing.

What makes possible cold fusion?

I have proposed that cold fusion might be based on Trojan horse mechanism in which incoming and target nuclei feed their em gauge fluxes to different space-time sheets so that electromagnetic
Coulomb wall disappears \cite{71}. If part of Palladium nuclei are "partially dark", this is achieved. Another mechanism could be the de-localization of protons to a larger volume than nuclear volume induced by the increase of \hbar_{eff} meaning that reaction environment would differ dramatically from that appearing in the usual nuclear reactions and the standard objections against cold fusion would not apply anymore \cite{71}: this delocalization could correspond to the darkness of electromagnetic field bodies of protons.

A third proposal is perhaps the most elegant and relies on the nuclear string model \cite{2}, predicting a large number of exotic nuclei obtained by allowing the color bonds connecting nucleons to have all possible em charges 1, 0, 1. Many ordinary heavy nuclei would be exotic in the sense that some protons would correspond to protons plus negatively charged color bonds. The exchange of an exotic weak boson between D and Pd nuclei transforming D nuclei to exotic neutral D nuclei would occur. The range of the exotic weak interaction correspond to atomic length scale meaning that it behaves as massless particle below this length scale. For instance, W boson could be a variant of $k = 113$ weak boson for which the dark variant of p-adic scale would correspond to the atomic scale $k = 137$ but also other options are possible.

How standard objections against cold fusion can be circumvented?

The following arguments against cold fusion are from an excellent review article by Storms \cite{32}.

1. Coulomb wall requires an application of higher energy. Now electromagnetic Coulomb wall disappears in both models.

2. If a nuclear reaction should occur, the immediate release of energy can not be communicated to the lattice in the time available. In the recent case the time scale is however multiplied by the factor $r = n_a$ and the situation obviously changes. For $n_a = 2^{24}$ the time scale corresponding to MeV energy becomes that corresponding to keV energy which is atomic time scale.

3. When such an energy is released under normal conditions, energetic particles are emitted along with various kinds of radiation, only a few of which are seen by various CANR (Chemically Assisted Nuclear Reactions) studies. In addition, gamma emission must accompany helium, and production of neutrons and tritium, in equal amounts, must result from any fusion reaction. None of these conditions is observed during the claimed CANR effect, no matter how carefully or how often they have been sought. The large value of $\hbar(M^4)$ implying large Compton lengths for protons making possible geometric coupling of gamma rays to condensed matter would imply that gamma rays do not leave the system. If only protons form the quantum coherent state then fusion reactions do not involve the protons of the cathode at all and production of 3He and thus of neutrons in the fusion of D and exotic D.

4. The claimed nuclear transmutation reactions (reported to occur also in living matter \cite{24}) are very difficult to understand in standard nuclear physics framework.

 (a) The model of \cite{71} allows them since protons of different nuclei can re-arrange in many different manners when the dark matter state decays back to normal.

 (b) Nuclear string model \cite{2}, \cite{2} allows transmutations too. For instance, neutral exotic tritium produced in the reactions can fuse with Pd and other nuclei.

5. Many attempts to calculate fusion rates based on conventional models fail to support the claimed rates within PdD (Palladium-Deuterium). The atoms are simply too far apart. This objections also fails for obvious reasons.

Mechanisms of cold fusion

One can deduce a more detailed model for cold fusion from observations, which are discussed systematically in \cite{32} and in the references discussed therein.

1. A critical phenomenon is in question. The average D/Pd ratio must be in the interval (.85, .90). The current must be over-critical and must flow a time longer than a critical time. The effect occurs in a small fraction of samples. D at the surface of the cathode is found to be important
and activity tends to concentrate in patches. The generation of fractures leads to the loss of the anomalous energy production. Even the shaking of the sample can have the same effect. The addition of even a small amount of H_2O to the electrolyte (protons to the cathode) stops the anomalous energy production.

(a) These findings are consistent with the view that patches correspond to a macroscopic quantum phase involving delocalized nuclear protons. The added ordinary protons and fractures could serve as a seed for a phase transition leading to the ordinary phase.

(b) An alternative interpretation is in terms of the formation of neutral exotic D and exotic Pd via exchange of exotic, possibly dark, W bosons massless below atomic length scale.

2. When D_2O is used as an electrolyte, the process occurs when PdD acts as a cathode but does not seem to occur when it is used as anode. This suggests that the basic reaction is between the ordinary deuterium $D = pn$ of electrolyte with the exotic nucleus of the cathode. Denote by \hat{p} the exotic proton and by $\hat{D} = n\hat{p}$ exotic deuterium at the cathode.

For ordinary nuclei fusions to tritium and 3He occur with approximately identical rates. The first reaction produces neutron and 3He via $D + D \to n + ^3He$, whereas second reaction produces proton and tritium by $D + D \to p + ^3H$. The prediction is that one neutron per each tritium nucleus should be produced. Tritium can be observed by its beta decay to 3He and the ratio of neutron flux is several orders of magnitude smaller than tritium flux as found for instance by Tadahiko Mizuno and his collaborators (Mizuno describes the experimental process leading to this discovery in his book).

(a) The explanation discussed in [71] is that the proton in the target deuterium \hat{D} is in the exotic state with large Compton length and the production of 3He occurs very slowly since \hat{p} and p correspond to different space-time sheets. Since neutrons and the proton of the D from the electrolyte are in the ordinary state, Coulomb barrier is absent and tritium production can occur. The mechanism also explains why the cold fusion producing 3He cannot occur significantly in cold fusion which means a conflict with the basic predictions of the standard nuclear physics.

(b) Nuclear string model predicts that only neutral exotic tritium is produced considerably when incoming deuterium interacts with neutral exotic deuterium in the target.

3. The production of 4He has been reported although the characteristic gamma rays have not been detected.

(a) 4He can be produced in reactions such as $D + \hat{D} \to ^4He$ in the model of [71].

(b) Nuclear string model [71] does not allow direct production of 4He in D-D collisions.

4. Also more complex reactions between D and Pd for which protons are in exotic state can occur. These can lead to the reactions transforming the nuclear charge of Pd and thus to nuclear transmutations.

Both model explain nuclear transmutations. In nuclear string model [71] the resulting exotic tritium can fuse with Pd and other nuclei and produce nuclear transmutations.

The reported occurrence of nuclear transmutation such as $^{23}Na + ^{16}O \to ^{39}K$ in living matter could be understood in nuclear string model if also neutral exotic charge states are possible for nuclei in living matter. The experimental signature for the exotic ions would be cyclotron energy spectrum containing besides the standard lines also lines with ions with anomalous mass number. This could be seen as a splitting of lines. For instance, exotic variants of ions such Na^+, K^+, Cl^-, Ca^{++} with anomalous mass numbers should exist. It would be easy to mis-interpret the situation unless the actual strength of the magnetic field is not checked.
5. Gamma rays, which should be produced in most nuclear reactions such as ^4He production to guarantee momentum conservation are not observed.

(a) The explanation of the model of [71] is that the recoil momentum goes to the macroscopic quantum phase and eventually heats the electrolyte system. This provides obviously the mechanism by which the liberated nuclear energy is transferred to the electrolyte difficult to imagine in standard nuclear physics framework.

(b) In nuclear string model [2], ^4He is not produced at all.

6. Both models explain why neutrons are not produced in amounts consistent with the anomalous energy production. The addition of water to the electrolyte is however reported to induce neutron bursts.

(a) In the model of [71] a possible mechanism is the production of neutrons in the phase transition $\hat{p} \rightarrow p$. $D \rightarrow p + n$ could occur as the proton contracts back to the ordinary size in such a manner that it misses the neutron. This however requires energy of 2.23 MeV if the rest masses of \hat{D} and D are same. Also $D + D \rightarrow n + ^3\text{He}$ could be induced by the phase transition to ordinary matter when \hat{p} transformed to p does not combine with its previous neutron partner to form D but recombines with \hat{D} to form ^3He so that a free neutron is left.

(b) Nuclear string model [2] would suggest that the collisions of protons with exotic D produce neutron and ordinary D. This requires the transformation of negatively charged color bond between p and n of target D to a neutral color bond between incoming p and neutron of target.

6.7.3 Does Rossi’s reactor give rise to cold fusion?

Lubos has been raging several times about the cold fusion gadget of Andrea Rossi and I decided to write the following response as he returned to the topic again. The claim of Rossi and physicist Fogardi [19] is that the cold fusion reaction of H and Ni producing Cu takes place in the presence of some ”additives” (Palladium catalyst as in may cold fusion experiments gathering at its surface Ni?).

Objections claiming that the evaporation of water does not actually take place

Lubos of course ”knows” before hand that the gadget cannot work: Coulomb barrier. Since Lubos is true believer in naive text book wisdom, he simply refuses to consider the possibility that the physics that we learned during student days might not be quite right. Personally I do not believe or disbelieve cold fusion: I just take it seriously as any person calling himself scientist should do. I have been developing for more than 15 years ideas about possible explanation of cold fusion in TGD framework. The most convincing idea is that large value of Planck constant associated with nuclei could be involved scaling up the range of weak interactions from 10^{-17} meters to atomic size scale and also scaling up the size of nucleus to atomic size scale so that nucleus and even quarks would like constant charge densities instead of point like charge. Therefore Coulomb potential would be smoothed and the wall would become much lower (see [this] and [this]) [71, 2].

One must say in honor of Lubos that at this time he had detailed arguments about what goes wrong with the reactor of Rossi: this is in complete contrast with the usual arguments of skeptics which as a rule purposefully avoid saying anything about the actual content and concentrate on ridiculing the target. The reason is of course that standard skeptic is just a soldier who has got the list of targets to be destroyed and as a good soldier does his best to achieve the goal. Thinking is not what a good soldier is expected to do since the professors in the consultive board take care of this and give orders to those doing the dirty job.

As a theoretician I have learned the standard arguments used to debunk TGD: logic is circular, text is mere world salad, everything is just cheap numerology, too many self references, colleagues have not recognized my work, the work has not been published in respected journals, and so on. The additional killer arguments state that I have used certain words which are taboos and already for this reason am a complete crackpot. Examples of bad words are ”water memory”, ”homeopathy”, ”cold fusion”, ”crop circles”, ”quantum biology”, ”quantum consciousness”. There is of course no mention
about the fact that I have always emphasized that I am skeptic, not a believer or disbeliever, and only make the question "What if..." and try to answer it in TGD framework. Intellectual honesty does not belong to the virtues of skeptics who are for modern science what jesuits were for the catholic church. Indeed, as Loyola said: the purpose sanctifies the deeds.

Lubos has real arguments but they suffer from the strong negative emotional background coloring so that one cannot be trust the rationality of the reasoning. The core of the arguments of Lubos is following.

1. The water inside reactor is heated to a temperature of 100.1 C. This is slightly above 100 C defining the nominal value of the boiling point temperature at normal pressure. The problem is that if the pressure is somewhat higher, the boiling point increases and the it could happen that the no evaporation of the water takes place. If this is the case, the whole energy fed into the reactor could go to the heating of the water. The input power is indeed somewhat higher than the power needed to heat the water to this temperature without boiling so that this possibility must be taken seriously and the question is whether the water is indeed evaporated.

Comments:

(a) This looks really dangerous. Rossi uses water only as a passive agent gathering the energy assumed to be produced in the fusion of hydrogen and nickel to copper. This would allow to assume that the water fed in is at lower temperature and also the water at outlet is below boiling boiling. Just by measuring the temperature at the outlet one can check whether the outgoing water has temperature higher than it would be if all input energy goes to its heating.

(b) This is only one particular demonstration and it might be that there are other demonstrations in which the situation is this. As a matter fact, from an excellent video interview of Nobelist [Brian Josephson](https://www.youtube.com/watch?v=6JQj1zP4s50) one learns that there are also demonstrations in which water is only heated so that the argument of Lubos does not bite here. The gadget of Rossi is already used to heat university building. The reason why the vaporization is probably that this provides an effective manner to collect the produced energy. Also by reading the [Nytekni report](https://www.nye.industry.no/reports/2019/01/15/energy-ef-ficiency-and-energy-saving-1.html) one learns that the energy production is directly measured rather than being based on the assumption that evaporation occurs.

2. Is the water evaporated or not? This is the question posed by Lubos. The demonstration shows explicitly that there is a flow of vapor from the outlet. As Rossi explains there is some condensation. Lubos claims that the there is about 2 liters of vapor per second resulting from the evaporation 2 ml of water per second should produce much more dramatic visual effect. More vapor and with a faster flow velocity. Lubos claims that water just drops from the tube and part of it spontaneously evaporates. This is what Lubos wants to see and I have no doubt that he is seeing it. Strong belief can move mountains! Or at least can make possible the impression that they are moving!

Comments:

(a) I do not see what Lubos sees but I am not able to tell how many liters of vapor per second comes out. Therefore the visual demonstration as such is not enough.

(b) I wonder why Rossi has not added flow meter measuring the amount of vapor going through the tube. Second possibility is to allow the vapor condensate back to water in the tube by using heat exchanger. This would allow to calculate the energy gained without making the assumption that all that comes out is vapor. It might be that in some experiments this is done.

To sum up, Lubos in his eagerness to debunk forgets that he is concentrating on single demonstration and forgetting other demonstrations altogether and also the published [report](https://www.nye.industry.no/reports/2019/01/15/energy-ef-ficiency-and-energy-saving-1.html) to which his argument do not apply. I remain however skeptic (I mean real skeptic, the skepticism of Lubos and -sad to say- of quite too many skeptics- has nothing to do with a real skeptic attitude). Rossi should give information about the details of his invention and quantitative tests really measuring the heat produced should be carried out and published. Presumably the financial aspects related to the invention explain the secrecy in a situation in which patenting is difficult.
Objections from nuclear physics

The reading of Rossi’s paper and Wikipedia article led me to consider in more detail also various nuclear physics based objections against Rossi’s reactor [2]. Coulomb barrier, the lack of gamma rays, the lack of explanation for the origin of the extra energy, the lack of the expected radioactivity after fusing a proton with 60Ni (production of neutrino and positron in beta decay of 59Cu), the unexplained occurrence of 11 per cent iron in the spent fuel, the 10 per cent copper in the spent fuel strangely having the same isotopic ratios as natural copper, and the lack of any unstable copper isotopes in the spent fuel as if the reactor only produced stable isotopes.

1. Could natural isotope ratios be determined by cold fusion?

The presence of Cu in natural isotope ratios and the absence of unstable copper isotopes of course raise the question whether the copper is just added there. Also the presence of iron is strange. Could one have an alternative explanation for these strange coincidences?

1. Whether unstable isotopes of Cu are present or not, depends on how fast ACu, $A < 63$ decays by neutron emission: this decay is expected to be fast since it proceeds by strong interactions. I do not know enough about the detailed decay rates to be able to say anything about this.

2. Why the isotope ratios would be the same as for naturally occurring copper isotopes? The simplest explanation would be that the fusion cascades of two stable Ni isotopes determine the ratio of naturally occurring Cu isotopes so that cold fusion would be responsible for their production. As a matter fact, TGD based model combined with what is claimed about bio-fusion led to the proposal that stable isotopes are produced in interstellar space by cold fusion and that this process might even dominate over the production in stellar interiors. This would solve among other things also the well-known Lithium problem. The implications of the ability to produce technologically important elements artificially at low temperatures are obvious.

2. Could standard nuclear physics view about cold fusion allow to overcome the objections?

Consider now whether one could answer the objections in standard nuclear physics framework as a model for cold fusion processes.

1. By inspecting stable nuclides one learns that there are two fusion cascades. In the first cascade the isotopes of copper would be produced in a cascade starting from with 58Ni + $n \rightarrow ^{59}$Cu and stopping at 63Cu. All isotopes ACu, $A \in \{55, 62\}$ are unstable with lifetime shorter than one day. The second fusion cascade begins from 63Ni and stops at 65Cu.

2. The first cascade involves five cold fusions and 4 weak decays of Cu. Second cascade involves two cold fusions and one weak decay of Cu. The time taken by the cascade would be same if there is single slow step involved having same duration. The only candidates for the slow step would be the fusion of the stable Ni isotope with the neutron or the fusion producing the stable Cu isotope. If the fusion time is long and same irrespective of the neutron number of the stable isotope, one could understand the result. Of course, this kind of coincidence does not look plausible.

3. AFe could be produced via alpha decay $^{ACu} \rightarrow ^{A-4}Co + \alpha$ followed by $^{A-4}Co \rightarrow ^{A-5}Fe + p$.

3. Could TGD view about cold fusion allow to overcome the objections?

The claimed absence of positrons from beta decays and the absence of gamma rays are strong objections against the assumption that standard nuclear physics is enough. TGD framework it is possible to ask whether the postulated fusion cascades really occur and whether instead of it weak interactions in dark phase of nuclear matter with range of order atomic length scale are responsible for the process because weak bosons would be effectively massless below atomic length scale. For TGD inspired model of cold fusion see this and this [71] 2.

1. The nuclear string model assumes that nucleons for nuclear strings with nucleons connected with color bonds having quark and antiquark at their ends. Color bonds could be also charged
and this predicts new kind of internal structure for nuclei. Suppose that the space-time sheets mediating weak interactions between the color bonds and nucleons correspond to so large value of Planck constant that weak interaction length scale is scaled up to atomic length scale. The generalization of this hypothesis combined with the p-adic length scale hypothesis is actually standard piece of TGD inspired quantum biology (see [21]).

2. The energy scale of the excitations of color bond excitations of the exotic nuclei would be measured in keVs. One could even consider the possibility that the energy liberated in cold fusion would correspond to this energy scale. In particular, the photons emitted would be in keV range corresponding to wavelength of order atomic length scale rather than in MeV range. This would resolve gamma ray objection.

3. Could the fusion process $^{58}\text{Ni} + n$ actually lead to a generation of Ni nucleus ^{59}Ni with one additional positively charged color bond? Could the fusion cascade only generate exotic Ni nuclei with charged color bonds, which would transform to stable Cu by internal dark W boson exchange transferring the positive charge of color bond to neutron and thus transforming it to neutron? This would not produce any positrons. This cascade might dominate over the one suggested by standard nuclear physics since the rates for beta decays could be much slower than the rate for directed generation of Ni isotopes with positively charged color bonds.

4. In this case also the direct alpha decay of Ni with charged color bond to Fe with charged color bond decaying to ordinary Fe by positron emission can be imagined besides the proposed mechanism producing Fe.

5. If one assumes that this process is responsible for producing the natural isotope ratios, one could overcome the basic objections against Rossi’s reactor.

The presence of em radiation in keV range would be a testable basic signature of the new nuclear physics as also effects of X-ray irradiation on measured nuclear decay and reaction rates due to the fact that color bonds are excited. As a matter fact, it is known that X-ray bursts from Sun in keV range has effects on the measured nuclear decay rates and I have proposed that the proposed exotic nuclear physics in keV range is responsible for the effect. Quite generally, the excitations of color bonds would couple nuclear physics with atomic physics and I have proposed that the anomalies of water could involve classical Z^0 force in atomic length scales. Also the low compressibility of condensed matter phase could involve classical Z^0 force. The possible connections with sono-luminescence and claimed sonofusion are also obvious (see [23]).

6.7.4 Sono-luminescence, classical Z^0 force, and hydrodynamic hierarchy of p-adic length scales

Sono-luminescence [23], [25] is a peculiar phenomenon, which might provide an application for the hydrodynamical hierarchy. The radiation pressure of a resonant sound field in a liquid can trap a small gas bubble at a velocity node. At a sufficiently high sound intensity the pulsations of the bubble are large enough to prevent its contents from dissolving in the surrounding liquid. For an air bubble in water, a still further increase in intensity causes the phenomenon of sono-luminescence above certain threshold for the sound intensity. What happens is that the minimum and maximum radii of the bubble decrease at the threshold and picosecond flash of broad band light extending well into ultraviolet is emitted. Rather remarkably, the emitted frequencies are emitted simultaneously during very short time shorter than 50 picoseconds, which suggests that the mechanism involves formation of coherent states of photons. The transition is very sensitive to external parameters such as temperature and sound field amplitude.

A plausible explanation for the sono-luminescence is in terms of the heating caused by shock waves launched from the boundary of the adiabatically contracting bubble [23], [25]. The temperature jump across a strong shock is proportional to the square of Mach number and increases with decreasing bubble radius. After the reflection from the minimum radius $R_s(\text{min})$ the outgoing shock moves into the gas previously heated by the incoming shock and the increase of the temperature after focusing is approximately given by $T/T_0 = M^4$, where M is Mach number at focusing and $T_0 \sim 300$ K is the temperature of the ambient liquid. The observed spectrum of sono-luminescence is explained as
a brehmstrahlung radiation emitted by plasma at minimum temperature $T \sim 10^5 K$. There is a fascinating possibility that sono-luminesence relates directly to the classical Z^0 force.

Even standard model reproduces nicely the time development of the bubble and sono-luminesence spectrum and explains sensitivity to the external parameters [25], [25]. The problem is to understand how the length scales are generated and explain the jump-wise transition to sono-luminescence and the decrease of the bubble radius at sono-luminescence: ordinary hydrodynamics predicts continuous increase of the bubble radius. The length scales are the ambient radius R_0 (radius of the bubble, when gas is in pressure of 1 atm) and the minimum radius R_s(min) of the shock wave determining the temperature reached in shock wave heating. Zero radius is certainly not reached since shock front is susceptible to instabilities.

p-Adic length scale hypothesis and the length scales sono-luminescence

Since p-adic length scale hypothesis introduces a hierarchy of hydrodynamics with each hydrodynamics characterized by a p-adic cutoff length scale there are good hopes of achieving a better understanding of these length scales in TGD. The change in bubble size in turn could be understood as a change in the ‘primary’ condensation level of the bubble.

1. The bubble of air is characterized by its primary condensation level k. The minimum size of the bubble at level k must be larger than the p-adic length scale $L(k)$. This suggests that the transition to photo-luminescence corresponds to the change in the primary condensation level of the air bubble. In the absence of photo-luminescence the level can be assumed to be $k = 163$ with $L(163) \sim .76 \mu m$ in accordance with the fact that the minimum bubble radius is above $L(163)$. After the transition the primary condensation level of the air bubble one would have $k = 157$ with $L(157) \sim .07 \mu m$. In the transition the minimum radius of the bubble decreases below $L(163)$ but should not decrease below $L(157)$: this hypothesis is consistent with the experimental data [25], [25].

2. The particles of hydrodynamics at level k have minimum size $L(k_{prev})$. For $k = 163$ one has $k_{prev} = 157$ and for $k = 157 k_{prev} = 151$ with $L(151) \sim 11.8 nm$. It is natural to assume that the minimum size of the particle at level k gives also the minimum radius for the spherical shock wave since hydrodynamic approximation fails below this length scale. This means that the minimum radius of the shock wave decreases from R_s(min, 163) = $L(157)$ to R_s(min, 157) = $L(151)$ in the transition to sono-luminescence. The resulting minimum radius is 11 nm and much smaller than the radius .1 μm needed to explain the observed radiation if it is emitted by plasma.

A quantitative estimate goes along lines described in [25], [25].

1. The radius of the spherical shock is given by

$$R_s = At^\alpha, \quad (6.7.1)$$

where t is the time to the moment of focusing and α depends on the equation of state (for water one has $\alpha \sim .7$).

2. The collapse rate of the adiabatically compressing bubble obeys

$$\frac{dR}{dt} = c_0 \left(\frac{2 \rho_0}{3 \gamma \rho} \left(\frac{R_m}{R_0} \right)^{3/2} \right), \quad (6.7.2)$$

where c_0 is the sound velocity in gas, γ is the heat capacity ratio and ρ_0/ρ is the ratio of densities of the ambient gas and the liquid.
3. Assuming that the shock is moving with velocity \(c_0 \) of sound in gas, when the radius of the bubble is equal to the ambient radius \(R_0 \) one obtains from previous equations for the Mach number \(M \) and for the radius of the shock wave

\[
M = \frac{dR_s}{dt} = \frac{(t_0/t)^{\alpha-1}}{c_0}, \\
R_s = R_0(t/t_0)^\alpha, \\
t_0 = \frac{\alpha R_0}{c_0}.
\]

(6.7.3)

where \(t_0 \) is the time that elapses between the moment, when the bubble radius is \(R_0 \) and the instant, when the shock would focus to zero radius in the ideal case. For \(R_0 = L(167) \) (order of magnitude is this) and for \(R_s(\text{min}) = L(151) \) one obtains \(R_0/R_s(\text{min}) = 256 \) and \(M \approx 10.8 \) at the minimum shock radius.

4. The increase of the temperature immediately after the focusing is approximately given by

\[
\frac{T}{T_0} \approx M^4 = \left(\frac{R_0}{R_s} \right)^{\frac{4(1-\alpha)}{\alpha}} \approx 1.3 \cdot 10^4.
\]

(6.7.4)

For \(T_0 = 300 \) K this gives \(T \approx 4 \cdot 10^6 \) K: the temperature is far below the temperature needed for fusion.

In principle the further increase of the temperature can lead to further transitions. The next transition would correspond to the transition \(k = 157 \to k = 151 \) with the minimum size of particle changing as \(L(k_{\text{prev}}) \to L(149) \). The next transition corresponds to the transition to \(k = 149 \) and \(L(k_{\text{prev}}) \to L(141) \). The values of the temperatures reached depend on the ratio of the ambient size \(R_0 \) of the bubble and the minimum radius of the shock wave. The fact that \(R_0 \) is expected to be of the order of \(L(k_{\text{next}}) \) suggests that the temperatures achieved are not sufficiently high for nuclear fusion to take place.

Could sonoluminescence involve the formation of a phase near vacuum extremals?

In TGD inspired model of cell membrane [58] a key role is played by almost vacuum extremals for which the induced Kähler field is very small. Vacuum extremals are accompanied by a strong classical \(Z^0 \) field proportional to classical electromagnetic field and given by \(Z^0 = -2\gamma/p, p = \sin^2(\theta_W) \). One could also imagine that em field is vanishing in which case \(Z^0 \) field is proportional to Kähler field and also strong because of \(Z^0 = 6J/p, p = \sin^2(\theta_W) \) proportionality. In this case also classical color fields are present. It is however not clear whether these fields can be realized as preferred extremals of Kähler action.

The classical \(Z^0 \) field should have a source and the vacuum polarization in the sense that flux tubes are generated with many fermion state and its conjugate at its opposite ends would generate it. The Compton scale of weak bosons must correspond to \(L(157) \) so that either dark variants of ordinary weak bosons or their light variants would be in question. Both would be effectively massless below \(L(157) \). The simplest situation corresponds to many-neutrino state for vacuum extremals but also many quark states are possible when em field for the flux tube vanishes.

The length scales involved correspond to Gaussian Mersennes \(M_{G,k} = (1+i)^k - 1 \) and together with \(k = 151 \) and \(k = 167 \) define biologically important length scales [58]. The p-adically scaled up variants and dark variants of of QCD and weak physics haven been conjectured to play key role in biology between length scales 10 nm (cell membrane thickness) and 2.5 \(\mu \)m (the size scale of nucleus). This motivates the question whether a nearly vacuum extremal phase (as far as induced gauge fields are considered) accompanies the transition changing the p-adic length scale associated with the bubble from \(k = 163 \) to \(k = 157 \). The acceleration in the strong \(Z^0 \) field associated with the flux tubes could
generate the visible light as brehmstrahlung radiation, perhaps also Z^0 and W bremsstrahlung could be generated and would decay to photons and charged particles and generate a plasma in this manner. If the weak scale is given by $k_W = 157$, the mass scale of weak bosons is $2^{-31} \approx 10^{-9}/2$ times smaller than that of ordinary weak bosons (about 50 eV which corresponds to a temperature of 5×10^5 K). A further transition to $k = 151$ would correspond to gauge boson mass scale 400 eV and temperature or order 4×10^6 K.

6.8 Dark atomic physics

Dark matter might be relevant also for atomic physics and in the sequel some speculations along these lines are represented. Previous considerations assumed that only field bodies can be dark and this is assumed also now. The notion of dark atom depends strongly on the precise meaning of the generalized imbedding space and I have considered several options.

1. The first option was based on the singular coverings $CD \times CP_2 \to CD/G_a \times CP_2/G_b$. This approach has a concrete connection to the quantization and the selection of quantization axes correlates closely with the identification of groups G_a and G_b. The questionable assumption is that elementary particle like partonic 2-surfaces remain invariant under the cyclic groups $G_a \times G_b$.

2. The next proposal was that both factor spaces and coverings of H are possible. For this option the notion of covering is somewhat unsatisfactory because it lacks concreteness. Singular factor of CD and CP_2 spaces make possible all rational values of Planck constant and one loses the vision about evolution as drift to the sectors of imbedding space characterized by increasing value of Planck constant.

3. The last proposal is based on the realization that basic quantum TGD could well explain the hierarchy of Planck constants in terms of singular covering spaces emerging naturally when the time derivatives of the imbedding space coordinates are many-valued functions of the canonical momentum densities. In this framework singular factors spaces are not possible and the formula $r \equiv \hbar/\hbar_0 = n_an_b$ emerges naturally as well as charge fractionization. One also ends up to a unique recipe for how to obtain binding energies in this kind of situation and the results are consistent with the earlier formulas deduced on purely formal arguments. Groups G_a and G_b do not directly correspond to subgroups of isometry groups but the fractionization of quantum numbers implied by the scaling of Planck constant implies that wave functions for the selected quantization axes behave as if the maximal cyclic subgroups of G_a and G_b had a geometric meaning.

For covering space option fermion number is fractionized. The group algebra of $G_a \times G_b$ defines n_an_b single particle wave functions in the covering. The simplest option is that total fermion number is integer valued so that the many-sheeted structure is analogous to a full Fermi sphere containing n_an_b fermions with fractional fermion number $1/n_an_b$. A more general option allows states with fractional total fermion number varying from from $1/n_an_b$ to 1. One could generalize the condition about integer fermion number so that it holds for the entire quantum state involving several covering regions and the condition would correspond to the $G_a \times G_b$ singletness of the physical states.

6.8.1 Dark atoms and dark cyclotron states

The development of the notion of dark atom involves many side tracks which make me blush. The first naive guess was that dark atom would be obtained by simply replacing Planck constant with its scaled counterpart in the basic formulas and interpreting the results geometrically. After some obligatory twists and turns it became clear that this assumption is indeed the most plausible one. The main source of confusion has been the lack of precise view about what the hierarchy of Planck constants means at the level of imbedding space at space-time.

The rules are very simple when one takes the singular coverings assigned to the many-valuedness of the time-derivatives of imbedding space coordinates as functions of canonical momentum densities as a starting point.
1. The mass and charge of electron are fractionized as is also the reduced mass in Schrödinger equation. This implies the replacements $e \rightarrow e/r$, $m \rightarrow m/r$, and $h \rightarrow r\hbar$, $r = n_a n_b$, in the general formula for the binding energy assigned with single sheet of the covering. If maximal number $n_a n_b$ are present corresponding to a full “Fermi sphere”, the total binding energy is r times the binding energy associated with single sheet.

2. In the case of hydrogen atom the proportionality $E \propto m/\hbar^2$ implies that the binding energy for single sheet of the covering scales as $E \rightarrow E/(n_a n_b)^2$ and maximal binding energy scales as $E \rightarrow E/(n_a n_b)^2$. This conforms with the naive guess. For high values of the nuclear charge Z it can happen that the binding energy is larger than the rest mass and fractionization might take place when binding energy is above critical fraction of the rest mass.

3. In the case of cyclotron energies one must must decide what happens to the magnetic flux. Magnetic flux quantization states that the flux is proportional to \hbar for each sheet separately. Hence one has $\Phi \rightarrow r\Phi$ for each sheet and the total flux scales as r^2. Since the dimensions of the flux quantum are scaled up by r the natural scaling of the size of flux quantum is by r^2. Therefore the quantization of the magnetic flux requires the scaling $B \rightarrow B/r$. The cyclotron energy for single sheet satisfies $E \propto hqB/m$ and since both mass m and charge q become fractional , the energy E for single sheet remains invariant whereas total cyclotron energy is scaled up by r in accordance with the original guess and the assumption used in applications.

4. Dark cyclotron states are expected to be stable up to temperatures which are r times higher than for ordinary cyclotron states. The states of dark hydrogen atoms and its generalizations are expected to be stable at temperatures scaled down by $1/r^2$ in the first approximation.

5. Similar arguments allow to deduce the values of binding energies in the general case once the formula of the binding energy given by standard quantum theory is known.

The most general option allows fractional atoms with proton and electron numbers varying from $1/r$ to 1. One can imagine also the possibility of fractional molecules. The analogs of chemical bonds between fractional hydrogen atoms with $N - k$ and k fractional electrons and protons can be considered and would give rise to a full shell of fractional electrons possessing an exceptional stability. These states would have proton and electron numbers equal to one.

Catalytic sites are one possible candidate for fractal electrons and catalyst activity might be perhaps understood as a strong tendency of fractal electron and its conjugate to fuse to form an ordinary electron.

6.8.2 Could q-Laguerre equation relate to the claimed fractionation of the principal quantum number for hydrogen atom?

The so called hydrino atom concept of Randell Mills \[^{39}\] represents one of the notions related to free energy research not taken seriously by the community of university physicists. What is claimed that hydrogen atom can exists as scaled down variants for which binding energies are much higher than usually due to the large Coulombic energy. The claim is that the quantum number n having integer values $n = 0, 1, 2, 3, \ldots$ and characterizing partially the energy levels of the hydrogen atom can have also inverse integer values $n = 1/2, 1/3, \ldots$. The claim of Mills is that the laboratory BlackLight Inc. led by him can produce a plasma state in which transitions to these exotic bound states can occur and liberate as a by-product usable energy.

The National Aeronautic and Space Administration has dispatched mechanical engineering professor Anthony Marchese from Rowan University to BlackLight’s labs in Cranbury, NJ, to investigate whether energy plasmas-hot, charged gases- produced by Mills might be harnessed for a new generation of rockets. Marchese reported back to his sponsor, the NASA Institute for Advanced Concepts, that indeed the plasma was so far unexplainably energetic. An article about the findings of Mills and collaborators have been accepted for publication in Journal of Applied Physics so that there are reasons to take seriously the experimental findings of Mills and collaborators even if one does not take seriously the theoretical explanations.

The fractionized principal quantum number n claimed by Mills \[^{39}\] is reported to have at least the values $n = 1/k$, $k = 2, 3, 4, 5, 6, 7, 10$. First explanation would be in terms of Plack constant
having also values smaller than \hbar possible if singular factor spaces of causal diamond CD and CP_2 are allowed. q-Deformations of ordinary quantum mechanics are suggested strongly by the hierarchy of Jones inclusion associated with the hyper-finite factor of type II_1 about which WCW spinors are a basic example. This motivates the attempt to understand the claimed fractionization in terms of q-analog of hydrogen atom. The safest interpretation for them would be as states which can exist in ordinary imbedding space (and also in other branches).

The Laguerre polynomials appearing in the solution of Schrödinger equation for hydrogen atom possess quantum variant, so called q-Laguerre polynomials [6], and one might hope that they would allow to realize this semiclassical picture at the level of solutions of appropriately modified Schrödinger equation and perhaps also resolve the difficulty associated with $n = 1/2$. Unfortunately, the polynomials discussed in [6] correspond to $0 < q \leq 1$ rather than complex values of $q = \exp(i\pi/m)$ on circle and the extrapolation of the formulas for energy eigenvalues gives complex energies.

q-Laguerre equation for $q = \exp(i\pi/m)$

The most obvious modification of the Laguerre equation for S-wave states (which are the most interesting by semiclassical argument) in the complex case is based on the replacement

$$
\partial_x \rightarrow \frac{1}{2}(\partial_q^2 + \partial_q^\dagger)
$$

$$
\partial_q^2 f = \frac{f(qx) - f(x)}{(q - 1)x},
$$

$$
q = \exp(i\pi/m)
$$

(6.8.1)

to guarantee hermiticity. When applied to the Laguerre equation

$$
x \frac{d^2 L_n}{dx^2} + (1 - x) \frac{dL_n}{dx} = nL_n ,
$$

(6.8.2)

and expanding L_n into Taylor series

$$
L_n(x) = \sum_{n \geq 0} l_n x^n ,
$$

(6.8.3)

one obtains difference equation

$$
a_{n+1} l_{n+1} + b_n l_n = 0 ,
$$

$$
a_{n+1} = \frac{1}{4R_1^2} [R_{2n+1} - R_{2n} + 2R_{n+1}R_1 + 3R_1] + \frac{1}{2R_1} [R_{n+1} + R_1]
$$

$$
b_n = \frac{R_n}{2R_1} - nq + \frac{1}{2} ,
$$

$$
R_n = 2\cos \left[(n - 1)\pi/m \right] - 2\cos \left[n\pi/m \right].
$$

(6.8.4)

Here nq is the fractionized principal quantum number determining the energy of the q-hydrogen atom. One cannot pose the difference equation on l_n since this together with the absence of negative powers of x would imply the vanishing of the entire solution. This is natural since for first order difference equations lowest term in the series should be chosen freely.

Polynomial solutions of q-Laguerre equation

The condition that the solution reduces to a polynomial reads as

$$
b_n = 0
$$

(6.8.5)

and gives
\[n^{(q)} = \frac{1}{2} + \frac{R_n}{2R_1}, \]

(6.8.6)

For \(n = 1 \) one has \(n^{(q)} = 1 \) so that the ground state energy is not affected. At the limit \(N \to \infty \) one obtains \(n^{(q)} \to n \) so that spectrum reduces to that for hydrogen atom. The periodicity \(R_{n+2Nk} = R_n \) reflects the corresponding periodicity of the difference equation which suggests that only the values \(n \leq 2m - 1 \) belong to the spectrum. Spectrum is actually symmetric with respect to the middle point \([N/2]\) which suggests that only \(n < [m/2] \) corresponds to the physical spectrum. An analogous phenomenon occurs for representations of quantum groups \[6\] . When \(m \) increases the spectrum approaches integer valued spectrum and one has \(n > 1 \) so that no fractionization in the desired sense occurs for polynomial solutions.

Non-polynomial solutions of q-Laquerre equation

One might hope that non-polynomial solutions associated with some fractional values of \(n^{(q)} \) near to those claimed by Mills might be possible. Since the coefficients \(a_n \) and \(b_n \) are periodic, one can express the solution ansatz as

\[L_n(x) = P_a^{2m}(x) \sum_k a_k x^{2mk} = P_a^{2m}(x) \frac{1}{1 - ax^{2m}}, \]

\[P_a^{2m}(x) = \sum_{k=0}^{2m-1} l_k x^k, \]

\[a = \frac{l_{2m}}{l_0}. \]

(6.8.7)

This solution behaves as \(1/x \) asymptotically but has pole at \(x_\infty = (1/a)^{1/2m} \) for \(a > 0 \). The expression for \(l_{2m}/l_0 = a \) is

\[a = \prod_{k=1}^{2m} \frac{b_{2m-k}}{a_{2m-k+1}}. \]

(6.8.8)

This can be written more explicitly as

\[a = (2R_1)^{2m} \prod_{k=1}^{2m} X_k, \]

\[X_k = \frac{R_{2m-k} + (-2n^{(q)} + 1)R_1}{R_{4m-2k+1} - R_{4m-2k} + 4R_{2m-k+1}R_1 + 2R_1^2 + 3R_1}, \]

\[R_n = 2\cos[(n-1)\pi/m] - 2\cos[n\pi/m]. \]

(6.8.9)

This formula is a specialization of a more general formula for \(n = 2m \) and resulting ratios \(l_n/l_0 \) can be used to construct \(P_a^{2m} \) with normalization \(P_a^{2m}(0) = 1 \).

Results of numerical calculations

Numerical calculations demonstrate following.

1. For odd values of \(m \) one has \(a < 0 \) so that a continuous spectrum of energies seems to result without any further conditions.

2. For even values of \(m \) a has a positive sign so that a pole results.
For even value of \(m \) it could happen that the polynomial \(P_a^{2m}(x) \) has a compensating zero at \(x_\infty \) so that the solution would become square integrable. The condition for reads explicitly

\[
P_a^{2m} \left(\frac{1}{a^2} \frac{1}{m} \right) = 0 \quad .
\]

(6.8.10)

If \(P_a^{2m}(x) \) has zeros there are hopes of finding energy eigen values satisfying the required conditions. Laguerre polynomials and also q-Laguerre polynomials must posses maximal number of real zeros by their orthogonality implied by the hermiticity of the difference equation defining them. This suggests that also \(P_a^{2m}(x) \) possesses them if \(a \) does not deviate too much from zero. Numerical calculations demonstrate that this is the case for \(n^{(q)} < 1 \).

For ordinary Laguerre polynomials the naive estimate for the position of the most distant zero in the units used is larger than \(n \) but not too much so. The naive expectation is that \(L_{2m} \) has largest zero somewhat above \(x = 2m \) and that same holds true a small deformation of \(L_{2m} \) considered now since the value of the parameter \(a \) is indeed very small for \(n^{(q)} < 1 \). The ratio \(x_\infty / 2m \) is below .2 for \(m \leq 10 \) so that this argument gives good hopes about zeros of desired kind.

One can check directly whether \(x_\infty \) is near to zero for the experimentally suggested candidates for \(n^{(q)} \). The table below summarizes the results of numerical calculations.

1. The table gives the exact eigenvalues \(1/n^{(q)} \) with a 4-decimal accuracy and corresponding approximations \(1/n^{(q)}_k \) for \(k = 3, \ldots, 10 \). For a given value of \(m \) only single eigenvalue \(n^{(q)} < 1 \) exists. If the observed anomalous spectral lines correspond to single electron transitions, the values of \(m \) for them must be different. The value of \(m \) for which \(n^{(q)} \approx 1/k \) approximation is optimal is given with boldface. The value of \(k \) increases as \(m \) increases. The lowest value of \(m \) allowing the desired kind of zero of \(P^{2m} \) is \(m = 18 \) and for \(k \in \{3, 10\} \) the allowed values are in range 18, ...38.

2. \(n^{(q)} = 1/2 \) does not appear as an approximate eigenvalue so that for even values of \(m \) quantum calculation produces same disappointing result as the classical argument. Below it will be however found that \(n^{(q)} = 1/2 \) is a universal eigenvalue for odd values of \(m \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(1/n^{(q)}_k)</th>
<th>(1/n^{(q)}_m)</th>
<th>(1/n^{(q)}_1)</th>
<th>(1/n^{(q)}_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3</td>
<td>2.7568</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>3.6748</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>4.5103</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>5.3062</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>6.0781</td>
<td>38</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>6.8330</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table3. The table gives the approximations \(1/n^{(q)}_k \approx 1/k \) and corresponding exact values \(1/n^{(q)} \) in the range \(k = 3, \ldots, 10 \) for which \(P_a^{2m}(x_\infty) \) is nearest to zero. The corresponding values of \(m = 2k \) vary in the range, \(k = 18, \ldots, 38 \). For odd values of \(m \) the value of the parameter \(a \) is negative so that there is no pole. Boldface marks for the best approximation by \(1/n^{(q)}_k = k \).

How to obtain \(n^{(q)} = 1/2 \) state?

For odd values of \(m \) the quantization recipe fails and physical intuition tells that there must be some manner to carry out quantization also now. The following observations give a hunch about be the desired condition.

1. For the representations of quantum groups only the first \(m \) spins are realized [6]. This suggests that there should exist a symmetry relating the coefficients \(l_n \) and \(l_{n+m} \) and implying \(n^{(q)} = 1/2 \) for odd values of \(m \). This symmetry would remove also the double degeneracy associated with the almost integer eigenvalues of \(n^{(q)} \). Also other fractional states are expected on basis of physical intuition.
2. For \(n^q = 1/2 \) the recursion formula for the coefficients \(l_n \) involves only the coefficients \(R_m \).

3. The coefficients \(R_k \) have symmetries \(R_k = R_{k+2m} \) and \(R_{k+m} = -R_m \).

There is indeed this kind of symmetry. From the formula
\[
\frac{l_n}{l_0} = (2R_1)^n \prod_{k=1}^{n} X_k ,
\]
\[
X_k = \frac{R_{n-k} + (-2n^q + 1)R_1}{[R_{2n-2k+1} - R_{n-2k} + 4R_{n-k+1}R_1 + 2R_1^2 + 3R_1]}
\]
(6.8.11)

one finds that for \(n^q = 1/2 \) the formula giving \(l_{n+m} \) in terms of \(l_n \) changes sign when \(n \) increases by one unit
\[
A_{n+1} = (-1)^m A_n ,
\]
\[
A_n = \prod_{k=1}^{m} \frac{b_{n+m-k}}{a_{n+m-k+1}} = \prod_{k=1}^{m} (2R_1)^m \prod_{k=1}^{m} X_{k+n} .
\]
(6.8.12)

The change of sign is essentially due to the symmetries \(a_{n+m} = -a_n \) and \(b_{n+m} = b_n \). This means that the action of translations on \(A_n \) in the space of indices \(n \) are represented by group \(Z_2 \).

This symmetry implies \(a = l_{2m}/l_0 = -(l_m)/(l_0)^2 \) so that for \(n^q = 1/2 \) the polynomial in question has a special form
\[
P_{a}^{2m}) = P_{a}^{m}) (1 - Ax^m) ,
\]
\[
A = A_0 .
\]
(6.8.13)

The relationship \(a = -A^2 \) implies that the solution reduces to a form containing the product of \(m^{th} \) (rather than \((2m)^{th} \)) order polynomial with a geometric series in \(x^m \) (rather than \(x^{2m} \)):
\[
L_{1/2}(x) = \frac{P_{a}^{m}) (x)}{1 + Ax^m} .
\]
(6.8.14)

Hence the \(n \) first terms indeed determine the solution completely. For even values of \(m \) one obtains similar result for \(n^q = 1/2 \) but now \(A \) is negative so that the solution is excluded. This result also motivates the hypothesis that for the counterparts of ordinary solutions of Laguerre equation sum (even \(m \)) or difference (odd \(m \)) of solutions corresponding to \(n \) and \(2m - n \) must be formed to remove the non-physical degeneracy.

This argument does not exclude the possibility that there are also other fractional values of \(n \) allowing this kind of symmetry. The condition for symmetry would read as
\[
\prod_{k=1}^{m} (R_k + \epsilon R_1) = \prod_{k=1}^{m} (R_k - \epsilon R_1) ,
\]
\[
\epsilon = \frac{(2n^q - 1)}{2} .
\]
(6.8.15)

The condition states that the odd part of the polynomial in question vanishes. Both \(\epsilon \) and \(-\epsilon \) solutions so that \(n^q \) and \(1 - n^q \) are solutions. If one requires that the condition holds true for all values of \(m \) then the comparison of constant terms in these polynomials allows to conclude that \(\epsilon = 0 \) is the only universal solution. Since \(\epsilon \) is free parameter, it is clear that the \(m^{th} \) order polynomial in question has at most \(m \) solutions which could correspond to other fractionized eigenvalues expected to be present on basis of physical intuition.
Some closing comments are in order. Some comments

\[\prod_{k=1}^{m} (R_k + \epsilon R_1) = - \prod_{k=1}^{m} (R_k - \epsilon R_1) . \]

(6.8.16)

Obviously \(\epsilon = 0\) and thus \(n = 1/2\) fails to be a solution to the eigenvalue equation in this case. Also now one has the spectral symmetry \(n_{\pm} = 1/2 \pm \epsilon\).

The symmetry \(R_n = (-1)^m R_{n+m-1} = (-1)^m R_{n-m-1} = (-1)^m R_{m-n+1}\) can be applied to show that the polynomials associated with \(\epsilon\) and \(-\epsilon\) contain both the terms \(R_n - \epsilon\) and \(R_n + \epsilon\) as factors except for odd \(m\) for \(n = (m+1)/2\). Hence the values of \(n\) can be written for even values of \(m\) as

\[n^0(n) = \frac{1}{2} \pm \frac{R_m}{2R_1}, \quad n = 1, ..., \frac{m}{2} . \]

(6.8.17)

and for odd values of \(m\) as

\[n^0(n) = \frac{1}{2} \pm \frac{R_m}{2R_1}, \quad n = 1, ..., \frac{m+1}{2} - 1 , \]

\[n^0 = 1/2 . \]

(6.8.18)

Plus sign obviously corresponds to the solutions which reduce to polynomials and to \(n^0 \simeq n\) for large \(m\). The explicit expression for \(n^0\) reads as

\[n^0_{\pm}(n) = \frac{1}{2} \pm \frac{(\sin^2(\pi(n-1)/2m) - \sin^2(\pi n/2m))}{2\sin^2(\pi/2m)} . \]

(6.8.19)

At the limit of large \(m\) one has

\[n^0_{\pm}(n) \simeq n , \quad n^0_{\pm}(n) \simeq 1-n . \]

(6.8.20)

so that the fractionization \(n \simeq 1/k\) claimed by Mills is not obtained at this limit. The minimum for \(|n^0|\) satisfies \(|n^0| < 1\) and its smallest value \(|n^0| = .7071\) corresponds to \(m = 4\). Thus these zeros cannot correspond to \(n^0 \simeq 1/k\) yielded by the numerical computation for even values of \(m\) based on the requirement that the zero of \(P_{2m}^\alpha\) cancels the pole of the geometric series.

Some comments

Some closing comments are in order.

1. An open question is whether there are also zeros \(|n^0| > 1\) satisfying \(P_{2m}^\alpha((1/\alpha)^{1/2m}) = 0\) for even values of \(m\).

2. The treatment above is not completely general since only s-waves are discussed. The generalization is however a rather trivial replacement \((1-x)d/dx \rightarrow (l + 1 - x)d/dx\) in the Laguerre equation to get associated Laguerre equation. This modifies only the formula for \(a_{n+1}\) in the recursion for \(l_n\) so that expression for \(n^0\), which depends on \(b_n\)s only, is not affected. Also the product of numerators in the formula for the parameter \(a = l_{2m}/l_0\) remains invariant so that the general spectrum has the spectral symmetry \(n^0 \rightarrow 1-n^0\). The only change to the spectrum occurs for even values of \(m\) and is due to the dependence of \(x_\infty = (1/\alpha)^{1/2m}\) on \(l\) and can be understood in the semiclassical picture. It might happen that the value of \(l\) is modified to its \(q\) counterpart corresponding to q-Legendre functions.
3. The model could partially explain the findings of Mills and \(n^0 \simeq 1/k \) for \(k > 2 \) also fixes the value of corresponding \(m \) to a very high degree so that one would have direct experimental contact with generalized imbedding space, spectrum of Planck constants, and dark matter. The fact that the fractionization is only approximately correct suggests that the states in question could be possible for all sectors of imbedding space as intermediate states into sectors in which the spectrum of hydrogen atom is scaled by \(n_b/n_a = k = 2, 3, \ldots \).

4. The obvious question is whether \(q \)-counterparts of angular momentum eigenstates \((idf_m/d\phi = m f_m)\) are needed and whether they make sense. The basic idea of construction is that the phase transition changing \(\hbar \) does not involve any other modifications except fractionization of angular momentum eigenvalues and momentum eigenvalues having purely geometric origin. One can however ask whether it is possible to identify \(q \)-plane waves as ordinary plane waves. Using the definition \(L_z = 1/2(\partial u/\partial \phi + \dot{\phi} \partial u/\partial \phi) \), \(u = \exp(i\phi) \), one obtains \(f_n = \exp(in\phi) \) and eigenvalues as \(n^0 = R_n/R_1 \rightarrow n \) for \(m \rightarrow \infty \). Similar construction applies in the case of momentum components.

6.8.3 Shy positrons

The latest weird looking effect in atomic physics is the observation that positrium atoms consisting of positron and electron scatter particles almost as if they were lonely electrons [28, 15]. The effect has been christened cloaking effect for positron.

The following arguments represent the first attempts to understand the cloaking of positron in terms of these notions.

1. Let us start with the erratic argument since it comes first in mind. If positron and electron correspond to different space-time sheets and if the scattered particles are at the space-time sheet of electron then they do not see positron’s Coulombic field at all. The objection is obvious. If positron interacts with the electron with its full electromagnetic charge to form a bound state, the corresponding electric flux at electron’s space-time sheet is expected to combine with the electric flux of electron so that positronium would look like neutral particle after all. Does the electric flux of positron return back to the space-time sheet of positronium at some distance larger than the radius of atom? Why should it do this? No obvious answer.

2. Assume that positron dark but still interacts classically with electron via Coulomb potential. In TGD Universe darkness means that positron has large \(\hbar \) and Compton size much larger than positronic wormhole throat (actually wormhole contact but this is a minor complication) would have more or less constant wave function in the volume of this larger space-time sheet characterized by zoomed up Compton length of electron. The scattering particle would see pointlike electron plus background charge diffused in a much larger volume. If the value of \(\hbar \) is large enough, the effect of this constant charge density to the scattering is small and only electron would be seen.

3. As a matter fact, I have proposed this kind of mechanism to explain how the Coulomb wall, which is the basic argument against cold fusion could be overcome by the incoming deuteron nucleus [2]. Some fraction of deuteron nuclei in the palladium target would be dark and have large size just as positron in the above example. It is also possible that only the protons of these nuclei are dark. I have also proposed that dark protons explain the effective chemical formula \(H_{1.5}O \) of water in scattering by neutrons and electrons in attosecond time scale [2]. The connection with cloaked positrons is highly suggestive.

4. Also one of TGD inspired proposals for the absence of antimatter is that antiparticles reside at different space-time sheets as dark matter and are apparently absent [67]. Also the modified Dirac equation with measurement interaction term suggests that fermions and antifermions reside at different space-time sheets, in particular that bosons correspond to wormhole contacts [26]. Cloaking positrons (shy as also their discoverer Dirac!) might provide an experimental supports for these ideas.

The recent view about the detailed structure of elementary particles forces to consider the above proposal in more detail.
1. According to this view all particles are weak string like objects having wormhole contacts at its ends and magnetically charged wormhole throats (four altogether) at the ends of the string like objects with length given by the weak length scale connected by a magnetic flux tube at both space-time sheets. Topological condensation means that these structures in turn are glued to larger space-time sheets and this generates one or more wormhole contacts for which also particle interpretation is highly suggestive and could serve as space-time correlate for interactions described in terms of particle exchanges. As far electrodynamics is considered, the second ends of weak strings containing neutrino pairs are effectively non-existing. In the case of fermions also only the second wormhole throat carrying the fermion number is effectively present so that for practical purposes weak string is only responsible for the massivation of the fermions. In the case of photons both wormhole throats carry fermion number.

2. An interesting question is whether the formation of bound states of two charged particles at the same space-time sheet could involve magnetic flux tubes connecting magnetically charged wormhole throats associated with the two particles. If so, Kähler magnetic monopoles would be part of even atomic and molecular physics. I have proposed already earlier that gravitational interaction in astrophysical scales involves magnetic flux tubes. These flux tubes would have o interpretation as analogs of say photons responsible for bound state energy. In principle it is indeed possible that the energies of the two wormhole throats are of opposite sign for topological sum contact so that the net energy of the wormhole contact pair responsible for the interaction could be negative.

3. Also the interaction of positron and electron would be based on topological condensation at the same space-time sheet and the formation of wormhole contacts mediating the interaction. Also now bound states could be glued together by magnetically charged wormhole contacts. In the case of dark positron, the details of the interaction are rather intricate since dark positron would correspond to a multi-sheeted structure analogous to Riemann surface with different sheets identified in terms of the roots of the equation relating generalized velocities defined by the time derivatives of the imbedding space coordinates to corresponding canonical momentum densities.
Books related to TGD

Articles about TGD

Mathematics

Particle and Nuclear Physics

Condensed Matter Physics

Cosmology and Astro-Physics

Fringe Physics

Biology

Chapter 7

Dark Forces and Living Matter

7.1 Introduction

The unavoidable presence of classical long ranged weak (and also color) gauge fields in TGD Universe has been a continual source of worries for more than two decades. The basic question has been whether electro-weak charges of elementary particles are screened in electro-weak length scale or not. The TGD based view about dark matter assumes that weak charges are indeed screened for ordinary matter in electro-weak length scale but that dark electro-weak bosons correspond to much longer symmetry breaking length scale.

The large value of \hbar in dark matter phase implies that Compton lengths and -times are scaled up. In particular, the sizes of nucleons and nuclei become of order atom size so that dark nuclear physics would have direct relevance for condensed matter physics. It becomes impossible to make a reductionistic separation between nuclear physics and condensed matter physics and chemistry anymore. This view forces a profound re-consideration of the earlier ideas in nuclear and condensed physics context. It however seems that most of the earlier ideas related to the classical Z^0 force and inspired by anomaly considerations survive in a modified form.

In its original form this chapter was an attempt to concretize and develop ideas related to dark matter by using some experimental inputs with emphasis on the predicted interaction between the new nuclear physics and condensed matter. As the vision about dark matter became more coherent and the nuclear string model developed in its recent form, it became necessary to update the chapter and throw away the obsolete material. I dare hope that the recent representation is more focused than the earlier one.

7.1.1 Evidence for long range weak forces and new nuclear physics

There is a lot of experimental evidence for long range electro-weak forces, dark matter, and exotic nuclear physics giving valuable guidelines in the attempts to build a coherent theoretical scenario.

Cold fusion

Cold fusion [32] is a phenomenon involving new nuclear physics and the known selection rules give strong constraints when one tries to understand the character of dark nuclear matter. The simplest model for cold fusion found hitherto is based on the nuclear string model [2, 2] and will be taken as the basis of the considerations of this chapter. Also comparisons with the earlier variant of model of cold fusion [71] will be made in the section about cold fusion.

Large parity breaking effects

Large parity breaking effects in living matter indicate the presence of long ranged weak forces, and the reported nuclear transmutations in living matter [25, 33] suggest that new nuclear physics plays a role also now. For instance, the Gaussian Mersennes $(1 + i)^k - 1$ for $k = 113, 151, 157, 163, 167$ could correspond to weak length scales and four biologically important length scales in the range 10 nm-25μm, which seem to relate directly to the coiling hierarchy of DNA double strands. Quantum criticality

417
of living matter against phase transitions between different values of Planck constant suggests that zeros of Riemann Zeta can appear as conformal weights of particles in living matter.

Anomalies of the physics of water

The physics of water involves a large number of anomalies and life depends in an essential manner on them. As many as 41 anomalies are discussed in the excellent web page "Water Structure and Behavior" of M. Chaplin [20]. The fact that the physics of heavy water differs much more from that of ordinary water as one might expect on basis of different masses of water molecules suggests that dark nuclear physics is involved.

1. The finding that one hydrogen atom per two water molecules remain effectively invisible in neutron and electron interactions in attosecond time scale [20, 17] suggests that water is partially dark. These findings have been questioned in [21] and thought to be erroneous in [60]. If the findings are real, dark matter phase made of super-nuclei consisting of protons connected by dark color bonds could explain them as perhaps also the clustering of water molecules predicting magic numbers of water molecules in clusters. If so, dark nuclear physics could be an essential part of condensed matter physics and biochemistry. For instance, the condensate of dark protons might be essential for understanding the properties of bio-molecules and even the physical origin of van der Waals radius of atom in van der Waals equation of state.

2. The observation that the binding energy of dark color bond for $n = 2^{11} = 1/n_0$ of the scaling of \hbar corresponds to the bond energy .5 eV of hydrogen bond raises the fascinating possibility that hydrogen bonds is accompanied by a color bond between proton and oxygen nucleus. Also more general chemical bonds might be accompanied by color bonds so that dark color physics might be an essential part of molecular physics. Color bonds might be also responsible for the formation of liquid phase and thus solid state. Dark weak bonds between nuclei could be involved and might be responsible for the repulsive core of van der Waals force and be part of molecular physics too. There is evidence for two kinds of hydrogen bonds [56, 54]: a possible identification is in terms of p-adic scaling of hydrogen bonds by a factor 2. This kind of doubling is predicted by nuclear string model [2].

3. Tedrahedral water clusters consisting of 14 water molecules would contain 8 dark protons which corresponds to a magic number for a dark nucleus consisting of protons. Icosahedral water clusters in turn consist of 20 tedrahedral clusters. This raises the question whether fractally scaled up super-nuclei could be in question. If one accepts the vision about dark matter hierarchy based in Jones inclusions to be discussed briefly later, tedrahedral and icosahedral structures of water could correspond directly to the unique genuinely 3-dimensional $G_6 = E_6$ and E_8 coverings of CP^2 with $n_\alpha = 3$ and $n_\alpha = 5$ assignable to dark electrons. Icosahedral structures are also very abundant in living matter, mention only viruses.

Other anomalies

There are also other anomalies which might relate to the hierarchy of Planck constants and also to dark weak forces.

1. Exotic chemistries

Exotic chemistries [15] in which clusters of atoms of given given type mimic the chemistry of another element. These systems behave as if nuclei would form a jellium (constant charge density) defining a harmonic oscillator potential for electrons. Magic numbers correspond to full electron shells analogous to noble gas elements. It is difficult to understand why the constant charge density approximation works so well. If nuclear protons are in large $h(M^4)$ phase with $n_F = 3 \times 2^{11}$, the electromagnetic sizes of nuclei would be about 2.4 Angstroms and the approximation would be natural.

As a matter, fact nuclear string model predicts that the nuclei can have as many as 3A exotic charge states obtained by giving neutral color bond charge ±1: this would give rise to quite different kind of alchemy [2], revealing itself in cold fusion.

2. Free energy anomalies
The anomalies reported by free energy researchers such as over unity energy production in devices involving repeated formation and dissociation of H_2 molecules based on the original discovery of Nobelist Irwing Langmuir [52] (see for instance [12]) suggest that part of H atoms might end up to dark matter phase liberating additional energy. The "mono-atomic" elements of Hudson suggest also dark nuclear physics [8]. There is even evidence for macroscopic transitions to dark phase [5, 11, 15].

3. Tritium beta decay anomaly and findings of Shnoll

Tritium beta decay anomaly [17, 11, 5, 23] suggests exotic nuclear physics related to weak interactions. The evidence for the variation of the rates of nuclear and chemical processes correlating with astrophysical periods [2] could be understood in terms of weak fields created by dark matter and affect by astrophysical phenomena.

7.1.2 Dark rules

I have done a considerable amount of trials and errors in order to identify the basic rules allowing to understand what it means to be dark matter is and what happens in the phase transition to dark matter. It is good to try to summarize the basic rules of p-adic and dark physics allowing to avoid obvious contradictions.

The notion of field body

The notion of "field body" implied by topological field quantization is essential. There would be em, Z_0, W, gluonic, and gravitonic field bodies, each characterized by its one prime. The motivation for considering the possibility of separate field bodies seriously is that the notion of induced gauge field means that all induced gauge fields are expressible in terms of four CP_2 coordinates so that only single component of a gauge potential allows a representation as and independent field quantity. Perhaps also separate magnetic and electric field bodies for each interaction and identifiable as flux quanta must be considered. This kind of separation requires that the fermionic content of the flux quantum (say fermion and anti-fermion at the ends of color flux tube) is such that it conforms with the quantum numbers of the corresponding boson.

What is interesting that the conceptual separation of interactions to various types would have a direct correlate at the level of space-time topology. From a different perspective inspired by the general vision that many-sheeted space-time provides symbolic representations of quantum physics, the very fact that we make this conceptual separation of fundamental interactions could reflect the topological separation at space-time level.

The p-adic mass calculations for quarks encourage to think that the p-adic length scale characterizing the mass of particle is associated with its electromagnetic body and in the case of neutrinos with its Z_0 body. Z_0 body can contribute also to the mass of charged particles but the contribution would be small. It is also possible that these field bodies are purely magnetic for color and weak interactions. Color flux tubes would have exotic fermion and anti-fermion at their ends and define colored variants of pions. This would apply not only in the case of nuclear strings but also to molecules and larger structures so that scaled variants of elementary particles and standard model would appear in all length scales as indeed implied by the fact that classical electro-weak and color fields are unavoidable in TGD framework.

One can also go further and distinguish between magnetic field body of free particle for which flux quanta start and return to the particle and "relative field" bodies associated with pairs of particles. Very complex structures emerge and should be essential for the understanding the space-time correlates of various interactions. In a well-defined sense they would define space-time correlate for the conceptual analysis of the interactions into separate parts. In order to minimize confusion it should be emphasized that the notion of field body used in this chapter relates to those space-time correlates of interactions, which are more or less static and related to the formation of bound states.

What dark variant of elementary particle means

It is not at all clear what the notion of dark variant of elementary particle or of larger structures could mean.

1. Are only field bodies dark?
One variety of dark particle is obtained by making some of the field bodies dark by increasing
the value of Planck constant. This hypothesis could be replaced with the stronger assumption that
elementary particles are maximally quantum critical systems so that they are same irrespective of
the value of the Planck constant. Elementary particles would be represented by partonic 2-surfaces, which
belong to the universal orbifold singularities remaining invariant by all groups \(G_a \times G_b\) for a given
choice of quantization axes. If \(G_a \times G_b\) is assumed to leave invariant the choice of the quantization
axes, it must be of the form \(Z_{n_a} \times Z_{n_b} \subset SO(3) \times SU(3)\). Partonic 2-surface would belong to
\(M^2 \times CP_2/\mathbb{U}(1) \times \mathbb{U}(1)\), where \(M^2\) is spanned by the quantization axis of angular momentum and
the time axis defining the rest system.

A different manner to say this is that the \(CP_2\) type extremal representing particle would suffer
multiple topological condensation on its field bodies so that there would be no separate "particle
space-time sheet".

Darkness would be restricted to particle interactions. The value of the Planck constant would be
assigned to a particular interaction between systems rather than system itself. This conforms with the
original finding that gravitational Planck constant satisfies \(\hbar = GM_1/M_2/v_0\), \(v_0 \simeq 2^{-11}\). Since each
interaction can give rise to a hierarchy dark phases, a rich variety of partially dark phases is predicted.

The standard assumption that dark matter is visible only via gravitational interactions would mean
that gravitational field body would not be dark for this particular dark matter.

Complex combinations of dark field bodies become possible and the dream is that one could
understand various phases of matter in terms of these combinations. All phase transitions, including
the familiar liquid-gas and solid-liquid phase transitions, could have a unified description in terms of
dark phase transition for an appropriate field body. At mathematical level Jones inclusions would
provide this description.

The book metaphor for the interactions at space-time level is very useful in this framework. Ele-
mentary particles correspond to ordinary value of Planck constant analogous to the ordinary sheets
of a book and the field bodies mediating their interactions are the same space-time sheet or at dark
sheets of the book.

2. Can also elementary particles be dark?

Also dark elementary particles themselves rather than only the flux quanta could correspond to
dark space-time sheet defining multiple coverings of \(H/G_a \times G_b\). This would mean giving up the
maximal quantum criticality hypothesis in the case of elementary particles. These sheets would be
exact copies of each other. If single sheet of the covering contains topologically condensed space-time
sheet, also other sheets contain its exact copy.

The question is whether these copies of space-time sheet defining classical identical systems can
carry different fermionic quantum numbers or only identical fermionic quantum numbers so that the
dark particle would be exotic many-fermion system allowing an apparent violation of statistics (\(N\)
fermions in the same state).

Even if one allows varying number of fermions in the same state with respect to a basic copy of
sheet, one ends up with the notion of \(N\)-atom in which nuclei would be ordinary but electrons would
reside at the sheets of the covering. The question is whether symbolic representations essential for
understanding of living matter could emerge already at molecular level via the formation of \(N\)-atoms.

Criterion for the transition to dark phase

The criterion \(\alpha Q_1 Q_2 > 1\) for the transition to dark matter phase relates always to the interaction
between two systems and the interpretation is that when the field strength characterizing the in-
teraction becomes too strong, the interaction is mediated by dark space-time sheets which define
\(n = n(G_a) \times n(G_b)\)-fold covering of \(M^4 \times CP_2/G_a \times G_b\). The sharing of flux between different
space-time sheets reduces the field strength associated with single sheet below the critical value.

Mersenne hypothesis

The generalization of the imbedding space means a book like structure for which the pages are products
of singular coverings or factor spaces of \(CD\) (causal diamond defined as intersection of future and past
directed light-cones) and of \(CP_2\). This predicts that Planck constants are rationals and that
given value of Planck constant corresponds to an infinite number of different pages of the Big Book,
which might be seen as a drawback. If only singular covering spaces are allowed the values of Planck constant are products of integers and given value of Planck constant corresponds to a finite number of pages given by the number of decompositions of the integer to two different integers.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for \(r = \hbar / \hbar_0 \). For the most general option the values of \(\hbar \) are products and ratios of two integers \(n_a \) and \(n_b \). Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases \(\exp(i2\pi/n_i) \), \(i \in \{a, b\} \), in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of \(p \)-adics and of rationals. \(p \)-Adic length scale hypothesis favors powers of two as values of \(r \).

One can however ask whether a more precise characterization of preferred Mersennes could exist and whether there could exist a stronger correlation between hierarchies of \(p \)-adic length scales and Planck constants. Mersenne primes \(M_k = 2^k - 1 \), \(k \in \{89, 107, 127\} \), and Gaussian Mersennes \(M_{G,k} = (1 + i)k - 1 \), \(k \in \{113, 151, 157, 163, 167, 239, 241\ldots\} \) are expected to be physically highly interesting and up to \(k = 127 \) indeed correspond to elementary particles. The number theoretical miracle is that all the four \(p \)-adic length scales with \(k \in \{151, 157, 163, 167\} \) are in the biologically highly interesting range 10 nm-2.5 \(\mu m \). The question has been whether these define scaled up copies of electro-weak and QCD type physics with ordinary value of \(\hbar \). The proposal that this is the case and that these physics are in a well-defined sense induced by the dark scaled up variants of corresponding lower level physics leads to a prediction for the preferred values of \(r = 2^{k_d} \), \(k_d = k_i - k_j \).

What induction means is that dark variant of exotic nuclear physics induces exotic physics with ordinary value of Planck constant in the new scale in a resonant manner: dark gauge bosons transform to their ordinary variants with the same Compton length. This transformation is natural since in length scales below the Compton length the gauge bosons behave as massless and free particles. As a consequence, lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about EEG [22] since it predicts a spectrum of preferred Josephson frequencies for a given value of membrane potential and also assigns to a given value of \(\hbar \) a fixed size scale having interpretation as the size scale of the body part or magnetic body. Also a vision about evolution of life emerges. Mersenne hypothesis is especially interesting as far as new physics in condensed matter length scales is considered: this includes exotic scaled up variants of the ordinary nuclear physics and their dark variants. Even dark nucleons are possible and this gives justification for the model of dark nucleons predicting the counterparts of DNA, RNA, tRNA, and aminoacids as well as realization of vertebrate genetic code [81].

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of \(CP_2 \) near criticality to a phase transition changing Planck constant. Ordinary nuclear physics would correspond to homologically non-trivial geodesic sphere and far from vacuum extremal property. For vacuum extremals of this kind classical \(Z^0 \) field proportional to electromagnetic field is present and this modifies dramatically the view about cell membrane as Josephson junction. The model for cell membrane as almost vacuum extremal indeed led to a quantitative breakthrough in TGD inspired model of EEG and is therefore something to be taken seriously. The safest option concerning empirical facts is that the copies of electro-weak and color physics with ordinary value of Planck constant are possible only for almost vacuum extremals - that is at criticality against phase transition changing Planck constant.

7.1.3 Weak form of electric magnetic duality, screening of weak charges, and color confinement?

TGD predicts the presence of long range classical weak fields and color fields and one should understand classically why quarks and leptons do not couple to these fields above weak boson length scale. Why the quarks inside ordinary nuclei do not generate long range weak fields and do not couple to them? Obviously the weak charges of quarks must be screened so that only electromagnetic charge remains. The extreme non-linearity of field equations in principle allows non-vanishing vacuum charge densities making possible this kind of screening. I have not been able to develop any detailed model for this.

A rather attractive looking explanation came with the discovery of electric-magnetic duality leading to a considerable progress in the understanding of basic quantum TGD. The basic implication of the
duality is that Kähler electric charges of wormhole throats representing particles are proportional to Kähler magnetic charges so that the CP_2 projections of the wormhole throats are homologically non-trivial. The Kähler magnetic charges do not create long range monopole fields if they are neutralized by wormhole throats carrying opposite monopole charges and weak isospin neutralizing the axial isospin of the particle’s wormhole throat. One could speak of confinement of weak isospin. The weak field bodies of elementary fermions would be replaced with string like objects with a length of order W boson Compton length. Electro-magnetic flux would be fed to electromagnetic field body where it would be fed to larger space-time sheets. Similar mechanism could apply in the case of color quantum numbers.

One of the basic questions closely related to the weak screening have been whether it is possible to have a weak analog of the ordinary atom - say neutrino atom. Formally one can of course construct this kind of model and I have indeed done this. The recent view about the screening of weak forces does not however allow neutrino atoms since the weak gauge fluxes flow along flux tubes and are screened by opposite charges at their end rather than being spherically symmetric Coulomb fields. Elementary electrons themselves can be regarded as string like objects neutralized above weak boson Compton length. The size of the magnetic flux tubes however scales as $\sqrt{\hbar}$ so that large values of \hbar it is in principle possible to zoom up the elementary particles and see what their interior looks like. This applies to both weak and color forces and might some day make possible study of elementary particles without gigantic accelerators.

7.1.4 Dark weak forces and almost vacuum extremals

TGD suggests strongly the presence of long range weak force and the large parity breaking in living matter realized as chiral selection provides support for it. One would however like some more concrete quantitative evidence for the conjecture that the classical weak forces are indeed there. This kind of evidence comes from the model of cell membrane based on the hypothesis that cell membrane correspond to almost vacuum extremals.

1. Induced Kähler form vanishes for vacuum extremals. The condition for vanishing implies that classical Z^0 and electromagnetic fields are proportional to each other so that induced spinor field couples to both these fields. The assumption is that the quarks of nuclei and possibly also neutrinos correspond to a large value of Planck constant and therefore couple to the classical Z^0 field. Atomic electrons would not have these couplings. This modifies dramatically the model for the cell membrane as a Josephson junction and raises the scale of Josephson energies from IR range just above thermal threshold to visible and ultraviolet. The amazing finding is that the Josephson energies for biologically important ions correspond to the energies assigned to the peak frequencies in the biological activity spectrum of photoreceptors in retina suggesting. This suggests that almost vacuum extremals and thus also classical Z^0 fields are in a central role in the understanding of the functioning of the cell membrane and of sensory qualia. This would also explain the large parity breaking effects in living matter.

2. A further conjecture is that EEG and its predicted fractally scaled variants which same energies in visible and UV range but different scales of Josephson frequencies correspond to Josephson photons with various values of Planck constant. The decay of dark ELF photons with energies of visible photons would give rise to bunches of ordinary ELF photons. Biophotons in turn could correspond to ordinary visible photons resulting in the phase transition of these photons to photons with ordinary value of Planck constant. This leads to a very detailed view about the role of dark electromagnetic radiation in biomatter and also to a model for how sensory qualia are realized [30, 58, 22].

What darkness means in the case of nuclei is that the ”weak” field bodies of quarks are dark so that the size scale assignable to them is of order cell size. This does not affect their electromagnetic field bodies so that it is possible to speak about ions in the ordinary sense of the word. If the size scale of a given part of field body corresponds to the Compton length proportional proportional to the p-adic length scale scaled up by $\sqrt{\hbar}$ then cell membrane thickness as a Compton scale for the field body of weak bosons means rather large value of $\hbar \sim 2^{151-89} = 2^{62}\hbar_0$. This would scale down 10^{14} Hz frequency of visible photons to about 10^{-4} Hz.
7.2 Weak form electric-magnetic duality and color and weak forces

The notion of electric-magnetic duality \cite{2} was proposed first by Olive and Montonen and is central in $\mathcal{N} = 4$ supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles are two different phases of theory and that the description in terms of monopoles can be applied at the limit when the running gauge coupling constant becomes very large and perturbation theory fails to converge. The notion of electric-magnetic self-duality is more natural since for CP_2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a considerable step of progress took place in the understanding of this notion \cite{16}. What seems to be essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept leads to precise predictions. The point is that elementary particles do not generate monopole fields in macroscopic length scales: at least when one considers visible matter. The first question is whether elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next question is how the screening of the magnetic charges could take place and leads to an identification of the physical particles as string like objects identified as pairs magnetic charged wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confinement in TGD framework. The second end of the string contains particle having electroweak isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak scale would be in question. Hence the screening of electro-weak force takes place via weak confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be connected by flux tubes of length of order hadron size such that magnetic charges sum up to zero. For instance, for baryonic valence quarks these charges could be $(2, -1, -1)$ and could be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary particles are string like objects in electro-weak scale: this should become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological QFT and that Kähler function is explicitly calculable. This has enormous impact concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all isometry currents are proportional to Kähler current which is integrable in the sense that the flow parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz would describe a hydrodynamical flow with the property that isometry charges are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions is found. The solution ansatz applies also to the extremals of Chern-Simons action and to the conserved currents associated with the modified Dirac equation defined as contractions of the modified gamma matrices between the solutions of the modified Dirac equation. The strongest form of the solution ansatz states that various classical and quantum currents flow along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac equation and reduces them to ordinary differential equations along flow lines. The induced spinor fields are simply constant along flow lines of induced spinor field for Dirac equation in suitable gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential equations along flow lines and one can deduce the general form of the spectrum and the explicit representation of the Dirac determinant in terms of geometric quantities characterizing the 3-surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the effective metric defined by the modified gamma matrices).

7.2.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats at which the signature of the induced metric changes. A stronger condition allows all partonic 2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of the Kähler fluxes weighted by Hamiltonians of δM^\pm at the partonic 2-surface X^2 looks very attractive. These expressions however carry no information about the 4-D tangent space of the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which cannot hold true. One would like to code to the WCW metric also information about the electric part of the induced Kähler form assignable to the complement of the tangent space of $X^2 \subset X^4$.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner to get electric magnetic duality at the level of the full theory would be via the identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced metric is however troublesome since the presence of the induced metric means that the simple transformation properties of flux Hamiltonians under symplectic transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory this duality allows to solve field equations exactly in terms of instantons. This approach involves also quaternions. These arguments suggest that the duality in some form might work. The full electric magnetic duality is certainly too strong and implies that space-time surface at the partonic 2-surface corresponds to piece of CP_2 type vacuum extremal and can hold only in the deep interior of the region with Euclidian signature. In the region surrounding wormhole throat at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x^0, x^1, x^2, x^3) such (x^1, x^2) define coordinates for the partonic 2-surface and (x^0, x^3) define coordinates labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string world sheets making sense in the regions of space-time sheet with Minkowskian signature. The assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to Kähler magnetic fluxes. This requires the condition

\[J^{03} \sqrt{g_4} = K J_{12} . \]

(7.2.1)

A more general form of this duality is suggested by the considerations of reducing the hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred extremals to Chern-Simons terms at the boundaries of CD and at light-like wormhole throats. This form is following

\[J^{\alpha\beta} \sqrt{g_4} = K \epsilon \times \epsilon^{\alpha\beta\gamma\delta} J_{\gamma\delta} \sqrt{g_4} . \]

(7.2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of CD or for light-like wormhole throat. ϵ is a sign factor which is opposite for the two ends of CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the dependence on induced metric disappears at the right hand side and this condition eliminates the potentials singularity due to the reduction of the rank of the induced metric at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are used and K is symplectic invariant. Using the sum

\[J_e + J_m = (1 + K)J , \]

(7.2.3)

where J can denotes the Kähler magnetic flux, makes it possible to have a non-trivial configuration space metric even for $K = 0$, which could correspond to the ends of a cosmic string like solution carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be a non-constant function of X^2 depending on string world sheet coordinates. The light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained if one assumes that the quantization of electro-weak charges reduces to this condition at classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic flux

\[Q_m = \frac{e}{\hbar} \oint B dS = n . \]

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge of the partonic 2-surface.
2. The expressions of classical electromagnetic and Z^0 fields in terms of Kähler form \[1\] read as

\[
\gamma = \frac{eF_{em}}{\hbar} = 3J - \sin^2(\theta_W)R_{03},
\]

\[
Z^0 = \frac{gZF_\Sigma}{\hbar} = 2R_{03}.
\] (7.2.4)

Here R_{03} is one of the components of the curvature tensor in vielbein representation and F_{em} and F_Z correspond to the standard field tensors. From this expression one can deduce

\[
J = \frac{e}{3\hbar}F_{em} + \sin^2(\theta_W)\frac{gZ}{6\hbar}F_Z.
\] (7.2.5)

3. The weak duality condition when integrated over X^2 implies

\[
\frac{e^2}{3\hbar}Q_{em} + \frac{g_2^2}{6}Q_{Z,V} = K \oint J = Kn, \\
Q_{Z,V} = \frac{F_L^3}{2} - Q_{em}, \ p = \sin^2(\theta_W).
\] (7.2.6)

Here the vectorial part of the Z^0 charge rather than as full Z^0 charge $Q_Z = F_L^3 + \sin^2(\theta_W)Q_{em}$ appears. The reason is that only the vectorial isospin is same for left and right handed components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and using $\hbar = \sqrt{\hbar_0}$ one can write

\[
\alpha_{em}Q_{em} + \frac{p}{2}\alpha_ZQ_{Z,V} = \frac{3}{4\pi} \times rnK, \\
\alpha_{em} = \frac{e^2}{4\pi\hbar_0}, \ \alpha_Z = \frac{g_2^2}{4\pi\hbar_0} = \frac{\alpha_{em}}{p(1-p)}.
\] (7.2.7)

4. There is a great temptation to assume that the values of Q_{em} and Q_Z correspond to their quantized values and therefore depend on the quantum state assigned to the partonic 2-surface. The linear coupling of the modified Dirac operator to conserved charges implies correlation between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-surface. The assumption of standard quantized values for Q_{em} and Q_Z would be also seen as the identification of the fine structure constants α_{em} and α_Z. This however requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of $F_{03} = (\hbar/g_K)J_{03}$ defining the counterpart of Kähler electric field equals to the Kähler charge g_K would give the condition $K = g_K^2/\hbar$, where g_K is Kähler coupling constant which should invariant under coupling constant evolution by quantum criticality. Within experimental uncertainties one has $\alpha_K = g_K^2/4\pi\hbar_0 = \alpha_{em} \simeq 1/137$, where α_{em} is finite structure constant in electron length scale and \hbar_0 is the standard value of Planck constant.
2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD and CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number of pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Q_{em} and Q_Z allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [55] supports this interpretation.

3. The identification of J as a counterpart of eB/ℏ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ℏ. This implies that for large values of ℏ
Kähler coupling strength g^2_K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α → α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition \(K = \frac{g^2_K}{ℏ} \) implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

\[
K = n \times \frac{g^2_K}{ℏ}, n \in \mathbb{Z}.
\] (7.2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests \(n = 0 \) besides the condition that abelian Z^0 flux contributing
to em charge vanishes.

It took a year to realize that this value of \(K \) is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

\[
K = \frac{1}{ℏ\hbar}.
\] (7.2.9)

In fact, the self-duality of CP^2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP^2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP^2 radius and α_K the effective replacement \(g^2_K \rightarrow 1 \) would spoil the argument.

The boundary condition \(J_E = J_B \) for the electric and magnetic parts of Kähler form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP^2 is such that
in CP^2 coordinates for the Euclidian region the tensor \((g^{αβ}g^{μν} - g^α_μg^ν_β)/√g \) remains invariant. This
is certainly the case for CP^2 type vacuum extremals since by the light-likeness of M^4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole throat. Full
self-duality is indeed an un-necessarily strong condition.
Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather than Kähler charge. This would replace induced Kähler form with electromagnetic field, which is a linear combination of induced Kähler field and classical \(Z^0 \) field

\[
\gamma = 3J - \sin^2\theta_W R_{03},
\]

\[
Z^0 = 2R_{03}.
\] (7.2.10)

Here \(Z^0 = 2R_{03} \) is the appropriate component of \(CP_2 \) curvature form \([1]\). For a vanishing Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could however vanish. If so, the condition guaranteeing that electromagnetic charge of the partonic 2-surfaces equals to the above condition stating that the em charge assignable to the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intuition. Above elementary particle length scales one sees only the classical electric field reducing to the induced Kähler form and classical \(Z^0 \) fields and color gauge fields are effectively absent. Only in phases with a large value of Planck constant classical \(Z^0 \) field and other classical weak fields and color gauge field could make themselves visible. Cell membrane could be one such system \([58]\). This conforms with the general picture about color confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in Minkowskian regions.

1. The value of the Kähler coupling strength must be very near to the value of the fine structure constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and \(CP_2 \) are allowed as simplest possible solutions of field equations \([80]\). The extremely small value of the observed cosmological constant needed in GRT type cosmology could be equal to the large cosmological constant associated with \(CP_2 \) metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions where the approximation as a small deformation of \(CP_2 \) makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view about quantum TGD as following considerations show.
7.2.2 Magnetic confinement, the short range of weak forces, and color confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one should have a mechanism neutralizing the monopole charge. How electroweak interactions become short ranged in TGD framework is still a poorly understood problem. What suggests itself is the neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the electromagnetic charge of the fermion is visible on longer length scales. The distance of this wormhole throat from the fermionic one should be of the order weak boson Compton length. An interpretation as a bound state of fermion and a wormhole throat state with the quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would have quantum numbers of $X_{-1/2} = \nu_L \overline{\nu}_R$ or $X_{1/2} = \overline{\nu}_L \nu_R$. $\nu_L \overline{\nu}_R$ would not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats must always appear as pairs such that for the second member of the pair monopole charges and I_3 cancel each other at both space-time sheets involved so that one obtains at both space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of fundamental particles should become visible at TeV energies so that LHC might have surprises in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean that magnetic charges of the state $q_{\pm 1/2} - X_{\mp 1/2}$ representing the physical quark would not vanish and magnetic confinement would accompany also color confinement. This would explain why free quarks are not observed. To how degree then quark confinement corresponds to magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the magnetic net charges are $(\pm 2, \mp 1, \mp 1)$. This brings in mind the spectrum of color hyper charges coming as $(\pm 2, \mp 1, \mp 1)/3$ and one can indeed ask whether color hyper-charge correlates with the Kähler magnetic charge. The geometric picture would be three strings connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up during the first year of TGD when I had not yet discovered CP_2 and believed on $M^4 \times S^2$.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics. For p-adically scaled up variants the mass scales would be scaled by a power of $\sqrt{2}$ in the most general case. The dark variants of the particle would have the same mass as the original one. In particular, Mersenne primes $M_k = 2^k - 1$ and Gaussian Mersennes $M_{G,k} = (1 + i)^k - 1$ has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M_{89} should define a scaled up variant of the ordinary hadron physics with mass scaled up roughly by a factor $2^{(107-89)/2} = 512$. The size scale of color confinement for this physics would be same as the weak length scale. It would look more natural that the weak confinement for the quarks of M_{89} physics takes place in some shorter scale and M_{61} is the first Mersenne prime to be considered. The mass scale of M_{61} weak bosons would be by a factor $2^{(89-61)/2} = 2^{14}$ higher and about 1.6×10^4 TeV. M_{89} quarks would have virtually no weak interactions but would possess color interactions with weak confinement length scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm - 2500 nm there are as many as four Gaussian Mersennes corresponding to $M_{G,k}$, $k = 151, 157, 163, 167$. This would suggest that the existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this range. There are recent claims about experimental evidence for magnetic monopole pairs [28].

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts is that one cannot construct spin two objects using only single fermion states at wormhole throats. Of course, also super partners of these states with higher spin obtained by adding fermions and anti-fermions at the wormhole throat but these do not give rise to graviton like states [27]. The upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but now there is no need to assign the entities X_{\pm} with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic Mersenne prime M_{127}. It is however difficult to test whether graviton has a structure visible below this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to assume about what happens in the vertices. One could of course hope that zero energy ontology could allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy ontology. A highly attractive assumption is that the particles appearing at wormhole throats are on mass shell particles. For incoming and outgoing elementary bosons and their super partners they would be positive it resp. negative energy states with parallel on mass shell momenta. For virtual bosons they the wormhole throats would have opposite sign of energy and the sum of on mass shell states would give virtual net momenta. This would make possible twistor description of virtual particles allowing only massless particles (in 4-D sense usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes in the interaction region a topological condensation creating another wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X_{\pm} replaces generalized Feynman diagrams with the analogs of stringy diagrams with lines replaced by pairs of lines corresponding to fermion and $X_{\pm}^{1/2}$. The members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length or fusion of two strings to single string along all their points rather than along ends to form a longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X^{\pm}? Should one describe the state as superposition of non-parallel on mass shell states so that the composite state would be automatically massive? The description as superposition of on mass shell states does not conform with the idea that bound state formation requires binding energy. In TGD framework the notion of negentropic entanglement has been suggested to make possible the analogs of bound states consisting of on mass shell states so that the binding energy is zero [43]. If this kind of states are in question the description of virtual states in terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and $X^{\pm \pm 1/2}$ in the internal lines of the Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible. If this picture is correct, the situation would not change in an essential manner from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should have stringy character in electro-weak length scales and could behaving to become manifest at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about physics at LHC energies [44].

7.3 Dark matter hierarchy, genetic machinery, and the un-reasonable selectivity of bio-catalysis

One of the most fascinating outcomes of ideas related to the dark matter hierarchy is the notion of inherently dark fractional atom (molecule) generalizing the notion of Bose-Einstein condensate to the fermionic case. These notions might provide an elegant manner to understand the mysteries of DNA replication, transcription, and translation, and more generally, the incredible selectivity of bio-catalysis.

As often, the original idea was not quite correct. I spoke about N-atoms rather than fractional atoms. In particular, the mass of N-molecule was N times larger than that of the ordinary molecule apart from corrections from binding energy. The more precise view about dark matter hierarchy led to the realization that fractionization of all quantum numbers occurs. In the most general case one can have fractional particles with particle number $n = k/r, k = 1, \ldots, r$, $r = n_a n_b$. This leaves the model essentially as such at formal level. The model is however much more realistic than the original one since fractional atoms have mass which is never larger than that of ordinary atom and also conforms with the recent view about the origin of the hierarchy of Planck constants.

7.3.1 Dark atoms and dark cyclotron states

The development of the notion of dark atom involves many side tracks which make me blush. The first naive guess was that dark atom would be obtained by simply replacing Planck constant with its scaled counterpart in the basic formulas and interpreting the results geometrically. After some obligatory twists and turns it became clear that this assumption is indeed the most plausible one. The main source of confusion has been the lack of precise view about what the hierarchy of Planck constants means at the level of imbedding space at space-time.

The rules are very simple when one takes the singular coverings assigned to the many-valuedness of the time-derivatives of imbedding space coordinates as functions of canonical momentum densities as a starting point.

1. The mass and charge of electron are fractionized as is also the reduced mass in Schrödinger equation. This implies the replacements $e \rightarrow e/r, m \rightarrow m/r,$ and $\hbar \rightarrow \hbar r_0, r = n_a n_b,$ in the general formula for the binding energy assigned with single sheet of the covering. If maximal
number $n_a n_b$ are present corresponding to a full "Fermi sphere", the total binding energy is r times the binding energy associated with single sheet.

2. In the case of hydrogen atom the proportionality $E \propto m/h^2$ implies that the binding energy for single sheet of the covering scales as $E \rightarrow E/(n_a n_b)^3$ and maximal binding energy scales as $E \rightarrow E/(n_a n_b)^2$. This conforms with the naive guess. For high values of the nuclear charge Z it can happen that the binding energy is larger than the rest mass and fractionization might take place when binding energy is above critical fraction of the rest mass.

3. In the case of cyclotron energies one must must decide what happens to the magnetic flux. Magnetic flux quantization states that the flux is proportional to \hbar for each sheet separately. Hence one has $\Phi \rightarrow r\Phi$ for each sheet and the total flux scales as r^2. Since the dimensions of the flux quantum are scaled up by r the natural scaling of the size of flux quantum is by r. Therefore the quantization of the magnetic flux requires the scaling $B \rightarrow B/r$. The cyclotron energy for single sheet satisfies $E \propto h q B/m$ and since both mass m and charge q become fractional, the energy E for single sheet remains invariant whereas total cyclotron energy is scaled up by r in accordance with the original guess and the assumption used in applications.

4. Dark cyclotron states are expected to be stable up to temperatures which are r times higher than for ordinary cyclotron states. The states of dark hydrogen atoms and its generalizations are expected to be stable at temperatures scaled down by $1/r^2$ in the first approximation.

5. Similar arguments allow to deduce the values of binding energies in the general case once the formula of the binding energy given by standard quantum theory is known.

The most general option option allows fractional atoms with proton and electron numbers varying from $1/r$ to 1. One can imagine also the possibility of fractional molecules. The analogs of chemical bonds between fractional hydrogen atoms with $N - k$ and k fractional electrons and protons can be considered and would give rise to a full shell of fractional electrons possessing an exceptional stability. These states would have proton and electron numbers equal to one.

Catalytic sites are one possible candidate for fractal electrons and catalyst activity might be perhaps understood as a strong tendency of fractal electron and its conjugate to fuse to form an ordinary electron.

Connection with quantum groups?

The phase $q = \exp(i 2\pi/r)$ brings unavoidably in mind the phases defining quantum groups and playing also a key role in the model of topological quantum computation [84]. Quantum groups indeed emerge from the spinor structure in the "world of classical worlds" realized as the space of 3-surfaces in $M^4 \times C P^2$ and being closely related to von Neumann algebras known as hyper-finite factors of type II$_1$ [86].

Only singular coverings are allowed if the hierarchy of Planck constants and corresponding hierarchy of singular coverings follows from the basic TGD. If the integer n characterizing the quantum phase allows identification with with $r = h/h_0$, living matter could be perhaps understood in terms of quantum deformations of the ordinary matter, which would be characterized by the quantum phases $q = \exp(i 2\pi/r)$. Hence quantum groups, which have for long time suspected to have significance in elementary particle physics, might relate to the mystery of living matter and predict an entire hierarchy of new forms of matter.

How to distinguish between fractional particles and ordinary particles?

The unavoidable question is whether bio-molecules in vivo could involve actually fractional atoms molecules as their building blocks. This raises a series of related questions.

1. Could it be that we can observe only the fusion of of dark fractional fold molecules to ordinary molecules or its reversal? Is the behavior of matter matter in vivo dictated by the dark matter commentn and of matter in vitro by ordinary matter? Could just the act of observing the matter in vivo in the sense of existing science make it ordinary dead matter?
2. If fractional atoms and molecules correspond to the maximum number of fractional quanta their masses are same as for ordinary atoms and molecules and only the different binding energy photon spectrum distinguishes between them. Situation changes all fractional states are possible and one obtains scaled down spectrum as a unique signature.

3. The fusion of fractional molecules to ordinary molecules in principle allows to conclude that fractional molecule was present. Could this process mean just the replacement of DNA in vivo with DNA in vitro?

7.3.2 Spontaneous decay and completion of dark fractional atoms as a basic mechanisms of bio-chemistry?

The replication of DNA has remained for me a deep mystery and I dare to doubt that the reductionistic belief that this miraculous process is well-understood involves self deceptive elements. Of course the problem is much more general: DNA replication is only a single very representative example of the miracles of un-reasonable selectivity of the bio-catalysis. I take this fact as a justification for some free imagination inspired by the notion of dark fractional molecule.

Dark fermionic molecules can replicate via decay and spontaneous completion

Unit particle number for fractional atom or molecule means that the analog of closed electronic shell are in question so that the state is especially stable. Note that the analogy with full Fermi electronic sphere makes also sense. These atoms or molecules could decay to fractional atoms or molecules. with fractional particle numbers k/r and $(r-k)/r$.

Suppose that a fractional molecule with unit particle number decays into k/r-molecule and $(r-k)/r$-molecule. If r is even it is possible to have $k = r - k = r/2$ and the situation is especially symmetric. If fermionic $k/r < 1$ fractional atoms or molecules are present, one can imagine that they tend to be completed to full molecules spontaneously. Thus spontaneous decay and completion would favor the spontaneous replication (or rather fractionization) and dark molecules could be ideal replicators (fractionizators) The idea that the mechanisms of spontaneous decay and completion of dark fractional particles somehow lurk behind DNA replication and various high precision bio-catalytic processes is rather attractive.

Reduction of lock and key mechanism to spontaneous completion

DNA replication and molecular recognition by the lock and key mechanism are the two mysterious processes of molecular biology. As a matter fact, DNA replication reduces to spontaneous opening of DNA double strand and to the lock and key mechanism so that it could be enough to understand the opening of double strand in terms of spontaneous decay and lock and key mechanism in terms of spontaneous completion of fractional particle (-atom or -molecule).

Consider bio-molecules which fit like a lock and key. Suppose that they are accompanied by dark fractional atoms or molecules, to be called dark fractional particles in sequel, such that one has $k_1 + k_2 = r$ so that in the formation of bound state dark molecules combine to form r-molecule analogous to a full fermionic shell or full Fermi sea. This is expected to enhance the stability of this particular molecular complex and prefer it amongst generic combinations.

For instance, this mechanism would make it possible for nucleotide and its conjugate, DNA and mRNA molecule, and tRNA molecule and corresponding aminoacid to recognize each other. Spontaneous completion would allow to realize also the associations characterizing the genetic code as a map from RNAs to subset of RNAs and associations of this subset of RNAs with amino-acids (assuming that genetic code has evolved from RNA → RNA code as suggested in this chapter).

As such this mechanism allows a rather limited number of different lock and key combinations unless r is very large. There is however a simple generalization allowing to increase the representative power so that lock and key mechanism becomes analogous to a password used in computers. The molecule playing the role of lock resp. molecule would be characterized by a set of n fractional particles with $k_1 \in \{k_1, ..., k_{1,n}\}$ resp. $k_2 \in \{k_{2,1} = r - k_{1,1}, ..., k_{2,n} = r - k_{1,n}\}$. The molecules with conjugate names would fit optimally together. Fractional molecules or fractional electrons or atoms appearing as their building blocks would be like letters of a text characterizing the name of the molecule.
The mechanism generalizes also to the case of $n > 2$ reacting molecules. The molecular complex would be defined by a partition of n copies of integer r to a sum of m integers $k_{k,i}: \sum_i k_{k,i} = r$.

This mechanism could provide a universal explanation for the miraculous selectivity of catalysts and this selectivity would have practically nothing to do with ordinary chemistry but would correspond to a new level of physics at which symbolic processes and representations based on dark fractional particles emerge.

Connection with the number theoretic model of genetic code?

The emergence of partitions of integers in the labelling of molecules by fractional particles suggests a connection with the number theoretical model of genetic code [20], where DNA triplets are characterized by integers $n \in \{0, ..., 63\}$ and aminoacids by integers $0, 1, 18$ primes $p < 64$. For instance, one can imagine that the integer n means that DNA triplet is labelled by n/r-particle. $r = 64$ would be the obvious candidate for r and conjugate DNA triplet would naturally have $n_r = 64 - n$.

The model relies on number-theoretic thermodynamics for the partitions of n to a sum of integers and genetic code is fixed by the minimization of number theoretic entropy which can be also negative and has thus interpretation as information. Perhaps these partitions could correspond to states resulting in some kind of decays of n-fermion to n_k/r-fermions with $\sum_k n_k = n$. The n_k/r-fermions should however not correspond to separate particles but something different. A possible interpretation is that partition corresponds to a state in which n_k/r particle is topologically condensed at $n_k/r \geq n_1/r$ particle topologically condensed....at $n_k/r \geq n_{k-1}/r$-particle. This would also automatically define a preferred ordering of the integers n_k in the partition.

An entire ensemble of labels would be present and depending on the situation codon could be labelled not only by n/r-particle but by any partition $n = \sum_{i=1}^k n_i$ corresponding to the state resulting in the decay of n/r-particle to k fractional particles.

Reduction of DNA replication to a spontaneous decay of r-particle

DNA replication could be induced by a spontaneous decay of r-particle inducing the instability of the double strand leading to a spontaneous completion of the component strands.

Strand and conjugate strand would be characterized by k_1/r-particle and $(r-k_1)/r$-particle, which combine to form r-particle as the double strand is formed. The opening of the double strand is induced by the decay of r-particle to k_1/r- and $(r-k_1)/r$-particles accompanying strand and its conjugate and after this both strands would complete themselves to double strands by the completion to r-particle.

It would be basically the stability of fractional particle which would make DNA double strand stable. Usually the formation of hydrogen bonds between strands and more generally, between the atoms of stable bio-molecule, is believed to explain the stability. Since the notion of hydrogen bond is somewhat phenomenological, one cannot exclude the possibility that these two mechanisms might be closely related to each other. I have already earlier considered the possibility that hydrogen bond might involve dark protons [23]: this hypothesis was inspired by the finding that there seems to exist two kinds of hydrogen bonds [50, 54].

The reader has probably already noticed that the participating fractional molecules in the model of lock and key mechanism are like sexual partners, and if already molecules are conscious entities as TGD inspired theory of consciousness strongly suggests, one might perhaps see the formation of entangled bound states with positive number theoretic entanglement entropy accompanied by molecular experience of one-ness as molecular sex. Even more, the replication of DNA brings in also divorce and process of finding of new companions!

7.3.3 The new view about hydrogen bond and water

Concretization of the above scenario leads to a new view about hydrogen bond and the role of water in bio-catalysis.

What the fractional particles labelling bio-molecules could be?

What the dark fractional particles defining the letters for the names of various bio-molecules could be? Dark fractional hydrogen atoms are the lightest candidates for the names of bio-molecules. The fusion could give rise to the hydrogen atom appearing in hydrogen bond. One could say the fractional
hydrogen atoms belong to the molecules between which the hydrogen bond is formed. In absence of bond the fractional atoms would define active catalyst sites. This mechanism would also conform with the belief that hydrogen bonds guarantee the stability of bio-molecules.

This idea is not a mere speculation. The first experimental support for the notion of dark matter came from the experimental finding that water looks in atto-second time scale from the point of view of neutron diffraction and electron scattering chemically like \(H_{1.5}O \); as if one fourth of protons are dark. Dark protons would be identifiable as fractional protons. Of course, also dark hydrogen atoms can be considered.

One can imagine also a second option. The model for \([5, 33]\) leads to a rather concrete view about how magnetic body controls biological body and receives sensory input from it. The model relies on the idea that dark water molecule clusters and perhaps also dark exotically ionized super-nuclei formed as linear closed strings of dark protons \([23]\) perform this mimicry. Dark proton super-nuclei are ideal for mimicking the cyclotron frequencies of ordinary atoms condensed to dark magnetic flux quanta. Of course, also partially ionized hydrogen fractional ions could perform the cyclotron mimicry of molecules with the same accuracy.

One can consider the possibility fractional molecules/atoms correspond to exotic atoms formed by electrons bound to exotically ionized dark super-nuclei: the sizes of these nuclei are however above atomic size scale so that dark electrons would move in a harmonic oscillator potential rather than Coulombic potential and form states analogous to atomic nuclei. The prediction would be the existence of magic electron numbers \([23]\). Amazingly, there is strong experimental evidence for the existence of this kind of many-electron states. Even more, these states are able to mimic the chemistry of ordinary atoms \([15, 40, 24]\). The formation of hydrogen bonds between catalyst and substrate could be the correlate for the fusion of fractional hydrogen atoms.

If the fusion process gives rise \(1/1\)-hydrogen, its spontaneous decay to ordinary hydrogen would liberate the difference of binding energies as metabolic energy helping to overcome the energy barrier for the reaction. The liberated energy would be rather large and correspond 3.4 eV UV photon even for \(r = 2 \) which suggests that it does not relate with standard metabolism. For larger values of \(r \) the liberated energy rapidly approaches to the ground state energy of hydrogen. Note that the binding energy of ordinary hydrogen atom in state \(n = r \) has in the lowest order approximation same energy as the ground state of dark hydrogen atom for \(h/h_0 = r \) so that one can consider the possibility of a resonant coupling of these states.

Fractional protons and electrons have effective charge \(\pm ke/r \) so that the binding regions of catalysts and reacting molecules could carry effective fractional surface charge.

This might relate in an interesting manner to the problem of how poly-electrolytes can be stable (I am grateful for Dale Trenary for pointing me the problem and for interesting discussions). For instance, DNA carries a charge of -2 units per nucleotide due to the phosphate backbone. The models trying to explain the stability involve effective binding of counter ions to the polyelectrolyte so that the resulting system has a lower charge density. The simulations of DNA condensation by Stevens \([55]\) however predict that counter ion charge should satisfy \(z > 2 \) in the case of DNA. The problem is of course that protons with \(z = 1 \) are the natural counter ions. The positive surface charge defined by the fractional protons attached to the nucleotides of DNA strand could explain the stability.

The hydrogen atoms in hydrogen bonds as fractional hydrogen atoms and \(H_{1.5}O \) formula

The simplest assumption is that the hydrogens associated with hydrogen bonds are actually associated with \(1/1\) type dark hydrogen atoms. This hypothesis has interesting implications and could explain the formula \(H_{1.5}O \) for water in atto-second time scales suggested by neutron diffraction and electron scattering \([20, 17, 21, 60]\).

The formation of hydrogen bond would correspond to a fusion of name and conjugate name between \(H_{1/2}O-H \) atom and its conjugate \(H_{(r-1)/2}O-H \) atom. The resulting pairs would obey the chemical formula \(H_3O_2 \). Hence the formation of hydrogen bonds would predict the \(H_{1.5}O \) formula suggested by neutron diffraction and electron scattering in atto-second time scale. This holds true only if one has complete pairing by hydrogen bonds. A more plausible explanation is that just the presence of fractional hydrogens implies the effect. Furthermore, the fraction of dark protons can depend on temperature.
The roles of water and ordered water in catalysis

The new view about hydrogen bond allows to understand the role of water in biology at qualitative level. For instance, one can

1. tentatively identify "ordered water" as a phase in which all $H_{k/r}$ atoms and their conjugates have combined to $H_{1/1}$ atoms,

2. understand why (or perhaps it is better to say "predict that") water containing $H_{k/r}$ atoms acts as a catalytic poison so that the binding sites of catalysts and reactants must be isolated from water unless the water is ordered,

3. justify the belief that gel phase involving ordered water is necessary for biological information processing,

4. understand why hydration causes hydrolysis,

5. understand the instability of DNA against decay to RNA outside nucleus.

A more more detailed sketch looks like following.

1. Suppose that at least part of water molecules appear in form $H_{k/r}$-OH and $H_{(r-k)/r}$-O-H. These molecules and the molecule $H_{1/1}$-OH$_2$ formed in their fusion has much smaller binding energy than ordinary water molecule and is expected to be unstable against transition to H_3O. This would suggest that the feed of metabolic energy is needed to generate the dark hydrogen atoms. Fractional dark water molecules can join pairwise to form $H-O-(H_{1/1})-O-H\equiv H_3O_2$ with $H_{1/1}$-atoms replacing hydrogen in hydrogen bond. Also $H_{k/r}$-O-$H_{k/r}$ molecules are possible and could form closed strings obeying the chemical formula $O(H_{1/1})_n$. Also open strings with $H-O$s at ends are possible. This phase of water might allow identification as "ordered water" believed to be associated with gel phase and be crucial for quantal information processing inside cell. Liquid crystal phase of water could correspond to a bundle of open vertical segments $H-O_n(H_{1/1})_{n-2}$-H forming a 2-dimensional liquid (vertical freezing).

2. Exotic water molecules could spoil the action of both catalyst and reactant molecules by attaching to the "letters" in the name of catalyst or reactant so that the letters are not visible and catalyst and reactant cannot recognize each other anymore. Hence binding sites of catalyst and reactant must be isolated from water containing fractional water molecules. This is what Sidorova and Rau [53] suggest on basis of comparison of specific and non-specific catalysts: non-specific catalysts contain water in an isolated binding volume whereas for specific catalysts this volume is empty. An alternative mechanism hindering water molecules to attach to "letters" is that water is "ordered water" with no fractional water molecules present.

3. DNA is known to be stable against decay to RNA via hydration inside the cell but not outside. Hydration could correspond to the joining of fractional water to sites of DNA transforming it to RNA. Inside nucleus this cannot occur if water is in ordered water phase permanently.

How the first self-replicators emerged?

The identification of the first self replicator can be seen as perhaps the most fascinating and challenging problem faced by the pre-biotic model builders. Self replicator is by definition an entity which catalyzes its own replication. The analogy with the self-referential statement appearing in Gödel's theorem obvious.

In TGD framework self replication would reduce to a spontaneous decay of $H_{1/1}$-atom to $H_{k/r}$- and $H_{(r-k)/r}$-atoms and their subsequent completion to $H_{1/1}$-atoms.

The picture about emergence of self-replicators would be roughly following.

1. The first self-replicating entities would have been plasmoids [43] generating $H_{1/1}$ atoms whose presence would have made possible the emergence of the first molecular self replicators. The generation of $H_{1/1}$ atoms requires metabolic energy feed. In the first approximation the decay of $H_{1/1}$ to fractional hydrogen atoms does not liberate nor require energy.
2. $H_{k/r}$ atoms would have replaced some ordinary H-atoms in some negatively charged molecules M_i (perhaps MXTP, $X = A, U, C, G$) leading to a spontaneous emergence of linear negatively charged polymers consisting of M_i. One can imagine a coding in which each X corresponds to fixed value of k or collection of the (2 hydrogen bonds or 3 hydrogen bonds depending on X). This would make the attachment of X and its conjugate to form a hydrogen bond a highly favored process.

3. $H_{k/r}$ atoms would have taken also the role of active binding sites. In ordered water conjugate molecules $M_{c,i}$ having $H_{(r-k)/r}$ atoms as labels would have had high probability to attach to the polymers made of M_i.

4. RNA molecules are good candidates for self-replicators in the presence of ordered water. The phase transition from ordinary to ordered water (which would have developed later to sol-gel phase transition) would have been an essential element of replication.

The role of water in chirality selection

In the latest New Scientist (when I am writing this) there was a news telling that chiral selection occurs in water but not in heavy water 2. The L form of aminoacid glutamate is more stable than R in ordinary but not so in heavy water so that water environment must be responsible for the chirality selection of bio-molecules. The proposed explanation for the finding, whose importance cannot be over-estimated, was following.

1. Water molecules have two forms: orto- and para, depending on whether the nuclear spins of protons are parallel or opposite. Deuterium nuclei are spinless so that heavy water has only single form. In thermal equilibrium the fraction of orto water is $3/4$ and para water $1/4$.

2. Ortho-water is magnetic and if L form of aminoacid is slightly more magnetic than R, chirality selection can be understood as result of the magnetic interaction with water.

One can of course wonder how extremely short ranged weak interactions could produce strong enough effect on the magnetic moment. The situation is not made easier by the fact that magnetic interaction energies are inherently very weak and deep below the thermal threshold.

It is interesting to find whether these findings could be explained by and allow a more detailed formulation of the TGD based model for water based on the notion of fractional hydrogen atom, the new view about hydrogen bond, and the notion of dark protonic strings forming atomic sized super-nuclei carrying exotic weak charges.

1. Dark matter brings in long ranged exotic weak interactions which can produce large parity breaking effects in atomic and even longer length scales. The long ranged parity breaking weak interactions of the dark protonic super nuclei assignable to aminoacids and water could explain the chiral selection.

2. The magnetic interaction energy is scaled up by r, so that magnetic interactions could indeed play a key role. Ordinary classical magnetic fields are in TGD framework always accompanied by Z_0 magnetic fields. If aminoacids possess exotic em charge implying also exotic weak charge, one can understand the chiral breaking as being induced by the Z_0 magnetic interaction of aminoacids with the dark magnetic fields generated by water molecules or their clusters possessing a net magnetic moment. In heavy water these fields would be absent so that the experimental findings could be understood.

3. The experimental evidence that water behaves as $H_{1.5}O$ in attosecond time scales means that $1/4$:th of protons of water are effectively dark. The notion of fractional hydrogen atom leads to a model of hydrogen bond predicting correctly $H_{1.5}O$ formula and the dropping of $1/4$:th of protons at larger possibly dark space-time sheets. The model also predicts that the mass of $H-O-H$, $O-H \equiv 2H_{1.5}O$ hydrogen bonded pairs is very near to the mass of 2 water molecules since there are $r \approx m_p/m_e$ electrons involved. The paired molecules have three protons and non-vanishing net nuclear spin and thus generate a magnetic field and make hydrogen bonded water a magnetic system. The natural identification would be as dark magnetic field accompanied by Z_0 magnetic field responsible for the chiral selection.
In the case of $D - O - D_r - O - D$ mass would be by about one proton mass m_p lower than mass of two D_2O molecules so that this D-bonded heavy water would look like $D_1.25O$ as far as masses are considered and $D_1.5O$ as far neutron diffraction and electron scattering are considered. In this case no magnetic field is generated since the nuclear spin of D vanishes and no chiral breaking results. This picture explains the experimental findings. The model is not equivalent with the proposal of the experimentalists.

4. The model predicts that the protons liberated in the formation of hydrogen bonds drop to larger space-time sheets but does not specify their fate. A strong constraint comes from the requirement that the dropped particles have exotic weak charges acting as sources of the geometrically unavoidable classical Z^0 magnetic field at dark space-time sheets causing the large parity breaking. This constraint is satisfied if the protons form super-nuclei (scaled up variants of nuclei) consisting of protonic strings connected by color bonds involving exotic quark and antiquark at its ends and some of these bonds are charged (of type $u\bar{d}$ or $d\bar{u}$): this could also generate the em charge needed to make the protonic string stable.

7.4 TGD based model for cell membrane as sensory receptor

The emergence of zero energy ontology, the explanation of dark matter in terms of a hierarchy of Planck constants requiring a generalization of the notion of imbedding space, the view about life as something in the intersection of real and p-adic worlds, and the notion of number theoretic entanglement negentropy lead to the breakthrough in TGD inspired quantum biology and also to the recent view of qualia and sensory representations including hearing allowing a precise quantitative model at the level of cell membrane.

Also in the recent view long range weak forces however play a key role. They are made possible by the exotic ground state represented as almost vacuum extremal of Kähler action for which classical em and Z^0 fields are proportional to each other wheras for standard ground state classical Z^0 fields are very weak. Neutrinos are present but it seems that they do not define cognitive representations in the time scales characterizing neural activity. Electrons and quarks for which the time scales of causal diamonds correspond to fundamental biorhythms - one of the key observations during last years- take this role.

7.4.1 Could cell correspond to almost vacuum extremal?

The question whether cell could correspond almost vacuum extremal of Kähler action was the question which led to the realization that the frequencies of peak sensitivity for photoreceptors correspond to the Josephson frequencies of biologically important ions if one accepts that the value of the Weinberg angle equals to $\sin^2(\theta_W) = .0295$ instead of the value .23 in the normal phase, in which the classical electromagnetic field is proportional to the induced Kähler form of CP^2 in a good approximation. Another implication made possible by the large value of Planck constant is the identification of Josephson photons as the counterparts of biophotons on the other hand. These observation in turn led to a detailed model of sensory qualia and of sensory receptor. Therefore the core of this argument deserves to be represented also here although it has been discussed in [58].

Cell membrane as almost vacuum extremal

Although the fundamental role of vacuum extremals for quantum criticality and life has been obvious from the beginning, it took a long time to realize how one could model living cell as this kind of system.

1. Classical electric fields are in a fundamental role in biochemistry and living biosystems are typically electrets containing regions of spontaneous electric polarization. Fröhlich [29] proposed that oriented electric dipoles form macroscopic quantum systems with polarization density serving as a macroscopic order parameter. Several theories of consciousness share this hypothesis. Experimentally this hypothesis has not been verified.

2. TGD suggests much more profound role for the unique di-electric properties of the biosystems. The presence of strong electric dipole fields is a necessary prerequisite for cognition and life and
could even force the emergence of life. Strong electric fields imply also the presence of the charged wormhole BE condensates: the surface density of the charged wormholes on the boundary is essentially equal to the normal component of the electric field so that wormholes are in some sense 'square root' of the dipole condensate of Fröhlich! Wormholes make also possible pure vacuum polarization type dipole fields: in this case the magnitudes of the em field at the two space-time sheets involved are same whereas the directions of the fields are opposite. The splitting of wormhole contacts creates fermion pairs which might be interpreted as cognitive fermion pairs. Also microtubules carry strong longitudinal electric fields. This formulation emerged much before the identification of ordinary gauge bosons and their superpartners as wormhole contacts.

Cell membrane is the basic example about electret and one of the basic mysteries of cell biology is the resting potential of the living cell. Living cell membranes carry huge electric fields: something like 10^7 Volts per meter. For neuron resting potential corresponds to about .07 eV energy gained when unit charge travels through the membrane potential. In TGD framework it is not at all clear whether the presence of strong electromagnetic field necessitates the presence of strong Kähler field. The extremely strong electric field associated with the cell membrane is not easily understood in Maxwell’s theory and almost vacuum extremal property could change the situation completely in TGD framework.

1. The configuration could be a small deformation of vacuum extremal so that the system would be highly critical as one indeed expects on basis of the general vision about living matter as a quantum critical system. For vacuum extremals classical em and Z^0 fields would be proportional to each other. The second half of Maxwell’s equations is not in general satisfied in TGD Universe and one cannot exclude the presence of vacuum charge densities in which case elementary particles as the sources of the field would not be necessarily. If one assumes that this is the case approximately, the presence of Z^0 charges creating the classical Z^0 fields is implied. Neutrinos are the most candidates for the carrier of Z^0 charge. Also nuclei could feed their weak gauge fluxes to almost non-vacuum extremals but not atomic electrons since this would lead to dramatic deviations from atomic physics. This would mean that weak bosons would be light in this phase and also Weinberg angle could have a non-standard value.

2. There are also space-time surfaces for CP_2 projection belongs to homologically non-trivial geodesic sphere. In this case classical Z^0 field can vanish [1] , [1] and the vision has been that it is sensible to speak about two basic configurations.

(a) Almost vacuum extremals (homologically trivial geodesic sphere).

(b) Small deformations of non-vacuum extremals for which the gauge field has pure gauge Z^0 component (homologically non-trivial geodesic sphere).

The latter space-time surfaces are excellent candidates for configurations identifiable as TGD counterparts of standard electroweak physics. Note however that the charged part of electroweak fields is present for them.

3. To see whether the latter configurations are really possible one must understand how the gauge fields are affected in the color rotation.

(a) The action of color rotations in the holonomy algebra of CP_2 is non-trivial and corresponds to the action in $U(2)$ sub-group of $SU(3)$ mapped to $SU(2)_L \times U(1)$. Since the induced color gauge field is proportional to Kähler form, the holonomy is necessary Abelian so that also the representation of color rotations as a sub-group of electro-weak group must correspond to a local $U(1)$ sub-group local with respect to CP_2 point.

(b) Kähler form remains certainly invariant under color group and the right handed part of Z^0 field reducing to $U(1)_R$ sub-algebra should experience a mere Abelian gauge transformation. Also the left handed part of weak fields should experience a local $U(1)_L$ gauge rotation acting on the neutral left handed part of Z^0 in the same manner as it acts on the right handed part. This is true if the $U(1)_L$ sub-group does not depend on point of CP_2 and corresponds to Z^0 charge. If only Z^0 part of the induced gauge field is non-vanishing as it can be for vacuum extremals then color rotations cannot change the situation. If Z^0
part vanishes and non-vacuum extremal is in question, then color rotation rotation of W components mixing them but acts as a pure $U(1)$ gauge transformation on the left handed component.

(c) It might not be without importance that for any partonic 2-surface induced electro-weak gauge fields have always $U(1)$ holonomy, which could allow to define what neutral part of induced electroweak gauge field means locally. This does not however hold true for the 4-D tangent space distribution. In any case, the cautious conclusion is that there are two phases corresponding to nearly vacuum extremals and small deformations of extremals corresponding to homologically non-trivial geodesic spheres for which the neutral part of the classical electro-weak gauge field reduces to photon field.

4. The unavoidable presence of long range Z^0 fields would explain large parity breaking in living matter, and the fact that neutrino Compton length is of the order of cell size would suggest the possibility that within neutrino Compton electro-weak gauge fields or even longer scales could behave like massless fields. The explanation would be in terms of the different ground state characterized also by a different value of Weinberg angle. For instance, of the p-adic temperature of weak bosons corresponds to $T_p = 1/2$, the mass scale would be multiplied by a factor $\sqrt{M_{59}}$ and Compton lengths of weak bosons would be around 10^{-4} meters corresponding to the size scale of a large neuron. If the value of Planck constant is also large then the Compton length increases to astrophysical scale.

5. From the equations for classical induced gauge fields in terms of Kähler form and classical Z^0 field [1], [2]

$$\gamma = 3J - \frac{p}{2} Z^0, \quad Q_Z = I_L^1 - p Q_{em}, \quad p = \sin^2(\theta_W)$$

(7.4.1)

it follows that for the vacuum extremals the part of the classical electro-weak force proportional to the electromagnetic charge vanishes for $p = 0$ so that only the left-handed couplings to the weak gauge bosons remain. The absence of electromagnet weak symmetry breaking and vanishing or at least smallness of p would make sense below the Compton length of dark weak bosons. If this picture makes sense it has also implications for astrophysics and cosmology since small deformations of vacuum extremals are assumed to define the interesting extremals. Dark matter hierarchy might explain the presence of unavoidable long ranged Z^0 fields as being due to dark matter with arbitrarily large values of Planck constant so that various elementary particle Compton lengths are very long.

6. The simplest option is that the dark matter -say quarks with Compton lengths of order cell size and Planck constant of order $10^7 h_0$ - are responsible for dark weak fields making almost vacuum extremal property possible. The condition that Josephson photons correspond to EEG frequencies implies $h \sim 10^{13} h_0$ and would mean the scaling of intermediate gauge boson Compton length to that corresponding to the size scale of a larger neuron. The quarks involved with with DNA as topological quantum computer model could be in question and membrane potential might be assignable to the magnetic flux tubes. The ordinary ionic currents through cell membrane -having no coupling to classical Z^0 fields and not acting as its source- would be accompanied by compensating currents of dark fermions taking care that the almost vacuum extremal property is preserved. The outcome would be large parity breaking effects in cell scale from the left handed couplings of dark quarks and leptons to the classical Z^0 field. The flow of Na$^+$ ions during nerve pulse could take along same dark flux tube as the flow of dark quarks and leptons. This near vacuum extremal property might be fundamental property of living matter at dark space-time sheets at least.

1. Could nuclei and neutrinos couple to light variants of weak gauge fields in the critical phase?

One of the hard-to-kill ideas of quantum TGD inspired model of quantum biology is that neutrinos might have something do with hearing and cognition. This proposal looks however unrealistic in the recent vision. I would be more than happy to get rid of bio-neutrinos but the following intriguing finding does not allow me to have this luxury.
1. Assume that the endogenous magnetic field $B_{end} = 0.2$ Gauss is associated with a nearly vacuum extremal and therefore accompanied by $B_Z = 2B_{end}/p$. Assume for definiteness $m_\nu = 0.3$ eV and $p = \sin^2(\theta_W) = 0.23$. The neutrino cyclotron frequency is given by the following expression

$$f_\nu = \frac{m_e}{m_\nu} \frac{1}{2\sin^2(\theta_W)} f_e.$$

From $f_e \approx 0.57 \times \text{MHz}$ and $p = \sin^2(\theta_W) = 0.23$ one obtains $E_\nu = 1.7 \times 10^{-2}$ eV, which is roughly one third to the Josephson frequency of electron assignable to cell membrane. Could Josephson frequency of cell membrane excite neutrino cyclotron transitions?

2. The model for photoreceptors to be discussed below forces to conclude that the value of Weinberg angle in the phase near vacuum extremal must be $p = 0.0295$ if one wants to reproduces the peak energies of photoreceptors as Josephson frequencies of basic biological ions. This would predict $E_\nu = 0.41$ eV, which is rather near to the metabolic energy quantum. The non-relativistic formula however fails in this case and one must use the relativistic formula giving

$$E = \sqrt{gZQ_ZB_Z2\pi} \approx 0.48 \text{ eV}$$

giving the metabolic energy quantum. Does this mean that Z^0 cyclotron frequency for neutrino is related to the transfer of metabolic energy using Z^0 MEs in the phase near vacuum extremals.

3. Josephson frequency is proportional to $1/\hbar$, whereas neutrino cyclotron frequency does not depend on \hbar at non-relativistic energies. For larger values of \hbar the neutrino becomes relativistic so that the mass in the formula for cyclotron frequency must be replaced with energy. This gives

$$E = \sqrt{n^{1/2}gZQ_ZB_Z2\pi} \approx r^{1/2} \times 0.48 \text{ eV}, \quad r = \sqrt{\hbar/\hbar_0}.$$

Here n refers to the cyclotron harmonic.

These observations raise the question whether the three frequencies with maximum response assignable to the three different types of receptors of visible light in retina could correspond to the three cyclotron frequencies assignable to the three neutrinos with different mass scales? The first objection is that the dependence on mass disappears completely at the relativistic limit. The second objection is that the required value value of Planck constant is rather small and far from being enough to have electroweak boson Compton length of order cell size. One can of course ask whether the electroweak gauge bosons are actually massless inside almost vacuum extremals. If fermions -including neutrino- receive their masses from p-adic thermodynamics then massless electroweak gauge bosons would be consistent with massive fermions. Vacuum extremals are indeed analogous to the unstable extrema of Higgs potential at which the Higgs vacuum expectation vanishes so that this interpretation might make sense.

2. **Ionic Josephson frequencies defined by the resting potential for nearly vacuum extremals**

If cell membrane corresponds to an almost vacuum extremal, the membrane potential potential is replaced with an effective resting potential containing also the Z^0 contribution proportional to the ordinary resting potential. The surprising outcome is that one could understand the preferred frequencies for photo-receptors as Josephson frequencies for biologically important ions. Furthermore, most Josephson energies are in visible and UV range and the interpretation in terms of biophotons is suggestive. If the value of Planck constant is large enough Josephson frequencies are in EEG frequency range so that biophotons and EEG photons could be both related to Josephson photons with large \hbar.

1. One must assume that the interior of the cell corresponds to many fermion state -either a state filled with neutrinos up to Fermi energy or Bose-Einstein condensate of neutrino Cooper pairs creating a harmonic oscillator potential. The generalization of nuclear harmonic oscillator model so that it applies to multi-neutrino state looks natural.

2. For exact vacuum extremals elementary fermions couple only via left-handed isospin to the classical Z^0 field whereas the coupling to classical em field vanishes. Both K^+, Na^+, and Cl^- $A - Z = Z + 1$ so that by p-n pairing inside nucleus they have the weak isospin of neuron...
(opposite to that of neutrino) whereas \(Ca_{++}\) nucleus has a vanishing weak isospin. This might relate to the very special role of \(Ca_{++}\) ions in biology. For instance, \(Ca_{++}\) defines an action potential lasting a time of order .1 seconds whereas \(Na_{+}\) defines a pulse lasting for about 1 millisecond \[2\]. These time scales might relate to the time scales of CDs associated with quarks and electron.

3. The basic question is whether only nuclei couple to the classical \(Z^0\) field or whether also electrons do so. If not, then nuclei have a large effective vector coupling to em field coming from \(Z^0\) coupling proportional to the nuclear charge increasing the value of effective membrane potential by a factor of order 100. If both electrons and nuclei couple to the classical \(Z^0\) field, one ends up with difficulties with atomic physics. If only quarks couple to the \(Z^0\) field and one has \(Z^0 = -2\gamma/p\) for vacuum extremals, and one uses average vectorial coupling \(\langle I_3^L\rangle = \pm 1/4\) with + for proton and - for neutron, the resulting vector coupling is following

\[
\left(\frac{Z - N}{4} - pZ^0 \right)Z^0 + q_{em}\gamma = Q_{eff}\gamma ,
\]

\[
Q_{eff} = -\frac{Z - N}{2p} + 2Z + q_{em} .
\]

(7.4.2)

Here \(\gamma\) denotes em gauge potential. For \(K^+, Cl^-, Na^+, Ca^{++}\) one has \(Z = (19, 17, 11, 20), Z - N = (-1, -1, -1, 0), \) and \(q_{em} = (1, -1, 1, 2).\) Table 1 below gives the values of Josephson energies for some values of resting potential for \(p = .23\). Rather remarkably, they are in IR or visible range.

<table>
<thead>
<tr>
<th>Ion</th>
<th>(V = -40) mV</th>
<th>(V = -60) mV</th>
<th>(V = -70) mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Na^+)</td>
<td>1.01</td>
<td>1.51</td>
<td>1.76</td>
</tr>
<tr>
<td>(Cl^-)</td>
<td>1.40</td>
<td>2.11</td>
<td>2.46</td>
</tr>
<tr>
<td>(K^+)</td>
<td>1.64</td>
<td>2.47</td>
<td>2.88</td>
</tr>
<tr>
<td>(Ca^{++})</td>
<td>1.68</td>
<td>2.52</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Table 2. Values of the Josephson energy of cell membrane for some values of the membrane voltage for \(p = .23\). The value \(V = -40\) mV corresponds to the resting state for photoreceptors and \(V = -70\) mV to the resting state of a typical neuron.

Are photoreceptors nearly vacuum extremals?

In Hodgkin-Huxley model ionic currents are Ohmian currents. If one accepts the idea that the cell membrane acts as a Josephson junction, there are also non-dissipative oscillatory Josephson currents of ions present, which run also during flow equilibrium for the ionic parts of the currents. A more radical possibility is that that the dominating parts of the ionic currents are oscillatory Josephson currents so that no metabolic energy would be needed to take care that density gradients for ions are preserved. Also in this case both nearly vacuum extremals and extremals with nearly vanishing \(Z^0\) field can be considered. Since sensory receptors must be highly critical the natural question is whether they could correspond to nearly vacuum extremals. The quantitative success of the following model for photoreceptors supports this idea.

Photoreceptors can be classified to three kinds of cones responsible for color vision and rods responsible for black-white vision. The peak sensitivities of cones correspond to wavelengths (405, 535, 565) nm and energies (3.06, 2.32, 2.19) eV. The maximum absorption occurs in the wave length range 420-440 nm, 534-545 nm, 564-580 nm for cones responsible for color vision and 498 nm for rods responsible black-white vision \[4, 6\]. The corresponding photon energies are (2.95, 2.32, 2.20) eV for color vision and to 2.49 eV for black-white vision. For frequency distribution the maxima are shifted from these since the maximum condition becomes \(dI/d\lambda + 2I/\lambda = 0\), which means a shift to a larger value of \(\lambda\), which is largest for smallest \(\lambda\). Hence the energies for maximum absorbance are actually lower and the downwards shift is largest for the highest energy.
From Table 2 above it is clear that the energies of Josephson photons are in visible range for reasonable values of membrane voltages, which raises the question whether Josephson currents of nuclei in the classical em and \(\mathbb{Z}^0 \) fields of the cell membrane could relate to vision. Consider first the construction of the model.

1. Na\(^+\) and Ca\(^{++}\) currents are known to present during the activation of the photoreceptors. Na\(^+\) current defines the so called dark current \([6]\) reducing the membrane resting potential below its normal value and might relate to the sensation of darkness as eyes are closed. Hodgkin-Huxley model predicts that also K\(^+\) current is present. Therefore the Josephson energies of these three ion currents are the most plausible correlates for the three colors.

2. One ends up with the model in the following manner. For Ca\(^{++}\) the Josephson frequency does not depend on \(p \) and requiring that this energy corresponds to the energy 2.32 eV of maximal sensitivity for cones sensitive to green light fixes the value of the membrane potential during hyperpolarization to \(V = .055 \) V, which is quite reasonable value. The value of the Weinberg angle parameter can be fixed from the condition that other peak energies are reproduced optimally. The result of \(p = .0295 \).

The predictions of the model come as follows summarized also by the Table 3 below.

1. The resting potential for photoreceptors is \(V = -40 \) mV \([7]\). In this case all Josephson energies are below the range of visible frequencies for \(p = .23 \). Also for maximal hyperpolarization Na\(^+\) Josephson energy is below the visible range for this value of Weinberg angle.

2. For \(V = -40 \) mV and \(p = .0295 \) required by the model the energies of Cl\(^-\) and K\(^+\) Josephson photons correspond to red light. 2 eV for Cl\(^-\) corresponds to a basic metabolic quantum. For Na\(^+\) and Ca\(^{++}\) the wave length is below the visible range. Na\(^+\) Josephson energy is below visible range. This conforms with the interpretation of Na\(^+\) current as a counterpart for the sensation of darkness.

3. For \(V = -55 \) mV - the threshold for the nerve pulse generation- and for \(p = .0295 \) the Josephson energies of Na\(^+\), Ca\(^{++}\), and K\(^+\) a correspond to the peak energies for cones sensitive to red, green, and blue respectively. Also Cl\(^-\) is in the blue region. Ca\(^{++}\) Josephson energy can be identified as the peak energy for rods. The increase of the hyperpolarization to \(V = -59 \) mV reproduces the energy of the maximal wave length response exactly. A possible interpretation is that around the criticality for the generation of the action potential (\(V \simeq -55 \) mV) the qualia would be generated most intensely since the Josephson currents would be strongest and induce Josephson radiation inducing the quale in other neurons of the visual pathway at the verge for the generation of action potential. This supports the earlier idea that visual pathways define a neural window. Josephson radiation could be interpreted as giving rise to biophotons (energy scale is correct) and to EEG photons (for large enough values of \(\hbar \) the frequency scales is that of EEG).

4. In a very bright illumination the hyperpolarization is \(V = -65 \) mV \([7]\), which the normal value of resting potential. For this voltage Josephson energies are predicted to be in UV region except in case of Ca\(^{++}\). This would suggests that only the quale ‘white’ is generated at the level of sensory receptor: very intense light is indeed experienced as white.

The model reproduces basic facts about vision assuming that one accepts the small value of Weinberg angle, which is indeed a natural assumption since vacuum extremals are analogous to the unstable extrema of Higgs potential and should correspond to small Weinberg angle. It deserves to be noticed that neutrino Josephson energy is 2 eV for \(V = -50 \) mV, which correspond to color red. 2 eV energy defines an important metabolic quantum.
Table 3. The table gives the prediction of the model of photoreceptor for the Josephson energies for typical values of the membrane potential. For comparison purposes the energies \(E_{\text{max}} \) corresponding to peak sensitivities of rods and cones, and absorption ranges for rods are also given. R,G,B,W refers to red, green, blue, white. The values of Weinberg angle parameter \(p = \sin^2(\theta_W) \) are assumed to be .23 and .0295. The latter value is forced by the fit of Josephson energies to the known peak energies.

It interesting to try to interpret the resting potentials of various cells in this framework in terms of the Josephson frequencies of various ions.

1. The maximum value of the action potential is +40 mV so that Josephson frequencies are same as for the resting state of photoreceptor. Note that the time scale for nerve pulse is so slow as compared to the frequency of visible photons that one can consider that the neuronal membrane is in a state analogous to that of a photoreceptor.

2. For neurons the value of the resting potential is -70 mV. \(Na^+ \) and \(Ca^{++} \) Josephson energies 2.80 eV and 2.94 eV are in the visible range in this case and correspond to blue light. This does not mean that \(Ca^{++} \) Josephson currents are present and generate sensation of blue at neuronal level: the quale possibly generated should depend on sensory pathway. During the hyperpolarization period with -75 mV the situation is not considerably different.

3. The value of the resting potential is -95 mV for skeletal muscle cells. In this case \(Ca^{++} \) Josephson frequency corresponds to 4 eV metabolic energy quantum as the table below shows.

4. For smooth muscle cells the value of resting potential is -50 mV. In this case \(Na^+ \) Josephson frequency corresponds to 2 eV metabolic energy quantum.

5. For astroglia the value of the resting potential is -80/-90 mV for astroglia. For -80 mV the resting potential for \(Cl^- \) corresponds to 4 eV metabolic energy quantum. This suggests that glial cells could also provide metabolic energy as Josephson radiation to neurons.

6. For all other neurons except photo-receptors and red blood cells Josephson photons are in visible and UV range and the natural interpretation would be as biophotons. The biophotons detected outside body could represent sensory leakage. An interesting question is whether the IR Josephson frequencies could make possible some kind of IR vision.

7.4.2 General model for qualia and sensory receptor

The identification of quantum number increments in quantum jump for a subsystem representing subself and the capacitor model of sensory receptor are already more than decade old ideas.

The concrete realization of this vision is based on several ideas that I have developed during last five years.
1. The vision about dark matter as a hierarchy of phases partially labeled by the value of Planck Constant led to the model of DNA as topological quantum computer [24]. In this model magnetic flux tubes connecting DNA nucleotides with the lipids of the cell membrane define strands of the braids defining topological quantum computations. The braid strand corresponds to so-called wormhole flux tube and has quark and antiquark at its ends. u and d quarks and their antiquarks code for four DNA nucleotides in this model.

2. Zero energy ontology assigns to elementary particles so-called causal diamonds (CDs). For u and d quarks and electron these time scales are (6.5, .78, 100) ms respectively, and correspond to fundamental biorhythms. Electron time scale corresponds to 10 Hz fundamental biorhythm defining also the fundamental frequency of speech organs, .78 ms to kHz cortical synchrony [19], and 160 Hz to cerebellar synchrony [20]. Elementary particles therefore seem to be directly associated with neural activity, language, and presumably also hearing. One outcome was the modification of the earlier model of memetic code involving the notion of cognitive neutrino pair by replacing the sequence of cognitive neutrino pairs with that of quark sub-CDs within electron CD. Nerve pulses could induce the magnetization direction of quark coding for bit but there are also other possibilities. The detailed implications for the model of nerve pulse [58] remain to be disentangled.

3. The understanding of the Negentropy Maximization Principle [43] and the role of negentropic entanglement in living matter together with the vision about life as something in the intersection of real and p-adic worlds was a dramatic step forward. In particular, space-like and time-like negentropic entanglement become basic aspects of conscious intelligence and are expected to be especially important for understanding the difference between speech and music.

4. The most important implication concerning the model of sensory receptors however relate to the vacuum degeneracy of Kähler action. It has been clear from the beginning that the nearly vacuum extremals of Kähler action could play key role key role in living systems. The reason is their criticality making them ideal systems for sensory perception. These extremals carry classical em and Z⁰ fields related to each other by a constant factor and this could explain the large parity breaking effects characterizing living matter. The assumption that cell membranes are nearly vacuum extremals and that nuclei can feed their Z⁰ charges to this kind of space-time sheets (not true for atomic electrons) in living matter leads to a modification of the model for the cell membrane as Josephson junction [58]. Also a model of photoreceptors explaining the frequencies of peak sensitivity as ionic Josephson frequencies and allowing the dual identifications Josephson radiation as biophotons (energies) [20] and EEG radiation (frequencies) emerge since the values of Planck constant can be very large. The value of the Weinberg angle in this phase is fixed to \(\sin^2(\theta_W) = .0295 \), whereas in standard phase the value is given by \(\sin^2(\theta_W) = .23 \). The significance of this quantitative success for TGD and TGD inspired quantum biology cannot be over-estimated.

7.4.3 Some implications of the model of cell membrane as sensory receptor

The ensuing general model of how cell membrane acts as a sensory receptor has unexpected implications for the entire TGD inspired view about biology.

1. DNA as topological quantum computer model plus certain simplifying assumption leads to the conclusion that the spectrum of net quantum numbers of quark antiquark pair define the primary qualia assignable to a nucleotide-lipid pair connected by a magnetic flux tube. The most general prediction is that the net quantum numbers of two quark pairs characterize the qualia. In the latter case the qualia would be assigned to a pair of receptor cells.

2. Composite qualia result when one allows the nucleotide-lipid pairs of the membrane to be characterized by a distribution of quark-antiquark pairs. Cell membrane-or at least the axonal parts of neurons- would define a sensory representation in which is a pair of this kind defines a pixel characterized by primary qualia. Cells would be sensory homunculi and DNA defines a sensory hologram of body of or of part of it. Among other things this would give a precise content to the notion of grandma cell.
3. Josephson frequencies of biologically important ions are in one-one correspondence with the qualia and Josephson radiation could re-generate the qualia or map them to different qualia in a one-one and synesthetic manner in the neurons of the sensory pathway. For large values of Planck constant Josephson frequencies are in EEG range so that a direct connection with EEG emerges and Josephson radiation indeed corresponds to both biophotons and EEG. This would realize the notion of sensory pathway which originally seemed to me a highly non-realistic notion and led to the vision that sensory qualia can be realized only at the level of sensory organs in TGD framework.

4. At the level of brain motor action and sensory perception look like reversals of each other. In zero energy ontology motor action can be indeed seen as a time reversed sensory perception so that the model of sensory representations implies also a model for motor action. Magnetic body serves as a sensory canvas where cyclotron transitions induced by Josephson frequencies induce conscious sensory map entangling the points of the magnetic body with brain and body.

7.4.4 A general model of qualia and sensory receptor

The identification of sensory qualia in terms of quantum number increments and geometric qualia representing geometric and kinematic information in terms of moduli of CD, the assignment of sensory qualia with the membrane of sensory receptor, and capacitor model of qualia are basic ideas behind the model. The communication of sensory data to magnetic body using Josephson photons is also a key aspect of the model.

A general model of qualia

It is good to start by summarizing the general vision about sensory qualia and geometric qualia in TGD Universe.

1. The basic assumption is that sensory qualia correspond to increments of various quantum numbers in quantum jump. Standard model quantum numbers- color quantum numbers, electromagnetic charge and weak isospin, and spin are the most obvious candidates. Also cyclotron transitions changing the integer characterizing cyclotron state could corresponds to some kind of quale- perhaps 'a feeling of existence'. This could make sense for the qualia of the magnetic body.

2. Geometric qualia could correspond to the increments of zero modes characterizing the induced CP_2 Kähler form of the partonic 2-surface and of the moduli characterizing the causal diamonds serving as geometric correlates of selves. This moduli space involves the position of CD and the relative position of tips as well as position in CP_2 and relative position of two CP_2 points assigned to the future and past boundaries of CD. There are good motivations for proposing that the relative positons are quantized. This gives as a special case the quantization of the scale of CD in powers of two. Position and orientation sense could would represent this kind of qualia. Also kinematical qualia like sensation of acceleration could correspond to geometric qualia in generalized 4-D sense. For instance, the sensation about motion could be coded by Lorentz boots of sub-CD representing mental image about the object.

3. One can in principle distinguish between qualia assignable to the biological body (sensory receptors in particular) and magnetic body. The basic question is whether sensory qualia can be assigned only with the sensory receptors or with sensory pathways or with both. Geometric qualia might be assignable to the magnetic body and could provide third person perspective as a geometric and kinematical map of the body and its state of motion represented using the moduli space assignable to causal diamonds (CD). This map could be provided also by the body in which case the magnetic body would only share various mental images. The simplest starting assumption consistent with neuro-science is that sensory qualia are assigned with the cell membrane of sensory receptor and perhaps also with the neurons receiving data from it carried by Josephson radiation coding for the qualia and possibly partially regenerating them if the receiving neuron has same value of membrane potential as the sensory receptor when active. Note that during nerve pulse also this values of membrane potential is achieved for some time.
Could some sensory qualia correspond to the sensory qualia of the magnetic body?

Concerning the understanding of a detailed model for how sensory qualia are generated, the basic guideline comes from the notion of magnetic body and the idea that sensory data are communicated to the magnetic body as Josephson radiation associated with the cell membrane. This leaves two options: either the primary sensory qualia are generated at the level of sensory receptor and the resulting mental images negentropically entangle with the "feeling of existence" type mental images at the magnetic body or they can be also generated at the level of the magnetic body by Josephson radiation -possibly as cyclotron transitions. The following arguments are to-be-or-not-to-be questions about whether the primary qualia must reside at the level of sensory receptors.

1. Cyclotron transitions for various cyclotron condensates of bosonic ions or Cooper pairs of fermionic ions or elemental particles are assigned with the motor actions of the magnetic body and Josephson frequencies with the communication of the sensory data. Therefore it would not be natural to assign qualia with cyclotron transitions. One the other hand, in zero energy ontology motor action can be regarded formally as a time reversed sensory perception, which suggests that cyclotron transitions correlated with the "feeling of existence" at magnetic body entangled with the sensory mental images. They could also code for the pitch of sound as will be found but this quale is strictly speaking also a geometric quale in the 4-D framework.

2. If Josephson radiation induces cyclotron transitions, the energy of Josephson radiation must correspond to that of cyclotron transition. This means very strong additional constraint not easy to satisfy except during nerve pulse when frequencies varying from about 10^{14} Hz down to kHz range are emitted the system remains Josephson contact. Cyclotron frequencies are also rather low in general, which requires that the value of \hbar must be large in order to have cyclotron energy above the thermal threshold. This would however conform with the very beautiful dual interpretation of Josephson photons in terms of biophotons and EEG. One expects that only high level qualia can correspond to a very large values of \hbar needed.

For the sake of completeness it should be noticed that one might do without large values of \hbar if the carrier wave with frequency defined by the metabolic energy quantum assignable to the kicking and that the small modulation frequency corresponds to the cyclotron frequency. This would require that Josephson frequency corresponds to the frequency defined by the metabolic quantum. This is not consistent with the fact that very primitive organisms possess sensory systems.

3. If all primary qualia are assigned to the magnetic body, Josephson radiation must include also gluons and light counter parts of weak bosons are involved besides photons. This is quite a strong additional assumption and it will be found that the identification of sensory qualia in terms of quantum numbers of quark pair restricts them to the cell membrane. The coding of qualia by Josephson frequencies is however possible and makes it possible to regenerate them in nervous system. The successful model explaining the peak frequencies of photoreceptors in terms of ionic cyclotron frequencies supports this view and provides a realization for an old idea about spectroscopy of consciousness which I had already been ready to give up.

Capacitor model of sensory qualia

In capacitor model of sensory receptor the increments of quantum numbers are amplified as particles with given quantum numbers flow between the plates of capacitor like system and the second plate defines the subself responsible for the mental image. The generation of complementary qualia assignable to the two plates and bringing in mind complementary colors is predicted. The capacitor is at the verge of di-electric breakdown. The interior and exterior of the receptor cell are the most plausible candidates for the capacitor plates with lipid layers defining the analog of di-electric able to changes its properties. Josephson currents generating Josephson radiation could communicate the sensory percept to the magnetic body but would not generate genuine sensory qualia there (the pitch of sound would be interpreted as a geometric quale). The coding is possible if the basic qualia correspond in one-one manner to ionic Josephson currents. There are sensory receptors which themselves do not fire (this is the case for hair cells for hearing and tactile receptor cells) and in this case the neuron next to the receptor in the sensory pathway would take the role of the quantum critical system.
The notion of sensory capacitor can be generalized. In zero energy ontology the plates could be effectively replaced with positive and negative energy parts of zero energy state or with cyclotron Bose-Einstein condensates corresponding to two different energies. Plates could also correspond to a pair of space-time sheets labeled by different p-adic primes and the generation of quale would correspond in this case to a flow of particles between the space-time sheets or magnetic flux tubes connected by contacts defining Josephson junctions.

The TGD inspired model for photoreceptors [58] relies crucially on the assumption that sensory neurons at least and probably all cell membranes correspond to nearly vacuum extremals with the value of Weinberg angle equal to $\sin^2(\theta_W) = .0295$ and weak bosons having Compton length of order cell size and ordinary value of Planck constant. This also explains the large parity breaking effects in living matter. The almost vacuum extremal property conforms with the vision about cell membrane as a quantum critical system ideal for acting as a sensory receptor.

7.4.5 Detailed model for the qualia

The proposed vision about qualia requires a lot of new physics provided by TGD. What leads to a highly unique proposal is the intriguing coincidence of fundamental elementary particle time scales with basic time scales of biology and neuro science and the model of DNA as topological quantum computer [24].

1. Zero energy ontology brings in the size scale of CD assignable to the field body of the elementary particle. Zero energy states with negentropic time-like entanglement between positive and negative energy parts of the state might provide a key piece of the puzzle. The negentropic entanglement between positive energy parts of the states associated with the sub-CD assignable to the cell membrane and sub-CD at the magnetic body is expected to be an important factor.

2. For the standard value of \hbar the basic prediction would be 1 ms second time scale of u quark, 6.5 ms time scale of d quark, and .1 second time scale of electron as basic characterizes of sensory experience if one accept the most recent estimates $m(u) = 2$ MeV and $m(d) = 5$ MeV for the quark masses [12]. These time scales correspond to 10 Hz, 160 Hz, and 1280 Hz frequencies, which all characterize neural activity (for the identification of 160 Hz frequency as cerebellar resonance frequency see [20]). Hence quarks could be the most interesting particles as far as qualia are considered and the first working hypothesis would be that the fundamental quantum number increments correspond to those for quark-anti-quark pair. The identification in terms of quantum numbers of single quark is inconsistent with the model of color qualia.

3. The model of DNA as topological quantum computer led to the proposal that DNA nucleotides are connected to the lipids of the cell membrane by magnetic flux tubes having quark and antiquark at its ends such that the u and d quarks and their antiquarks code for the four nucleotides. The outer lipid layer was also assumed to be connected by flux tubes to the nucleotide in some other cell or in cell itself.

4. The model for DNA as topological quantum computer did not completely specify whether the flux tubes are ordinary flux tubes or wormhole flux tubes with possibly opposite signs of energy assigned with the members of the flux tube pair. Although it is not necessary, one could assume that the quantum numbers of the two parallel flux tubes cancel each other so that wormhole flux tube would be characterized by quantum numbers of quark pairs at its ends. It is not even necessary to assume that the net quantum numbers of the flux tubes vanish. Color confinement however suggests that the color quantum at the opposite ends of the flux tube are of opposite sign.

(a) The absence of a flux tube between lipid layers was interpreted as an isolation from external world during the topological quantum computation. The emergence of the flux tube connection means halting of topological quantum computation. The flux tube connection with the external world corresponds to sensory perception at the level of DNA nucleotide in consistency with the idea that DNA plays the role of the brain of cell [65]. The total color quantum numbers at the ends of the flux tubes were assumed to sum up to zero. This means that the fusion of the flux tubes ending to the interior and exterior cell membrane
7.4. TGD based model for cell membrane as sensory receptor

(b) The formation of the flux tube connection between lipid layers would involve the transformation of both quark-antiquark pairs to an intermediate state. There would be no kinematic constraints on the process nor to the mass scales of quarks. A possible mechanism for the separation of the two quark-antiquark pairs associated with the lipids from the system is double reconnection of flux tubes which leads to a situation in which the quark-antiquark pairs associated with the lipid layers are connected by short flux loops and separated to a disjoint state and there is a long wormhole flux tube connecting the nucleotides possibly belonging to different cells.

(c) The state of two quark pairs need not have vanishing quantum numbers and one possibility is that the quantum numbers of this state code for qualia. If the total numbers of flux tubes are vanishing also the net quantum numbers of the resulting long flux tube connecting two different cells provide equivalent coding. A stronger condition is that this state has vanishing net quantum numbers and in this case the ends of the long flux tube would carry opposite quantum numbers. The end of flux tube at DNA nucleotide would characterize the quale.

5. Two identification of primary qualia are therefore possible.

(a) If the flux tubes have vanishing net quantum numbers, the primary sensory quale can be assigned to single receptor cell and the flow of the quantum numbers corresponds to the extension of the system with vanishing net quantum numbers in two-cell system.

(b) If the net quantum numbers of the flux tube need not vanish, the resulting two cell system carries non-vanishing quantum numbers as the pair of quark-antiquark pairs removes net quantum numbers out of the system.

6. If the net quantum numbers for the flux tubes vanish always, the specialization of the sensory receptor membrane to produce a specific quale would correspond to an assignment of specific quantum numbers at the DNA ends of the wormhole flux tubes attached to the lipid layers of the cell membrane. The simplest possibility that one can imagine is that the outer lipid layer is connected to the conjugate DNA nucleotide inside same cell nucleus. This option would however assign vanishing net quantum number increments to the cell as whole and is therefore unacceptable.

7. The formation of a temporary flux tube connection with another cell is necessary during the generation of quale and the question is what kind of cell is in question. The connection of the receptor to cells along the sensory pathway are expected to be present along the entire sensory pathway from DNA nucleotide to a nucleotide in the conjugate strand of second neuron to DNA nucleotide of the third neuron... If Josephson photons are able to regenerate the quale in second neuron this would make it possible to replicate the quale along entire sensory pathway. The problem is that Josephson radiation has polarization orthogonal to axons and must propagate along the axon whereas the flux tube connection must be orthogonal to axon. Hence the temporary flux tube connection is most naturally between receptor cells and would mean horizontal integration of receptor cells to a larger structure. A holistic process in directions parallel and orthogonal to the sensory pathway would be in question. Of course, the flux tube could be also curved and connect the receptor to the next neuron along the sensory pathway.

8. The specialization of the neuron to sensory receptor would require in the framework of positive energy ontology that -as far as qualia assignable to the electro-weak quantum numbers are considered - all DNA nucleotides are identical by the corresponds of nucleotides with quarks and antiquarks. This cannot be the case. In zero energy ontology and for wormhole flux tubes it is however enough to assume that the net electroweak quantum numbers for the quark antiquark pairs assignable to the DNA wormhole contact are same for all nucleotides. This condition is easy to satisfy. It must be however emphasized that there is no reason to require that all nucleotides involved generate same quale and at the level of neurons sensory maps assigning different qualia
to different nucleotides and lipids allowing DNA to sensorily perceive the external world are possible.

The model should be consistent with the assignment of the fundamental bio-rhythms with the

\[CD \] \(s \) of electron and quarks.

1. Quark color should be free in long enough scales and cellular length scales are required at least.
 The QCD in question should therefore have long enough confinement length scales. The first possibility is provided by almost vacuum extremals with a long confinement scale also at the flux tubes. Large \(h \) for the cell membrane space-time sheet seems to be unavoidable and suggests that color is free in much longer length scale than cell length scale.

2. Since the length of the flux tubes connecting DNA and cell membrane is roughly 1 micrometer and by a factor of order \(10^7 \) longer than the \(d \) quark Compton length, it seems that the value of Planck constant must be of this order for the flux tubes. This however scales up the time scale of \(d \) quark \(CD \) by a factor of \(10^{14} \) to about \(10^4 \) years! The millisecond and 160 ms time scales are much more attractive. This forces to ask what happens to the quark-anti-quark pairs at the ends of the tubes.

3. The only possibility seems to be that the reconnection process involves a phase transition in which the closed flux tube structure containing the two quark pairs assignable to the wormhole contacts at lipid layers is formed and leaks to the page of the Big Book with pages partially labeled by the values of Planck constant. This page would correspond to the standard value of Planck constant so that the corresponding \(d \) quark \(CD \)s would have a duration of millisecond. The reconnection leading to the ordinary situation would take place after millisecond time scale. The standard physics interpretation would be as a quantum fluctuation having this duration. This sequence of quark sub-\(CD \)s could define what might be called memetic codon representation of the nerve pulse sequence.

4. One can also consider the possibility is that near vacuum extremals give rise to a copy of hadron physics for which the quarks associated with the flux tubes are light. The Gaussian Mersennes corresponding to \(k = 151, 157, 163, 167 \) define excellent p-adic time scales for quarks and light variants of weak gauge bosons. Quark mass 5 MeV with \(k = 120 \) would be replaced with \(k = 163 (167) \) one would have mass 1.77 eV (.44 eV). Small scaling of both masses gives 2 eV and .5 eV which correspond to basic metabolic quanta in TGD framework. For quark mass of 2 MeV with \(k = 123 \) \(k = 163 (167) \) one would give masses .8 eV (.05 eV). The latter scale correspond to Josephson energy assignable with the membrane potential in the ordinary phase. In this case a phase transition transforming almost vacuum extremal to ordinary one takes place. What this would mean that the vacuum extremal property would hold true below much shorter p-adic length scale. In zero energy ontology the scaling up of quark masses is in principle possible. This option looks however too artificial.

7.4.6 Overall view about qualia

This picture leads to the following overall view about qualia. There are two options depending on whether single quark-antiquark pair or two of them labels the qualia. In the following only the simpler option with single quark-antiquark pair is discussed.

1. All possible pairings of spin and electroweak isospin (or em charge) define 16 basic combinations if one assumes color singletness. If arbitrary color is allowed, there is a nine-fold increase of quantum numbers decomposable to color singlet and octet qualia and further into \(3 \times 15 \) qualia with vanishing increments of color quantum numbers and \(6 \times 16 \) qualia with non-vanishing increments of color quantum numbers. The qualia with vanishing increments for electroweak quantum numbers could correspond to visual colors. If electroweak quantum numbers of the quark-anti-quark pair vanish, one has \(3 \times 7 \) resp. \(6 \times 8 \) combinations of colorless resp. colored qualia.

2. There is a huge number of various combinations of these fundamental qualia if one assumes that each nucleotide defines its own quale and fundamental qualia would be analogous to constant
functions and more general qualia to general functions having values in the space with $9 \times 16 - 1$ points. Only a very small fraction of all possible qualia could be realized in living matter unless the neurons in brain provide representations of body parts or of external world in terms of qualia assignable to lipid-nucleotide pairs. The passive DNA strand would be ideal in this respect.

3. The basic classification of qualia is as color qualia, electro-weak quale, and spin quale and products of these qualia. Also combinations of color qualia and and electroweak and spin quale are possible and could define exotic sensory qualia perhaps not yet realized in the evolution. Synesthesia is usually explained in terms of sensory leakage between sensory pathways and this explanation makes sense also in TGD framework if there exists a feedback from the brain to the sensory organ. Synesthesia cannot however correspond to the product qualia: for ”quantum synesthesia” cross association works in both directions and this distinguishes it from the ordinary synesthesia.

4. The idea about brain and genome as holograms encourages to ask whether neurons or equivalently DNA could correspond to sensory maps with individual lipids representing qualia combinations assignable to the points of the perceptive field. In this framework quantum synesthesia would correspond to the binding of qualia of single nucleotide (or lipid) of neuron cell membrane as a sensory representation of the external world. DNA is indeed a holographic representation of the body (gene expression of course restricts the representation to a part of organism). Perhaps it is this kind of representation also at the level of sensory experience so that all neurons could be little sensory copies of body parts as holographic quantum homunculi. In particular, in the associative areas of the cortex neurons would be quantum synesthetes experiencing the world in terms of composite qualia.

5. The number of flux tube connections generated by sensory input would code for the intensity of the quale. Josephson radiation would do the same at the level of communications to the magnetic body. Also the temporal pattern of the sequence of quale mental images matters. In the case of hearing this would code for the rhythmic aspects and pitch of the sound.

7.4.7 About detailed identification of the qualia

One can make also guesses about detailed correspondence between qualia and quantum number increments.

1. Visual colors would correspond to the increments of only color quantum numbers. Each biologically important ion would correspond to its own color increment in one-one correspondence with the three pairs of color-charged gluons and these would correspond to blue-yellow, red-green, and black white \[58\]. Black-white vision would mean a restriction to the $SU(2)$ subgroup of color group. The model for the cell membrane as a nearly vacuum extremal assigns the peak frequencies corresponding to fundamental colors with biologically important ions. Josephson radiation could induce artificially the same color qualia in other neurons and this might provide an manner to communicate the qualia to the brain where they could be re-experienced at neuronal level. Some organisms are able to perceive also the polarization of light. This requires receptors sensitive to polarization. The spin of quark pair would naturally code for polarization quale.

2. Also tastes and odours define qualia with ”colors”. Certainly the increments of electroweak numbers are involved but since these qualia do not have any directional flavor, spin is probably not involved. This would give 3×4 basic combinations are possible and can certainly explain the 5 or 6 basic tastes (counted as the number of different receptors). Whether there is a finite number of odours or not has been a subject of a continual debate and it might be that odours already correspond to a distribution of primary qualia for the receptor cell. That odours are coded by nerve pulse patterns for a group of neurons \[28\] would conform with this picture.

3. Hearing seems to represent a rather colorless quale so that electroweak isospin suggests again itself. If we had a need to hear transversely polarized sound also spin would be involved. Cilia are involved also with hair cells acting as sensory receptors in the auditory system and vestibular system. In the case of hearing the receptor itself does not fire but induces a firing of the higher
level neuron. The temporal pattern of qualia mental images could define the pitch of the sound whereas the intensity would correspond to the number of flux tube connections generated. The modulation of Josephson frequencies -rather than Josephson frequencies as such- would code for the pitch and the total intensity of the Josephson radiation for the intensity of the sound and in fact any quale. Pitch represents non-local information and the qualia subselves should be negentropically entangled in time direction. If not, the experience corresponds to a sequence of sound pulses with no well-defined pitch and responsible for the rhythmic aspects of music. Right brain sings-left brain talks metaphor would suggests that right and left brain have different kind of specializations already at the level of sensory receptors.

4. Somato-sensory system gives rise to tactile qualia like pain, touch, temperature, proprioception (body position). There are several kinds of receptors: nocireceptors, mechanoreceptors, thermoreceptors, etc... Many of these qualia have also emotional coloring and it might be that the character of entanglement involved (negentropic/entropic defines the emotional color of the quale. If this is the case, one might consider a pure quale of touch as something analogous to hearing quale. One can argue that directionality is basic aspect of some of these qualia -say sense of touch- so that spin could be involved besides electroweak quantum numbers. The distribution of these qualia for the receptor neuron might distinguish between different tactile qualia.
Books related to TGD

Articles about TGD

Theoretical Physics

Particle and Nuclear Physics

Condensed Matter Physics

Cosmology and Astro-Physics

Fringe Physics

Biology

Neuroscience and Consciousness

Chapter 8

About the New Physics Behind Qualia

8.1 Introduction

As the title expresses, this chapter was originally about the new physics behind qualia. The model of qualia indeed involves a lot of new physics: many-sheeted space-time; massless extremals; exotic Super Virasoro representations associated with discrete qualia; magnetic and cyclotron phase transitions associated with quantum critical quantum spin glass phases of exotic superconductors at cellular space-time sheets; classical color and electro-weak gauge fields in macroscopic length scales, to name the most important ingredients. Gradually the chapter however expanded so that it touches practically all new physics possibly relevant to TGD inspired quantum biology. Various physical mechanisms are discussed in exploratory spirit rather than restricting the consideration to those ideas which seem to be the final word about quantum biology or qualia just at this moment.

8.1.1 Living matter and dark matter

Dark matter is identified as a macroscopic quantum phase with large \hbar. Also living matter would involve in an essential manner matter with a large value of \hbar and hence dark, and form conformally confined (in the sense that the net conformal weight of the state is real) blobs behaving like single units with extremely quantal properties, including free will and intentional action in time scales familiar to us. Dark matter would be responsible for the mysterious vital force.

Any system for which some interaction becomes so strong that perturbation theory does not work, gives rise to this kind of system in a phase transition in which \hbar increases to not lose perturbativity gives rise to this kind of "super-quantal" matter. In this sense emergence corresponds to strong coupling. One must however remember that emergence is actually much more and involves the notion of quantum jump. Dark matter made possible by dynamical \hbar is necessary for macroscopic and macro-temporal quantum coherence and is thus prerequisite for emergence.

Physically large \hbar means a larger unit for quantum numbers and this requires that single particle states form larger particle like units. This kind of collective states with weak mutual interactions are of course very natural in strongly interacting systems. At the level of quantum jumps quantum jumps integrate effectively to single quantum jump and longer moments of consciousness result. Conformal confinement guarantees all this. Entire hierarchy of size scales for conformally confined blobs is predicted corresponding to values of \hbar related to Beraha numbers [86] [84] but there would be only single value corresponding to very large \hbar for given values of system parameters (gravitational masses, charges,...). The larger the value of \hbar the longer the characteristic time scale of consciousness and of a typical life cycle.

The notion of field body means that dark matter at the magnetic flux tubes would serve as an intentional agent using biological body as a motor instrument and sensory receptor. Dark matter would be the miraculous substance that living systems are fighting for, and perhaps the most important substance in metabolic cycle.
8.1.2 Macroscopic quantum phases in many-sheeted space-time

The crucial empirical ingredient turned out to be the observations about the effects of oscillating ELF electromagnetic fields on central nervous system, endocrine system and immune system made after sixties [12, 15]. The largest effects are obtained at odd multiples of cyclotron frequencies of various biologically important ions like Ca^{++} in Earth’s magnetic field. Also amplitude modulation of RF and MW fields by these frequencies has effects. This leads to a surprising conclusion in violent conflict with standard physics view about world. Magnetically confined states of ions in Earth’s magnetic field having minimal size of order cell size and energy scale of order 10^{-14} eV would be in question if ordinary quantum theory would be the final word. Dark matter hierarchy with the spectrum of Planck constants given by $\hbar = r \hbar_0$ with the favore values or r given by ruler and compass hypothesis or by Mersenne hypothesis, resolves the paradox [22]. For $k_d = 41$ level of the dark matter hierarchy the energies $E = h\omega$ of ELF photons are above thermal threshold for $f \geq 1$ Hz.

The notion of many-sheeted ionic equilibrium brings in in the mechanism with which supra-currents at the magnetic flux tubes control the matter at atomic space-time sheets. The strange anomalies challenging the notions of ionic channels and pumps [48] provide support for the resulting general vision.

8.1.3 Mind like space-time sheets as massless extremals

Mind like space-time sheets are the geometric correlates of selves. So called massless extremals (MEs) [51] provide ideal and unique candidates for mind like space-time sheets. MEs give rise to hologram like cognitive representations. The assumption that they serve as Josephson junctions allows to understand the amplitude windows associated with the interaction of ELF em fields with brain tissue. The properties of MEs inspire the hypothesis that they give rise to an infinite hierarchy of electromagnetic life forms living in symbiosis with each other and bio-matter. EEG can be interpreted as associated with ELF MEs which is one important level in this hierarchy responsible for the cultural aspects of consciousness.

Our mental images propagating in neural circuits should correspond to microwave (MW) MEs with wavelengths below .3 meters. The communications between quantum antennae associated with ELF and RF MEs provides an elegant model for the formation and recall of long term memories and realize hologrammic cognitive representations. Self hierarchy has as a particular dynamical correlate the hierarchy of Josephson currents modulated by Josephson currents modulated by... having magnetic transition frequencies as their basic frequencies. Josephson currents flow along join along boundaries bonds connecting space-time sheets belonging at various levels of the hierarchy ('biofeedback').

8.1.4 Classical color and electro-weak fields in macroscopic length scales

One can say that the basic physics of standard model without symmetry breaking and color magnetic confinement is realized at classical level on cellular space-time sheets. Classical Z^0, W fields and gluon fields unavoidably accompany non-orthogonal electric and magnetic fields. The proper interpretation of this prediction is in terms of a p-adic and dark fractal hierarchies of standard model physics with scaled down mass scales making possible long range weak and color interactions in arbitrarily long length scales.

This prediction forces to modify even the model of nuclei [71]. Nucleons carry exotic color and form nuclear strings consisting of color bonds with exotic quark q and antiquark $ar{q}$ at their ends. These exotic quarks correspond to $k = 127$ level of dark matter hierarchy. Also dark variants of ordinary quarks with size of about atom are possible. It is also possible to have $u\bar{d}$ and $\bar{d}d$ type color bonds which carry em and weak charge and this means exotic nuclear ionization. Tetraneutron [13, 4] would represent one particular example of this kind of exotically ionized nucleus [71]. Exotic nuclear physics would have also implications for the ordinary condensed matter physics and could be involved with the very low compressibility of liquid phase and the anomalous behavior of water [23].

Exotic ionization is the key element in the quantum model for the control action of the magnetic body on biological body. Exotic ionization induces dark plasma oscillations which in turn generate via classical em fields ordinary ohmic currents at the level of the ordinary matter. Nerve pulse patterns [55] and Ca^{2+} waves [33, 36] would represent examples of physiological correlates of this quantum control.
8.1.5 Mersenne hypothesis

The generalization of the imbedding space means a book like structure for which the pages are products of singular coverings or factor spaces of CD (causal diamond defined as intersection of future and past directed light-cones) and of CP_2. This predicts that Planck constants are rationals and that given value of Planck constant corresponds to an infinite number of different pages of the Big Book, which might be seen as a drawback. If only singular covering spaces are allowed the values of Planck constant are products of integers and given value of Planck constant corresponds to a finite number of pages given by the number of decompositions of the integer to two different integers.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for $r = \hbar/h_0$. For the most general option the values of \hbar are products and ratios of two integers n_a and n_b. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are number theoretically favored values for these integers because the phases $exp(i2\pi/n_i)$, $i \in \{a, b\}$, in this case are number theoretically very simple and should have emerged first in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors powers of two as values of r.

One can however ask whether a more precise characterization of preferred Mersennes could exist and whether there could exists a stronger correlation between hierarchies of p-adic length scales and Planck constants. Mersenne primes $M_k = 2^k - 1$, $k \in \{89, 107, 127\}$, and Gaussian Mersennes $M_{G,k} = (1 + i)2^k - 1$, $k \in \{113, 151, 157, 163, 167, 239, 241\ldots\}$ are expected to be physically highly interesting and up to $k = 127$ indeed correspond to elementary particles. The number theoretical miracle is that all the four p-adic length scales with $k \in \{157, 157, 163, 167\}$ are in the biologically highly interesting range 10 nm-2.5 μm). The question has been whether these define scaled up copies of electro-weak and QCD type physics with ordinary value of \hbar. The proposal that this is the case and that these physics are in a well-defined sense induced by the dark scaled up variants of corresponding lower level physics leads to a prediction for the preferred values of $r = 2^k$, $k_2 = k_1 - k_3$.

What induction means is that dark variant of exotic nuclear physics induces exotic physics with ordinary value of Planck constant in the new scale in a resonant manner: dark gauge bosons transform to their ordinary variants with the same Compton length. This transformation is natural since in length scales below the Compton length the gauge bosons behave as massless and free particles. As a consequence, lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about EEG since it predicts a spectrum of preferred Josephson frequencies for a given value of membrane potential and also assigns to a given value of \hbar a fixed size scale having interpretation as the size scale of the body part or magnetic body. Also a vision about evolution of life emerges. Mersenne hypothesis is especially interesting as far as new physics in condensed matter length scales is considered: this includes exotic scaled up variants of the ordinary nuclear physics and their dark variants. Even dark nucleons are possible and this gives justification for the model of dark nucleons predicting the counterparts of DNA, RNA, tRNA, and aminoacids as well as realization of vertebrate genetic code [81].

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of CP_2 near criticality to a phase transition changing Planck constant. Ordinary nuclear physics would correspond to homologically non-trivial geodesic sphere and far from vacuum extremal property. For vacuum extremals of this kind classical Z^0 field proportional to electromagnetic field is present and this modifies dramatically the view about cell membrane as Josephson junction. The model for cell membrane as almost vacuum extremal indeed lead to a quantitative breakthrough in TGD inspired model of EEG and is therefore something to be taken seriously. The safest option concerning empirical facts is that the copies of electro-weak and color physics with ordinary value of Planck constant are possible only for almost vacuum extremals - that is at criticality against phase transition changing Planck constant.

8.1.6 p-Adic-to-real transitions as transformation of intentions to actions

Hearing and cognition are very closely related one could even argue that we think using language. The view that p-adic physics is physics of intention and cognition leads to the vision that the transformation of thoughts to actions and sensory inputs to thoughts correspond to real–p-adic phase transitions for
space-time sheets. For a long time the question how p-adic space-time sheets relate to the real ones lacked a precise answer, and therefore also the question what the transformation of p-adic space-time sheet to real ones really means. The advances in the understanding the precise relationship between p-adic and real space-time sheets discussed in [74] led however to a definite progress in this respect [49].

The transformation of p-adic space-time sheets to real ones must respect the conservation of quantum numbers: this requires that the real system either receives or sends energy when the p-adic-to-real transitions realizing the intention occurs. If p-adic ME is transformed to a negative energy ME in the process, real system must make a transition to a higher energy state. This kind of transitions cannot occur spontaneously so that the outcome is a precisely targeted realization of intention. The additional bonus is that buy now-let others pay mechanism makes possible extreme flexibility. There are reasons to expect that the energies involves cannot be too high however.

The model of intentional action as a quantum transition for which the probabilities for various intention-action pairs should in principle be deducible from S-matrix is discussed in [74] using the vision about physics as a generalized number theory as a guide line. This model leads to fresh insights about the construction of the ordinary S-matrix and essentially the same kind of general expressions for S-matrix elements result as in the case of ordinary scattering.

8.1.7 Exotic super-Virasoro representations

A further piece of new physics of qualia are super-symplectic and super-conformal algebras associated with the light-like M_4^+ projections of the light-like boundaries MEs. p-Adic considerations suggest that $L_0 = 0$ condition might be replaced by a weaker condition $L_0 \mod p^n = 0$ in the p-adic context. The interpretation would be in terms of continuous scaling invariance broken to discrete scalings by powers of p: the analogy with lattice systems of condensed matter is obvious. The general condition $a^{L_0} \mod p = 1$, a a positive integer, stating invariance under scalings is by Fermat’s little theorem satisfied $L_0 \mod p = 0$ and would state that these scalings act like translations by multiples of lattice vector in lattice.

$p \simeq 2^k$ would guarantee approximately the conditions for $a = 2$. For Mersenne primes, which are in an exceptional role physically, these conditions are satisfied in excellent approximation. The so called Gaussian Mersennes allow also to satisfy these conditions in somewhat more general sense and, rather remarkably, there are four Gaussian Mersennes in the length scale range between cell membrane thickness and cell size.

The model for how local p-adic physics codes for the p-adic fractality of the real physics and for intentional action as a quantum jump transforming p-adic space-time sheet to a real one leads to a rather detailed view about the p-adic fractals possibly giving rise to exotic Super Virasoro representations [74, 49].

The degeneracy of states for exotic representations (number of states with same L_0) is enormous for the physically interesting values of p-adic prime p. This means that these states provide huge negentropy resources. Thus exotic super-symplectic representations be interpreted as quantum level articulation for the statement that TGD Universe is quantum critical quantum spin glass. Exotic super-symplectic representations clearly provide an excellent candidate for an infinite hierarchy of life forms. These life forms would come in two classes.

1. The representatives of the first class labelled by three integers (k, m, n) if one assumes that physically interesting primes correspond to $p \simeq 2^k m$, k prime and m are integers: n is the power appearing in $L_0 \propto p^n$.

2. The representatives of the second class are labelled by the integers $k L_0 \propto 2^k$, such that $2^k - 1$ is Mersenne prime or $(1 + i)^k - 1$ is Gaussian Mersenne.

It is tempting to assume that it is these life forms emerge already in elementary particle length scales and become increasingly complex when the p-adic length scale increases. Life could perhaps be regarded as a symbiosis of these life forms with super-conducting magnetic flux tubes and ordinary matter at atomic space-time sheets. These life forms (‘mind’) interact with each other, super-conducting magnetic flux tubes and ordinary matter via the classical gauge fields associated with MEs. A natural hypothesis is that the quantum phase transitions of the macroscopic quantum phases
8.2. Dark matter and living matter

In the sequel general ideas about the role of dark matter in condensed matter physics are described.

8.2.1 Hierarchy of Planck constants and the generalization of the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of Planck constant is summarized. The question is whether it might be possible in some sense to replace H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can consider two options: either M^4 or the causal diamond CD. The latter one is the more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a hierarchy of phases of matter with non-standard value of Planck constants was much faster than the evolution of mathematical ideas and quite a number of applications have been developed during last five years.

1. The starting point was the proposal of Nottale [4] that the orbits of inner planets correspond to Bohr orbits with Planck constant $h_{gr} = GMm/v_0$ and outer planets with Planck constant $h_{gr} = 5GMm/v_0$, $v_0/c \simeq 2^{-11}$. The basic proposal [66] was that ordinary matter condenses around dark matter which is a phase of matter characterized by a non-standard value of Planck constant whose value is gigantic for the space-time sheets mediating gravitational interaction. The interpretation of these space-time sheets could be as magnetic flux quanta or as massless extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton length meaning that the density of matter at these space-time sheets must be very slowly varying. The string tension of string like objects implies effective negative pressure characterizing dark energy so that the interpretation in terms of dark energy might make sense [67]. TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical mass density and the "pressure" associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about standard space-time is. Particles with different Planck constant must belong to different worlds in the sense local interactions of particles with different values of h are not possible. This inspires the idea about the book like structure of the imbedding space obtained by gluing almost copies of H together along common "back" and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different pages of the book like structure cannot appear in the same vertex of the generalized Feynman diagram. The phase transitions in which partonic 2-surface X^2 during its travel along X^3 leaks to another page of book are however possible and change Planck constant. Particle (say photon -) exchanges of this kind allow particles at different pages to interact. The interactions are strongly constrained by charge fractionization and are essentially phase transitions involving many particles. Classical interactions are also possible. It might be that we are actually observing dark matter via classical fields all the time and perhaps have even photographed it [78].

5. The realization that non-standard values of Planck constant give rise to charge and spin fractionization and anyonization led to the precise identification of the prerequisites of anyonic phase [55]. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the findings of Nottale \[1\] can be understood. Dark matter would resemble to a high degree matter in black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size of order Schwartschild radius \(r_S \) of order scaled up Planck length \(l_P = \sqrt{\hbar G} = GM \). Black hole entropy is inversely proportional to \(h \) and predicted to be of order unity so that dramatic modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents through cell membrane (low dissipation, quantal character, no change when the membrane is replaced with artificial one) has a natural explanation in terms of dark supra currents. This leads to a vision about how dark matter and phase transitions changing the value of Planck constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication and control tool of magnetic body containing dark matter and using biological body as motor instrument and sensory receptor. One especially amazing outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as nuclear strings \[2, 78\], \[2\].

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding space.

1. The fundamental group of the space for which one constructs a non-singular covering space or factor space should be non-trivial. This is certainly not possible for \(M^4, CD, CP_2, \) or \(H \). One can however construct singular covering spaces. The fixing of the quantization axes implies a selection of the sub-space \(H_4 = M^2 \times S^2 \subset M^4 \times CP_2 \), where \(S^2 \) is geodesic sphere of \(CP_2 \), \(M^4 = M^4 \setminus M^2 \) and \(\hat{CP}_2 = CP_2 \setminus S^2 \) have fundamental group \(Z \) since the codimension of the excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could naturally give rise to the desired situation.

2. \(CP_2 \) allows two geodesic spheres which left invariant by \(U(2 \text{ resp. } SO(3)) \). The first one is homologically non-trivial. For homologically non-trivial geodesic sphere \(H_4 = M^2 \times S^2 \) represents a straight cosmic string which is non-vacuum extremal of \(\hat{K} \)ähler action (not necessarily preferred extremal). One could argue that the many-valuedness of \(h \) is un-acceptable for non-vacuum extremals so that only homologically trivial geodesic sphere \(S^2 \) would be acceptable. One could go even further. If the extremals in \(M^2 \times CP_2 \) can be preferred non-vacuum extremals, the singular coverings of \(M^4 \) are not possible. Therefore only the singular coverings and factor spaces of \(CP_2 \) over the homologically trivial geodesic sphere \(S^2 \) would be possible. This however looks a non-physical outcome.

(a) The situation changes if the extremals of type \(M^2 \times Y^2 \), \(Y^2 \) a holomorphic surface of \(CP_3 \), fail to be hyperquaternionic. The tangent space \(M^2 \) represents hypercomplex sub-space and the product of the modified gamma matrices associated with the tangent spaces of \(Y^2 \) should belong to \(M^2 \) algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled up coordinates for \(M^4 \) so that metric is continuous at \(M^2 \times CP_2 \) but \(CD \)s with different size have different sizes differing by the ratio of Planck constants and would thus have only piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian products of singular coverings and factor spaces. These options can be denoted by \(C \sim C, C \sim F, F \sim C \), and \(F \sim F \), where \(C \) (\(F \)) signifies for covering (factor space) and first (second) letter signifies for \(CD \) (\(CP_2 \)) and correspond to the spaces \((CD \times G_a) \times (CP_2 \times G_b), (CD \times G_a) \times CP_2/G_b, CD/G_a \times (CP_2 \times G_b), \) and \(CD/G_a \times CP_2/G_b \).
4. The groups \(G_i \) could correspond to cyclic groups \(\mathbb{Z}_n \). One can also consider an extension by replacing \(M^2 \) and \(S^2 \) with its orbit under more general group \(G \) (say tedrahedral, octahedral, or icosahedral group). One expects that the discrete subgroups of \(SU(2) \) emerge naturally in this framework if one allows the action of these groups on the singular sub-manifolds \(M^2 \) or \(S^2 \). This would replace the singular manifold with a set of its rotated copies in the case that the subgroups have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in the ADE correspondence). For instance, in the case of \(M^2 \) the quantization axes for angular momentum would be replaced by the set of quantization axes going through the vertices of tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase transition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at \(M^2 \times CP_2 \) takes place? It would seem that the covariant metric of \(CD \) factor proportional to \(\hbar^2 \) must be discontinuous at the singular manifold since only in this manner the idea about different scaling factor of \(CD \) metric can make sense. On the other hand, one can always scale the \(M^4 \) coordinates so that the metric is continuous but the sizes of \(CDs \) with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous change of the size of partonic 2-surface in \(M^4 \) degrees of freedom. This is not the case. Light-likeness in \(M^2 \times S^2 \) makes sense only for surfaces \(X^1 \times D^2 \subset M^2 \times S^2 \), where \(X^1 \) is light-like geodesic. The requirement that the partonic 2-surface \(X^2 \) moving from one sector of \(H \) to another one is light-like at \(M^2 \times S^2 \) irrespective of the value of Planck constant requires that \(X^2 \) has single point of \(M^2 \) as \(M^2 \) projection. Hence no sudden change of the size \(X^2 \) occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum extremals of Chern-Simons action have two-dimensional \(CP_2 \) projection to homologically non-trivial geodesic sphere \(S^2_I \). The deformation of the entire \(S^2_I \) to homologically trivial geodesic sphere \(S^2_{II} \) is not possible so that only combinations of partonic 2-surfaces with vanishing total homology charge (Kähler magnetic charge) can in principle move from sector to another one, and this process involves fusion of these 2-surfaces such that \(CP_2 \) projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic sphere \(S^2_I \) of \(CP_2 \) can be deformed to that of \(S^2_{II} \) using 2-dimensional homotopy flattening the piece of \(S^2 \) to curve. If this homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms) are very relevant for the understanding of phase transitions changing Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers \(n_a \) and \(n_b \) defining the covering and factors spaces, is far from trivial and I have considered several options. The basic physical inputs are the condition that scaling of Planck constant must correspond to the scaling of the metric of \(CD \) (that is Compton lengths) on one hand and the scaling of the gauge coupling strength \(g^2/4\pi\hbar \) on the other hand.

1. One can assign to Planck constant to both \(CD \) and \(CP_2 \) by assuming that appears in the combination relations of corresponding symmetry algebras. Algebraist would argue that Planck constants \(h(CD) \) and \(h(CP_2) \) must define a homomorphism respecting multiplication and division (when possible) by \(G_i \). This requires \(r(X) = h(X)\hbar_0 = n \) for covering and \(r(X) = 1/n \) for factor space or vice versa.

2. If one assumes that \(\hbar^2(X), X = M^4, CP_2 \) corresponds to the scaling of the covariant metric tensor \(g_{ij} \) and performs an over-all scaling of \(H \)-metric allowed by the Weyl invariance of Kähler action by dividing metric with \(h^2(CP_2) \), one obtains the scaling of \(M^4 \) covariant metric by \(r^2 \equiv \hbar^2/\hbar_0^2 = h^2(M^4)/h^2(CP_2) \) whereas \(CP_2 \) metric is not scaled at all.
3. The condition that \(h \) scales as \(n_a \) is guaranteed if one has \(h(CD) = n_a h_0 \). This does not fix the dependence of \(h(CP_2) \) on \(n_b \) and one could have \(h(CP_2) = n_b h_0 \) or \(h(CP_2) = h_0/n_b \). The intuitive picture is that \(n_a \) fold covering gives in good approximation rise to \(n_a n_b \) sheets and multiplies YM action action by \(n_a n_b \) which is equivalent with the \(h = n_a n_b h_0 \) if one effectively compresses the covering to \(CD \times CP_2 \). One would have \(h(CP_2) = h_0/n_b \) and \(h = n_a n_b h_0 \). Note that the descriptions using ordinary Planck constant and coverings and scaled Planck constant but contracting the covering would be alternative descriptions.

This gives the following formulas \(r \equiv h/h_0 = r(M^4)/r(CP_2) \) in various cases.

<table>
<thead>
<tr>
<th></th>
<th>(C - C)</th>
<th>(F - C)</th>
<th>(C - F)</th>
<th>(F - F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(n_a n_b)</td>
<td>(n_a)</td>
<td>(n_b)</td>
<td>(n_a n_b)</td>
</tr>
</tbody>
</table>

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat polygons constructible using only ruler and compass and given as products \(n_F = 2^k \prod_i F_i \), where \(F_i = 2^{2^i} + 1 \) are distinct Fermat primes, are favored. The reason would be that quantum phase \(q = \exp(i\pi/n) \) is in this case expressible using only iterated square root operation by starting from rationals. The known Fermat primes correspond to \(s = 0, 1, 2, 3, 4 \) so that the hypothesis is very strong and predicts that p-adic length scales have satellite length scales given as multiples of \(n_F \) of fundamental p-adic length scale. \(n_F = 2^{11} \) corresponds in TGD framework to a fundamental constant expressible as a combination of Kähler coupling strength, \(CP_2 \) radius and Planck length appearing in the expression for the tension of cosmic strings, and the powers of \(2^{11} \) was proposed to define favored as values of \(n_a \) in living matter \(^{22}\).

The hypothesis that Mersemme primes \(M_k = 2^k - 1 \), \(k \in \{89, 107, 127\} \), and Gaussian Mersennes \(M_{G,k} = (1+i)k-1 \), \(k \in \{113, 151, 157, 163, 167, 239, 241\} \) (the number theoretical miracle is that all the four p-adic length scales sith \(k \in \{151, 157, 163, 167\} \) are in the biologically highly interesting range 10 nm-2.5 \(\mu \)m) define scaled up copies of electro-weak and QCD type physics with ordinary value of \(h \) and that these physics are induced by dark variants of corresponding lower level physics leads to a prediction for the preferred values of \(r = 2^{kd}, k_d = k_i - k_j \), and the resulting picture finds support from the ensuing models for biological evolution and for EEG \(^{22}\). This hypothesis - to be referred to as Mensemne hypothesis - replaces the rather ad hoc proposal \(r = h/h_0 = 2^{11k} \) for the preferred values of Planck constant.

How Planck constants are visible in Kähler action?

\(h(M^4) \) and \(h(CP_2) \) appear in the commutation and anticommutation relations of various superconformal algebras. Only the ratio of \(M^4 \) and \(CP_2 \) Planck constants appears in Kähler action and is due to the fact that the \(M^4 \) and \(CP_2 \) metrics of the imbedding space sector with given values of Planck constants are proportional to the corresponding Planck. This implies that Kähler function codes for radiative corrections to the classical action, which makes possible to consider the possibility that higher order radiative corrections to functional integral vanish as one might expect at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to the spectrum of \(\hbar \) coding for the scaled up values of Compton lengths and other quantal lengths and times. If so, large \(h \) phases could be crucial for understanding of quantum critical superconductors, in particular high \(T_c \) superconductors.

A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional quantum Hall effect \(^{19}\) at the level of basic quantum TGD as integer QHE for non-standard value of Planck constant.

The formula for the quantized Hall conductance is given by...
\[\sigma = \nu \times \frac{e^2}{\hbar}, \]
\[\nu = \frac{n}{m}. \]
\hspace{1cm} (8.2.1)

Series of fractions in \(\nu = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15\ldots; 2/3, 3/5, 4/7, 5/9, 6/11, 7/13\ldots, 5/3, 8/5, 11/7, 14/9\ldots \) have been observed as are also \(\nu = 2/7, 3/11, 1/7\ldots \) with odd denominator have been observed as are also \(\nu = 1/2 \) and \(\nu = 5/2 \) states with even denominator.

The model of Laughlin \cite{Laughlin} cannot explain all aspects of FQHE. The best existing model proposed originally by Jain is based on composite fermions resulting as bound states of electron and even number of magnetic flux quanta \cite{Jain}. Electrons remain integer charged but due to the effective magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the observed fractions and also their relative intensities and the order in which they appear as the quality of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the current currying slab so that \(x \) varies in the direction of Hall current and \(y \) in the direction of the main current. For IQHE the value of Hall conductivity is given by \(\sigma = j_y/E_x = n_{ev}/vB = n_e c/\hbar B = Ne^2/\hbar BS = Ne^2/m\hbar \). \(m \) characterizes the value of magnetized flux and \(N \) is the total number of electrons in the current. In the Landau gauge \(A_y = xB \) one can assume that energy eigenstates are momentum eigenstates in the direction of current and harmonic oscillator Gaussians in \(x \)-direction in which Hall current runs. This gives

\[\Psi \propto \exp(iky)H_n(x + kl)e^{\frac{-(x + kl)^2}{2\ell^2}} \hspace{1cm} (8.2.2) \]

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are important so that the momentum eigenvalues are in good approximation in the range \(0 \leq k \leq k_{\text{max}} = L_x/\ell^2 \). Using \(N = (L_y/2\pi) \int_0^{k_{\text{max}}} dk \) one obtains that the total number of momentum eigenstates associated with the given value of \(n \) is \(N = eBdL_xL_y/\hbar = n \). If \(\nu \) Landau states are filled, the value of \(\sigma \) is \(\sigma = n e^2/\hbar \).

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain also the fractionization of charge, spin, and electron number. There are \(2 \times 2 = 4 \) combinations of covering and factor spaces of \(CP_2 \) and three of them can lead to the increase or at least fractionization of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

\[\nu = \nu_0 \frac{L_y}{L_x}, \quad \nu_0 = 1, 2, \ldots \]
\hspace{1cm} (8.2.3)

\(\nu_0 \) denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether a singular covering or factor space of \(CD \) (\(CP_2 \)) is in question. The observed filling fractions are consistent with options C-C, C-F, and F-C for which \(CD \) or \(CP_2 \) or both correspond to a singular covering space. The values of \(\nu \) in various cases are given by the following table.

<table>
<thead>
<tr>
<th>Option</th>
<th>(C - C)</th>
<th>(C - F)</th>
<th>(F - C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>(\frac{n_0}{n_0})</td>
<td>(\frac{n_0 n_b}{n_a})</td>
<td>(\frac{n_0 m_a}{n_b})</td>
</tr>
</tbody>
</table>

\hspace{1cm} (8.2.4)

There is a complete symmetry under the exchange of \(CD \) and \(CP_2 \) as far as values of \(\nu \) are considered.
3. All three options are consistent with observations. Charge fractionization allows only the options $C - C$ and $F - C$. If one believes the general arguments stating that also spin is fractionized in FQHE then only the option $C - C$, for which charge and spin units are equal to $1/n_b$ and $1/n_a$ respectively, remains. For $C - C$ option one must allow $\nu_0 > 1$.

4. Both $\nu = 1/2$ and $\nu = 5/2$ state has been observed $[33, 32]$. The fractionized charge is believed to be $e/4$ in the latter case $[57, 55]$. This requires $n_b = 4$ allowing only (C, C) and (F, C) options. $n_i \geq 3$ holds true if coverings and factor spaces are correlates for Jones inclusions and this gives additional constraint. The minimal values of (ν_0, n_a, n_b) are $(2, 1, 4)$ for $\nu = 1/2$ and $(10, 1, 4)$ for $\nu = 5/2$ for both $C - C$ and $F - C$ option. Filling fraction $1/2$ corresponds in the composite fermion model and also experimentally to the limit of zero magnetic field $[54]$. $n_b = 2$ would be inconsistent with the observed fractionization of electric charge for $\nu = 5/2$ and with the vision inspired by Jones inclusions implying $n_i \geq 3$.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values of m except $m = 2$ (Laughlin’s model predicts only odd values of m). A possible explanation is that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model) both n_a and n_b must be odd. This would require that $m = 2$ case differs in some manner from the remaining cases.

6. Large values of m in $\nu = n/m$ emerge as B increases. This can be understood from flux quantization. One has $e \int B dS = nh$. By using actual fractional charge $e_F = e/n_b$ in the flux factor would give for (C, C) option $e_F \int B dS = n_a h_0$. The interpretation is that each of the n_b sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet is not affected so that the build-up of multiple covering seems to keep magnetic field strength below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in 80 mK temperature corresponding roughly to a thermal energy of $T \sim 10^{-6}$ eV. For graphene the effect is observed at room temperature. Cyclotron energy for electron is (from $f_e = 6 \times 10^5$ Hz at $B = 2$ Gauss) of order thermal energy at room temperature in a magnetic field varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such a low temperature. A possible explanation is that since FQHE involves several values of Planck constant, it is quantum critical phenomenon and is characterized by a critical temperature. The differences of single particle energies associated with the phase with ordinary Planck constant and phases with different Planck constant would characterize the transition temperature.

8.2.2 Could the dynamics of Kähler action predict the hierarchy of Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck constant could have large values in both astrophysical systems involving dark matter and also in biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor spaces of CD and CP_2 emerged from consistency conditions. The formula for the Planck constant involves heuristic guess work and physical plausibility arguments. There are good arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with the hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD rather than as a separate hypothesis. The following arguments suggest that this might be possible. One finds also a precise geometric interpretation of preferred extremal property interpreted as criticality in zero energy ontology.
1-1 correspondence between canonical momentum densities and time derivatives fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy ontology at the 3-D surfaces located at the light-like boundaries of $CD \times CP_2$.

1. In canonical quantization canonical momentum densities $\pi_k^0 \equiv \pi_k = \partial L_K / \partial (\partial_0 h^k)$, where $\partial_0 h^k$ denotes the time derivative of embedding space coordinate, are the physically natural quantities in terms of which to fix the initial values: once their value distribution is fixed also conserved charges are fixed. Also the weak form of electric-magnetic duality given by $J^{03} \sqrt{\gamma} = 4\pi \alpha K J_{12}$ and a mild generalization of this condition to be discussed below can be interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to their quantized values since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole) throat. This condition alone need not characterize criticality, which requires an infinite number of deformations of X^4 for which the second variation of the Kähler action vanishes and implies infinite number conserved charges. This in fact gives hopes of replacing π_k with these conserved Noether charges.

2. Canonical quantization requires that $\partial_0 h^k$ in the energy is expressed in terms of π_k. The equation defining π_k in terms of $\partial_0 h^k$ is however highly non-linear although algebraic. By taking squares the equations reduces to equations for rational functions of $\partial_0 h^k$. $\partial_0 h^k$ appears in contravariant and covariant metric at most quadratically and in the induced Kähler electric field linearly and by multiplying the equations by $det(g_{43})$ one can transform the equations to a polynomial form so that in principle $\partial_0 h^k$ can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates as the coordinates of the spacetime surface so that the initial value conditions reduce to those for the canonical momentum densities associated with the remaining four coordinates. For instance, for space-time surfaces representable as map $M^4 \to CP_2$ M^4 coordinates are natural and the time derivatives $\partial_0 s^k$ of CP_2 coordinates are multivalued. One would obtain four polynomial equations with $\partial_0 h^k$ as unknowns. In regions where CP_2 projection is 4-dimensional -in particular for the deformations of CP_2 vacuum extremals the natural coordinates are CP_2 coordinates and one can regard $\partial_0 h^k$ as unknowns. For the deformations of cosmic strings, which are of form $X^4 = X^2 \times Y^2 \subset M^4 \times CP_2$, one can use coordinates of $M^4 \times S^2$, where S^2 is geodesic sphere as natural coordinates and regard as unknowns E^2 coordinates and remaining CP_2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivatives in terms of other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions to obtain algebraic equations from which one solves then second variable. Obviously situation is very complex without additional symmetries. The criticality of the preferred extremals might however give additional conditions allowing simplifications. The reasons for giving up the canonical quantization program was following. For the vacuum extremals of Kähler action π_k are however identically vanishing and this means that there is an infinite number of value distributions for $\partial_0 h^k$. For small deformations of vacuum extremals one might however hope a finite number of solutions to the conditions and thus finite number of space-time surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat the the many-valuedness of $\partial_0 h^k$. The most obvious guess is that one should replace the space of space-like 4-surfaces corresponding to different roots $\partial_0 h^k = F^k(\pi_i)$ with four-surfaces in the covering space of $CD \times CP_2$ corresponding to different branches of the many-valued function $\partial_0 h^k = F(\pi)$ co-occiding at the ends of CD.

Do the coverings forces by the many-valuedness of $\partial_0 h^k$ correspond to the coverings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces associated with the hierarchy of Planck constants. This would conform with quantum classical correspondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of $\partial_0 h^k$ means a failure of perturbative canonical quantization and forces the introduction of the covering spaces. The interpretation would be that when the density of matter becomes critical the space-time surface splits to several branches so that the density at each branches is sub-critical. It is of course not at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis and one also consider modifications of this structure if necessary. The manner to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers assignable to CD and CP_2 degrees of freedom are however needed. How these two coverings could emerge?

 (a) One should fix also the values of $\pi^0_k = \partial L_K / \partial h^k_n$, where n refers to space-like normal coordinate at the wormhole throats. If one requires that charges do not flow between regions with different signatures of the metric the natural condition is $\pi^0_k = 0$ and allows also multi-valued solution. Since wormhole throats carry magnetic charge and since weak form of electric-magnetic duality is assumed, one can assume that CP_2 projection is four-dimensional so that one can use CP_2 coordinates and regard $\partial_0 m^k$ as un-knows. The basic idea about topological condensation in turn suggests that M^4 projection can be assumed to be 4-D inside space-like 3-surfaces so that here $\partial_0 h^k$ are the unknowns. At partonic 2-surfaces one would have conditions for both π^0_k and π^3_k. One might hope that the numbers of solutions are finite for preferred extremals because of their symmetries and given by n_a for $\partial_0 h^k$ and by n_b for $\partial_0 b^k$. The optimistic guess is that n_a and n_b corresponds to the numbers of sheets for singular coverings of CD and CP_2. The covering could be visualized as replacement of space-time surfaces with space-time surfaces which have n_a, n_b branches. n_b branches would degenerate to single branch at the ends of diagrams of the generalized Feynman graph and n_a branches would degenerate to single one at wormhole throats.

 (b) This picture is not quite correct yet. Thefixing of π^0_k and π^3_k should relate closely to the effective 2-dimensionality as an additional condition perhaps crucial for criticality. One could argue that both π^0_k and π^3_k must be fixed at X^3 and X^1 in order to effectively bring in dynamics in two directions so that X^3 could be interpreted as a an orbit of partonic 2-surface in space-like direction and X^1 as its orbit in light-like direction. The additional conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody type conformal symmetries. The conditions for π^0_k would give n_b branches in CP_2 degrees of freedom and the conditions for π^3_k would split each of these branches to n_a branches.

 (c) The existence of these two kinds of conserved charges (possibly vanishing for π^3_k) could relate also very closely to the slicing of the space-time sheets by string world sheets and partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time surface? The treatment as a single surface seems to be the correct thing to do. Classically the conserved charges would be $n_a n_b$ times larger than for single branch. Kähler action need not (but could!) be same for different branches but the total action is $n_a n_b$ times the average action and this effectively corresponds to the replacement of the $h_0 / g^2 K$ factor of the action with $h/g^2 K$, $r \equiv h/h_0 = n_a n_b$. Since the conserved quantum charges are proportional to h one could argue that $r = n_a n_b$ tells only that the charge conserved charge is $n_a n_b$ times larger than without multi-valuedness. h would be only effectively $n_a n_b$ fold. This is of course poor man’s argument but might catch something essential about the situation.

3. How could one interpret the condition $J^{03} \sqrt{g_3} = 4 \pi n a K J_{12}$ and its generalization to be discussed below in this framework? The first observation is that the total Kähler electric charge is by $\alpha_K \propto 1/(n_a n_b)$ same always. The interpretation would be in terms of charge fractionization meaning that each branch would carry Kähler electric charge $Q_K = n a K / n_a n_b$. I have indeed suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding space metric. The assumption that the M^4 covariant metric is proportional to h^2 follows from the physical idea about h scaling of quantum lengths as what Compton length is. One can
always introduce scaled M^4 coordinates bringing M^4 metric into the standard form by scaling up the M^4 size of CD. It is not clear whether the scaling up of CD size follows automatically from the proposed scenario. The basic question is why the M^4 size scale of the critical extremals must scale like n_an_b? This should somehow relate to the weak self-duality conditions implying that Kähler field at each branch is reduced by a factor $1/r$ at each branch. Field equations should possess a dynamical symmetry involving the scaling of CD by integer k and $J^{g3}\sqrt{\gamma_4}$ and $J^{\nu1}\sqrt{\gamma_4}$ by $1/k$. The scaling of CD should be due to the scaling up of the M^4 time interval during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce to single-sheeted coverings at $M^2 \subset M^4$ for CD and to $S^2 \subset CP^2$ for CP_2. Here S^2 is any homologically trivial geodesic sphere of CP^2 and has vanishing Kähler form. Weak self-duality condition is indeed consistent with any value of h and implies that the vacuum property for the partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed requires. This condition however generalizes. In weak self-duality conditions the value of h is free for any 2-D Lagrangian sub-manifold of CP_2.

The branching along M^2 would mean that the branches of preferred extremals always collapse to single branch when their M^4 projection belongs to M^2. Magnetically charged light-light-like throats cannot have M^4 projection in M^2 so that self-duality conditions for different values of h do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition would mean that the M^4 projection becomes light-like geodesic. Straight cosmic strings would have M^2 as M^4 projection. Also CP_2 type vacuum extremals for which the random light-like projection in M^4 belongs to M^2 would represent this of situation. One can ask whether the degeneration of branches actually takes place along any string like object $X^2 \times Y^2$, where X^2 defines a minimal surface in M^4. For these the weak self-duality condition would imply $h = \infty$ at the ends of the string. It is very plausible that string like objects feed their magnetic fluxes to larger space-times sheets through wormhole contacts so that these conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-like 3-surfaces with degenerate 4-metric and the degeneration of the n_an_b branches of the space-time surface at its ends and at wormhole throats is exactly what happens at criticality. For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants would be an outcome of criticality and of preferred extremal property and preferred extremals would be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries of $CD \times CP_2$ and at the throats.

8.2.3 Dark atoms and dark cyclotron states

The development of the notion of dark atom involves many side tracks which make me blush. The first naive guess was that dark atom would be obtained by simply replacing Planck constant with its scaled counterpart in the basic formulas and interpreting the results geometrically. After some obligatory twists and turns it became clear that this assumption is indeed the most plausible one. The main source of confusion has been the lack of precise view about what the hierarchy of Planck constants means at the level of imbedding space at space-time.

The rules are very simple when one takes the singular coverings assigned to the many-valuedness of the time-derivatives of imbedding space coordinates as functions of canonical momentum densities as a starting point.

1. The mass and charge of electron are fractionized as is also the reduced mass in Schrödinger equation. This implies the replacements $e \rightarrow e/r$, $m \rightarrow m/r$, and $h \rightarrow r\hbar$, $r = n_an_b$, in the general formula for the binding energy assigned with single sheet of the covering. If maximal number n_an_b are present corresponding to a full “Fermi sphere”, the total binding energy is r times the binding energy associated with single sheet.
2. In the case of hydrogen atom the proportionality $E \propto m/h^2$ implies that the binding energy for single sheet of the covering scales as $E \rightarrow E/(n_a n_b)^3$ and maximal binding energy scales as $E \rightarrow E/(n_a n_b)^2$. This conforms with the naive guess. For high values of the nuclear charge Z it can happen that the binding energy is larger than the rest mass and fractionization might take place when binding energy is above critical fraction of the rest mass.

3. In the case of cyclotron energies one must decide what happens to the magnetic flux. Magnetic flux quantization states that the flux is proportional to \hbar for each sheet separately. Hence one has $\Phi \rightarrow r \Phi$ for each sheet and the total flux scales as r^2. Since the dimensions of the flux quantum are scaled up by r the natural scaling of the size of flux quantum is by r^2. Therefore the quantization of the magnetic flux requires the scaling $B \rightarrow B/r$. The cyclotron energy for single sheet satisfies $E \propto h q B/m$ and since both mass m and charge q become fractional, the energy E for single sheet remains invariant whereas total cyclotron energy is scaled up by r in accordance with the original guess and the assumption used in applications.

4. Dark cyclotron states are expected to be stable up to temperatures which are r times higher than for ordinary cyclotron states. The states of dark hydrogen atoms and its generalizations are expected to be stable at temperatures scaled down by $1/r^2$ in the first approximation.

5. Similar arguments allow to deduce the values of binding energies in the general case once the formula of the binding energy given by standard quantum theory is known. The most general option allows fractional atoms with proton and electron numbers varying from $1/r$ to 1. One can imagine also the possibility of fractional molecules. The analogs of chemical bonds between fractional hydrogen atoms with $N - k$ and k fractional electrons and protons can be considered and would give rise to a full shell of fractional electrons possessing an exceptional stability. These states would have proton and electron numbers equal to one.

Catalytic sites are one possible candidate for fractal electrons and catalyst activity might be perhaps understood as a strong tendency of fractal electron and its conjugate to fuse to form an ordinary electron.

8.2.4 Dark matter and mind: general ideas

Dark matter is identified as a macroscopic quantum phase with large \hbar for which particles have complex conformal weights.

The sum of the imaginary parts of conformal weights assumed for number theoretical reasons to be expressible as sums of imaginary parts for the zeros of Riemann Zeta would define a new conserved quantum number, “scaling momentum” [15]. The conjugation of the complex conformal weight would distinguish between quantum states and their phase conjugates. This point is important since phase conjugate photons represent negative energy signals propagating into geometric past, assumed to be distinguishable from positive energy signals propagating into geometric future, play a key role in TGD based biology: this distinction cannot be made in QFT context.

Living matter could be matter with a large value of \hbar and hence dark, and form conformally confined blobs behaving like single units with extremely quantal properties, including free will and intentional action in time scales familiar to us. Dark matter would be responsible for the mysterious vital force.

Any system for which some interaction becomes so strong that perturbation theory does not work, could give rise to this kind of system in a phase transition in which \hbar increases to not lose perturbativity gives rise to this kind of “super-quantal” matter. In this sense emergence would corresponds to strong coupling. The interpretation would be that strong fluctuations at strong coupling give rise to a large number of orbifold points so that the S-matrix elements to a phase with larger Planck constant become large. Dark matter made possible by dynamical \hbar is necessary for macroscopic and macro-temporal quantum coherence and is thus prerequisite for emergence.

Physically large \hbar means a larger unit for quantum numbers and this requires that single particle states form larger particle like units. This kind of collective states with weak mutual interactions are of course very natural in strongly interacting systems. The N sheets of M_4^{+}, where N is the order of group G_b involved with the Jones inclusion in question. Each partonic 2-surface appears as N geometrically identical copies which can however carry different fermionic quantum numbers. Hence
8.2. Dark matter and living matter

the N-fold space-time sheet carry up to \(N G_b \) invariant partons with identical quantum numbers so that an effective breaking of Fermi statistics becomes possible.

One implication would be the notion of N-atom, which at the level of quantum jumps quantum jumps integrate effectively to single quantum jump and longer moments of consciousness result. Entire hierarchy of size scales for matter blobs is predicted corresponding to values of \(\hbar \). The larger the value of \(\hbar \) the longer the characteristic time scale of consciousness and of a typical life cycle.

In RHIC color glass condensate resembles incompressible liquid. Liquids might be liquids because they contain some dark matter at magnetic/\(\mathbb{Z}_0 \) magnetic flux tubes (darkness follows from the large value of \(\hbar \)). Incompressibility of liquid could correspond to maximal density of flux tubes and to the fact that magnetic fields have no sources. In accordance with the previous ideas already water could be living and conscious system in some primitive sense.

The notion of field body in turn means that dark matter at the magnetic flux tubes would serve as an intentional agent using biological body as a motor instrument and sensory receptor. Dark matter would be the miraculous substance that living systems are fighting for, and perhaps the most important substance in metabolic cycle.

Hierarchy of dark matters and hierarchy of minds

The notion of dark matter is only relative concept in the sense that dark matter is invisible from the point of view of the ordinary matter. One can imagine an entire hierarchy of dark matter structures corresponding to the hierarchy of space-time sheets for which \(p \)-adic length scales differ by a factors \(r = 2^{k_d} \) allowed by Mersenne hypothesis. The BE condensates of \(N_{cr} \) ordinary matter particles would serve as dynamical units for “doubly dark matter” invisible to the dark matter. The above discussed criticality criterion can be applied at all levels of the hierarchy to determine the value of the dynamical interaction strength for which BE condensates of BE condensates are formed.

The most interesting new physics would emerge from the interaction between length scales with different Planck constant but same scaled up variant of the \(p \)-adic length scale made possible by the decay of BE condensates of dark photons to ordinary photons having wavelength shorter by a factor \(1/r \). This interaction could provide the royal road to the quantitative understanding how living matter manages to build up extremely complex coherent interactions between different length and time scales.

In the time domain dark matter hierarchy could allow to understand how moments of consciousness organize to a hierarchy with respect to the time scales of moment of consciousness coming as \(2^{k_d} \) multiples of \(CP_2 \) time scale. Even human life span could be seen as single moment of consciousness at \(k_d = 154 \) level of the dark matter hierarchy.

Realization of intentional action and hierarchy of dark matters

How long length scales are able to control the dynamics in short length scales so that the extremely complex process extending down to atomic length scales realizing my intention to write this word is possible. This question has remained without a convincing answer in the recent day biology and there strong objections against the idea that this process is planned and initiated at neuronal level.

I have proposed a concrete mechanism for the realization of intentional action in terms of time mirror mechanism involving the emission of negative energy photons and proceeding as a cascade in a reversed direction of geometric time from long to short length scales [82] . This cascade would induce as a reaction analogous processes proceeding in the normal direction of geometric time as a response and would correspond to the neural correlates of intentional action in very general sense of the word.

The counterparts for the negative energy signals propagating to the geometric past would be phase conjugate (negative energy) laser beams identifiable as Bose-Einstein condensates of dark photons. In the time reflection these beams would transform to positive energy dark matter photons eventually decaying to ordinary photons. The space-time correlate would be MEs decaying into MEs and eventually to \(CP_2 \) type extremals representing ordinary photons.

The realization of intentional action as desires of boss expressed to lower level boss would naturally represented the decay of the phase conjugate dark laser beam to lower level laser beams decaying to lower level laser beams decaying to... . This would represent the desire for action whereas the time reflection at some level would represent the realization desire as stepwise decay to lower level laser beams and eventually to ordinary photons. The strong quantitative prediction would be that these
levels correspond to a length and time scale hierarchies consistent with Mersenne hypothesis or more general ruler and compass hypothesis.

Wave-length hierarchy, coherent metabolism, and proton-electron mass ratio

The fact that a given wavelength length corresponds to energies related to each other by a scaling with powers of \(v_0 \) provides a mechanism allowing to transfer energy from long to short scales by a de-coherence occurring either in the standard or reversed direction of geometric time. De-coherence in the reversed direction of time would be associated with mysterious looking processes like self-assembly allowing thus an interpretation as a normal decay process in reversed time direction.

It is perhaps not an accident that the value of \(v_0 \approx 4.6 \times 10^{-4} \) is not too far from the ratio of \(m_e/m_p \approx 5.3 \times 10^{-4} \) giving the ratio of zero point kinetic energies of proton and electron for a given space-time sheet. Proton mass ratio \(m_p/m_e = 1836.15267261 \) corresponds in good approximation to \(n = 2^3 \times 3^3 \times 17 = 1836 \). This integer is of form \(n = 9 \times n_F \). This co-incidence could in principle make possible a metabolic mechanism in which dark protons and ordinary electrons co-operate in the sense that dark protons generate dark photon BE condensates with wave length \(\lambda \) transforming to ordinary photons with wavelength \(v_0 \lambda \) absorbed by ordinary electrons.

Some examples are in order to illustrate these ideas.

1. As already found, in the case of dark atoms the scaling of binding energies as \(1/\hbar^2 \) allows the coupling of \(\sim 9 \) cm scale of brain hemisphere with the length scale \(\sim 50 \mu m \) of large neuron. \(N_{cr} \leq 137 \) ordinary IR photons would be emitted in single burst and interacting with neuron.

2. For a non-relativistic particle in a box of size \(L \) the energy scale is given by \(E_1 = \hbar^2 \pi^2 / 2mL^2 \) so that the visible photons emitted would have energy scaled up by a factor \((\hbar_0/\hbar)^2 \approx 4 \times 10^6 \). The collective dropping of \(N_{cr} \) dark protons to larger space-time sheet would liberate a laser beam of dark photons with energy equal to the liberated zero point kinetic energy. For instance, for the p-adic length scale \(L(k = 159 = 3 \times 53) \approx 63 \mu m \) this process would generate laser beam of IR dark photons with energy \(\sim \) .5 eV also generated by the dropping of ordinary protons from \(k = 137 \) atomic space-time sheet. There would thus be an interaction between dark protons in cell length scale and ordinary protons in atomic length scale. For instance, the dropping of dark protons in cell length scale could induce driving of protons back to the atomic space-time sheet essential for the metabolism \(^{30}\). Similar argument applies to electrons with the scale of the zero point kinetic energy about \(1 \) keV.

3. If the energy spectrum associated with the conformational degrees of freedom of proteins, which corresponds roughly to a frequency scale of 10 GHz remains also invariant in the phase transition to dark protein state, coherent emissions of dark photons with microwave wave lengths would generate ordinary infrared photons. For instance, metabolic energy quanta of \(\sim .5 \) eV could result from macroscopic Bose-Einstein condensates of 58 GHz dark photons resulting from the oscillations in the conformational degrees of freedom of dark proteins. A second option is that the conformal energies are scaled by \(\hbar_0/\hbar \) (\(\omega \) would remain invariant). In this case these coherent excitations would generate ordinary photons with energy of about \(1 \) keV able to drive electrons back to the atomic scale.

4. Since magnetic flux tubes have a profound role in TGD inspired theory of consciousness, it is interesting to look also for the behavior of effective magnetic transition energies in the phase transition to the dark matter phase. This transition increases the scale of the magnetic interaction energy so that anomalously large magnetic spin splitting \(\hbar_0 c B/m \) in the external magnetic field could serve as a signature of dark atoms. The dark transition energies relate by a factor \(\hbar_0/\hbar \) to the ordinary transition energies.

For instance, in the magnetic field \(B_{end} = 2B_E/5 = .2 \) Gauss, where \(B_E = .5 \) Gauss is the nominal value of the Earth's magnetic field, explaining the effects of ELF em fields on vertebrate brain, dark electron cyclotron frequency is \(6 \times 10^9 \) Hz and corresponds to ordinary microwave photon with frequency \(\sim 1.2 \) GHz and wavelength \(\lambda \approx 25 \) cm. For proton the cyclotron frequency of \(300 \) Hz would correspond to energy of ordinary photon with frequency of \(6 \times 10^9 \) Hz and could induce electronic cyclotron transitions and spin flips in turn generating for instance magneto-static waves.
It is easy to imagine a few step dark matter hierarchy connecting EEG frequencies of dark matter with frequencies of visible light for ordinary photons. This kind of hierarchy would give considerable concreteness for the notion of magnetic body having size scale of Earth.

A connection with bio-photons

The biologically active radiation at UV energies was first discovered by Russian researcher Gurwitz using a very elegant experimental arrangement \[31\]. Gurwitz christened this radiation mitogenetic radiation since it was especially intense during the division of cell.

A direct proof for the biological activity of mitogenetic radiation consisted of a simple experiment in which either quartz or glass plate was put between two samples. The first sample contained already growing onion roots whereas the second sample contained roots which did not yet grow. In the case of quartz plate no stimulation of growth occurred unlike for glass plate. Since quartz is not transparent to UV light whereas the ordinary glass is, the conclusion was that the stimulation of growth is due to UV light.

The phenomenon was condemned by skeptics as a pseudo science and only the modern detection technologies demonstrated its existence \[25\], and mitogenetic radiation became also known as bio-photons (the TGD based model for bio-photons is discussed in \[36\]). Bio-photons form a relatively featureless continuum at visible wavelengths continuing also to UV energies, and are believed to be generated by DNA or at least to couple with DNA. The emission of bio-photons is most intense from biologically active organisms and the irradiation by UV light induces an emission of mitogenetic radiation by some kind of amplification mechanism. It has been suggested that bio-photons represent some kind of leakage of a coherent light emitted by living matter.

According to Russian researcher V. M. Injushin \[35\], mitochondriods emit red light at wavelengths 620 nm and 680 nm corresponding to energies 2 eV and 1.82 eV. According to the same source, the nucleus of cell sends UV light at wavelengths 190, 280 and 330 nm corresponding to the energies 6.5, 4.4 and 3.8 eV. The interpretation as a kind of leakage of coherent light would conform with the identification in terms of BE condensates of dark photons with \(h_c/h \approx 2^{36} \) decaying to photons with energies visible and UV range. The model for the cell membrane as almost vacuum extremal \[22\] leads to a successful prediction of the frequencies of peak sensitivity for four kinds of photoreceptors and allows to identify biophotons as decay products of dark Josephson photons. Also EEG photons can be understood as decay products of Josephson photons. Also a fractal generalization of EEG emerges.

The analysis of Kirlian photographs has shown that the pattern of visible light emitted by various body parts, for instance ear, code information about other body parts \[29\]. These bio-holograms for which a general model is discussed in \[10\] could be realized as dark photon laser beams.

In phantom DNA effect \[26\] a chamber containing DNA is irradiated with a visible laser light and the DNA generates as a response coherent visible radiation at same wavelength. Strangely enough, the chamber continues to emit weak laser light even after the removal of DNA. This effect could be due to the decay of a dark photon BE condensate remaining in the chamber. Also the findings of Peter Gariaev \[27\] about the effects of visible laser light on DNA, in particular the stimulated emission of radio waves in kHz-MHz frequency range might also relate to dark photons somehow.

A connection with the scaling law of homeopathy

The value of the parameter \(1/v_0 \approx 2083\) is essentially the ratio of \(CP_1\) radius and Planck length scale (as also the ratio of Compton lengths of electron and proton) and rather near to \(2^{11} = 2048\). This inspired the idea that powers of \(2^{11}\) might define a hierarchy of preferred value of Planck constant. It however seems that this hypothesis is quite too restrictive. Interestingly, much larger number \(2 \times 10^{11} \approx 3 \times 2^{36}\) appears in the simplest form for what I have christened the scaling law of homeopathy \[33\]. This rule has been proposed on basis of experimental findings \[51\] but has no convincing theoretical justification. The scaling law of homeopathy states that high frequency EM radiation transforms to a low frequency radiation and vice versa preferably with the frequency ratio \(f_{\text{high}}/f_{\text{low}} \approx 2 \times 10^{11}\).

The proposed hierarchy of dark matter and ensuing hierarchy of dark laser beams decaying into lower level beams might provide a deeper explanation for the scaling law of homeopathy. The factor \(2 \times 10^{11}\) is with 3 per cent accuracy equal to the integer \(n_F = 3 \times 2^{36} \approx 2.06 \times 10^{11}\) characterizing ruler and compass quantum phase. Hence the interpretation in terms of a phase transition leading from a phase with a large value of Planck constant \(h = n_F \hbar_0\) to ordinary phase is possible.
In [33] I have discussed some mechanisms for the transformation of high energy photons to low energy photons consistent with the rule and proposed a generalization of the rule based on p-adic length scale hypothesis. For instance, high energy visible photons of frequency \(f \) could induce an excitation of the receiving system having same frequency, propagating with velocity \(\beta = v/c \approx 10^{-11}/2 \), and having wave length equal \(\lambda_0 = f/v = \lambda/\beta \). This excitation would in turn couple to photons of wavelength \(\lambda_0 \) and frequency \(f_0 = \beta f \).

8.2.5 Dark matter hierarchy, sensory representations, and motor action

Dark matter hierarchy allows to develop a detailed model for how magnetic bodies use biological bodies as sensory receptors and motor instruments [22] leading among other things to a generalization of the notion of genome.

For ordinary quantum mechanics photons at EEG frequencies correspond to ridiculously small energies. Dark matter hierarchy is accompanied by a hierarchy of EEGs and its generalizations with the scalings of frequencies predicted by Mersenne hypothesis to come as powers \(2^{-k_d} \) [22]. For \(k_d = 44 \) the energies of EEG photons are above thermal threshold at room temperature for \(f \geq 1 \) Hz.

The fact that arbitrarily small frequencies can correspond to energies above thermal threshold at higher levels of dark matter hierarchy implies that photons with arbitrarily low frequencies can have sizable physical effects on matter. This conforms with the findings about the effects of ELF em fields on living matter [22], and these effects allow to develop a rather detailed model for EEG and identify the parts of EEG correlating with communications of sensory data to the magnetic body and with quantum control performed by the magnetic body [22].

Bose-Einstein condensates at magnetic flux quanta in astrophysical length scales

The new model for the topological condensation at magnetic flux quanta of Earth’s magnetic field is based on the dark matter hierarchy with levels characterized by the value of \(\hbar = 2^{k_d} \hbar_0 \), where \(k_d \) is given by Mersenne hypothesis.

1. There are several levels of dynamics. In topological condensation the internal dynamics of ions is unaffected and \(\hbar \) has the ordinary value. The formation of Cooper pairs involves dynamics at relatively lo level of dark matter hierarchy. Also the dynamics of ionic Cooper pairs remains unaffected in the topological condensation to magnetic flux quanta with larger value of Planck constant.

2. Cyclotron energies scale as as \(\hbar \) so that for a sufficiently high value of \(k \) thermal stability of cyclotron states at room temperature is achieved for given value of field strength.

3. If the flux quanta of Earth’s magnetic field correspond to \(k = 44 \) level of dark matter hierarchy, cyclotron energies \(E = (\hbar/2\pi) \times ZeB/Am \) are scaled up by a factor \(2^{44} \) from their ordinary values and are above thermal energy at room temperature for \(A \leq 233Z \), where \(Z \) is the charge of the ion. Even for \(Z = 1 \) this includes all stable nuclei. Bose-Einstein condensates of bosonic ions are thus possible at room temperatures at Earth’s surface.

Fractal hierarchy of magnetic flux sheets

The notion of magnetic body is central in the TGD inspired theory of living matter. Every system possesses magnetic body and there are strong reasons to believe that the magnetic body associated with human body is of order Earth size and that there could be hierarchy of these bodies with even much larger sizes. Therefore the question arises what distinguishes between the magnetic bodies of Earth and human body. The quantization of magnetic flux suggests an answer to this question.

1. If Josephson photons are transformed to a bunch of ordinary small \(\hbar \) photons magnetic flux tubes can correspond to the ordinary value of Planck constant. If one assumes the quantization of the magnetic flux in the form

\[
\int B dA = nh
\]
used in super-conductivity, the radius of the flux tube must increase as $\sqrt{\hbar}$ and if the Josephson frequency is reduced to the sound frequency, the value of \hbar codes for the sound frequency. This leads to problems since the transversal thickness of flux tubes becomes too large. This does not however mean that the condition might not make sense: for instance, in the case of flux sheets going through DNA strands the condition might apply.

2. The quantization of magnetic flux could be replaced by a more general condition

$$\oint (p - ZeA)dl = nh \ ,$$

where p represents momentum of particle of super-conducting phase at the boundary of flux tube. In this case also $n = 0$ is possible and poses no conditions on the thickness of the flux tube as a function of \hbar. This option looks reasonable in length scales assignable to biological body (say flux tubes assignable to axonal membranes and DNA strands since the charged particles at the boundary of flux tube would act as sources of the magnetic field. At the level of magnetic body of Earth the currents might vanishing and flux quantization would pose a condition of the size of the flux quantum.

As an example consider flux sheets, which have thickness $L(151) = 2.5 \text{ nm}$ carrying magnetic field having strength of Earth’s magnetic field. At $k_d = 44$ level of dark matter hierarchy necessary in order that the energies associated with cyclotron frequencies are above thermal threshold these flux sheets would have minimum thickness of DNA double strand and total transversal length $L(169 + 5 \times 22) = L(257) = 1.6 \times 10^8 \text{ km}$ from flux quantization without supra currents. Flux quantization without supra currents is not satisfied at the level of single nucleus or even organism. The simplest possibility is that the flux sheets of cells fuse to larger flux sheets representing organs and organisms and that even the flux sheets assignable to separate organisms fuse in turn to larger flux sheets for which quantization condition for magnetic flux can be satisfied without assuming $n = 0$ and supra currents flowing at the boundaries of flux sheets.

Suppose that the magnetic flux flows in head to tail direction so that the magnetic flux arrives to the human body through a layer of cortical neurons. Assume that the flux sheets traverse through the uppermost layer of neurons and also lower layers and that DNA of each neuronal nuclei define a transversal sections organized along flux sheet like text lines of a book page. The total length of DNA in single human cell is about one meter. It seem that single brain cannot provide the needed total length of DNA if DNA dominates the contribution: this if of course not at all necessarily.

This leads to the notion of super- and hyper genes. Super genes consist of genes in different cell nuclei arranged to threads along magnetic flux sheets like text lines on the page of book whereas hyper genes traverse through genomes of different organisms. Super and hyper genes provide an enormous representative capacity and together with the dark matter hierarchy allow to resolve the paradox created by the observation that human genome does not differ appreciably in size from that of wheat.

Charge entanglement as a tool of generalized motor action

The charge entanglement by W MEs is an essentially new element in the model for generalized motor actions by magnetic body. Also the telepathic sharing of mental images could rely on charge entanglement. The notion was originally applied in the model of nerve pulse generation. Neutral MEs would in turn be related to communications and memory. The reduction of charge entanglement can induce a quantum jump to a state in which local Bose-Einstein condensates become exotically ionized with certain probability depending on the intensity of W field. Bose-Einstein condensates define pixels of generalized motor maps.

Exotic ionization induces dark plasma oscillations in turn generating various physiological responses such as Ca^{++}, Mg^{++} waves, and nerve pulse patterns giving rise to the motor action as an asymptotic self-organization pattern. Plasma oscillation patterns utilize typically dark microwave photons as metabolic energy. Field code is the correspondence between the spatio-temporal pattern of plasma oscillations and generalized motor action and the number theoretical model for genetic code generalizes to this context.
Overview about quantum control and coordination

The following general overview about quantum communication and control emerges in this framework.

1. Cyclotron frequencies relate to the control of the biological body by the magnetic body and could be assigned with the magnetic flux sheets going through DNA since it is genome where protein synthesis is initiated and is thus the optimal intermediate step in the cellular control.

2. One of the basic functions of cell membranes is to perceive the chemical environment using various kinds of receptors as sensors. Neurons have specialized to receive symbolic representations of the sensory data of primary sensory organs about the situation in the external world. Receptor proteins would communicate cell level sensory input to the magnetic body via MEs parallel to magnetic flux tubes connecting them to the magnetic body. We ourselves would be in an abstract sense fractally scaled up counterparts of receptor proteins and associated with dark matter ionic-Josephson junction connecting the parts of magnetosphere below litosphere and above magnetosphere.

3. This picture would explain why the temperature of brain must be in the narrow range 36-37 K to guarantee optimal functionality of the organism. If interior superconductivity is lost, magnetic body receives sensory data but is paralyzed since its desires cannot be realized. If boundary superconductivity is lost, magnetic body can move but is blind.

4. In the length scales below the weak length scale L_w also charged weak bosons behave as massless particles and the exchange of virtual W bosons makes possible a nonlocal charge transfer. Dark quark-antiquark pairs associated with the color bonds of the atomic nuclei can become charged via the emission of dark W boson and thus produce and exotic ion. The same can happen at the higher levels of dark matter hierarchy. This provides a nonlocal quantal mechanism inducing or changing electromagnetic polarization in turn inducing ordinary charge flows and thus making possible quantum control.

5. Massless extremals (MEs, topological light rays) serve as correlates for dark bosons. Besides neutral massless extremals (em and Z^0 MEs) TGD predicts also charged massless extremals obtained from their neutral counterparts by a mere color rotation (color and weak quantum numbers are not totally independent in TGD framework). The interpretation of the charged MEs has remained open hitherto. Charged W MEs (hierarchy of WEGs!) could induce long length scale charge entanglement of Bose-Einstein condensates by inducing exotic ionization of ionic nuclei. State function reduction could lead to a state containing a Bose-Einstein condensate in exotically ionized state.

In this manner the dark charge inside neuron and thus by Faraday’s law also membrane potential could be affected by magnetic body. The generation of nerve pulse could rely on the reduction of the resting potential below the critical value by this kind of mechanism inducing charge transfer between cell interior and exterior. The mechanism might apply even in the scale of magnetic body and make possible the control of central nervous system. Also remote mental interactions, in particular telekinesis, might rely on this mechanism.

Summarizing, charged massless extremals could be seen as correlates for nonlocal quantum control by affecting charge equilibria whereas neutral MEs would serve as correlates for coordination and communication. Color charged MEs could also induce color charge polarization and flows of color charges and thus generate visual color qualia by the capacitor mechanism discussed in [30].

8.3 MEs and mes

The development of the model for the detailed identification of the sensory qualia and brain led to a general vision about the evolution of consciousness and information processing in brain. In this section various properties of MEs are summarized.
8.3. MEs and mes

8.3.1 Massless extremals

Massless extremals (MEs) are an extremely general solution set of field equations associated with Kähler action [34] and representing various gauge – and gravitational fields [51]. Being scale invariant, MEs come in all size scales. The geometry has axial symmetry in the sense that \(CP^2 \) coordinates are arbitrary functions of two variables constructed from Minkowski coordinates: light-like coordinate \(t - z \) and arbitrary function of the coordinates of the plane orthogonal to the z-axis defining the direction of propagation. The polarization of the electromagnetic field depends on the point of the plane but is temporally constant. MEs represent waves propagating with velocity of light in single direction so that there is no dispersion: preservation of the pulse shape makes MEs ideal for classical communications.

Electric and magnetic parts of various gauge fields are orthogonal to each other and to the direction of propagation. Classical gauge field is sum of a free part plus part having as its source light-like vacuum current. The time dependence of the vacuum current is arbitrary, this is only possible by its light-likeness. This makes it possible to code all kinds of physical information to the time dependence of the vacuum current. MEs can have finite spatial size and in this case they are classical counterparts of virtual photons exchanged between charged particles and represent classical communication between material space-time sheets. MEs carry gravitational waves and also classical \(Z^0 \) fields propagating with light velocity.

MEs can also carry constant electric field. In this case either vacuum charges or actual charges near the boundaries of ME contain define the sources of this field. This situation can be also achieved if MEs form double-sheeted structures and wormhole contacts serve as effectively sources of the field. TGD allows the possibility that the two sheets have opposite time orientations and therefore also opposite classical energies. More generally, the exchange of two or more MEs between material space-time sheets can be such that no net momentum exchange occurs so that the absolute minimum of Kähler action only in a finite region of space-time and gives rise to new degenerate absolute minimum of Kähler action since ME has vanishing action. This kind of structures are obvious candidates for cognitive structures since classical nondeterminism is localized in a finite space-time volume. The Universe should be full of MEs with all possible sizes since they have vanishing action: addition of ME with finite time duration yields new absolute minimum of Kähler action since Kähler action does not change in this operation. This suggests that MEs should be of crucial importance in TGD Universe.

MEs serve as receiving and sending quantum antennae [51]. Light-like vacuum current generates coherent light. Also coherent gravitons are generated. MEs serve also as templates for BE condensation of photons and gravitons with momenta parallel to the light-like vacuum current. Linear structures, say DNA and micro-tubules, are natural but not the only candidates for structures accompanied by MEs. Since MEs are massless, they carry maximal possible momentum. This makes exchange of ME ideal mechanism for locomotion. The possibility of negative energy MEs is especially fascinating since it suggests 'buy now, pay later' mechanism of energy production: perhaps living matter uses MEs to generate coherent motions [52, 53].

Massless extremals as general solutions of field equations

Let \(k = (k^0, k^3, 0, 0) \) be a light like vector of \(M^4 \) and \(u = u(m^1, m^2) \) arbitrary function of the Minkowski coordinates \(m^1 \) and \(m^2 \) in the plane orthogonal to the direction of the 3-vector \((k^3, 0, 0) \) associated with \(k \). The surfaces defined by the map

\[
s^k = f^k(k \cdot m, u), \tag{8.3.1}
\]

where \(f^k \) and \(u \) are arbitrary functions define massless extremals. They describe the propagation of massless fields in the direction of \(k \): the fields are periodic with a period \(\lambda = 2\pi / k \) so that only \(k \) and its integer multiples are possible wave vectors. The polarization associated with various induced gauge fields depends on the position in \((m^1, m^2) \)-plane and is in the direction of the gradient of \(u \). Field equations involve tensor contractions of the energy momentum tensor and gauge current but these are proportional to \(kk \) and \(k \) respectively and vanish by the light-likeness of \(k \). Linear superposition holds true only in a restricted sense since both the propagation direction and the polarization direction in each \((m^1, m^2) = \text{const} \) plane is fixed.
What is remarkable that these solutions are not solutions of the ordinary Maxwell equations in vacuum: Kähler current density J_K is in general non-vanishing(!) and proportional to the light like four-momentum k. As a consequence, also a light-like electromagnetic current is in general (but not necessarily) present. The interpretation of the em current J as charged elementary particle current is impossible and the correct interpretation as a vacuum current associated with the induced gauge fields. The finite length of the micro-tubule plus the requirement that the total vacuum charge vanishes, implies that the Fourier decompositions of the massless fields contain only integer multiples of the basic four-momentum k. The direct detection of the light-like vacuum current inside a micro-tubule would provide strong support for TGD.

The physical importance of these extremals is suggested by the fact they are in certain sense elementary particle like objects: in fact, the original interpretation was as a model for the exterior space-time of a topologically condensed massless particle. The solution set is also very general involving several arbitrary functions. Although the minimization of the Kähler action favors the formation of Kähler electric fields, massless extremals might well appear as space-time sheets of the effective space-time. These space-time sheets should not contain ordinary charges since their presence implies a transition to the Maxwell phase described in an excellent approximation by the ordinary Maxwell electrodynamics. The fact that vacuum em current and vacuum Einstein tensor do not in general vanish, could mean that massless extremals serve as sources of coherent photons and gravitons.

Massless extremals can also reduce to vacuum extremals of the Kähler action in the case that the \mathbb{CP}^2 projection is, in general two-dimensional, Legendre manifold of \mathbb{CP}^2. These extremals are however not gravitational vacua.

Generalization of the solution ansatz defining MEs

The solution ansatz for MEs has developed gradually to an increasingly general form and the following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles the solution ansatz for the \mathbb{CP}^2 type extremals and has direct interpretation in terms of geometric optics. Equally remarkable is that the latest generalization based on the introduction of the local light-cone coordinates was inspired by quantum holography principle.

The solution ansatz for MEs has developed gradually to an increasingly general form and the following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles the solution ansatz for the \mathbb{CP}^2 type extremals and has direct interpretation in terms of geometric optics. Equally remarkable is that the latest generalization based on the introduction of the local light-cone coordinates was inspired by quantum holography principle.

1. **Local light-cone coordinates**

The solution involves a decomposition of M^4_+ tangent space localizing the decomposition of Minkowski space to an orthogonal direct sum $M^2 \oplus E^2$ defined by light-like wave vector and polarization vector orthogonal to it. This decomposition defines what might be called local light-cone coordinates.

1. Denote by m^i the linear Minkowski coordinates of M^4. Let (S_+, S_-, E_1, E_2) denote local coordinates of M^4_+ defining a local decomposition of the tangent space M^4 of M^4_+ into a direct orthogonal sum $M^4 = M^2 \oplus E^2$ of spaces M^2 and E^2. This decomposition has interpretation in terms of the longitudinal and transversal degrees of freedom defined by local light-like four-velocities $v_\pm = \nabla S_\pm$ and polarization vectors $\epsilon_i = \nabla E_i$ assignable to light ray.

2. In accordance with this physical picture, S_+ and S_- define light-like curves and thus satisfy the equation:

$$\left(\nabla S_\pm\right)^2 = 0$$

The gradients of S_\pm are obviously analogous to local light like velocities $v = (1, \pmb{\tau})$ and $\tilde{v} = (1, -\pmb{\tau})$. These equations are also obtained in geometric optics from Hamilton Jacobi equation by replacing photon’s four-velocity with the gradient ∇S: this is consistent with the interpretation of MEs as Bohr orbits of em field.

3. With these assumptions the coordinates (S_\pm, E_i) define local light-cone coordinates with the metric element having the form
\[ds^2 = g_{S_+S_-}dS_+dS_- + g_{11}dE^2_1 + g_{22}dE^2_2 \]

Conformal transformations of \(M^4 \) leave the general form of this decomposition invariant. The task is to find all possible local light-cone coordinates defining one-parameter families 2-surfaces defined by the condition \(S_i = \text{constant}, \ i = + \text{ or } - \), dual to each other and expanding with light velocity.

2. A conformally invariant family of local light-cone coordinates

The simplest solutions to the equations defining local light-cone coordinates are of form \(S_\pm = k \cdot m \) giving as a special case \(S_\pm = m_0 \pm m^3 \). For more general solutions of form \(S_\pm = m_0 \pm f(m^1, m^2, m^3) \), \((\nabla_3 f)^2 = 1\), where \(f \) is an otherwise arbitrary function, this relationship reads as

\[S_+ + S_- = 2m^0 \]

This condition defines a natural rest frame. One can integrate \(f \) from its initial data at some two-dimensional \(f = \text{constant} \) surface and solution describes curvilinear light rays emanating from this surface and orthogonal to it. The flow velocity field \(v = \nabla f \) is irrotational so that closed flow lines are not possible in a connected region of space and the condition \(v^2 = 1 \) excludes also closed flow line configuration with singularity at origin such as \(v = 1/\rho \) rotational flow around axis.

One can identify \(E^2 \) as a local tangent space spanned by polarization vectors and orthogonal to the flow lines of the velocity field \(v = \nabla f(m^1, m^2, m^3) \). Since the metric tensor of any 3-dimensional space allows always diagonalization in suitable coordinates, one can always find coordinates \((E_1, E_2)\) such that \((f, E_1, E_2)\) form orthogonal coordinates for \(m^0 = \text{constant} \) hyperplane. Obviously one can select the coordinates \(E_1 \) and \(E_2 \) in infinitely many manners.

3. Closer inspection of the conditions defining local light-cone coordinates

Whether the conformal transforms of the local light-cone coordinates \(\{S_\pm = m^0 \pm f(m^1, m^2, m^3), E_i\} \) define the only possible compositions \(M^2 \oplus E^2 \) with the required properties, remains an open question. The best that one might hope is that any function \(S_+ \) defining a family of light-like curves defines a local decomposition \(M^4 = M^2 \oplus E^2 \) with required properties.

1. Suppose that \(S_+ \) and \(S_- \) define light-like vector fields which are not orthogonal (proportional to each other). Suppose that the polarization vector fields \(\epsilon_i = \nabla E_i \) tangential to local \(E^2 \) satisfy the conditions \(\epsilon_i \cdot \nabla S_+ = 0 \). One can formally integrate the functions \(E_i \) from these condition since the initial values of \(E_i \) are given at \(m^0 = \text{constant} \) slice.

2. The solution to the condition \(\nabla S_+ \cdot \epsilon_i = 0 \) is determined only modulo the replacement

\[\epsilon_i \rightarrow \hat{\epsilon}_i = \epsilon_i + k\nabla S_+ \]

where \(k \) is any function. With the choice

\[k = -\frac{\nabla E_i \cdot \nabla S_-}{\nabla S_+ \cdot \nabla S_-} \]

one can satisfy also the condition \(\hat{\epsilon}_i \cdot \nabla S_- = 0 \).

3. The requirement that also \(\hat{\epsilon}_i \) is gradient is satisfied if the integrability condition

\[k = k(S_+) \]

is satisfied in this case \(\hat{\epsilon}_i \) is obtained by a gauge transformation from \(\epsilon_i \). The integrability condition can be regarded as an additional, and obviously very strong, condition for \(S_- \) once \(S_+ \) and \(E_i \) are known.
4. The problem boils down to that of finding local momentum and polarization directions defined by the functions S_+, S_- and E_1 and E_2 satisfying the orthogonality and integrability conditions

$$(\nabla S_+)^2 = (\nabla S_-)^2 = 0 \ , \ \nabla S_+ \cdot \nabla S_- \neq 0 \ ,$$

$$\nabla S_+ \cdot \nabla E_i = 0 \ , \ \frac{\nabla E_i \cdot \nabla S_+}{\nabla S_+ \cdot \nabla S_-} = k_i(S_+) \ .$$

The number of integrability conditions is $3+3$ (all derivatives of k_i except the one with respect to S_+ vanish): thus it seems that there are not much hopes of finding a solution unless some discrete symmetry relating S_+ and S_- eliminates the integrability conditions altogether.

A generalization of the spatial reflection $f \to -f$ working for the separable Hamilton Jacobi function $S_\pm = m^0 \pm f$ ansatz could relate S_+ and S_- to each other and trivialize the integrability conditions. The symmetry transformation of M_4 must perform the permutation $S_+ \leftrightarrow S_-$, preserve the light-likeness property, map E^2 to E^2, and multiply the inner products between M^2 and E^2 vectors by a mere conformal factor. This encourages the conjecture that all solutions are obtained by conformal transformations from the solutions $S_\pm = m^0 \pm f$.

4. General solution ansatz for MEs for given choice of local light-cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition of M_4 tangent space has been found.

1. Let $E(S_+, E_1, E_2)$ be an arbitrary function of its arguments: the gradient ∇E defines at each point of E^2 an S_+-dependent (and thus time dependent) polarization direction orthogonal to the direction of local wave vector defined by ∇S_+. Polarization vector depends on E^2 position only.

2. The most general MEs correspond to the solution family of the field equations having the general form

$$s^k = f^k(S_+, E) \ ,$$

where s^k denotes CP_2 coordinates and f^k is an arbitrary function of S_+ and E. The solution represents a wave propagating with light velocity and having definite S_+ dependent polarization in the direction of ∇E. By replacing S_+ with S_- one obtains a dual solution. Field equations are satisfied because energy momentum tensor and Kähler current are light-like so that all tensor contractions involved with the field equations vanish: the orthogonality of M^2 and E^2 is essential for the light-likeness of energy momentum tensor and Kähler current.

3. The simplest solutions of the form $S_\pm = m^0 \pm m^3$, $(E_1, E_2) = (m^1, m^2)$ and correspond to a cylindrical MEs representing waves propagating in the direction of the cylinder axis with light velocity and having polarization which depends on point (E^1, E^2) and S_+ (and thus time). For these solutions four-momentum is light-like: for more general solutions this cannot be the case. Polarization is in general case time dependent so that both linearly and circularly polarized waves are possible. If m^3 varies in a finite range of length L, then ‘free’ solution represents geometrically a cylinder of length L moving with a light velocity. Of course, ends could be also anchored to the emitting or absorbing space-time surfaces.

4. For the general solution the cylinder is replaced by a three-dimensional family of light like curves and in this case the rectilinear motion of the ends of the cylinder is replaced with a curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing space-time surfaces. The non-rotational character of the velocity flow suggests that the freely moving particle like 3-surface defined by ME cannot remain in an infinite spatial volume. The most general ansatz for MEs should be useful in the intermediate and nearby regions of a radiating object whereas in the far away region radiation solution is excepted to decompose to cylindrical ray like MEs for which the function $f(m^1, m^2, m^3)$ is a linear linear function of m^i.
8.3.2 About the electro-weak and color fields associated with massless extremals

Space-time sheets carrying EM fields carry usually also Z^0 and W fields and it is not possible to speak about EM or Z^0 type MEs. It is however possible to speak about neutral and W MEs. The CP^2 projection of ME is 2-dimensional and in a special case it reduces to a geodesic sphere. There are two kinds of geodesic spheres in CP^2.

1. For space-time sheets for which CP^2 projection is $r = \infty$ homologically non-trivial geodesic sphere of CP^2 one has

$$
\gamma = \left(\frac{3}{4} - \frac{\sin^2(\theta_W)}{2} \right) Z^0 \simeq \frac{5Z^0}{8} .
$$

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by $SU(3)$ rotation.

2. For homologically trivial geodesic sphere a standard representative is obtained by using for the phase angles of standard complex CP^2 coordinates constant values. In this case induced EM, Z^0, and Kähler fields vanish but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can say that for non-vacuum extremals with 2-D CP^2 projection color rotations and weak symmetries commute.

The MEs corresponding to these two geodesic spheres could be called neutral and W MEs and they carry color fields for which the color group $SU(3)$ reduces to some of its $U(1)$ subgroups. Quite generally, the holonomy algebra of color group is Abelian since the induced color field is of the form $g_{\alpha\beta}^A \propto H^A J_{\alpha\beta}$, where H^A denotes color Hamiltonian. Neutral MEs are excellent candidates for mediating EEG type communications from the biological body to the magnetic body whereas charge entanglement induced by W MEs would be ideal for the realization of motor actions of the magnetic body.

MEs are excellent candidates for the space-time correlates of laser beams. Dark matter hierarchy implies that also MEs can be classified by the level of the dark matter hierarchy involved. Mersenne hypothesis [22] is an explicit conjecture about the hierarchy of weak physics and their dark counterparts and allow to make explicit quantitative predictions about the role of weak interactions in living matter since as many as four Gaussian Mersennes are in the p-adic length scale range 10 nm-528 nm.

8.3.3 MEs as absorbing and emitting quantum antennae

How massless extremals generate coherent states of photons?

MEs can be in ‘dormant’ or active state according to whether the EM current associated with the ME is vanishing or not. In active state MEs generate Bose Einstein condensate type state for ordinary photons. This means in TGD context the emission of (topological) vapour phase photons (CP^2 type extremals), which can condense on other condensate levels. MEs generate gravitonic BE condensate and the possible biological role of this condensate will be discussed later.

Assuming that the coupling of quantized photon field to the massless extremal is given by regarding the massless extremal as a classical background field one obtains QED with a light like source J^α:

$$
D_\beta F^{\alpha\beta} = e J^\alpha ,
$$

$$
J^\alpha = J^k e^\alpha .
$$

(8.3.2)

The system is equivalent with an infinite number of harmonic oscillators each driven by a harmonic external force and a basic exercise in the quantum mechanics shows that the solutions of the field equations give the new oscillator operators as sums of free oscillator operators plus c-number term, which is essentially the Fourier component of the light like current in the direction of the polarization.

In the limit that ME has infinite duration and is a cylindrical structure of finite length L (that is micro-tubule) one has for $J \propto \sin(kz(t - z))$
\[a^\dagger(p) \rightarrow a^\dagger(p) + g(p) , \]
\[g(p) = \sum_n \delta(p^0, k_n^0) K(p, k_n) J(k_n^L, p_T) , \]
\[K(p, k) = \epsilon(p) \cdot k \cdot \frac{1}{i(p_z - k_z)}(\exp(ip_z L) - 1) , \]
\[k_n = nk_0 = \frac{n2\pi}{L}(1,1,0,0) . \] (8.3.3)

Here \(p \) denotes the momentum of the photon and \(k \) the 4-momentum associated with the Fourier component of a light-like current. \(\epsilon(p) \) denotes the polarization of the photon. \(J(k_n^L, p_T) \) is essentially the 3-dimensional Fourier transform of the scalar function \(J \). The infrared behavior of \(J(k_z, p_T) \) as a function of the transversal momentum \(p_T \) can be deduced from the fact that the transverse dimension of the micro-tubule is small (about 25 nm) as compared to \(1/p_T \) so that the Fourier component is in good approximation independent of \(p_T \).

For the frequencies present in the Fourier decomposition of the massless extremal, the ordinary oscillator vacuum is transformed to a coherent state in the corresponding Fourier mode of the quantized photon field. The essential point is that the wave vectors of the radiation field and massless extremal are nonorthogonal. The radiation pattern resembles the ordinary antenna pattern associated with an oscillating current \(J(t) = \exp(i\omega t) \) in the fact that the intensity of radiation vanishes at angles \(\theta = \pi/2 \) and \(\theta = 0 \). For \(J \propto \sin(k_z(z - t)) \) \(|K|^2 \) has maxima for \(\theta = 48.6 \) degrees and 131.4 degrees. For an ordinary dipole with \(J = \sin(\omega t) \), \(\omega = 2\pi/L \) the radiation pattern is concentrated at angles \(\theta \geq 40 \) degrees with maximum and 69.3 degrees and 110.7 degrees.

A more complicated situation corresponds to a group of several massless extremals (say micro-tubules). If massless extremals are parallel and have same length the previous expression generalizes with superposition of terms
\[g(p) \rightarrow \sum_n \exp(i\phi_n)\exp(ip_z z_n)\exp(ip_T \cdot x_T)g_n(p) . \] (8.3.4)

The phase \(\phi_n \) is the phase difference between \(n \)th light like current with respect to some reference current. If the positions of micro-tubules and/or phases of the individual light like currents are suitably chosen then various terms interfere constructively and macroscopic quantum coherence is obtained at resonant frequencies. Suffice it so say that the needed timing is extremely accurate: less than \(10^{-12} \) seconds! Since \(p_z \) is small rather larger transversal distances are allowed by the requirement of constructive interference. In a more general situation also the orientations of micro-tubules can vary in certain limits. Note that light-like energy momentum generates also gravitonic BE condensates at preferred frequencies.

Massless extremal is accompanied by a Bose-Einstein condensate of parallel photons

The interaction Lagrangian describing the interaction of photon field with the light-like vacuum current does not couple to the photons collinear with the vacuum current (light-like wave vector has vanishing length squared). Therefore the ground states of the system are degenerate since one can add to any coherent state generated by the vacuum current any number of photons collinear with the vacuum current and topologically condensed inside the massless extremal. This means Bose-Einstein condensation in collinear degrees of freedom.

Collinear Bose-Einstein condensates of photons are crucial for the model of the quantum correlates of the sensory qualia. Sensory quale is characterized partially by the BE condensate of photons associated with the massless extremal parallel to the axon. The existence of the BE condensate makes possible induced emission. For instance, Josephson currents generate photons with frequencies which are multiples of the Josephson frequency. If the potential difference in Josephson junction equals to a multiple of the cyclotron frequency of some super conducting ion, the current flows resonantly in the sense that Josephson current serves as a harmonic perturbation generating quantum jumps and gives rise to a large dissipative current and also quantum jumps in either super conductor. Since the
emission rate for photons by the current is proportional to N^2, where N is the number of photons already in the state, the presence of the BE condensate of photons with this frequency amplifies the emission rate. This kind of resonance mechanism is assumed in the model of sensory experience since it elegantly explains why given neuron corresponds to single quale. Since the potential difference over the Josephson junction can correspond to only single cyclotron frequency, the dominance of single quale is unavoidable even when all macroscopic quantum phases are present.

The existing BE condensate increases the probability of topological condensation of coherent photons generated by other massless extremals to the massless extremal. This mechanism could provide inter-neuronal communication mechanism and realize the metaphor about brain as a society of neurons, the notion of neuronal window idea and also give a more precise content to the music metaphor. In particular, neurons far away from each other could communicate using wavelengths in a narrow wave length range by this mechanism.

The wave vectors of the photons are multiples of $k = \pi/L$. This means that the length of the massless extremal correlates with the maximal allowed wavelength. For ELF photons associated with EEG frequencies of order 10 Hz the length of massless extremal is of order Earth’s circumference. This suggests that more general massless extremals with a topology of torus instead of linear topology could characterize the topological field quanta of ELF fields. It is however impossible to say, whether the field equations allow more general solutions resembling massless extremals.

8.3.4 Quantum holography and quantum information theory

Sokolov and collaborators [5] have proposed a model of quantum holographic teleportation in which the classical photocurrents from the sender to receiver take the role of a dynamical hologram. The connection with MEs is obvious.

1. MEs are carriers of classical light-like vacuum currents (one of the basic differences between TGD and Maxwell theory). This suggests that MEs could be interpreted also as classical holograms, which are dynamical as in quantum information theory. Light-like current would be like a dynamical (four-dimensional) diffraction grating. Light-like vacuum currents and vacuum Einstein tensor generate also coherent states of photons and gravitons and MEs serve as templates for the topological condensation of photons and gravitons to the Bose-Einstein condensate of photons collinear with ME. The Bose-Einstein condensation of collinear photons and their generalizations to colored configuration space photons should affect the vacuum current by adding to the reference current what might be called evoked response. This condensation process could generate conscious experience and higher level qualia. Thus it would seem that MEs have a triple role as receiving and sending quantum antennae as well as classical holograms.

2. The proposal of [5] generalizes to the case of MEs provided one can device a method of coding quantum states of photon field to the vacuum currents. The high efficiency photodetector matrix is in which each pixel gives rise to a photocurrent [5], is replaced with ME or set of parallel MEs. The neural window hypothesis [60] states that neuronal axons are accompanied by parallel MEs carrying information between sensory organs and brain and various parts of brain. This is only a less standard manner to say that ME represents classical dynamical hologram. The possibility of local light-cone coordinates allows also MEs which define curved deformations of the simplest cylindrical MEs.

The concrete realization of holographic teleportation proposed in [5] brings strongly in mind the architecture of the visual pathways. Thus one can wonder whether brain is performing internal teleportation of photonic quantum states with spike patterns being directly coded to the pattern of the vacuum currents flowing along MEs. If spike patterns code the dynamical hologram, a surprisingly close relationship with Pribram’s views about hologrammic brain results. Nerve pulse patterns could be seen as specifying the necessary classical aspects of the quantum teleportation (in TGD classical physics is essential part of quantum physics, rather than some effective theory).

3. Vacuum current at a 3-dimensional time-like section of ME as a function function of time defines a dynamical 3-dimensional hologram. This is consistent with the fact that our visual experience is two-dimensional: the information is always about outer boundaries of the objects of the perceptive field. The values of the vacuum current at a given point are non-deterministic which
means that vacuum current is ideal for coding information. Classical data also propagate without
dispersion with light velocity obeying the laws of geometric optics and MEs imply channelling
so that MEs are tailor-made for classical information transfer.

4. Space-time sheets can have both positive and negative time orientations and the sign of energy
depends on time orientation in TGD framework. This means that classical communication can
occur both in the direction of the geometric future and past: this is essential for the classical
model of the long term memories as a question communicated to the geometric past followed by
answer. The dynamical nature of the holograms means that there is no need to combine 2- or
3-dimensional holograms associated with several moments of geometric time to single hologram.
To remember is to perceive an object located in the geometric past. Of course, fractality might
make possible temporally scaled down versions of the geometric past but the principle would
remain the same.

5. Quantum hologram view suggests that the super-symplectic representations at the light-like
boundaries of MEs characterized by gigantic almost-degeneracies are the real carriers of biological
information. According to the general theory of qualia [30] this information would become
conscious since elementary qualia would correspond to quantum jumps for which increments of
the quantum numbers correspond to the quantum numbers labelling super-symplectic generators
in the complement of Cartan algebra. In this view super-conducting magnetic flux tubes could
perhaps be seen as intermediate level in the control circuitry controlled by MEs and controlling
atomic level.

6. This picture leaves open whether there is a level controlling the thicknesses of the magnetic
flux tubes and thus also magnetic transition frequency scales, and what this level might be. The
entrainment of the endogenous frequencies to exogenous frequencies [33] explains water
memory and the effects of homeopathic remedies [54] and could make possible also endogenous
NMR spectroscopy and chemical senses. The key to the puzzle might be a purely mathematical
problem: how the boundary conditions at the boundaries of the magnetic flux tubes can be
satisfied? It might be that the induced metric must become degenerate at the boundaries (√g =
0) implying a degeneracy of the induced metric at the boundary of the magnetic space-time sheet.
This need not however mean that the M_4^+ projection of the boundary is a light-like surface:
the projection could well be completely static. This supports the view that the boundaries
do not carry super-symplectic representations, which are associated with the imbedding space
projection of the boundary rather than the boundary itself. One can imagine that ME with
the same transversal section as magnetic flux tube is glued to the magnetic flux tube along
this section: this kind of gluing results in a singular 4-surface analogous to the vertex region
of Feynmann diagram and somekind of smoothing-out procedure is needed. The smoothed-out
vertex region would make possible for ME to control magnetic flux tube thickness by varying
its own transversal thickness.

MEs as quantum holograms in the sense of quantum gravitation
Quantum holography principle naturally generalizes to an approximate principle expected to hold true
also in non-cosmological length and time scales.

1. The most general ansatz for MEs (inspired by the quantum holographic thinking) relies on
the introduction of the notion of local light-cone coordinates S_+, S_-, E_1, E_2. The gradients
∇S_+ and ∇S_- define two light-like directions just like Hamilton Jacobi functions define the
direction of propagation of wave in geometric optics. The two polarization vectori fields ∇E_1
and ∇E_2 are orthogonal to the direction of propagation defined by either S_+ or S_-. Since
also E_1 and E_2 can be chosen to be orthogonal, the metric of M_4^+ can be written locally as
d$s^2 = g_+-dS_+dS_- + g_{11}dE_1^2 + g_{22}dE_2^2$. In the earlier ansatz S_+ and S_- where restricted to the
variables $k-m$ and $k\cdot m$, where k and k correspond to light-like momentum and its mirror image
and m denotes linear M_4^+ coordinates: these MEs describe cylindrical structures with constant
direction of wave propagation expected to be most important in regions faraway from the source
of radiation.
2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light-like direction ($S_+ \text{ or } S_-$ is constant). This means that the boundary of ME has metric dimension $d = 2$ and is characterized by an infinite-dimensional super-symplectic and super-conformal symmetries just like the boundary of the imbedding space $M^4_+ \times CP_2$: The boundaries are like moments for mini big bangs (in TGD based fractal cosmology big bang is actually replaced with what might be called a silent whisper amplified to not necessarily so big bang). Quantum holography would mean that effectively 2-dimensional conformal field theory at the boundary of M^4_+ region determined by ME determines what happens in the interior at QFT limit when space-time surface is not regarded as a dynamical object.

3. These observations inspire the conjecture that boundary conditions for M^4_+ like space-time sheets fixed by the absolute minimization of Kähler action quite generally require that space-time boundaries correspond to light-like 3-surfaces with metric dimension equal to $d = 2$. Quantum holography principle would state that the dynamics related to the metric of the configuration space, that is genuine quantum gravitation, would reduce to the boundaries of space-time sheets. The dynamics in zero modes and quaternion conformal degrees of freedom crucial for elementary particle physics would not however allow this kind of reduction. This would be consistent with the fractality which is expected to be a basic characteristic of the quantum critical Universe predicted by TGD. The approximate super-symplectic and conformal symmetries would be associated with the light-like boundaries of the space-time sheets. super-symplectic invariance would be broken only by quantum gravitational effects at the level of the configuration space by the fact that the boundaries of space-time surfaces are actually dynamical rather than fixed. The cosmological light-cone boundary would be however non-dynamical and this would guarantee the exactness of the cosmological super-symplectic invariance.

More concrete view about MEs as holograms

Sokolov and collaborators [5] have proposed a model of quantum holographic teleportation in which the classical photocurrents from the sender to receiver take the role of a dynamical hologram. The connection with MEs is obvious.

1. MEs are carriers of classical light-like vacuum currents (one of the basic differences between TGD and Maxwell theory). This suggests that MEs could be interpreted also as classical holograms, which are dynamical as in quantum information theory. Light-like current would be like a dynamical (four-dimensional) diffraction grating. Light-like vacuum currents and vacuum Einstein tensor generate also coherent states of photons and gravitons and MEs serve as templates for the topological condensation of photons and gravitons to the Bose-Einstein condensate of photons collinear with ME. The Bose-Einstein condensation of collinear photons and their generalizations to colored configuration space photons should affect the vacuum current by adding to the reference current what might be called evoked response. This condensation process could generate conscious experience and higher level qualia. Thus it would seem that MEs have a triple role as receiving and sending quantum antennae as well as classical holograms.

2. The proposal of [5] generalizes to the case of MEs provided one can device a method of coding quantum states of photon field to the vacuum currents. The high efficiency photodetector matrix is in which each pixel gives rise to a photocurrent [5] , is replaced with ME or set of parallel MEs. The neural window hypothesis [60] states that neuronal axons are accompanied by parallel MEs carrying information between sensory organs and brain and various parts of brain. This is only a less standard manner to say that ME represents classical dynamical hologram. The possibility of local light-cone coordinates allows also MEs which define curved deformations of the simplest cylindrical MEs.

The concrete realization of holographic teleportation proposed in [5] brings strongly in mind the architecture of the visual pathways. Thus one can wonder whether brain is performing internal teleportation of photonic quantum states with spike patterns being directly coded to the pattern of the vacuum currents flowing along MEs. If spike patterns code the dynamical hologram, a surprisingly close relationship with Pribram’s views about hologrammic brain results. Nerve pulse patterns could be seen as specifying the necessary classical aspects of the quantum
telegportation (in TGD classical physics is essential part of quantum physics, rather than some effective theory).

3. Vacuum current at a 3-dimensional time-like section of ME as a function function of time defines a dynamical 3-dimensional hologram. This is consistent with the fact that our visual experience is two-dimensional: the information is always about outer boundaries of the objects of the perceptive field. The values of the vacuum current at a given point are non-deterministic which means that vacuum current is ideal for coding information. Classical data also propagate without dispersion with light velocity obeying the laws of geometric optics and MEs imply channelling so that MEs are taylor-made for classical information transfer.

4. Space-time sheets can have both positive and negative time orientations and the sign of energy depends on time orientation in TGD framework. This means that classical communication can occur both in the direction of the geometric future and past: this is essential for the classical model of the long term memories as a question communicated to the geometric past followed by answere. The dynamical nature of the holograms means that there is no need to combine 2- or 3-dimensional holograms associated with several moments of geometric time to single hologram. To remember is to perceive an object located in the geometric past. Of course, fractality might make possible temporally scaled down versions of the geometric past but the principle would remain the same.

5. Quantum hologram view suggests that the super-symplectic representations at the light-like boundaries of MEs characterized by gigantic almost-degeneracies are the real carriers of biological information. According to the general theory of qualia [30] this information would become conscious since elementary qualia would correspond to quantum jumps for which increments of the quantum numbers correspond to the quantum numbers labelling super-symplectic generators in the complement of Cartan algebra. In this view super-conducting magnetic flux tubes could perhaps be seen as intermediate level in the control circuitry controlled by MEs and controlling atomic level.

6. This picture leaves open whether there is a level controlling the thicknesses of the magnetic flux tubes and thus also magnetic transition frequency scales, and what this level might be. The entrainment of the endogenous frequencies to exogenous frequencies explains water memory and the effects of homeopathic remedies [54], and could make possible also endogenous NMR spectroscopy and chemical senses. The key to the puzzle might be a purely mathematical problem: how the boundary conditions at the boundaries of the magnetic flux tubes can be satisfied? It might be that the induced metric must become degenerate at the boundaries ($\sqrt{g} = 0$) implying a degeneracy of the induced metric at the boundary of the magnetic space-time sheet. This need not however mean that the M_4^+ projection of the boundary is a light-like surface: the projection could well be completely static. This supports the view that the boundaries do not carry super-symplectic representations, which are associated with the imbedding space projection of the boundary rather than the boundary itself. One can imagine that ME with the same transversal section as magnetic flux tube is glued to the magnetic flux tube along this section: this kind of gluing results in a singular 4-surface analogous to the vertex region of Feynmann diagram and somekind of smoothing-out procedure is needed. The smoothed-out vertex region would make possible for ME to control magnetic flux tube thickness by varying its own transversal thickness.

MEs and super-symplectic and super-conformal symmetries

TGD predicts two kinds of super-conformal symmetries [75]. Quaternion conformal symmetries correspond to the gauge symmetries of fundamental interactions. Cosmological super-symplectic symmetries act on the boundary of light-cone and are cosmological symmetries.

The non-determinism of Kähler action however implies that the light-like M_4^+ projections of light-like boundaries of MEs take the role of the boundary of future light-cone as quantum holograms and super-symplectic symmetry becomes ordinary macroscopic symmetry. Thus there is a fractal hierarchy of quantum holograms inside quantum holograms. One can identify the light-like boundaries of MEs as geometric correlates for selves. Also space-like selves are very probably needed and magnetic
flux tube structures could represent them. Indeed, the non-determinism of CP_2 type extremals representing elementary particles (their M^+_4 projections are random light-like curves) makes it impossible to characterize the quantum state completely by the data on the light-like boundaries of MEs.

MEs are natural carriers of super-symplectic representations obtained by multiplying ordinary physical states by configuration space Hamiltonians (functions of CP_2 coordinates and coordinates E_1, E_2 and S_+ or S_- which can obviously be arranged into irreducible representations of the color group $SU(3)$) and define an excellent candidate for a hierarchy of higher level life forms. The intuitive belief that quantum gravitation is crucial for higher level consciousness can be indeed justified in this framework: the ‘worlds about worlds’ aspect of higher level consciousness is what requires genuine quantum gravitational states.

The boundary of ME having one light-like direction gives rise to conformal quantum hologram representing quantum correlation functions for quantum field theory defined in the interior of ME. This 3-dimensional dynamical quantum hologram should code for conscious information about external world. This information could be determined by coherent light and gravitons scattered from the outer boundaries of other space-time sheets and could provide a quantum representation for the geometry of the boundaries of the other space-time sheets.

super-symplectic degrees of freedom makes MEs ideal candidates for the correlates of higher level consciousness.

1. The states of super-symplectic representations have gigantic almost-degeneracies broken only by non-commutativity of super-symplectic and Poincare symmetries which means huge information storage capacities. super-symplectic representations can be realized in real context using Bose Einstein condensates of massless elementary particles on MEs. super-symplectic representations correspond to genuine quantum gravitational effects since wave functionals in the space of three-surfaces are involved space-time ceases to be a passive arena of quantum dynamics. In fact, symplectic transformations of CP_2 are approximate symmetries of the theory broken only by classical gravitation. The notion of ‘configuration space photon’ having nontrivial dependence on configuration space degrees of freedom characterized by Hamiltonian suggests strongly itself and seems to be crucial for understanding of the visual colors.

2. super-symplectic representations have universal transition frequency spectrum given as multiples of the fundamental frequency determined by the length of ME. If one assumes that MEs have lengths given by p-adic length scale hypothesis, fundamental frequencies turn out to correspond to important resonance frequencies in EEG.

For these reasons super-symplectic representations are ideal candidates for an infinite hierarchy of life forms associated with MEs. The great vision is that MEs and magnetic super-conductors associated with the magnetic flux tube structures form a fractal hierarchy interacting with the ordinary bio-matter via the classical gauge fields associated with MEs [30, 22, 61].

The standard manner to see the evolution of organism is as an initial value problem with data given at time=constant space-like section of Minkowski space. This view is definitely wrong in TGD framework, where the classical non-determinism of Kähler action is absolutely essential for the understanding of bio-systems and consciousness. Rather, one should see the problem as a boundary value problem with data given at light-like surfaces bounding MEs analogous to light-cone boundary identifiable as the moment of big bang. This view conforms nicely with the active intentional aspects of the biological evolution: system can decide what it will be and life is more like a narrative with definite goals than random Brownian zigzag curve. The life cycle of the organism is specified by posing some requirements which it must satisfy in the form of boundary conditions and organism does it best to satisfy them.

Mechanism for generation of configuration space photons

The super-symplectic representations should have some interaction mechanism with ordinary matter, if they are to be important for life. In particular, a mechanism making MEs to emit and absorb configuration space photons coupling to em charge, should exist. There are good reasons to expect that direct couplings between exotic super-symplectic states and ordinary elementary particles are very weak. The quantum number $L_0 = n$ defined by the Virasoro generator $L_0 = zd/dz$ (complex scaling) acting effectively as Hamiltonian in string diagrams is conserved in vertices. For matter
representations massless ground states correspond have scaling quantum number \(n = n_0 \), where \(n_0 \) defines the negative value of the vacuum weight. It must be emphasized that for super-symplectic representations \(L_0 \) does not seem to allow the interpretation as mass squared operator as in the case of quaternion conformal representations. The vertices in which \(L_0 = O(p^k) \) state emits ordinary particle correspond to \(np^k \leftrightarrow (np^k - m_0) + (m_0) \). The intermediate state is with \(L_0 = np^k - m_0 \) is has ultralarge scaling quantum number so that the amplitude is suppressed by a huge propagator factor. The processes involving only \(L_0 = O(p^k) \) states are however not suppressed.

The interaction of the exotic super-symplectic states with the classical gauge fields associated with MEs provides a unique mechanism of ‘matter-mind interaction’. The vanishing of the vacuum weight of Super Virasoro is very much analogous to the vanishing of the Higgs vacuum expectation value in ordinary gauge theories. Indeed, the exotic super-symplectic representations have unbroken gauge symmetries, which means that electro-weak and color interactions occur like in symmetry-nonbroken unconfined gauge theory. The presence of long range classical color and electro-weak gauge fields implying unbroken symmetries at classical level is important part of the story.

MEs have already at the space-time level symmetries supporting the view that super-symplectic algebra acts as isometry algebra of the configuration space.

First, symplectic transformations of \(E^2 \times CP_2 \), where \(E^2 \) is plane orthogonal to the light-like wave vector \(k \) associated with ME, are symmetries of MEs. Also symplectic transformations made local with respect to the light-like coordinate \(u \) and coordinate variable \(v \) orthogonal to \(u \) are also symmetries.

Secondly, arbitrary dependence on the variable \(u \) is equivalent with the invariance with respect to super-symplectic algebra acts as isometry algebra of the configuration space.

The general interaction Hamiltonian for this interaction can be guessed by recognizing the following facts.

1. Interaction Hamiltonian should have the general current-vector potential form

\[
H_{\text{int}} = \sum_D \int G^A_\mu(D) J^{A\mu}(x|D) \sqrt{g} d^4x ,
\]

where sum is over the representations \(D \) of color group defined by color Hamiltonians and where \(G^A_\mu(D) \) represents analog of the classical gluon field associated with a particular color representation. In the case of color octet representation \(G^A_\mu("8") \) represents classical gluon field and is simply the projection of the Killing vector field of the color isometry to the space-time surface. The obvious generalization is that also in general case the vector field defined by the color transformation defines the classical gluon field. \(J^{A\mu}(x|D) \) is the local current defined as the superposition of symplectic generators continued to a function of space-time coordinates.

2. The construction of a local current defined on entire space-time surface having super-symplectic generator as conserved charge is highly nontrivial task. It should be based on the observation that for ME there is a unique decomposition of \(M^4 \) tangent space to \(M^4 = M^2 \times E^2 \) such that \(E^2 \) is space-like plane orthogonal to the light-like wave vector \(k \) associated with ME. Let \(u \) denote the coordinate

\[
u = k \cdot m .
\]

The task is to continue the symplectic generator localized with respect to the radial coordinate of the light-cone boundary to a function in entire \(M^4 \). A possible manner to do this is to multiply the generator by a plane wave

\[
exp(i2\pi f(u - u_0)) ,
\]
where u denotes the restriction of the coordinate u to the light-cone boundary

$$u_0 = u|_{\delta M_4^+}.$$

The task is to fix the physical identification of the ME frequency. It turns out that interpretation as energy is the most plausible identification.

It might well be that only classical color fields define interaction vertices leading to the generation of configuration space photons. If this is the case the octet representation for configuration space photons would have a unique role. This would explain why visual colors, which can be identified as counterparts of the charged Hamiltonians associated with configuration space photons, are in a special role. Furthermore, MEs have always 2-dimensional CP^2 projection and carry classical color fields and currents restricted to $U(1)$ sub-algebra of color algebra, which need not be however color neutral. This implies that only particular configuration space photon and its conjugate are emitted and that only single color is created by the BE condensation of configuration space photons generated by a particular ME on other MEs.

8.3.5 MEs and quantum control

MEs and classical de-coherence

TGD approach inspires the idea that classical de-coherence corresponds to the decomposition of a space-time sheet carrying superposition of em fields to separate space-time sheets carrying the em fields appearing in the superposition. Since em fields live at different space-time sheets, interference effects are indeed absent which means de-coherence. A more precise and rather far reaching form of this hypothesis is that classical em field is unstable against decomposition to MEs. This mechanism allows to understand what might happen when amplitude modulated em field acts with living matter in the experiments of Blackman [14].

The extreme nonlinearity of the dynamics of absolute miminization of Kähler action implies that ELF modulated radio frequency field induces also em field component with modulating ELF frequency. If classical de-coherence generates MEs then classical amplitude modulated em fields leads to the generation of a large number of MEs at various frequencies and directions of wave vector. For instance, modulation frequency and carrier frequency could correspond to different MEs glued to each other by `wormhole contacts’. Classical de-coherence and geometrically realized Fourier analysis would be the geometric and classical counterparts for field quantization reflecting the fact that absolute minimization of Kähler action implies that space-time surfaces are analogous to Bohr orbits.

MEs and conscious holograms

The notion of conscious hologram is much more practical than the concept of quantum gravitational hologram and generalizes the notion of ordinary hologram by fusing it with the notion of self [10]. Universe is an extremely complex fractal Feynmann diagram with lines replaced by 4-dimensional space-time sheets and MEs are particular kinds of lines analogous to photon lines. These lines are like laser beams, which interfere in the vertices of the Feynmann diagram: vertices correspond to material space-time sheets, atoms, molecules, ..., cells, ... The 3-D hologram vision corresponds at the level of conscious hologram stereo consciousness resulting when the mental images associated with different points of the hologram fuse to single mental image by quantum entanglement involving also the sharing of mental images.

An important piece of the picture is fact that MEs appear as pairs of high frequency and low frequency MEs. The low frequency MEs serve as correlates for remote quantum entanglement, now between different parts of brain. High frequency MEs travel like massless particles along the bridges defined by the low frequency MEs and serve as bridges between different space-time sheets at the receiving end. This induces a leakage of ions between different space-time sheets, breaking of superconductivity and dissipative self-organization: this process which is analogous to the formation of hologram, is responsible for homeostasis and metabolism and gives rise to many-sheeted ionic flow equilibrium. Also many-sheeted lasers acting in a very wide range of frequencies become possible. The frequencies correspond to differences for the energies of ions at the space-time sheets involved.
MEs parallel to axons can also act as Josephson junctions connecting space-time sheets which can correspond to different p-adic primes.

Phase conjugate laser beams have as their counterpart negative energy MEs and negative energy photons resulting in time reversal. The time reversal for the dissipation induced by super current leakage seems also to be a key mechanism of bio-control. This leads to the working hypothesis that negative energy MEs are responsible for motor control whereas positive energy MEs are involved with perception and cognition: motor action is time reversed sensory perception in appropriate p-adic time scale. Among other things negative energy MEs make possible emission of negative energies making possible buy now-pay later (or let others pay) mechanism and thus extreme flexibility of energy economy.

Many-sheeted ionic flow equilibrium controlled by MEs

A crucial empirical ingredient supporting the view about a hierarchy of magnetic super-conductors are the puzzling observations of cell biology (for a summary see the first chapter of [48]) challenging the association of ionic channels and pumps to cell membrane. The paradoxes disappear if cell and its exterior are assumed to be in a many-sheeted ionic flow equilibrium with ionic currents flowing from super-conducting space-time sheets to atomic space-time sheets and back, so that the densities of ions at atomic space-time sheets are controlled by the the very small densities and quantized currents of dark ions at super-conducting magnetic flux tube space-time sheets and coding the information about homeostasis of bio-matter [13] . Also a reason why for liquid crystal and electret properties of bio-matter emerges and one can understand the function of electric circuitry associated with body [11] .

In this picture ionic channels and pumps would play the role of sensors detecting the concentrations of various ions and membrane voltages. The dominant part of the ionic currents would flow between cell interior and exterior as (possibly dark) supra currents and would dissipate very little. The dominant part of the metabolic energy would be used to build-up of dark EEG with photon energies above thermal threshold. Also negative dark W MEs responsible for motor actions would suck metabolic energy.

W MEs connecting magnetic body and biological body can induce charge entanglement by super-position of pairs of exotically ionized states with opposite exotic charges. State function reduction then selects either of the resulting states. Exotic ionization generates dark plasma oscillations which induce by Faraday law electric fields at the space-time sheets of the ordinary matter. The resulting ohmic currents in turn realize the control action on the ordinary matter (nerve pulse patterns, Ca2+ waves, etc...).

Neutral MEs can induce supra currents in super-conducting magnetic circuits by magnetic induction mechanism, serve as Josephson junctions between magnetic flux tubes, and induce magnetic quantum phase transitions. MEs can generate reference waves or their phase conjugates (time reversals) acting on lower level MEs serving as dynamical holograms. The induced coherent light pattern and its phase conjugate could act as a control command and its time reversed version. Conjugate reference waves provide an extremely simple mechanism of healing by time reversal allowing the living matter to fight against second law.

MEs could "read" DNA strand to the light-like vacuum current by moving along it and thus code DNA strand/conjugate strand to a hologram or its phase conjugate in turn acting as a control command or its time reversal. ELF MEs could do the same at the level of axons: instead of DNA sequences nerve pulse patterns would be read now. Thus living matter could be regarded as a symbiosis in which MEs control super-conducting magnetic flux tubes controlling ordinary matter at atomic space-time sheets via many-sheeted ionic flow equilibrium. DNA would represent the ROM of this system.

What makes this so interesting is that MEs are at the highest level of quantum control in the TGD based view about bio-system as a symbiosis in which MEs control super-conducting magnetic flux tubes controlling ordinary matter at atomic space-time sheets via many-sheeted ionic flow equilibrium. The coherent light pattern emitted by ME resulting from the interaction of ME with the reference wave (its phase conjugate) could act as a control command (time reversed control command) inducing process (time reversed process). Conjugate reference waves would thus provide an incredibly simple and general mechanism of healing by time reversal allowing the living matter to fight against second law. This would be like a general initiating a war by just nodding or shaking his head.
8.3. MEs and mes

The formation of the phase conjugates could occur completely routinely and explain also why DNA appears in double strands. ME could read DNA strand to the pulse pattern of the light-like vacuum current by moving along the strand and thus code DNA strand (conjugate strand) to a hologram (its phase conjugate) in turn acting as a control command (its time reversal). ELF MEs could do the same at the level of axons: instead of DNA sequences nerve pulse patterns would be read now. DNA would clearly represent the ROM of this system. The coding of proteins would thus not be the only function related to DNA: DNA would be for the cell society what the first written laws were for human society, and the presence of the conjugate strand would make possible a systematic self repair at the cellular level by time reversal. More detailed considerations along these lines, in particular some empirical evidence for the hologrammic realization of the genetic code in terms of light-like vacuum currents, are represented in [49].

MEs as Josephson junctions?

MEs can induce Josephson junctions between bio-structures. Since the electric field of ME is orthogonal to the direction of the propagation of vacuum current, the Josephson junction with potential difference is formed most naturally when super conductors are joined by join along boundaries bonds to ME in the direction of the electric field associated with ME. MEs can in principle be arbitrary thin so that the thickness of Josephson junction can be much smaller than the dominating wavelength of ME.

ME electric field can contain also constant component. In this case is however ME is necessary double sheeted since constant electric field is created by wormhole throats on boundaries of ME serving as effective charges. These MEs could give rise to the Josephson junctions with constant potential difference. An attractive hypothesis is that these ME pairs have opposite time orientations so that total energy of ME pair can vanish and can be created from vacuum without any energy cost. Clearly, these structures are cognitive in the strong sense of the word.

This coding of the transversal potential difference associated with ME pair to Josephson frequency is expected to be fundamental information coding mechanism in living matter. ME pair can contain also oscillating electric field over Josephson junction at magnetic or some other transition frequency so that MEs are ideal for control purposes.

MEs and the interaction of the classical em fields with bio-matter

MEs acting as Josephson junctions and containing oscillating em field at ELF frequency give rise to a harmonic perturbation inducing quantum jumps of the magnetic states of ions and explains the effect of ELF em fields on bio-matter. Also the presence of the mysterious intensity windows [15, 16] can be understood. Josephson current paradigm allows to understand this effect if RF or MW MEs associated with the external field act as Josephson junctions.

1. The external electric field oscillating with frequency \(\omega \) (now radio frequency) defines slowly varying potential difference over Josephson junction of length \(d \) acting as Josephson junction provided that the condition

\[
\omega \ll \omega_J(\text{max}) = ZeV = ZeEd
\]

holds true. This gives

\[
d \gg \frac{\omega}{ZeE}.
\]

For \(E \sim 1 \text{ V/m} \) and \(\omega \sim \text{GHz} \) which are typical values used in experiments [13], this condition gives \(d \gg 10^{-6} \) meters which is satisfied if Josephson junctions have size not smaller than cell length scale.

2. For fixed length of Josephson junction amplitude window results if the maximal Josephson frequency \(\omega_J(\text{max}) \) is slightly above some transition frequency since in this case the stationary maxima and minima of amplitude lead to long lasting resonant excitation of quantum transitions. Denoting the relative width of the resonance by \(\Delta \omega/\omega = P \), the ratio of the time spent in resonance at \(\Omega_J(\text{max}) \) to the time spent off resonance at \(\Omega_J \) is of order
\[
\frac{t^{(\text{max})}}{t} \sim \sqrt{1 - \frac{\Omega_J^2}{\Omega_J^{(\text{max})}^2}} \times \frac{1}{\sqrt{P}}.
\]

For a narrow resonance width this ratio can be very large so that amplitude window results for fixed value of \(d\).

3. Amplitude window results if there is a correlation between the thickness of ME and transversal electric field so that \(\omega_J^{(\text{max})} = ZeEd(E)\) satisfies resonance condition for some values of \(E\) only, if any. In absence of this correlation Josephson junctions must have discrete spectrum of effective lengths for amplitude window to result.

4. For electric fields in the range .1 V/m the frequencies \(\omega_J\) are above GHz for \(d\) larger than \(3 \times 10^{-5}\) meters and correspond to the frequencies for the conformational dynamics of proteins. There are obviously a large number of frequencies of this kind and several intensity windows. EM fields with these strengths should have special effects on living matter: it could be even that some kind of feature recognition process involving self-organization occurs at these field strengths. Note that the minimal size of Josephson junctions corresponds to the p-adic length scale \(L(173) \approx 1.6 \times 10^{-5}\) meters characterizing structures next to cells in the p-adic length scale hierarchy.

The interaction of MEs with super-conducting magnetic flux tubes

The interaction of brain with MEs could mean that the super-conducting magnetic fluxtube circuitry associated with brain effectively acts as magnetometer somewhat in the same way as SQUID magnetometer measures the magnetic fields generated by brain. The resulting conceptual framework makes it easier to develop a quantum level model for the generation of nerve pulse and for the interaction of MEs and bio-super-conductors in terms of Josephson currents and super currents and relying on the notion of stochastic resonance.

Brain could measure the magnetic fields of MEs by using a mechanism which is very much like the mechanism of SQUID based magnetometers \[21\] used to measure the magnetic fields induced by brain.

1. A large collecting circuit in which the magnetic field of ME generates a compensating current by the quantization of the magnetic flux might be involved.

2. The amplification of this field could be achieved if the circuit contains a part which is spiral like and contains large number of loops in a small area.

3. In the core region the current flowing in the loop gives rise to an amplified magnetic field which in turn can penetrate into a super-conductor in form of flux tubes and in multiples of flux quantum. By counting the number of flux quanta one obtains rough measure for the magnetic field. In the case of brain the quantized magnetic flux would directly affect the state of neurons and the model for the generation of nerve pulse specifies this interaction. This effect on neurons would be long lasting as compared with the short-lasting action induced by the nerve pulse patterns.

4. The deviation of the flux of the amplified magnetic field from an integer number of flux quanta could be measured by a neuronal counterpart of SQUID, which basically consists of a closed loop decomposing to two parts which are joined together by insulator so that current rapidly dissipates to a minimum value forced by the flux quantization. The current in SQUID serves as a measure for very weak magnetic fields of MEs. The non-linear dynamics of SQUID allows also stochastic resonance allowing to amplify very weak periodic signals. This measurement mechanism might be interpreted as a mechanism of interaction between super-conducting magnetic flux tubes and neuronal circuits inducing also an interaction between MEs and neuronal circuits. One might guess that nerve pulse generation might involve this kind of mechanism: stochastic resonance seems to be indeed involved but not in this manner.

The collecting circuits for the neuronal SQUIDs could be of order body size or even larger. In \[30\] I have proposed the notion of magnetic circulation analogous to blood circulation to be a basic control
8.3. MEs and mes

system in bio-systems. This circulation could be seen also as a collecting circuitry for magnetic flux amplified in brain, where amplifying and SQUID type components of the circuitry are located. Amplifying and SQUID type parts of the circuitry might be also located in other organs like heart: perhaps even muscles contain amplifying circuits and neuronal SQUIDs. One cannot exclude the possibility of much larger collecting circuits making possible the control of the organism by the higher levels of self hierarchy.

The spiral loops used in SQUIDs to amplify the magnetic field bring in mind the spiral structures associated with the self-organizing excitable media [12]. I have proposed in [52, 53] that spiral structures might in TGD framework correspond to magnetic or Z_0 magnetic flux tubes which enter along the first space-time sheet to the vertex of the spiral structure, flow to the second space-time sheet, and return along the spiral loop. These spiral loops could be also ionic em or Z_0 super-conductors. This kind of spiral loop might perhaps serve as an amplifier of the magnetic flux generated by the super current flowing along the loop.

Very general empirical inputs [48] in dramatic conflict with the standard vision about what homeostasis between cell interior and exterior means, lead naturally to a model in which the interaction of MEs with neuron occurs via magnetic induction mechanism leading also to the generation of nerve pulses. The notion of flow equilibrium in the many-sheeted space-time is essentially involved. The mechanism can also involve stochastic resonance as a means of transforming the oscillatory motion of the gravitational pendulum serving as an analog system to a rotational motion. The necessary noise could correspond to the noisy part of the super current perhaps induced by the incoming nerve pulses.

Genetic code and color?

It is gradually becoming clear that the possibility of classical color gauge fields, the center of mass color degrees of freedom of space-time sheets analogous to rigid body degrees of freedom, and configuration space color might have deep implications for the understanding of living matter and consciousness. Colored MEs, or what might be called configuration space photons, are one possible candidate for colored particles involved with the realization of color vision. They might be also an essential element of bio-control using the analogs of laser beams and there phase conjugates to represent control commands and their time reversals. This raises the question whether color might relate somehow with the realization of genetic code. The following speculations are just first speculations but might help to open gates of imagination.

1. **Minimal translation of the genetic code to holograms**

Configuration space photons represent genuinely quantum gravitational states, state functionals in the ‘world of worlds’, and thus they should correspond to highest level of self hierarchy and perform quantum control. Since color and polarization represented as angular momentum component in direction of ME characterize configuration space dependence, they could play a fundamental role in the control mechanism and control commands represented by quantum holograms should be characterized by a collection of these quantum numbers. In particular, genetic code might be expressible in terms of these basic quantum numbers.

There is a thought provoking connection with the TGD based model of genetic code predicting entire hierarchy of genetic codes.

1. At the first interesting level one has 4 nucleotides corresponding to $2^2 = 4$ mutually consistent statements in the set of $7 = 2^3 \times 1$ statements coded by 3 bits and one statement thrown away.

2. DNA triplets correspond to the subset of $2^6 = 64$ mutually consistent statements of $2^7 - 1 = 127$ statements coded by 7 bits with one statement thrown away. At the next level one has $2^{127} - 1$ statements and the number of the mutually consistent statements is $2^{126} = 2^{6 \times 21}$. It is not an accident that 126 decomposes into the product of numbers 6 and 21, where 21 is the number of different aminoacids with stopping sign counted formally as an aminoacid.

What makes the bell ringing is the appearance of the number $6 = 3 + 3$ primary colors and their conjugates. Could the number of nucleotides in the DNA triplet and its conjugate somehow correspond to the 3 primary colors and their complementary colors somehow? Note that also the 2-dimensional configuration spin is involved, and has two symmetry-related values J and $-J$ (configuration space spin should be responsible for polarization sense). How could this correspondence be consistent with
the idea about MEs generating coherent states of configuration space photons having configuration space color and spin and acting as control commands?
Consider first a minimal model in which, somewhat disappointingly, color is not necessarily needed.

1. The proposal of Gariaev and collaborators that DNA can be effectively regarded as a static sequence of laser mirrors [26] suggests a concrete guess for the coding of genes to sequences of MEs. In TGD framework laser mirrors could correspond to transversal MEs associated with DNA nucleotides. The requirement that two orthogonal polarizations are possible, implies that there must be a pair of mutually orthogonal MEs associated with each nucleotide and orthogonal to the DNA strand.

2. Configuration space spin of ME, which is 2-dimensional spin, is either J or $-J$ so that $2 \times 2 = 4$ spin combinations ($\pm J, \pm J$) are possible for the pair of MEs. The four nucleotides A,C,T,G naturally code for these spin configurations and the reversal of spin orientations corresponds naturally to the conjugations $A \leftrightarrow T$, $C \leftrightarrow G$ conjugations. Clearly, this model does not require color.

2. How color could emerge in the translation of the genetic code to holograms?

Color does not code for anything in the minimal model of the genetic code, and one could realize the genetic code using non-colored configuration space photons having only polarization degree of freedom or even ordinary polarized coherent light. There are some motivations for color however.

Each hologrammic command should have time reversed version giving rise to the phase conjugate command. Color and spin conjugation is a very natural manner to represent this operation. The conjugate hologram is naturally associated with the conjugate DNA strand. This observation allows to considerably generalize the model by only requiring that MEs correspond to any of the six basic colors and that complementary nucleotides correspond to conjugate colors. This option raises the possibility that DNA code words, genes or some other sub-units of DNA strands could define color singlets. This would obviously provide a very elegant manner to decompose genetic text to subunits.

A more general, and perhaps more plausible, manner to decompose genetic text to subunits is as tensor products of unentangled and irreducible color representations.

This option however allows the possibility that genetic codewords are self conjugate. What if one excludes this possibility? It is possible to exclude the possibility of self conjugate commands by using 3+3 decomposition of color algebra corresponding to colors and complementary colors. The pairs of MEs associated with the subsequent nucleotides could be assumed to correspond to, say, (red, blue, white) in this order so that the conjugate strand corresponds to (green, yellow, black). In fact, the ordering of the colors is not essential since spin states of MEs code for the information. At quantum level the requirement that three colors are different would boil down to the requirement that there is complete asymmetry with respect to the permutations of the colors of three parallel MEs. Note that in this case the color quantum numbers of the DNA strand or its complementary strand cannot sum up to zero.

Note that the three different colors for the subsequent nucleotides might make possible that the corresponding control commands act on different MEs, which could be MEs associated with DNA itself.

3. Color confinement and bio-control

If color is really there, it must have some crucially important function besides making it possible to define time reversals of the control commands and decomposition of DNA to unentangle linguistic subunits. A good guess is that color confinement is involved with this function very intimately. Color confinement in the length scale of DNA MEs requires color neutrality in this length scale. DNA strand and its conjugate, even triplet and its conjugate, can give rise to a color singlet state but this is not possible if only the MEs associated with DNA strand are activated. In this case color confinement requires that somewhere else another colored state is activated so that the resulting overall state is color singlet. Thus long range correlations in the length scale of MEs perhaps crucial for biological self organization are unavoidable.

The work of Gariaev and collaborators is based on effects associated with visible laser light interacting with DNA. This encourages to think that the lengths of DNA MEs should be of order $E^{-7} - E^{-6}$ meters. This conforms with the idea that genes should directly control the functioning of the cell or
8.3. MEs and mes

at least the cell nucleus. Note that genes might be regarded as longitudinally color entangled portions of DNA acting. Configuration space color entanglement in length scale of chromosome and nucleus could obviously be possible. If this picture is correct, color confinement would be much more, that an eternal nuisance of elementary particle theorist.

4. Also memetic codewords could be coded to holograms

One can imagine also the translation of the memetic code to a sequence of orthogonal ME pairs. The $6 \times 21 = 126$ bits for the maximal number of mutually consistent statements of the memetic code decompose into a sequence of 21 6-bit sequences interpreted as statements consisting of 21 words. Each 6-bit sequence consisting of three 2-bit units in turn is in one-one correspondence with a DNA triplet. Each 2-bit unit would code for the configuration space spins $\pm J$ for a a pair of orthogonal MEs possibly forming an antisymmetrized triplet of the basic colors. The duration of the memetic codeword corresponds to the secondary p-adic time scale $T_2(M_{127}) = .1$ seconds so that by Uncertainty Principle memetic code could imply long range color correlations in the length scale of Earth. ELF MEs propagating in phase with the nerve pulse sequence (this is essential and explains why ELF MEs must scan the cortex!) could translate the memetic codewords represented by the sequences of the cognitive neutrino pairs to quantum holograms.

8.3.6 Experimental evidence for MEs

There is indeed evidence for the presence of MEs in bio-system. In CASYS’2000 conference Peter Marcer reviewed the work done by him in collaboration with Russian group [26] led by Peter Gariaev providing experimental evidence for the hypothesis that DNA acts as a receiving and sending quantum antenna. What was observed that irradiation of DNA with visible laser light induced emission of coherent light with both visible and radio frequencies. The emitted radiation was also modulated in time scale of about .01 seconds. The modulation could be due to propagation of soliton sequences propagating along Josephson junction formed by the strands of DNA or due to nonpropagating spatially constant Josephson current: both cases are mathematically equivalent with gravitational pendulum. Phantom DNA effect [49] has explanation in terms of mind like space-time sheets identifiable as MEs. The experiments of Russian group replicated the observations of Poponin.

With inspiration coming from the experimental results, Gariaev has also suggested that DNA is accompanied by a sequence of some kind of laser mirrors. TGD suggests their interpretation as MEs [26]. The assumption that each nucleotide is accompanied by an orthogonal pair of MEs (two orthogonal polarizations) allows a holographic realization of the genetic code. Four nucleotides are mapped to four pairs of values of the configuration spin $\pm J$ in the simplest realization [30]. Color degrees of freedom would bring in the long term correlations forced by color confinement in the length scale of DNA ME, which should be of order of wavelength of visible light, and thus forcing structures of this size to behave like coherent units.

The bio-photons of Popp [20] could correspond to coherent photons generated by MEs. Homeopathy could also have explanation in terms of MEs coding relevant frequency information to MEs about medicine, whose effect is also based on MEs [27]. MEs would simply mimic the medicine. There are well documented effects related to the ability of water to absorb and transmit frequencies [29]. The ability of water to absorb and transmit frequencies could rely on the generation of mind like space-time sheets, most naturally MEs, oscillating with the same frequency as stimulus. Water would form cognitive representation for the stimulus, mimic it, in terms of light-like vacuum current giving rise to classical em or Z_0 field providing nonlike hologram like representation for the stimulus.

MEs are predicted to form a scale invariant family and quite recent cosmological data provides support for MEs in cosmological(!) length scales [3]. An intense beam of photons with energies of roughly 100 proton masses from a blazar at distance of about 10^8 light years have been observed. Blazar is so called gamma ray burster producing extremely intense energy fluxes in form of two jets. How these jets are produced is mystery of its own in standard physics. In TGD these jets correspond to the ends of cosmic string decaying like a cosmic firecracker into ordinary matter giving rise to galaxies. What makes observation ‘impossible’ is that photons with these energies should never reach Earth but lose their energy via scattering with cosmic microwaves background. Somehow these photons are however able to defy laws of standard physics. One TGD based model for phenomenon is very simple: photons are Bose-Einstein condensed on and travel, not along material space-time sheet were energy would be rapidly lost, but along ‘massless extremal’ (ME) of cosmic size scale. Cosmic laser beam is
in question. One can also consider the possibility that the light-like vacuum current associated with cosmic ME generates the observed photons.

The general model for quantum control and coordination relies crucially on the existence of a hierarchy of superconductors associated with the self hierarchy (self defined as a quantum system able to avoid bound state entanglement with environment) controlling the ionic densities at atomic space-time sheets via many-sheeted ionic flow equilibrium and being quantum controlled with the mediation of the fractal hierarchy of MEs.

8.4 Bio-systems as superconductors

TGD Universe provides also the hardware for the realization of bio-system, in particular brain, as a macroscopic quantum system involving various kinds of super conductors. The essential elements are quantum criticality, spin glass analogy and generalization of the space-time concept and TGD based gauge field concept.

8.4.1 General mechanisms for superconductivity

The many-sheeted space-time concept provides a very general mechanism of superconductivity based on the ‘dropping’ of charged particles from atomic space-time sheets to larger space-time sheets. The first guess was that larger space-time sheets are very dry, cool and silent so that the necessary conditions for the formation of high T_c macroscopic quantum phases are met.

The possibility of large \hbar quantum coherent phases makes however the assumption about thermal isolation between space-time sheets un-necessary. At larger space-time sheet the interactions of the charged particles with classical em fields generated by various wormhole contacts feeding gauge fluxes to and from the space-time sheet in question give rise to the necessary gap energy. The simplest model for Cooper pair is space-time sheet containing charged particles having attractive Coulombic interaction with the quarks and antiquarks associated with the throats of the wormhole contacts.

A crucial element is quantum criticality predicting that superconductivity appears at the fluctuating boundaries of competing ordinary and large \hbar phases for nuclei. This assumption predicts several anomalous phenomena such as cold fusion and nuclear transmutations. Also high T_c superfluidity of bosonic atoms dropped to space-time sheets of electronic Cooper pairs becomes possible besides ionic super conductivity. Even dark neutrino superconductivity can be considered below the weak length scale of scaled down weak bosons.

Magnetic and Z^0 magnetic flux tubes and walls are especially interesting candidates for supra current carries. In this case the Cooper pairs must have spin one and this is indeed possible for wormholy Cooper pairs. The fact that the critical magnetic (Z^0 magnetic) fields can be very weak or large values of \hbar is in accordance with the idea that various almost topological quantum numbers characterizing induced magnetic fields provide a storage mechanism of bio-information.

This mechanism is extremely general and works for electrons, protons, ions and even charged molecules so that an entire zoo of high T_c bio-superconductors and super-fluids is predicted. All atoms and ions can be regarded as completely ionized Z^0 ions and also Z^0 superconductors (or super fluids) are predicted.

1. The experimental data about the effects of ELF em fields at cyclotron frequencies of various ions in Earth’s magnetic field on bio-systems [41] provide support for this scenario. Most remarkably, the cyclotron frequencies of biologically important ions correspond to the important frequencies of EEG and the time scale of nerve pulse corresponds to $n = 3$ multiple of proton cyclotron frequency so that a direct quantitative contact with brain consciousness results.

2. Electronic super conductors are of type II with defect regions being typically cylindrical: DNA sequences, proteins, microtubules,... could provide examples of the defect regions. One ends up also with a model of high T_c super conductors in which the interaction of the electrons with wormhole BE condensate gives rise to Cooper pairs. The model explains elegantly the basic peculiar features of the high T_c superconductors.

3. Long ranged Z^0 force due to anomalous weak isospin of nuclei [71, 23] and Z^0 charged wormholes make possible also Z^0 ionic superconductivity and even dark neutrino super conductivity. For
Bio-systems as superconductors

instance, Z^0 ionic superconductivity is crucial in the model for the quantum correlate of hearing: audible frequencies are mapped to Z^0 cyclotron frequencies. Dark neutrino superconductors are of type I in the interesting length scale range and defect regions are stripe like. Besides cell and endoplasmic membranes, epithelial sheets consisting of two cell layers and some larger structures in cortex could correspond to regions of this kind and the interpretation as a physical realization of cognitive hierarchy suggests itself.

8.4.2 Superconductivity at magnetic flux quanta in astrophysical length scales

Magnetic flux tubes of endogenous magnetic field $B_{end} = 2B_E/5 = .2$ Gauss, where $B_E = .5$ Gauss is the nominal value of the Earth’s magnetic field, are crucial for the TGD based model of superconductivity. Since the models of auroras assume that the magnetic flux lines act effectively as conducting wires, the natural hypothesis is that superconductivity is an astrophysical phenomenon. This leads to a model of auroras explaining the latest findings and providing further insights to the superconductivity and the manner how it breaks down. Critical temperature can be identified as the temperature at which the join along boundaries bonds making possible the leakage of the supra currents to the non-superconducting space-time sheets become possible and can be gigantic as compared to the temperature at the superconducting space-time sheets if space-time sheets are thermally isolated. On the other hand, the possibility of large \hbar phases in principle makes possible arbitrarily high critical temperatures in a given length scale.

p-Adic length scale hierarchy and the hierarchy of dark matters labelled by values of \hbar suggest the existence of an entire hierarchy of super conducting space-time sheets giving rise to a hierarchy of cognitive representations (abstractions about abstractions about...). The possibility of complex conformal weights expressible in terms of zeros of Riemann Zeta such that the net conformal weight is real, and the hierarchy of algebraic extensions of p-adic number fields suggest the existence of additional hierarchies.

8.4.3 Fractal hierarchy of EEGs and ZEGs

There are three contributions to EEG besides neural noise: Schumann frequencies, cyclotron frequencies, and the frequencies associated with Josephson junctions determined by the sum of the constant voltage and voltage perturbation determined by the superposition of cyclotron frequencies. Cyclotron contribution can be interpreted as a control signal from a magnetic body in question labelled by k_d and affects both the ions at the flux sheets traversing DNA and the Josephson junction. The coherent state of photons generated by Josephson current corresponds to a reaction to this signal received by the magnetic body as a feedback. Schumann frequencies can be assigned to the control by magnetic body of Earth and correlate with the collective aspects of consciousness.

The findings of Nunez [33] about narrow 1-2 Hz wide bands at 3,5,7 Hz and 13,15,17 Hz confirm with the prediction of satellite bands and fix the Josephson frequency to 5 Hz. This picture explains the general characteristics of EEG in wake-up state qualitatively and quantitatively.

In order to understand the characteristics during various stages of deep sleep one must assume that the cyclotron frequency scale of ions is scaled down by a factor of 1/2. One explanation is that right resp. left brain hemisphere corresponds to $Z = 2$ resp. $Z = 1$ quantization condition $Z \int B dS = n\hbar$ for the magnetic flux. $Z = 2$ case allows only doubly charged bosonic ions at magnetic flux sheets. $Z = 1$ case also allows singly charged ions be their bosons or fermions and for this option magnetic field is scaled down by a factor of 1/2. The alternative explanation is that during sleep only Bose-Einstein condensates of singly charged exotic ions resulting when color bond inside nucleus becomes charged are present. This reduces the scale of cyclotron frequencies by a factor 1/2 and leaves only theta and delta bands. During stage 4 sleep only only DNA cyclotron frequencies in delta band are around 1 Hz and just above the thermal threshold are predicted to be present. For $k_d = 3$ and magnetic field
scaled up by λ and flux tube area scaled down by λ^{-2} DNA frequencies are scaled up to kHz for $Z = 2$ flux quantization and might define neuronal synchronization frequencies.

The generalization of the model for EEG hierarchy to the case of ZEG is straightforward and cyclotron frequency spectrum is essentially the same. Z^0 ions are obtained when nuclear color bonds become charged and the combination of ordinary and exotic ionization can produce also em neutral Z^0 ions. Any atom, almost always boson, has an exotically charged counterpart with same statistics so that very rich spectrum of Bose-Einstein condensates results.

8.4.4 TGD assigns 10 Hz biorhythm to electron as an intrinsic frequency scale

p-Adic coupling constant evolution and origins of p-adic length scale hypothesis have remained for a long time poorly understood. The progress made in the understanding of the S-matrix of the theory (or rather, its generalization M-matrix) has however changed the situation. The unexpected prediction is that zero energy ontology assigns to elementary particles macroscopic times scales. In particular, the time scale assignable to electron correspond to the fundamental biorhythm of 10 Hz.

M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through the understanding of S-matrix, or actually M-matrix defining entanglement coefficients between positive and negative energy parts of zero energy states in zero energy ontology. M-matrix has interpretation as a "complex square root" of density matrix and thus provides a unification of thermodynamics and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude multiplying positive and real square root of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann algebras allows to demonstrate that the irreducible components of M-matrix are unique and possesses huge symmetries in the sense that the hermitian elements of included factor $\mathcal{N} \subset \mathcal{M}$ defining the measurement resolution act as symmetries of M-matrix, which suggests a connection with integrable quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution associated with time scales T_n, which come as octaves of a fundamental time scale: $T_n = 2^n T_0$. Number theoretic universality requires that renormalized coupling constants are rational or at most algebraic numbers and this is achieved by this discretization since the logarithms of discretized mass scale appearing in the expressions of renormalized coupling constants reduce to the form $\log(2^n) = n\log(2)$ and with a proper choice of the coefficient of logarithm $\log(2)$ dependence disappears so that rational number results.

p-Adic coupling constant evolution

Could the time scale hierarchy $T_n = 2^n T_0$ defining hierarchy of measurement resolutions in time variable induce p-adic coupling constant evolution and explain why p-adic length scales correspond to $L_p \propto \sqrt{p} R$, $p \approx 2^k$, $R CP_3$ length scale? This looks attractive but there is a problem. p-Adic length scales come as powers of $\sqrt{2}$ rather than 2 and the strongly favored values of k are primes and thus odd so that $n = k/2$ would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies $r^2 = Dt$ suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-surfaces X^2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For CP_3 type vacuum extremals the situation reduces to that for a one-dimensional random light-like curve in M^4. The orbits of Brownian particle would now correspond to light-like geodesics γ_3 at X^3. The projection of γ_3 to a time=constant section $X^2 \subset X^3$ would define the 2-D path γ_2 of the Brownian particle. The M^4 distance r between the end points of γ_2 would be given $r^2 = Dt$. The favored values of t would correspond to $T_n = 2^n T_0$ (the full light-like geodesic). p-Adic length scales would result as $L^2(k) = DT(k) = D^2 T_0$ for $D = R^2 / T_0$. Since only CP_2 scale is available as a fundamental scale, one would have $T_0 = R$ and $D = R$ and $L^2(k) = T(k)R$.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate to the p-adic length scale via \(T_p = L_p/c \) as assumed implicitly earlier but via \(T_p = L_p^2/R_0 = \sqrt{p}L_p \), which corresponds to secondary p-adic length scale. For instance, in the case of electron with \(p = M_{127} \) one would have \(T_{127} = .1 \) second which defines a fundamental biological rhythm. Neutrinos with mass around \(.1 \text{ eV} \) would correspond to \(L(169) \simeq 5 \mu \text{m} \) (size of a small cell) and \(T(169) \simeq 1 \times 10^4 \text{ years} \). A deep connection between elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime \(p \simeq 2^k \) would characterize the thermodynamics of the random motion of light-like geodesics of \(X^3 \) so that p-adic prime \(p \) would indeed be an inherent property of \(X^3 \).

4. The fundamental role of 2-adicity suggests that the fundamental coupling constant evolution and p-adic mass calculations could be formulated also in terms of 2-adic thermodynamics. With a suitable definition of the canonical identification used to map 2-adic mass squared values to real numbers this is possible, and the differences between 2-adic and p-adic thermodynamics are extremely small for large values of \(p \simeq 2^k \). 2-adic temperature must be chosen to be \(T_2 = 1/k \) whereas p-adic temperature is \(T_p = 1 \) for fermions. If the canonical identification is defined as

\[
\sum_{n \geq 0} b_n 2^n \to \sum_{m \geq 1} 2^{-m+1} \sum_{(k-1)m \leq n < km} b_n 2^n .
\]

It maps all 2-adic integers \(n < 2^k \) to themselves and the predictions are essentially same as for p-adic thermodynamics. For large values of \(p \simeq 2^k \) 2-adic real thermodynamics with \(T_R = 1/k \) gives essentially the same results as the 2-adic one in the lowest order so that the interpretation in terms of effective 2-adic/p-adic topology is possible.

p-Adic length scale hypothesis and biology

The basic implication of zero energy ontology is the formula \(T(k) \simeq 2^{k/2}L(k)/c = L(2, k)/c \). This would be the analog of \(E = hf \) in quantum mechanics and together hierarchy of Planck constants would imply direct connection between elementary particle physics and macroscopic physics. Especially important this connection would be in macroscopic quantum systems, say for Bose Einstein condensates of Cooper pairs, whose signature the rhythms with \(T(k) \) as period would be. The presence of this kind of rhythms might even allow to deduce the existence of Bose-Einstein condensates of hitherto unknown particles.

1. For electron one has \(T(k) = .1 \) seconds which defines the fundamental \(f_e = 10 \text{ Hz} \) bio-rhythm appearing as a peak frequency in alpha band. This could be seen as a direct evidence for a Bose-Einstein condensate of Cooper pairs of high \(T_c \) super-conductivity. That transition to “creative” states of mind involving transition to resonance in alpha band might be seen as evidence for formation of large BE condensates of electron Cooper pairs.

2. TGD based model for atomic nucleus [2], [3] predicts that nucleons are connected by flux tubes having at their ends light quarks and anti-quarks with masses not too far from electron mass. The corresponding p-adic frequencies \(f_q = 2^k f_e \) could serve as a biological signature of exotic quarks connecting nucleons to nuclear strings . \(k_q = 118 \) suggested by nuclear string model would give \(f_q = 2^{18} f_e = 26.2 \text{ Hz} \). Schumann resonances are around 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and \(f_q \) is not too far from 27.3 Hz Schumann resonance and the cyclotron frequency \(f_c (11B^+) = 27.3 \text{ Hz} \) for \(B = .2 \) Gauss explaining the effects of ELF em fields on vertebrate brain.

3. For a given \(T(k) \) the harmonics of the fundamental frequency \(f = 1/T(k) \) are predicted as special time scales. Also resonance like phenomena might present. In the case of cyclotron frequencies they favor values of magnetic field for which the resonance condition is achieved. The magnetic field which in case of electron gives cyclotron frequency equal to 10 Hz is \(B_e \simeq 3.03 \text{ nT} \). For ion with charge \(Z \) and mass number \(A \) the magnetic field would be \(B_I = \frac{A}{2} \left(m_p/m_e \right) B_e \). The \(B = .2 \) Gauss magnetic field explaining the findings about effects of ELF em fields on vertebrate
brain is near to B_p for ions with f_c alpha band. Hence the value of B could be understood in terms of resonance with electronic B-E condensate.

4. The hierarchy of Planck constants predicts additional time scales $T(k)$. The prediction depends on the strength of the additional assumptions made. One could have scales of form $nT(k)/m$ with $m = 1$ in the metabolism of pre-biotic systems. In the following fit electron’s zero point kinetic energy will be differences of zero point kinetic energies define universal metabolic energy currencies present already in metabolism of pre-biotic systems. In the following fit electron’s zero point kinetic energy will be taken to be $E_0 = 5 eV$. Since the ratio of electron and proton masses is $m_e/m_p \approx 1836$ the dropping of electron from space-time sheet $k_{e} = k_{p} + 11$ liberates zero point kinetic energy which is by is by a factor .9196 smaller. For $k_{p} = 137$ one would have $k_{e} = 148$. This energy corresponds to the metabolic energy currency of living systems and the idea is that the differences of zero point kinetic energies define universal metabolic energy currencies present already in the metabolism of pre-biotic systems. In the following fit electron’s zero point kinetic energy will be taken to be $E_0(148) = .5 eV$ so that for proton the zero point kinetic energy would be $E_0(137) = .544 eV$.

5. Mersenne primes are expected to define the most important fundamental p-adic time scales. The list of real and Gaussian (complex) Mersenne M_n possibly relevant for biology is given by $n = 89, 107, 113^*, 127, 151^*, 157^*, 163^*, 167^*$ (** tells that Gaussian Mersenne is in question).

<table>
<thead>
<tr>
<th>n</th>
<th>f/Hz</th>
<th>E/k</th>
<th>E/k</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>2.7×10^{12}</td>
<td>1.0 $\times 10^7$</td>
<td>1.6 $\times 10^5$</td>
</tr>
<tr>
<td>107</td>
<td>151</td>
<td>157</td>
<td>163</td>
</tr>
<tr>
<td>113</td>
<td>127</td>
<td>19</td>
<td>218.0</td>
</tr>
</tbody>
</table>

8.5 Many-sheeted space-time, universal metabolic quanta, and plasmoids as primitive life forms

In the following the evidence for many-sheeted space-time will be discussed.

8.5.1 Evidence for many-sheeted space-time

The dropping of particle to a larger space-time sheet liberates energy which is the difference of the energies of the particle at two space-time sheets. If the interaction energy of the particle with the matter at space-time sheet can be neglected the energy is just the difference of zero point kinetic energies. This energy depends on the details of the geometry of the space-time sheet. Assuming p-adic length scale hypothesis the general formula for the zero point kinetic energy can be written as

$$E(k) = x \times E_0(k) , \quad E_0(k) = \frac{3}{2} \pi^2 \frac{\pi^2}{2mL^2(k)} .$$

Here x is a numerical factor taking into account the geometry of the space-time sheet and equals to $x = 1$ for cubic geometry.

The liberated zero point kinetic energy in the case that the particle drops to a space-time sheet labelled by $k_f = k + \Delta k$ with same value of x is

$$\Delta E(k, \Delta k) = x \times E_0(k) \times (1 - 2^{-\Delta k}) .$$

The transitions are seen as discrete lines for some resolution $\Delta k \leq \Delta k_{max}$. At the limit $k \to \infty$ transitions give rise to a quasicontinuous band. The photon energy for $k \to \infty$ transition is same as the energy from $k \to 1 \to k$ transition, which brings in additional option to the model building.

For a proton dropping from the atomic space-time sheet $k = 137$ to very large space-time sheet ($\Delta k \to \infty$) one has $\Delta E(k) = E(k) \sim x \times 5 eV$. Since the ratio of electron and proton masses is $m_p/m_e \approx 1836$, the dropping of electron from space-time sheet $k_e = k_p + 11$ liberates zero point kinetic energy which is by is by a factor .9196 smaller. For $k_p = 137$ one would have $k_e = 148$. This energy corresponds to the metabolic energy currency of living systems and the idea is that the differences of zero point kinetic energies define universal metabolic energy currencies present already in the metabolism of pre-biotic systems. In the following fit electron’s zero point kinetic energy will be taken to be $E_0(148) = .5 eV$ so that for proton the zero point kinetic energy would be $E_0(137) = .544 eV$.

The hypothesis predicts the existence of anomalous lines in the spectrum of infrared photons. Also fractally scaled up and scaled down variants of these lines obtained by scaling by powers of 2 are predicted. The wavelength corresponding to .5 eV photon would be \(\lambda = 2.48 \) \(\mu m \). These lines should be detectable both in laboratory and astrophysical systems and might even serve as a signature for a primitive metabolism. One can also consider dropping of Cooper pairs in which case zero point kinetic energy is scaled down by a factor of 1/2.

Interestingly, the spectrum of diffuse interstellar medium exhibits three poorly understood structures [6]: Unidentified Infrared Bands (UIBs), Diffuse Interstellar Bands (DIBs) [2], and Extended Red Emission (ERE) [56] allowing an interpretation in terms of dropping of protons or electrons (or their Cooper pairs) to larger space-time sheets. The model also suggests the interpretation of bio-photons in terms of generalizes EREs.

Unidentified Infrared Bands

Unidentified infrared bands (UIBs) contain strong bands at \(\lambda = 3.3, 6.2, 11.3 \) microns [6]. The best fit for the values of \(k \) and \(\Delta k \) assuming dropping of either electron or proton are given by the following table. The last row of the table gives the ratio of predicted photon energy to the energy characterizing the band and assuming \(x = 1 \) and \(E_0(148, e) = .5 \) eV. Discrepancies are below 8 per cent. Also the dropping of protonic Cooper pair from \(k = 137 \) space-time sheet could reproduce the line \(\Delta E = .2 \) eV. The fit is quite satisfactory although there is of course the uncertainty related to the geometric parameter \(x \).

<table>
<thead>
<tr>
<th>(\lambda/\mu m)</th>
<th>(E/.5eV)</th>
<th>(k)</th>
<th>(\Delta k)</th>
<th>(\Delta E(k, \Delta k)/E)</th>
<th>(p/e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td>.7515</td>
<td>137</td>
<td>(\sim \infty)</td>
<td>1.002</td>
<td>e</td>
</tr>
<tr>
<td>6200</td>
<td>.4000</td>
<td>138</td>
<td>3</td>
<td>1.067</td>
<td>e</td>
</tr>
<tr>
<td>11300</td>
<td>.2195</td>
<td>139</td>
<td>3</td>
<td>0.878</td>
<td>p</td>
</tr>
<tr>
<td>11300</td>
<td>.2195</td>
<td>139+11=150</td>
<td>3</td>
<td>1.076</td>
<td>e</td>
</tr>
</tbody>
</table>

Table 1. Table gives the best fit for UIBs assuming that they result from dropping of proton or electron to a larger space-time sheet and one has \(E_0(148, e) = .5 \) eV. The fourth column of the table gives the ratio of predicted photon energy to the energy characterizing the band and assuming \(x = 1 \). \(e/p \) tells whether electron or proton is in question.

According to [6], UIBs are detected along a large number of interstellar sight-lines covering a wide range of excitation conditions. Recent laboratory IR spectra of neutral and positively charged poly-cyclic aromatic hydrocarbons (PAHs) has been successfully used by Allamandola [39] to model the observed UIBs. It is believed that PAHs are produced in reactions involving photosynthesis and are regarded as predecessors of biotic life [4]. This would conform with the presence of metabolic energy quanta.

DNA sugar backbone, some aminoacids, and various hallucinogens involve 5- and 6-cycles and the proposal is that these cycles involve free electron pairs, which possess Planck constant \(h = n\hbar_0 \), \(n = 5, 6 \). These free electron pairs would explain the anomalous conductivity of DNA and would be an essential characteristic of living matter. The emergence of \(n = 5, 6 \) levels could be seen as the first step in the pre-biotic evolution.

Diffuse Interstellar Bands

There are diffuse interstellar bands (DIBs) at wavelengths 578.0 and 579.7 nanometers and also at 628.4, 661.4 and 443.0 nm. The 443.0 nm DIB is particularly broad at about 1.2 nm across - typical intrinsic stellar absorption features are 0.1 nm [6]. The following table proposes a possible identification of these lines in terms of differences of zero point kinetic energies. Also now the best fit has errors below 7 per cent.
The Extended Red Emission (ERE) \[6, 56\] is a broad unstructured emission band with width about 80 nm and located between 540 and 900 nm. The large variety of peak wavelength of the band is its characteristic feature. In majority of cases the peak is observed in the range 650-750 nm but also the range 610-750 nm appears. ERE has been observed in a wide variety of dusty astronomical environments. The necessary conditions for its appearance is illumination by UV photons with energies \(E \geq 7.25\) eV from source with \(T \geq 10^4\) K. The position of the peak depends on the distance from the source \[56\].

According to \[6\] the current interpretation attributes ERE to a luminescence originating from some dust component of the ISM, powered by UV/visible photons. Various carbonaceous compounds seem to provide a good fit to the observational constraints. However, the real nature of ERE is still unknown since most candidates seem to be unable to simultaneously match the spectral distribution of ERE and the required photon conversion efficiency.

1. Consider first the band 650-750 nm appearing in the majority of cases. The most natural interpretation is that the lower end of the band corresponds to the zero point kinetic energy of electron at \(k = 135 + 11 = 146 = 2 \times 73\) space-time sheet. This would mean that the lines would accumulate near 650 nm and obey the period doubling formula

\[
\lambda(k) - \lambda(\infty) = \frac{2^{-k}}{1 - 2^{-k}}.
\]

By the estimate of Table 2 the lower end should correspond to \(\lambda = 628.4\) nm with a correction factor \(x < 1\) reducing the zero point kinetic energy. The reduction would be smaller than 4 per cent. \(\Delta k = 3\) transition would correspond to 744 nm quite near to the upper end of the band. For \(\Delta k = 2\) transition one has \(\lambda = 867\) nm not to far from the upper end 900 nm. \(\Delta k = 1\) corresponds to 1.3 \(\mu\)m.

2. For proton with \(k = 135 = 146\) the energy band would shift by the factor \(2^{11}m_e/m_p \approx 1.0874\) giving the range (598,690) nm.

3. The variation for the position of the peak can be understood if the charged particles at the smaller space-time sheet can have excess energy liberated in the dropping to the larger space-time sheet. This excess energy would determine the position of the lower end of the band in the range (540,650) nm.

4. One should also understand the role of UV photons with energy larger than 7.25 eV. For proton the energy would be 8.76 eV. For proton the energy would be 8.76 eV. UV photon with energy \(E \geq 8\) eV could kick electrons from large space-time sheets to \(k = 144 = 146 - 4\) space-time sheet where they have zero point kinetic energy of 8 eV plus possible additional energy (for proton the energy would be 8.76 eV). One possibility is that these electrons drop first to \(k = 145\) by the emission of \(\sim 4\) eV UV photon and then to \(k = 144\) by the emission \(\sim 2\) eV photon corresponding to 650 nm line. The further dropping to larger space-time sheets would produce besides this line also the lines with longer wavelengths in the band.

<table>
<thead>
<tr>
<th>(\lambda/mm)</th>
<th>(E/\text{.5eV})</th>
<th>(k)</th>
<th>(\Delta k)</th>
<th>(\Delta E(k, \Delta k)/E)</th>
<th>(p/e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.4</td>
<td>3.947</td>
<td>135 = (3^4 \times 5)</td>
<td>(\sim \infty)</td>
<td>0.987</td>
<td>p</td>
</tr>
<tr>
<td>661.4</td>
<td>3.750</td>
<td>135 + 11 = (2 \times 73)</td>
<td>3</td>
<td>0.985</td>
<td>e</td>
</tr>
<tr>
<td>443.0</td>
<td>5.598</td>
<td>134 = (2 \times 67)</td>
<td>2</td>
<td>0.933</td>
<td>p</td>
</tr>
<tr>
<td>578.0</td>
<td>4.291</td>
<td>135 + 11 = (2 \times 73)</td>
<td>(\sim \infty)</td>
<td>0.986</td>
<td>e</td>
</tr>
<tr>
<td>579.7</td>
<td>4.278</td>
<td>135 + 11 = (2 \times 73)</td>
<td>(\sim \infty)</td>
<td>0.984</td>
<td>e</td>
</tr>
</tbody>
</table>

Table 2. Table gives the best fit for DIBs assuming that they result from dropping of proton or electron to a larger space-time sheet. Notations are same as in the previous table.

The peak wavelengths in chlorophyll and photosynthesis are around 650 nm and 450 nm and would correspond to second and third row of the table.
The energy of UV photons brings in mind the bond energy 7.36 eV of \(N_2 \) molecule and the possibility of metabolic mechanism using UV light as metabolic energy and based on the dissociation of \(N_2 \) followed by re-association liberating metabolic energy kicking protons or electrons to a smaller space-time sheet. For the \(k \rightarrow k + 3 \) transition of electron the energy would be 7 eV which suggests that this transition defines important metabolic energy quantum for living interstellar dust using dissociation and its reversal as basic metabolic mechanism.

8.5.2 Laboratory evidence for plasmoids as life forms

From dust to dust

The article From Plasma crystals and helical structures towards inorganic living matter of Tsytovich et al in August issue of New Journal of Physics provides new empirical support for plasmoids as living life forms. The results of article suggest that interstellar dust could behave like living matter in some respects: it could even have variant of genetic code. This is a really shattering finding and with single blow destroys the standard dogma about life as something purely chemical. It should also give also some headaches for those influential colleagues who have decided that it is necessary to accept the anthropic principle. Here is little popularization of the result.

SCIENTISTS have discovered that inorganic material can take on the characteristics of living organisms in space, a development that could transform views of alien life.

An international panel from the Russian Academy of Sciences, the Max Planck institute in Germany and the University of Sydney found that galactic dust could form spontaneously into helixes and double helixes and that the inorganic creations had memory and the power to reproduce themselves.

A similar rethinking of prospective alien life is being undertaken by the National Research Council, an advisory body to the US government. It says Nasa should start a search for what it describes as weird life - organisms that lack DNA or other molecules found in life on Earth.

The new research, to be published this week in the New Journal of Physics, found nonorganic dust, when held in the form of plasma in zero gravity, formed the helical structures found in DNA. The particles are held together by electromagnetic forces that the scientists say could contain a code comparable to the genetic information held in organic matter. It appeared that this code could be transferred to the next generation.

Professor Greg Morfill, of the Max Planck institute of extra-terrestrial physics, said Going by our current narrow definitions of what life is, it qualifies.

The question now is to see if it can evolve to become intelligent. Its a little bit like science fiction at the moment. The potential level of complexity we are looking at is of an amoeba or a plant.

I do not believe that the systems we are talking about are life as we know it. We need to define the criteria for what we think of as life much more clearly.

It may be that science is starting to study territory already explored by science fiction. The television series The X-Files, for example, has featured life in the form of a silicon-based parasitic spore.

The Max Planck experiments were conducted in zero gravity conditions in Germany and on the International Space Station 200 miles above earth.

The findings have provoked speculation that the helix could be a common structure that underpins all life, organic and nonorganic.

To sum up the essentials, plasma phase is involved and the dust life is able to construct analogs of DNA double helices and this has been achieved also in laboratory. "From dust to dust" seems to have a very deep side meaning!

Here is a more quantitative summary of the results reported in [19].

1. The scale of the dust balls seems to be few micrometers. It is essential that the system is open in the sense that there is both metabolic energy feed and continual feed of plasma to negatively charged dust particles to preserve their charges. Authors speak about effective "gravitational" instability as a mechanism leading to the formation of the helices and identify effective gravitational coupling (the formula contains a trivial typo) as a function of charge and mass of the particle plus dimensionless parameter characterizing the modification of Debye model implied by the fact that dust particles are not electrically closed systems. Authors give a long list of life-like properties possessed by the helical structures.
2. Helical structures are generated spontaneously and possess negative charges. The repulsion of the helical structures transforms to attraction at some critical distance interval due to the fact that the large electrostatic self energy depends on the distance between helices and this makes possible double helices (authors speak about over-screening in the formal model). Similar mechanism might work also in the case of ordinary DNA double helices whose stability is poorly understood since also in this case the large negative charge could be preserved by continual feed of charge.

3. The twist angle of the helix makes bifurcations as a function of radius of helix and the values of twist angle could define the letters of genetic code. Also a mechanism for how the twist angle is communicated to neighboring helix is proposed. Also dust vortices are observed and might be those which one can occasionally observe during hot summer days.

4. Authors do not mention magnetic fields but my guess is that the helical structures reflect directly the geometry of the helical magnetic flux tubes, and that dark electron pairs with large Planck constant at these tubes might be the quantal aspect of the system. These currents might relate closely to the plasma current, which charges the dust particles. Also DNA, which is insulator, is known to be able to act as conductor, and here the free electron pairs associated with aromatic rings having $\hbar = n \times \hbar_0$, $n = 5$ or 6, could make conduction possible since their Compton size would be n-fold.

Elephant trunks in astrophysics

TGD Universe is fractal and this means that the visible structures are formed around magnetic flux quanta containing dark matter with large \hbar appear in all length scales and have geometric patterns reflecting the exact discrete symmetries of dark matter acting as rotational symmetries of the field body and at the level of visible matter giving rise to broken symmetries typical for molecular structures. The helical structures found from the rings of some planets could be one example of fractal life.

For some time ago I learned about “elephant trunks” found by Hubble (I am grateful for Miika Viisälä telling about the trunks and for giving references to the papers about the finding). They appear in very wide range of length scales: at least from 1000 au to 1 pc. They are found in close connection with molecular clouds and HII regions excite by one or more young hot stars (a “metabolic connection” with the above mentioned unidentified bands and lines and PAHs present only if there is also UV source present does not look like a bad guess). In general the trunks are

Another important finding supporting TGD view about Universe which might be seen as a fractally scaled variant of above helices, pointing like fingers to the hot stars. Here is abstract of the paper by P. Carlquist, G. F. Gahm, and H. Kristen [46].

Using the 2.6 m Nordic Optical Telescope we have observed a large number of elephant trunks in several regions. Here, we present a small selection of this material consisting of a few large, well-developed trunks, and some smaller ones. We find that: (i) the well-developed trunks are made up of dark filaments and knots which show evidence of twisted structures, (ii) the trunks are connected with essentially two filamentary legs running in V-shape, and (iii) all trunks have the maximum extinction in their heads. We advance a theory of twisted elephant trunks which is based on the presence of magnetic flux ropes in molecular clouds where hot OB stars are formed. If the rope contains a local condensation it may adopt a V-shape as the region around the hot stars expands. If, in addition, the magnetic field in the rope is sufficiently twisted, the rope may form a double helix at the apex of the V. The double helix is identified with the twisted elephant trunks. In order to illustrate the mechanisms behind the double helix we have constructed a mechanical analogy model of the magnetic flux rope in which the rope has been replaced by a bundle of elastic strings loaded by a weight. Experiments with the model clearly show that part of the bundle will transform into a double helix when the twist of the bundle is sufficiently large. We have also worked out a simple theoretical model of a mass-loaded magnetic flux rope. Numerical calculations show that a double helix will indeed form when the twist of the rope exceeds a certain critical limit. Numerical model calculations are applied to both the analogy model experiments and one of the well-developed elephant trunks. On the basis of our model we also suggest a new interpretation of the so called EGGs.

The double helix mechanism is quite general, and should be active also in other suitable environments. One such environment may be the shell of supernova remnants. Another example is the expanding bubble outlined by the North Celestial Pole Loop.
For fractally thinking physicist consisting mostly of dark matter with large Planck constant this does not leave many options: life and even intelligent life is everywhere and in all length scales. This provides also a new view about Fermi paradox: see the article [3], which summarizes also the essentials of TGD, TGD based ontology, and TGD based quantum biology.

8.5.3 Universal metabolic quanta

Universal energy quanta might have rather interesting implications. For instance, irradiation of cells could provide a direct metabolic mechanism when the normal metabolic machinery fails. The universal metabolic quanta should have also played a key role during pre-biotic evolution when chemical storage mechanism were absent or primitive so that energy metabolism relied on direct absorption of photons.

Direct support for universal metabolic energy quanta

There is direct support for the notion of universal energy quanta. The first support comes from the effect of low-power laser light on living matter. More than 30 years ago a method known with various names such as low-power laser therapy, biostimulation, or photobiomodulation emerged [37] and has now a wide range of applications. The treatment can apply both non-coherent (light emitting diodes) or coherent (laser light). In the case of non-coherent light the method applies thin structures with thickness smaller than coherence length of light so that there is no difference between non-coherent and laser light. Laser light applies to situation when both the thickness of the surface layer and structure itself in range 1 mm- 1 cm and shorter than coherence length. Often the irradiation is applied to wounds and sites of injuries, acupuncture points, and muscle trigger points. The method involves several parameters such as wavelength in the range 400-900 nm (IR and near IR light), output power (10 100 mW), continuous wave and pulsed operation modes, and pulse parameters.

1. **What is known?**

 The article of Karu [37] gives a good summary about what is known.

 1. The action spectrum characterizes the maxima of the biological response as a function of wavelength. Action spectrum is essentially universal. For near IR and IR light the maxima of spectra are at 620, 680, 760, 820-830 nm. The spectrum continues also to visible light [37] but I do not have access these data.

 2. The action can induce both physiological and morphological changes in non-pigmental cells via absorption in mitochondria. HeNe laser (\(\lambda = 632.8 \text{ nm}\)) can alter the firing pattern of nerves and can mimic the effect of peripheral stimulation of a behavioral reflex.

2. **Biochemical approach**

 In [37] the biochemical approach to the situation is discussed.

 1. In standard biochemistry based approach the natural hypothesis is that the maxima correspond to some molecular absorption lines and the task is to identify the photo acceptor. The primary acceptor in IR-to red spectral region is believed to be the terminal enzyme of the respiratory chain cytochrome c oxidase located in mitochondrion but this is just an assumption. In the violet-to-blue spectral region flavoproteins (e.g. NADHdehydrogenace in the beginning of respiratory chain) are among the photo acceptors as terminal oxidases. It is known that also non-mitochondrial enhancement of cellular metabolism exist, which does not fit well with the vision about mitochondria as power plants of cell. It is believed that electronic excitation occurs and somehow leads to the biological effect.

 2. The natural assumption in biochemistry framework is that the stimulation increases the effectiveness of cellular metabolism by making the utilization of oxygen more effective. The effect of the light would occur at the control level and induce secondary reactions (cellular signaling cascades or photo signal transduction and amplification) affecting eventually the gene expression.

 3. Three different regulation pathways have been suggested [37]. Since small changes in ATP level can alter cellular metabolism significantly, the obvious idea is that photoacceptor controls the
level of intracellular ATP. In starving cells this looks especially attractive hypothesis. In many cases however the role of redox homeostasis is however believed to be more important than that of ATP. The second and third pathways would indeed affect cellular redox potential shifting it to more oxidized direction. The mechanism of regulation is however not understood. Hence one can say that there is no experimental proof or disproof for the standard approach.

3. TGD inspired approach

In TGD framework the first guess is that irradiation pumps directly metabolic energy to the system by kicking particles to smaller space-time sheets. This kind of direct energy feed would be natural when the cell is starving or injured so that its control mechanisms responsible for the utilization of oxygen are not working properly. For Bose-Einstein condensate of photons this effect would be especially strong being proportional to N^2 rather than N, where N is photon number. The effect would also appear coherently in a region whose size is dictated by coherence length when the target is thick enough.

There is a simple killer test for the proposal. The predicted energies are universal in the approximation that the interactions of protons (or electrons) kicked to the smaller space-time sheets with other particles can be neglected. The precise scale of metabolic energy quanta can be fixed by using the nominal value of metabolic energy quantum 0.5 eV in case of proton. This predicts the following spectrum of universal energy quanta for proton and electron

$$\Delta E_{k,n}(p) = E_0(k,p) \times (1 - 2^{-n}),$$
$$E_0(k,p) = E_0(137,p)2^{137-k} \simeq 2^{137-k} \times 0.5 \text{ eV}.$$

$$\Delta E_{k,n}(e) = E_0(k,e) \times (1 - 2^{-n}),$$
$$E_0(k,e) = \frac{m_p}{m_m} E_0(137,p)2^{148-k} \simeq 2^{148-k} \times 0.4 \text{ eV}.$$

k characterizes the p-adic length scale and the transition corresponds to the kicking of charged particle from space-time sheet having $k_1 = k + n$ to $k = n$.

The shortest wavelength 630 nm is rather close to the wavelength of HeNe laser and corresponds to red light with $E_0 = 2.00 \text{ eV}$. Thus one would have $k = 135$ in the case of proton which corresponds to roughly one of atomic radius for ordinary value of \hbar. For electron one would have $k = 150$ which corresponds to $L(151)/\sqrt{2}$: $L(151) = 10 \text{ nm}$ corresponds to cell membrane thickness. The following table gives the energies of photons for action spectrum and predicted values in the case of proton, which provides a better fit to the data.

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ/nm</td>
<td>825</td>
<td>760</td>
<td>680</td>
<td>620</td>
</tr>
<tr>
<td>E_{exp}/eV</td>
<td>1.50</td>
<td>1.63</td>
<td>1.82</td>
<td>2.00</td>
</tr>
<tr>
<td>$E_{\text{pred}}/\text{eV}$</td>
<td>1.50</td>
<td>1.75</td>
<td>1.88</td>
<td>1.94</td>
</tr>
<tr>
<td>$E_{\text{pred}}/E_{\text{exp}}$</td>
<td>1.00</td>
<td>1.07</td>
<td>1.02</td>
<td>0.97</td>
</tr>
</tbody>
</table>

The largest error is 7 per cent and occurs for $n = 3$ transition. Other errors are below 3 per cent. Note that also in experiments of Gariaev [26, 27] laser light consisting of 2 eV photons was used: in this case the induced radio wave photons - possibly dark photons with energy 2 eV - had positive effect on growth of potatoes.

Possible explanation for the effect of IR light on brain

The exposure of brain to IR light at wavelength of 1072 nm is known to improve learning performance and give kick start to cognitive function [7]. The simplest explanation is that this light reloads the metabolic energy batteries of neurons by kicking electrons or protons or their Cooper pairs to larger space-time sheets. The wavelength in question is roughly one half of the wavelength associated with metabolic energy quantum with average energy 0.5 eV ($2480 \mu\text{m}$) assignable to the dropping of proton to a very large space-time sheet from $k=137$ space-time sheet or of electron from $k=137+11= 148$ space-time sheet. This if the electron and proton are approximated to be free particles. Energy band is in question since both the particles can have additional interaction energy.
For the kicking of electron from very large space-time sheet to $k = 147$ space-time sheet the wave length would be below 1240 nm which is more than 10 per cent longer than 1072 nm. This would suggest that the final state electron is in excited state. The surplus energy is consistent with the width about 100 nm for the UIBs. This identification - if correct - would support the view that metabolic energy quanta are universal and have preceded the evolution of the biochemical machinery associated with metabolism and that the loading of metabolic energy batteries at the fundamental level correspond to the kicking of charged particles to smaller space-time sheets.

Connection between laser induced healing, acupuncture, and association of DC currents with the healing of wounds

The findings of Robert Becker (the book "Electromagnetism and Life" by Becker and Marino can be found from web [11]) meant a breakthrough in the development of bioelectromagnetics. One aspect of bioelectromagnetic phenomena was the discovery of Becker that DC currents and voltages play a pivotal role in various regeneration processes. Why this is the case is still poorly understood and Becker’s book is a treasure trove for anyone ready to challenge existing dogmas. The general vision guiding Becker can be summarized by a citation from the introduction of the book.

"Growth effects include the alteration of bone growth by electromagnetic energy, the restoration of partial limb regeneration in mammals by small direct currents, the inhibition of growth of implanted tumors by currents and fields, the effect upon cephalocaudal axis development in the regenerating flatworm in a polarity-dependent fashion by applied direct currents, and the production of morphological alterations in embryonic development by manipulation of the electrochemical species present in the environment. This partial list illustrates the great variety of known bioelectromagnetic phenomena."

The reported biological effects involve basic functions of living material that are under remarkably precise control by mechanisms which have, to date, escaped description in terms of solution biochemistry. This suggests that bioelectromagnetic phenomena are fundamental attributes of living things ones that must have been present in the first living things. The traditional approach to biogenesis postulates that life began in an aqueous environment, with the development of complex molecules and their subsequent sequestration from the environment by membranous structures. The solid-state approach proposes an origin in complex crystalline structures that possess such properties as semiconductivity, photoconductivity, and piezoelectricity. All of the reported effects of electromagnetic forces seem to lend support to the latter hypothesis.

1. Observations relating to CNS

The following more quantitative findings, many of them due to Becker, are of special interest as one tries to understand the role of DC currents in TGD framework.

1. CNS and the rest of perineural tissue (tissue surrounding neurons including also glial cells) form a dipole like structure with neural system in positive potential and perineural tissue in negative potential. There is also an electric field along neuron in the direction of nerve pulse propagation (dendrites correspond to - and axon to +) (note that motor nerves and sensory nerves form a closed loop). Also microtubules within axon carry electric field and these fields are probably closely related by the many-sheeted variants of Gauss’s and Faraday’s laws implying that voltages along two different space-time sheets in contact at two points are same in a static situation.

2. A longitudinal potential along front to back in brain with frontal lobes in negative potential with respect to occipital lobes and with magnitude of few mV was discovered. The strength of the electric field correlates with the level of consciousness. As the potential becomes weaker and changes sign, consciousness is lost. Libet and Gerard observed traveling waves of potentials across the cortical layers (with speeds of about 6 m/s: TGD inspired model of nerve pulse predicts this kind of waves [58]). Propagating potentials were discovered also in glial cells. The interpretation was in terms of electrical currents.

3. It was found that brain injury generated positive polarization so that the neurons ceased to function in an area much larger than the area of injury. Negative shifts of neuronal potentials were associated with incoming sensory stimuli and motor activity whereas sleep was associated with a positive shift. Very small voltages and currents could modulate the firing of neurons without affecting the resting potential. The "generating" potentials in sensory receptors inducing
nerve pulse were found to be graded and non-propagating and the sign of the generating potential correlated with sensory input (say increase/reduction of pressure). Standard wisdom about cell membrane has difficulties in explaining these findings.

4. The natural hypothesis was that these electric fields are accompanied by DC currents. There are several experimental demonstrations for this. For instance, the deflection of assumed DC currents by external magnetic field (Hall effect) was shown to lead to a loss of consciousness.

2. Observations relating to regeneration

The second class of experiments used artificial electrical currents to enhance regeneration of body parts. These currents are nowadays used in clinical practice to induce healing or retard tumor growth. Note that tissue regeneration is a genuine regeneration of an entire part of organism rather than mere simple cell replication. Salamander limb generation is one of the most studied examples. Spontaneous regeneration becomes rare at higher evolutionary levels and for humans it occurs spontaneously only in the fractures of long bones.

1. An interesting series of experiments on Planaria, a species of simple flatworm with a primitive nervous system and simple head-to-tail axis of organization, was carried out. Electrical measurements indicated a simple head-tail dipole field. The animal had remarkable regenerative powers; it could be cut transversely into a number of segments, all of which would regenerate a new total organism. The original head-tail axis was preserved in each regenerate, with that portion nearest the original head end becoming the head of the new organism. The hypothesis was that the original head-tail electrical vector persisted in the cut segments and provided the morphological information for the regenerate. The prediction was that the reversal of the electrical gradient by exposing the cut surface to an external current source of proper orientation should produce some reversal of the head-tail gradient in the regenerate. While performing the experiment it was found found that as the current levels were increased the first response was to form a head at each end of the regenerating segment. With still further increases in the current the expected reversal of the head-tail gradient did occur, indicating that the electrical gradient which naturally existed in these animals was capable of transmitting morphological information.

2. Tissue regeneration occurs only if some minimum amount of neural tissue is present suggesting that CNS plays a role in the process although the usual neural activity is absent. The repeated needling of the stump had positive effect on regeneration and the DC current was found to be proportional to innervation. Hence needling seems to stimulate innervation or at least inducing formation of DC currents. Something like this might occur also in the case of acupuncture.

3. Regeneration involves de-differentiation of cells to form a blastema from which the regenerated tissue is formed. Quite early it was learned that carcinogens induce de-differentiation of cells because of their steric properties and by making electron transfer possible and that denervation induces tumor formation. From these findings Becker concluded that the formation of blastema could be a relatively simple process analogous to tumor growth whereas the regeneration proper is a complex self-organization process during which the control by signals from CNS are necessary and possibly realized in terms of potential waves.

4. Regeneration is possible in salamander but not in frog. This motivated Becker and collaborators to compare these situations. In an amputated leg of both salamander and frog the original negative potential of or order -1 mV went first positive value of order +10 mV. In frog it returned smoothly to its original value without regeneration. In salamander it returned during three days to the original base line and then went to a much higher negative value around -20 mV (resting potential is around -70 mV) followed by a return to the original value as regeneration had occurred. Thus the large negative potential is necessary for the regeneration and responsible for the formation of blastema. Furthermore, artificial electron current induced regeneration also in the case of frog and in even in the denervated situation. Thus the flow of electrons to the stump is necessary for the formation of blastema and the difference between salamander and frog is that frog is not able to provide the needed electronic current although positive potential is present.
5. It was also learned that a so called neural epidermic junction (NEJ) formed in the healing process of salamander stump was responsible for the regeneration in the presence of nervation. The conclusion was that the DC voltage and electronic current relevant for regeneration can be assigned the interface between CNS and tissue rather than with the entire nerve and regeneration seems to be a local process, perhaps a feed of metabolic energy driving self-organization. Furthermore, NEJ seems to make possible the flow of electrons from CNS to the stump.

6. The red blood cells of animals other than mammals are complete and possess thus nuclei. Becker and collaborators observed that also red blood cells dedifferentiated to form blastema. Being normally in a quiescent state, they are ideal for studying de-differentiation. It was found that electric current acted as a trigger at the level of cell membrane inducing de-differentiation reflected as an increased amount of mRNA serving as signal for gene expression. Also pulsed magnetic field was found to trigger the de-differentiation, perhaps via induced electric field. By the way, the role of the cell membrane fits nicely with the view about DNA-cell membrane system as topological quantum computer with magnetic flux tubes connecting DNA and cell membrane serving as braids.

7. The experiments of Becker and collaborators support the identification of the charge carriers of DC currents responsible for the formation of large negative potential of stump as electrons. The test was based on the different temperature dependence of electronic and protonic conductivities. Electronic conductivity increases with temperature and protonic conductivity decreases and an increase was observed. In TGD based model also super-conducting charge carriers are possible and this finding does not tell anything about them.

3. A TGD based model for the situation

On basis of these observations one can try to develop a unified view about the effects of laser light, acupuncture, and DC currents. It is perhaps appropriate to start with the following - somewhat leading - questions inspired by a strong background prejudice that the healing process - with control signals from CNS included - utilizes the loading of many-sheeted metabolic batteries by supra currents as a basic mechanism. In the case of control signals the energy would go to the "moving of the control knob".

1. Becker assigns to the system involved with DC currents an effective semiconductor property. Could the effective semiconductor property be due the fact that the transfer of charge carriers to a smaller space-time sheet by first accelerating them in electric field is analogous to the transfer of electrons between conduction bands in semiconductor junction? If so, semiconductor property would be a direct signature of the realization of the metabolic energy quanta as zero point kinetic energies.

2. Supra currents flowing along magnetic flux tubes would make possible dissipation free loading of metabolic energy batteries. This even when oscillating Josephson currents are in question since the transformation to ohmic currents in semiconductor junction makes possible energy transfer only during second half of oscillation period. Could this be a completely general mechanism applying in various states of regeneration process. This might be the case. In quantal situation the metabolic energy quanta have very precise values as indeed required. For ohmic currents at room temperature the thermal energies are considerably higher than those corresponding to the voltage involved so that they seem to be excluded. The temperature at magnetic flux tubes should be however lower than the physiological temperature by a factor of order 10^{-2} at least for the voltage of -1 mV. This would suggest high T_c super-conductivity is only effective at the magnetic flux tubes involved. The finding that nerve pulse involves a slight cooling of the axonal membrane proposed in the TGD based model of nerve pulse to be caused by a convective cooling due the return flow of ionic Josephson currents would conform with this picture.

3. What meridians are and what kind of currents flow along them? Could these currents be supra currents making possible dissipation-free energy transfer in the healthy situation? Does the negative potential of order -1 mV make possible flow of protonic supra currents and loading of metabolic batteries by kicking protons to smaller space-time sheets? Could electronic supra currents in opposite direct induce similar loading of metabolic batteries? Could these two miniature metabolisms realize control signals (protons) and feedback (electrons)?
The model answering these questions relies on following picture. Consider first meridians.

1. The direct feed of metabolic energy as universal metabolic currencies realized as a transfer of charge carriers to smaller space-time sheets is assumed to underly all the phenomena involving healing aspect. Meridian system would make possible a lossless metabolic energy feed - transfer of “Chi” - besides the transfer of chemically stored energy via blood flow. The metabolic energy currencies involved are very small as compared to .5 eV and might be responsible only for “turning control knobs”. The correlation of the level of consciousness with the overall strength of DC electric fields would reduce to the level of remote metabolic energy transfer.

2. The model should explain why meridians have not been observed. Dark currents along magnetic flux tubes are ideal for the energy transfer. If the length of the superconducting “wire” is long in the scale defined by the appropriate quantum scale proportional to \hbar, classical picture makes sense and charge carriers can be said to accelerate and gain energy ZeV. For large values of \hbar an oscillating Josephson current would be in question. The semiconductor like structure at the end of meridian -possibly realized in terms of pair of space-time sheets with different sizes- makes possible a net transfer of metabolic energy even in this case as pulses at each half period of oscillation. The transfer of energy with minimal dissipation would thus explain why semiconductor like property is needed and why acupuncture points have high value of conductivity. The identification of meridians as invisible magnetic flux tubes carrying dark matter would explain the failure to observe them: one further direct demonstration for the presence of dark matter in biological systems.

3. In the case of regeneration process NEJs would be accompanied by a scaled down version of meridian with magnetic flux tubes mediating the electronic Josephson current during blastema generation and protonic supra current during the regeneration proper. Space-time sheets of proton resp. electron correspond to k_p and $k_e = k_p + 11$. In a static situation many-sheeted Gauss law in static situation would guarantee that voltages over NJE are same.

4. One can of course worry about the smallness of electrostatic energies ZeV as compared to the thermal energy. Zero point kinetic energy could correspond also to the magnetic energy of the charged particle. For sufficiently large values of Planck constant magnetic energy scale is higher than the thermal energy and the function of voltage could be only to drive the charged particles along the flux tubes to the target: and perhaps act as a control knob with electrostatic energy compensating for the small lacking energy. Suppose for definiteness magnetic field strength of $B = .2$ Gauss explaining the effects of ELF em fields on brain and appearing in the model of EEG. Assume that charged particle is in minimum energy state with cyclotron quantum number $n = 1$ and spin direction giving negative interaction energy between spin and magnetic field so that the energy is $(g-2)\hbar eB/2m_p$. Assume that the favored values of \hbar correspond to number theoretically simple ones expressible as a product of distinct Fermat primes and power of 2. In the case of proton with $g \simeq 2.7927$ the standard metabolic energy quantum $E_0 = .5$ eV would require roughly $\hbar_0 = 17 \times 2^{34}$. For electron $g-2 \simeq \alpha/\pi \simeq .002328$ gives $\hbar_0 = 5 \times 17 \times 2^{30}$.

Consider next NEJs and semiconductor like behavior and charging of metabolic batteries.

1. Since NEJ seems resembles cell membrane in some respects, the wisdom gained from the model of cell membrane and DNA as tqc can be used. The model for nerve pulse and the model for DNA as topological quantum computer suggest that dark ionic currents flowing along magnetic flux tubes characterized by a large value of Planck constant are involved with both meridians and NJEs and might even dominate. Magnetic flux tubes act as Josephson junctions generating oscillatory supra currents of ions and electrons. For large values of \hbar also meridians are short in the relevant dark length scale and act as Josephson junctions carrying oscillatory Josephson currents.

2. The findings of Becker suggest that acu points correspond to sensory receptors which are normally in a negative potential. The model for the effects of laser light favors (but only slightly) the assumption that in a healthy situation it is protons arriving along magnetic flux tubes which are kicked to the smaller space-time sheets and that negative charge density at acu point attracts protons to the acu point. Electrons could of course flow in reverse direction along their own
magnetic flux tubes and be kicked to the smaller space-time sheets at the positive end of the circuit. In the case of brain, protonic end would correspond to the frontal lobes and electronic end to the occipital lobes. This kind of structure could appear as fractally scaled variants. For instance, glial cells and neurons could form this kind of pair with neurons in negative potential and glial cells in positive potential as suggested by the fact that neuronal damage generates positive local potential.

3. Classically the charge carriers would gain energy \(E = Z eV \) as they travel along the magnetic flux tube to NJE. If this energy is higher than the metabolic energy quantum involved, it allows the transfer of charge carrier to a smaller space-time sheet so that metabolic resources are regenerated. Several metabolic quanta could be involved and the value of \(V(t) \) would determine, which quantum is activated. The reduction of the \(V \) below critical value would lead to a starvation of the cell or at least to the failure of control signals to ”turn the control knob”. This should relate to various symptoms like pain at acupuncture points. In a situation requiring acupuncture the voltage along flux tubes would be so small that the transfer of protons to the smaller space-time sheets becomes impossible. As a consequence, the positive charge carriers would accumulate to the acu point and cause a further reduction of the voltage. Acupuncture needle would create a ”wound” stimulating large positive potential and the situation would be very much like in regeneration process and de-differentiation induced by acupuncture could be understood.

Many questions remain to be answered.

1. What causes the de-differentiation of the cells? The mere charging of metabolic energy batteries perhaps? If so then the amount of metabolic energy- ”chi”- possessed by cell would serve as a measure for the biological age of cell and meridian system feeding ”chi” identified as dark metabolic energy would serve as a rejuvenating agent also with respect to gene expression. Or does the electric field define an external energy feed to a self-organizing system and create an electromagnetic environment similar to that prevailing during morphogenesis inducing a transition of cells to a dedifferentiated state? Or could DNA as tqc allow to understand the modification of gene expression as being due to the necessity to use tqc programs appropriate for regeneration? Or should cells and wounded body part be seen as intentional agents doing their best to survive rather than as passive parts of biochemical system?

2. Acupuncture and DC current generation are known to induce generation of endorphins. Do endorphins contribute to welfare by reducing the pain or do they give a conscious expression for the fact that situation has improved as a result of recharging of the metabolic energy batteries?

3. Could the continual charging of metabolic energy batteries by DC currents occur also in the case of cell membrane? The metabolic energy quantum would be around .07 eV in this case and correspond to p-adic length scale \(k = 140 \) for proton (the quantum is roughly a fraction 1/8 of the fundamental metabolic energy quantum .5 eV corresponding to \(k = 137 \)).

Gene activation by electrostatic fields?

The basic question concerns the method of activation. The discovery of chemists Guido Ebner and Guido Schurch, \([8], [5]\) raises the hope that these ideas might be more than over-active imagination and their work also provides a concrete proposal for the activation mechanism. These findings are briefly described in the article of Hardmuth Mueller \([8]\) who proposes quite different explanation for the strange findings. Ebner and Schurch studied the effect of electrostatic fields on the growth and morphogenesis of various organisms. Germ, seeds, or eggs were placed between conducting plates creating an electric field in the range .5-2 kV/m: note that the Earth’s electric field is in the range .1 – 4 kV/m and of the same order of magnitude.

The outcome was rather surprising and in the year 1989 their employer Ciba Geigy (now Novaris) applied for a patent ”Method of enhanced fish breeding” \([5]\) for what is called Ciba Geigy effect. The researchers describe how fishes (trouts) develop and grow much better, if their eggs have been conditioned in an electrostatic field. The researchers report \([5]\) that also the morphology of the fishes was altered to what seems to represent an ancient evolutionary form: this was not mentioned in the patent.
The chemists founded their own Institute of Pharmaceutical Research near Basel, where Guido Ebner applied for another very detailed patent, which was never granted (it is not difficult to guess the reasons why!). In the patent he describes the effect of electrostatic fields on several life forms (cress, wheat, corn, fern, micro-organisms, bacteria) in their early stage of development. A clear change in the morphogenesis was observed. For instance, in one example fern had all sort of leaves in single plant apparently providing a series of snapshots about the evolution of the plant. The evolutionary age of the first leaf appeared to be about 300 million years whereas the last grown-up leaf looked close to its recent form.

If one takes these finding seriously, one must consider the possibility that the exposure to an electrostatic field can activate passive genes and change the gene expression so that older morphologies are expressed. The activation of not yet existing morphologies is probably more difficult since strong consistency conditions must be satisfied (activation of program requires activation of a proper hardware). This would suggest that genome is a kind of archive containing also older genomes even potential genomes or that topological quantum computer programs determine the morphology to certain extent and that external conditions such as electric field determine the self-organization patterns characterizing these programs.

It is known that the developing embryo has an electric field along the head-tail axis and that this field plays an important role in the control of growth. These fields are much weaker than the fields used in the experiment. p-Adic length scale hierarchy however predicts an entire hierarchy of electric fields and living matter is indeed known to be full of electret structures. The strength of the electric field in some p-adic length scale related to DNA might somehow serve as the selector of the evolutionary age. The recapitulation of phylogeny during the ontogeny could mean a gradual shift of the activated part of the memone, perhaps assignable to tqc programs, and be controlled by the gradually evolving electric field strength.

The finding that led Ebner to his discovery was that it was possible to "wake up" ancient bacteria by an exposure to an electrostatic field. The interpretation would be in terms of loading of metabolic batteries. This would also suggest that in the case of primitive life forms like bacteria the electric field of Earth has served as metabolic energy source whereas in higher life forms endogenous electric fields have taken the role of Earth’s electric field.

Could UV photons have some metabolic role?

The correlation between UV photons and ERE brings in mind the vision that high temperature plasmoids are primitive life-forms possibly having universal metabolic energy quanta in UV range. One can imagine that the development of chemical energy storage mechanisms has made it possible to use visible light from Sun as a source of metabolic energy and get rid of UV quanta having disastrous biological effects. Ozone layer shields out most of UV light and also air absorbs the UV light below wavelength 200 nm, which justifies the term vacuum UV (VUV) for this range.

<table>
<thead>
<tr>
<th>Δk</th>
<th>1</th>
<th>2</th>
<th>≥ 3</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E(144, \Delta k)/eV$</td>
<td>4</td>
<td>6</td>
<td>≥ 7</td>
<td>8</td>
</tr>
<tr>
<td>λ/nm</td>
<td>310(UVB)</td>
<td>207(UVB)</td>
<td>≤ 177 (VUV)</td>
<td>155 (VUV)</td>
</tr>
</tbody>
</table>

Table 3. The lines corresponding to the dropping of electron from $k = 144$ space time sheet defining a candidate for UV light inducing generation of ERE in the interstellar dust.

From Table 3 one finds that $\Delta k > 2$ electronic transitions cascading to 8 eV (155 nm) by period doubling) belong to vacuum UV (VUV) absorbed by air. The lines 310 nm and 207 nm corresponding to $\Delta k = 1$ and $\Delta k = 2$ could however define frequency windows since these lines need not correspond to any atomic or molecular electronic transitions.

In the solar photosphere the temperature is about 5800 K, roughly half of the minimum temperature 10^4 K needed to generate the UV radiation inducing ERE in interstellar dust. Solar corona however has temperature of about 10^6 K, which corresponds to a thermal energy of order 100 eV and the UV radiation from corona at above mentioned discrete frequencies resulting in dropping of electrons could serve as a metabolic energy source for pre-biotics in the interstellar space. This raises obvious questions. Should the stellar sources inducing ERE possess also corona? Could 4 eV and 6 eV
8.5. Many-sheeted space-time, universal metabolic quanta, and plasmoids as primitive life forms

UV photons from the solar corona serve as a source of metabolic energy for some primitive organisms like blue algae?

A simple model for the metabolism of plasmoids

Extended Red Emissions (EREs) are associated with the interstellar dust in presence of UV light with energies above 7.25 eV and source with temperature not below 10^4 K (maximum of wave length distribution of black body radiation corresponds to the energy 4.97 eV at this temperature). This suggests that plasmoids using UV photons as metabolic energy are involved.

1. Since the bond energies of molecules vary in few eV range and their formation typically liberates photons in UV range, the natural hypothesis is that the metabolic cycle is based on the formation of some molecule liberating UV photon kicking electron/proton to a smaller space-time sheet. UV photons from energy source would in turn induce dissociation of the molecule and thus drive the process. The process as a whole would involve several p-adic length scales and several metabolic currencies.

2. This situation is of course encountered also in the ordinary biology but with highly developed sharing of labor. Biosphere would burn hydrocarbons in animal cells with carbon dioxide as the eventual outcome. Carbon dioxide would in turn be used by plants to regenerate the hydrocarbons. Note that in the recent day technology the loop is open: hydrocarbons are burned but there is no process regenerating them: perhaps photons with large Planck constant might some day used to regenerate the fuel and give rise to "living" and perhaps tidier technology.

3. It is believed that complex organic molecules like amino-acids can form in the interstellar dust and the spontaneous formation of aminoacids is known to be possible in the interstellar ice under UV radiation. Hence at least N_2 and perhaps also CO can be expected to be present. The table below gives dissociation energies of some simple molecules.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>H_2</th>
<th>O_2</th>
<th>N_2</th>
<th>CO</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_D/eV</td>
<td>4.48</td>
<td>5.08</td>
<td>7.37</td>
<td>11.11</td>
<td>5.2</td>
</tr>
</tbody>
</table>

(a) N_2 has bond energy 7.37 eV is slightly above the UV threshold 7.26 eV for ERE, which strongly suggests that N_2 is one of the molecules involved with the metabolism of interstellar plasmoids.

(b) If ice is present then carbon monooxide CO would be an excellent candidate for a metabolic molecule since its bond energy is as high as 11.11 eV. The exceptionally large bond energy would naturally relate to the fact that carbon and oxygen are the key molecules of life.

Anomalous light phenomena as plasmoids

TGD suggests that anomalous light phenomena (ALPs, or light balls, or UFOs depending on one’s tastes and assumptions) are identifiable as plasmoids behaving as primitive life forms. In the conference held in Røros Bjørn Gitle-Hauge told about the determination of the spectrum of visible light emitted by some light balls observed in Hessdalen [7] ("Hessdalen phenomenon" is the term used).

1. The spectrum is a band in the interval 500-600 nm whereas the typical ERE [56] is concentrated in the interval 650-750 nm. The peak is in the interval 540-900 nm, the width of the band is also now 100 nm, and there are no sharp peaks. Therefore the interpretation as ERE can be considered.

2. Because Hessdalen is an old mining district, authors propose that the light ball could consist of burning dust containing some metals. Author proposes that the burning of Titanium and Scandium (encountered only in Scandinavia) might provide the energy for the light ball. Ti reacts vigorously with acids and air (burning in oxygen gives TiO_2 as end product). Sc burns in oxygen and is the only element that burns in nitrogen. Ti is used in fireworks since it produces spectacular fires.
3. The bond energies of TiO and TiN are 6.9 eV and 5.23 eV so that the radiation resulting in their formation is in UV range and could provide part of the metabolic energy. I do not know about bond energy of Scandium oxide.

4. TiO$_2$ is known to catalyze photolysis in the presence of UV light [8,9], which in turn is basic step in [10], the basic step of which in TGD Universe would be the kicking of electrons/protons to smaller space-time sheets. Therefore the UV photons liberated in the formation of molecules containing Ti could catalyze photosynthesis like process.

8.5.4 Life as a symbiosis of plasmoids and biological life

If evolution has discovered something it usually keeps it so that plasmoids and UV metabolism should be still there. This suggests that plasmoids are still in ionosphere. What could this mean? There also also other questions and I am grateful for Sampo Vesterinen for some of them. The key questions are perhaps the following ones. Do plasmoids and biological life forms live in symbiosis in some sense? If this is the case, what plasmoids can give to us and what we can give to plasmoids?

1. Magnetic bodies as quantum plasmoids and plasmoids in magnetosphere

One must make clear what one means with plasmoid. One can consider a plasma made of ordinary visible matter and also large \hbar quantum plasma at magnetic bodies in a form of Bose-Einstein condensates of charged particles. The symbiosis of plasmoids and biomatter could correspond to the symbiosis of magnetic body and biological body.

One can imagine also the possibility that visible matter plasmoids and bio-matter are in symbiosis via the mediation of magnetic bodies. Note that DNA strands are negatively charged so that there is a resemblance with a plasma like state. One aspect of symbiosis would be that magnetic body would feed charged particles to DNA.

2. Some basic facts about magnetosphere

Magnetosphere would be a natural environment for plasmoid population. If one restricts plasmoids to to visible matter, then ionosphere, plasma sphere and plasma sheet are the most interesting objects of interest.

1. The temperature in the highest F layer of the ionosphere (extending from 150 km to 1500 km depending on source) is about 1200-1300 K: the photon energy is about .6-.65 eV at the maximum wavelength of thermal distribution. Hence F layer plasmoids might receive metabolic energy in the form of .5 eV metabolic energy quanta via thermal photons. Self-organization occurs in transition layers and especially interesting is the transition region 85-300 km from mesosphere to ionosphere at which temperature increases 300 K to about 1200 K.

2. Inner magnetosphere is a toruslike structure whose extension varies between $4R_E$ (day side) and $8R_E$ (night side) and shielded from solar wind. In the inner magnetosphere the typical density is about 1 ion per cubic centimeter. Inner magnetosphere is bounded by a transition layer of thickness of $\sim R$ (magneto-pause). In this region the density of the ions drops rapidly. Inner magnetosphere contains plasma sphere whose radius varies in the range $2R_E - 4R_E$ at day side and $2R_E - 6R_E$ at night side. Plasma has a ionospheric origin. The density of the cold plasma consisting mainly of protons sphere varies in the range 10^{-10^3} ions/cm3, whereas the temperature is $\sim 5 \times 10^3$ K, which corresponds to metabolic energy quantum of .5 eV. Note however that the energy of photon at maximum of thermal distribution is about 2.5 eV which suggests 2 eV metabolic quantum.

The cold, dense plasma of plasma sphere is frozen around magnetic flux lines which co-rotate with Earth. In TGD framework this means that flux tubes co-rotate and thus change shape. In the equatorial plane the density of the plasma sphere drops sharply down to ~ 1 ion/cm3 at $r = 4R$. This transition region is known as a plasma pause. During magnetic storms the outer radius decreases since the pressure of the solar wind compresses the plasma sphere. The
8.5. Many-sheeted space-time, universal metabolic quanta, and plasmoids as primitive life forms

...day-night variation of the shape of the plasma sphere is rather small. Within this region the magnetic field has in a reasonable approximation dipole shape with radiation belts forming an exception.

The surface temperature of Sun is 6×10^3 K. This temperature is roughly half of the minimum temperature 10^4 K needed for EREs from interstellar dust. This corresponds to photon energy of 3 eV at the maximum of thermal distribution and cannot induce dissociation of N_2 and other simple diatomic molecules. There is also solar corona but its temperature is about 10^6 K (10² eV) so that the flux of thermal photons at UV energies is very low.

Taking seriously the finding that $T \geq 10^4$ K for source is necessary for EREs, one might ask whether the plasmoids at the day side are able to receive enough metabolic energy from UV radiation of Sun. If course, there is no need to assume that dissociation of N_2 molecules is key element in metabolic mechanism. The temperatures in both F layer and plasma sphere allow kicking of protons and electrons to smaller space-time sheets and this might save the situation. Hence metabolism is not a problem for the plasmoids except perhaps during night-time when the plasma cools down somewhat.

3. The plasma sheet at the night side of Earth dark is the most prominent feature of the outer magnetosphere. It has a thickness about Earth radius R_E and extends beyond Moon’s orbit (with radius $10^3 R_E$). The average densities of charged particles are very low and same order of magnitude as in plasma sphere: about 4-2 per cm³ for both protons and electrons and correlates with solar wind density.

The temperature is very high: the thermal energy of electrons is in keV range and ionic temperatures are even higher. The high temperature is due to the leakage of matter from solar wind. Note that up to the distance $d \sim 10^2 R_E$ equator region of outer magnetosphere at the night side of Earth experiences a continual solar eclipse so that this region does not receive radiation energy from Sun: the high temperature of plasma sheet solves this metabolic problem.

The presence of keV photons would destroy molecules at plasma sheet and induce a high degree of ionization so that plasmoid life must be based on ions and electrons. The energy needed to kick an electron to an atomic space-time sheet is about keV from $m_e/m_p \sim 2^{-11}$; hence the dropping of electrons from atomic space-time sheets would be the natural metabolic mechanism for plasmoid life at plasma sheet.

One of the original motivations for the plasmoid hypothesis was the strange finding that plasma sheet at the equator at the dark side of Earth is highly self-organized structure and the velocity distributions of electrons present patterns like “flowers”, “eyes”, “butterflies”.

3. What plasmoids could give to us and what we could give to plasmoids?

An attractive general motivation for the symbiosis would be that magnetic bodies would give us ability to think and we would give them ability to sense.

1. The model of cognitive representations relies on the intersections of magnetic bodies with corresponding p-adic space-time sheets possessing literally infinite size in the real sense. The larger the magnetic body, the better the representations. Magnetic bodies could thus provide us with cognitive representations and an interesting question is whether and how this relates to the strange self-organization patterns at plasma sheet.

2. We could provide for magnetic bodies sensory input and serve as their motor instruments. These magnetic bodies might be also associated with plasma sheet and the plasmoids of ionosphere and plasma sphere and could also use plasmoids of visible matter as sensory receptors and perhaps even primitive motor instruments.

One can imagine also more concrete motivations for the symbiosis.

1. Plasmoids in the day-side ionosphere could shield biosphere from UV light by “eating” the incoming UV light. Magnetic bodies could also feed negative electronic charge from the plasmoids of magnetosphere to DNA double strands.
2. Plasmoids are not in a need of metabolic energy unless it happens that the temperature in F layer cools too much during night time from $T \sim 0.12$ eV. One might imagine that plasmoids suck metabolic energy from the biosphere during sleep (say brains which remain active): this would be a possible explanation for why we sleep. One can even imagine that during sleep magnetospheric collective levels of consciousness take command and life forms in the biosphere entangle to form kind of stereo consciousness providing a collective view what is to be human, member of species, or a part of biosphere.

4. About the interpretation of bio-photons?

Also the wave lengths of bio-photons are in the range of visible photons. Their spectrum is claimed to be featureless, which would suggest that identification in terms of photons resulting in dropping of electrons and protons to larger space-time sheets might not make sense. The variation of the geometric shape of space-time sheets, the possibility of surplus energy, and the clustering of the transition lines around the lower end of wave length spectrum might however give rise to effectively featureless spectrum.

Suppose that bio-photons correspond to superposition of ERE bands and thus reflect the presence of UV energy feed. Unless biological body is not able to generate the needed UV photons, they must arrive from Sun. Bio-photons or their dark counterparts with much longer wavelengths could indeed live at the flux quanta of the magnetic bodies and observed visible bio-photons could represent some kind of leakage.

5. Gariaev’s experiments

Gariaev’s experiments \cite{27} involved the irradiation of DNA using visible laser light with photon energy 1.9595 eV. The irradiation induced emission of radio waves with same polarization with frequencies above kHz. Radio waves induced growth of potatoes. A possible interpretation is that 2 eV photons kicked electrons to a smaller space-time sheet and thus gave metabolic energy to DNA. The radio waves possibly resulting in the dropping of electrons back to the larger space-time sheets could have consisted of dark photons with same or smaller energy and could have been used as a metabolic energy by the potatoes. That the dropping can occur to several space-time sheets would explain why several radio wave frequencies were observed. The prediction would be sum of period doubling spectra discussed earlier since sequences of droppings are possible. The radio-wave signal would result from the de-coherence of dark radio-wave photons to a bundle of ordinary radio-wave photons.

6. Earth’s interior as a living system?

For years ago I developed in detail the working hypothesis that entire magnetosphere is a living system. Even Earth’s interior (and also solar surface) could contain plasmoid life \cite{28,39}. The temperature below the mantle of Earth does not differ too much from the surface temperature of Sun and metabolic energy could come from the radioactive decays from the interior of Earth. There would be UV shielding by Earth: UV light has energies above 3.1 eV whereas the temperature at the mantle-core boundary is 4300 K which corresponds to energy 2.2 eV energy at the maximum of thermal distribution. Metabolic energy quantum of 2 eV would be highly suggestive and might be directly used to kick protons and electrons to smaller space-time sheet.

The metabolism would not probably involve energy quantum of .5 eV. Magnetic flux tubes could also mediate metabolic energy from the biosphere and possibly also ionosphere and the plasmoid life in question could be at an evolutionary level not tolerating UV light and involve molecules in essential manner.

8.6 Exotic color and electro-weak interactions

The finding of a correct interpretation of long ranged electro-weak and color gauge fields predicted by classical TGD has been the basic stumbling block for the development of the understanding of TGD Universe and it took about 27 years before the time was ripe to see that TGD predicts entire fractal hierarchy of scaled down copies of standard model physics so that TGD Universe can be seen as a kind of inversion of Mandelbrot fractal for which each new bird eye of view reveals new structures assignable to higher levels in the hierarchy of consciousness.
8.6.1 Long range classical weak and color gauge fields as correlates for dark massless weak bosons

Long ranged electro-weak gauge fields are unavoidably present when the dimension D of the CP_2 projection of the space-time sheet is larger than 2. Classical color gauge fields are non-vanishing for all non-vacuum extremals. This poses deep interpretational problems. If ordinary quarks and leptons are assumed to carry weak charges fed to larger space-time sheets within electro-weak length scale, large hadronic, nuclear, and atomic parity breaking effects, large contributions of the classical Z^0 force to Rutherford scattering, and strong isotopic effects, are expected. If weak charges are screened within electro-weak length scale, the question about the interpretation of long ranged classical weak fields remains.

Various interpretations for the long ranged classical electro-weak fields

During years I have discussed several solutions to the problems listed above.

Option I: The trivial solution of the constraints is that Z^0 charges are neutralized at electro-weak length scale. The problem is that this option leaves open the interpretation of classical long ranged electro-weak gauge fields unavoidably present in all length scales when the dimension for the CP_2 projection of the space-time sheet satisfies $D > 2$.

Option II: Second option involves several variants but the basic assumption is that nuclei or even quarks feed their Z^0 charges to a space-time sheet with size of order neutrino Compton length. The large parity breaking effects in hadronic, atomic, and nuclear length scales is not the only difficulty. The scattering of electrons, neutrons and protons in the classical long range Z^0 force contributes to the Rutherford cross section and it is very difficult to see how neutrino screening could make these effects small enough. Strong isotopic effects in condensed matter due to the classical Z^0 interaction energy are expected. It is far from clear whether all these constraints can be satisfied by any assumptions about the structure of topological condensate.

Option III: During 2005 (27 years after the birth of TGD!) third option solving the problems emerged based on the progress in the understanding of the basic mathematics behind TGD.

In ordinary phase the Z^0 charges of elementary particles are indeed neutralized in intermediate boson length scale so that the problems related to the parity breaking, the large contributions of classical Z^0 force to Rutherford scattering, and large isotopic effects in condensed matter, trivialize.

Classical electro-weak gauge fields in macroscopic length scales are identified as space-time correlates for the gauge fields created by dark matter, which corresponds to a macroscopically quantum coherent phase for which elementary particles possess complex conformal weights such that the net conformal weight of the system is real.

In this phase $U(2)_{ew}$ symmetry is not broken below the scaled up weak scale except for fermions so that gauge bosons are massless below this length scale whereas fermion masses are essentially the same as for ordinary matter. By charge screening gauge bosons look massive in length scales much longer than the relevant p-adic length scale. The large parity breaking effects in living matter (chiral selection for bio-molecules) support the view that dark matter is what makes living matter living.

Classical color gauge fields

Classical long ranged color gauge fields always present for non-vacuum extremals are interpreted as space-time correlates of gluon fields associated with dark copies of hadron physics. It seems that this picture is indeed what TGD predicts. A very special feature of classical color fields is that the holonomy group is Abelian. This follows directly from the expression $g_{\alpha\beta}^A \propto H^A J_{\alpha\beta}$ of induced gluon fields in terms of Hamiltonians H^A of color isometries and induced Kähler form $J_{\alpha\beta}$. This means that classical color magnetic and electric fluxes reduce to the analogs of ordinary magnetic fluxes appearing in the construction of configuration space geometry [16].

By a local color rotation the color field can be rotated to a fixed direction so that genuinely Abelian field would be in question apart from the possible presence of gauge singularities making impossible a global selection of color direction. These singularities could be present since Kähler form defines a magnetic monopole field. An interesting question inspired by quantum classical correspondence is what the Abelian holonomy tells about the sources of color gauge fields and color confinement.
For instance, could Abelian holonomy mean that colored gluons (and presumably also other colored particles) do not propagate in the p-adic length scale considered? Color neutral gluons would propagate but since also their sources must be color neutral, they should have vanishing net color electric fluxes. This form of confinement would allow those states of color multiplets which have vanishing color charges and obviously symmetry breaking down to $U(1) \times U(1)$ would be in question. This would serve as a signal for monopole confinement which would not exclude higher multipoles for the Abelian color fields. This kind of fields appear in the the TGD based model for nuclei as nuclear strings bound together by color flux tubes [71]. In the sequel the model for nuclear color force is briefly discussed in order to give an idea about how the dark color forces might act also in longer length scales.

8.6.2 Dark color force as a space-time correlate for the strong nuclear force?

Color confinement suggests a basic application of the basic criteria for the transition to large \hbar phase. The obvious guess is that valence quarks are dark [23, 21]. Dark matter phase for quarks does not change the lowest order classical strong interaction cross sections but reduces dramatically higher order perturbative corrections and resolves the problems created by the large value of QCD coupling strength in the hadronic phase.

The challenge is to understand the strong binding solely in terms of dark QCD with large value of \hbar reducing color coupling strength of valence quarks by factor $1/r \approx 2^{-k_{\text{eff}}}$. The best manner to introduce the basic ideas is as a series of not so frequently asked questions and answers.

Rubber band model of strong nuclear force as starting point

The first question is what is the vision for nuclear strong interaction that one can start from. The sticky toffee model of Chris Illert [22] is based on the paradox created by the fact alpha particles can tunnel from the nucleus but that the reversal of this process in nuclear collisions does not occur. Illert proposes a classical model for the tunnelling of alpha particles from nucleus based on dynamical electromagnetic charge. Illert is forced to assume that virtual pions inside nuclei have considerably larger size than predicted by QCD and the model. Strikingly, the model favors fractional alpha particle charges at the nuclear surface. The TGD based interpretation would be based on the identification of the rubber bands of Illert as long color bonds having exotic light quark and anti-quark at their ends and connecting escaping alpha particle to the mother nucleus. The challenge is to give meaning to the attribute “exotic”.

How the darkness of valence quarks can be consistent with the known sizes of nuclei?

The assumption about darkness of valence quarks in the sense of of large \hbar ($\hbar_s = \hbar/v_0$) is very natural if one takes the basic criterion for darkness seriously. The obvious question is how the dark color force can bind the nucleons to nuclei of ordinary size if the strength of color force is v_0 and color sizes of valence quarks are about $L(129)$?

It seems also obvious that $L(107)$ in some sense defines the size for nucleons, and somehow this should be consistent with scaled up size $L(k_{\text{eff}} = 129)$ implied by the valence quarks with large \hbar. The proposal of [23, 21] inspired by RHIC findings [27] is that valence quarks are dark in the sense of having large value of \hbar and thus correspond to $k_{\text{eff}} = 129$ whereas sea quarks correspond to ordinary value for \hbar and give rise to the QCD size $\sim L(107)$ of nucleon.

If one assumes that the typical distances between sea quark space-time sheets of nucleons is obtained by scaling down the size scale of valence quarks, the size scale of nuclei comes out correctly.

Valence quarks and exotic quarks cannot be identical

The hypothesis is that nucleons contain or there are associated with them pairs of exotic quarks and flux tubes of color field bodies of size $\sim L(129)$ connecting the exotic quark and anti-quark in separate nuclei. Nucleons would be structures with the size of ordinary nucleus formed as densely packed structures of size $L(129)$ identifiable as the size of color magnetic body.
The masses of exotic quarks must be however small so that they must differ from valence quarks. The simplest possibility is that exotic quarks are not dark but p-adically scaled down versions of sea quarks with ordinary value of \hbar having $k = 127$ so that masses are scaled down by a factor 2^{-10}.

Energetic considerations favor the option that exotic quarks associate with nucleons via the $k_{\text{eff}} = 111$ space-time sheets containing nucleons and dark quarks. Encouragingly, the assumption that nucleons topologically condense at the weak $k_{\text{eff}} = 111$ space-time sheet of size $L(111) \simeq 10^{-14}$ m of exotic quarks predicts essentially correctly the mass number of the highest known super-massive nucleus. Neutron halos are outside this radius and can be understood in terms color Coulombic binding by dark gluons. Tetraneutron can be identified as alpha particle containing two negatively charged color bonds.

What determines the binding energy per nucleon?
The binding energies per nucleon for $A \geq 4$ do not vary too much from 7 MeV but the lighter nuclei have anomalously small binding energies. The color bond defined by a color magnetic flux tube of length $\sim L(k = 127)$ or $\sim L(k_{\text{eff}} = 129)$ connecting exotic quark and anti-quark in separate nucleons with scaled down masses $m_q(\text{dark}) \sim \frac{x}{2} m_q$, with $x = 2^{-10}$ for option for $k = 127$, is a good candidate in this respect. Color magnetic spin-spin interaction would give the dominant contribution to the interaction energy as in the case of hadrons. This interaction energy is expected to depend on exotic quark pair only. The large zero point kinetic energy of light nuclei topologically condensed at $k_{\text{eff}} = 111$ space-time sheet having possible identification as the dark variant of $k = 89$ weak space-time sheet explains why the binding energies of D and 3He are anomalously small.

What can one assume about the color bonds?
Can one allow only quark anti-quark type color bonds? Can one allow the bonds to be also electromagnetically charged as the earlier model for tetra-neutron suggests (tetra-neutron would be an alpha particle containing two negatively charged color bonds so that the problems with the Fermi statistics are circumvented). Can one apply Fermi statistics simultaneously to exotic quarks and anti-quarks and dark valence quarks?

Option I: Assume that exotic and dark valence quarks are identical in the sense of Fermi statistics. This assumption sounds somewhat non-convincing but is favored by p-adic mass calculations supporting the view that the p-adic mass scale of hadronic quarks can vary. If this hypothesis holds true at least effectively, very few color bonds from a given nucleon are allowed by statistics and there are good reasons to argue that nucleons are arranged to highly tangled string like structures filling nuclear volume with two nucleons being connected by color bonds having of length of order $L(129)$.

The notion of nuclear string is strongly supported by the resulting model explaining the nuclear binding energies per nucleon. It is essential that nucleons form what might be called nuclear strings rather than more general tangles. Attractive p-p and n-n bonds must correspond to colored ρ_0 type bonds with spin one and attractive p-n type bonds to color singlet pion type bonds. The quantitative estimates for the spin-spin interaction energy of the lightest nuclei lead to more precise estimates for the lengths of color bonds. The resulting net color quantum numbers must be compensated by dark gluon condensate, the existence of which is suggested by RHIC experiments [27]. This option is strongly favored by the estimate of nuclear binding energies.

Option II: If Fermi statistics is not assumed to apply in the proposed manner, then color magnetic flux tubes bonds between any pair of nucleons are possible. The identification of color isospin as strong isospin still effective removes color degree of freedom. As many as 8 color tubes can leave the nucleus if exotic quarks and anti-quarks are in the same orbital state and a cubic lattice like structure would become possible. This picture would be consistent with the idea that in ordinary field theory all particle pairs contribute to the interaction energy. The large scale of the magnetic flux tubes would suggest that the contributions cannot depend much on particle pair. The behavior of the binding energies favors strongly the idea of nuclear string and reduces this option to the first one.

What is the origin of strong force and strong isospin?
Here the answer is motivated by the geometry of CP_2 allowing to identify the holonomy group of electro-weak spinor connection as U(2) subgroup of color group. Strong isospin group SU(2) is iden-
tified as subgroup of isotropy group U(2) for space-time surfaces in a sub-theory defined by $M^4 \times S^2$, S^2 a homologically non-trivial geodesic sphere of CP_2 and second factor of $U(1) \times U(1)$ subgroup of the holonomies for the induced Abelian gauge fields corresponds to strong isospin component I_3. The extremely tight correlations between various classical fields lead to the hypothesis that the strong isospin identifiable as color isospin I_3 of exotic quarks at the ends of color bonds attached to a given nucleon is identical with the weak isospin of the nucleon. Note that this does not require that exotic and valence quarks are identical particles in the sense of Fermi statistics.

Does the model explain the strong spin orbit coupling ($L \cdot S$ force)? This force can be identified as an effect due to the motion of fermion string containing the effectively color charged nucleons in the color magnetic field $v \times E$ induced by the motion of string in the color electric field at the dark $k = 107$ space-time sheet.

How the phenomenological shell model with harmonic oscillator potential emerges?

Nucleus can be seen as a collection of of long color magnetic flux tubes glued to nucleons with the mediation of exotic quarks and anti-quarks. If nuclei form closed string, as one expects in the case of Fermi statistics constraint, also this string defines a closed string or possibly a collection of linked and knotted closed strings. If Fermi statistics constraint is not applied, the nuclear strings form a more complex knotted and linked tangle. The stringy space-time sheets would be the color magnetic flux tubes connecting exotic quarks belonging to different nucleons.

The color bonds between the nucleons are indeed strings connecting them and the averaged interaction between neighboring nucleons in the nuclear string gives in the lowest order approximation 3-D harmonic oscillator potential although strings have $D = 2$ transversal degrees of freedom. Even in the case that nucleons for nuclear strings and thus have only two bonds to neighbors the average force around equilibrium position is expected to be a harmonic force in a good approximation. The nuclear wave functions fix the restrictions of stringy wave functionals to the positions of nucleons at the nuclear strings. Using M-theory language, nucleons would represent branes connected by color magnetic flux tubes representing strings whose ends co-move with branes.

Which nuclei are the most stable ones and what is the origin of magic numbers?

$P = N$ closed strings correspond to energy minima and their deformations obtained by adding or subtracting nucleons in general correspond to smaller binding energy per nucleon. Thus the observed strong correlation between P and N finds a natural explanation unlike in the harmonic oscillator model. For large values of A the generation of dark gluon condensate and corresponding color Coulombic binding energy favors the surplus of neutrons and the generation of neutron halos. The model explains also the spectrum of light nuclei, in particular the absence of pp, nn, ppp, and nnn nuclei.

In the standard framework spin-orbit coupling explains the magic nuclei and color Coulombic force gives rise to this kind of force in the same manner as in atomic physics context. Besides the standard magic numbers there are also non-standard ones (such as $Z, N = 6, 12$) if the maximum of binding energy is taken as a definition of magic, there are also other magic numbers than the standard ones. Hence can consider also alternative explanations for magic numbers. The geometric view about nucleus suggests that the five Platonic regular solids might defined favor nuclear configurations and it indeed turns that they explain non-standard magic numbers for light nuclei.

New magic nuclei might be obtained by linking strings representing doubly magic nuclei. An entire hierarchy of linkings becomes possible and could explain the new magic numbers $14, 16, 30, 32$ discovered for neutrons [7]. Linking of the nuclear strings could be rather stable by Pauli Exclusion Principle. For instance, ^{16}O would corresponds to linked 4He and ^{12}C nuclei. Higher magic numbers $28, 50, ...$ allow partitions to sums of lower magic numbers which encourages to consider the geometric interpretation as linked nuclei. p-Adic length scale hypothesis in turn suggest the existence of magic numbers coming as powers of 2^3.

8.6.3 How brain could deduce the position and velocity of an object of perceptive field?

The basic degrees of freedom for mind like space-time sheets can be regarded as parameters specifying color quantization axes and spin quantization axis. The parameters characterizing the choices of
8.6. Exotic color and electro-weak interactions

the color quantization axes define 3+3-dimensional symplectic flag-manifold $F_3 = SU(3)/U(1) \times U(1)$ whereas the parameters fixing spin-quantization axes define two-dimensional flag-manifold $F_2 = SU(1)/U(1) = S^2$, which is identical to two-sphere and whose point characterizes some orientation vector. A mathematically attractive identification of the flag manifold F_3 is as a representation for the possible positions and velocities of an object of the perceptive field whereas F_2 could represent some orientation, say ear-to-ear orientation axis. This identification, if correct, provides additional support for the uniqueness of the choice of the imbedding space $H = M^4 \times CP_2$. Amazingly, the model of honeybee dance by Barbara Shipman leads to the identification of the flag manifold F_3 as a fundamental mathematical structure associated with the cognition of the honeybee.

Without a good physical justification this kind of identification is however ad hoc. Fortunately, the following argument makes it possible to understand why F_3 should code the position and the velocity of the objects of the perceptive field.

1. The time development by quantum self-organization is expected to lead to well defined asymptotic values of (P, Q) coordinates during each wake-up period of the mind like space-time sheet representing object of the perceptive field and in self-state.

2. The crucial observation is that classical em and Z^0 fields are accompanied by classical color fields in TGD. Color rotations rotate the color field in color space whereas induced Kähler form remains unchanged. Most importantly: classical em and Z^0 fields do not remain invariant under color rotations as they would remain in standard model. This leads to the idea that different (P, Q) values obtained by color rotations of cognitive and neuronal space-time sheets correspond to slightly different membrane potentials and that it is the dependence of the membrane potential on the position and velocity of the object of the perceptive field, which leads to (P, Q) coding.

3. An observation not directly related to (P, Q) coding is that classical em and color fields induce tiny color polarization at quark level leading to color polarization of nuclei: this color polarization could provide the quantum correlate for the color quale. The representation of color in this manner however requires that (P, Q) are same for all neurons in the perceptive field so that the coding of positions and velocities and color are mutually exclusive. Positions and velocities and color are indeed represented by different regions of cortex.

4. Color rotation induces motion in F_3 rotating color quantization axes and leaving the induced Kähler field invariant so that absolute minima of Kähler action are mapped to absolute minima and zero modes are not changed. Classical Z^0 and em fields are however not invariant under color rotations. How classical em and Z^0 depend on Kähler form becomes clear from the the following formulas:

\[
\begin{align*}
\gamma &= 3J - \frac{1}{2} \sin^2 \theta_W Z^0, \\
Z^0 &= 2J + 4e^0 \wedge e^3, \\
J &= 2(e^0 \wedge e^3 + e^1 \wedge e^2)
\end{align*}
\]

Here J denotes Kähler form invariant under color rotations and e^k denote vierbein vectors of CP_2: $e^0 \wedge e^3$ denotes the part of Z^0, which is not invariant under color rotations. From these formulas it is evident that classical photon field is not in general invariant since it is a superposition of the induced Kähler field and classical Z^0 field and reduces to induced Kähler field only when the Weinberg angle vanishes: the physical value of the Weinberg angle is about $\sin^2(\theta_W) = 1/4$. This means that various points (P, Q) of $(3+3)$-dimensional F_3 indeed correspond to different classical Z^0 fields and classical em fields.

5. There is however an important exception to this picture. If CP_2 projection belongs to geodesic sphere S^2, the field equations reduces to those for $X^4 \subset M^4 \times S^2$. For space-time sheets for which CP_2 projection is $r = \infty$ homologically non-trivial geodesic sphere of CP_2 one has

\[
\gamma = \left(\frac{3}{4} - \frac{\sin^2(\theta_W)}{2}\right) Z^0 \approx \frac{5Z^0}{8}
\]
as the explicit study of \(r = \infty \) geodesic sphere shows (see the appendix of the book). The
induced \(W \) fields vanish in this case and they vanish also for all geodesic spheres obtained by
\(SU(3) \) rotation. There are excellent reasons to believe that also the relationship between \(Z^0 \)
and \(\gamma \) is \(SU(3) \) invariant so that there would be no mixing between em and \(Z^0 \) fields. For
homologically trivial geodesic spheres \(\gamma \) and \(Z^0 \) vanish and only \(W \) fields are non-vanishing.
This kind of MEs would naturally correspond to \(W \) MEs.

For \(D > 2 \)-dimensional \(CP_2 \) projection the situation changes. MEs have always 2-D \(CP_2 \)
projection field equations and field equations are satisfied without assuming that \(CP_2 \) projection
is a geodesic sphere and in this case one can hope of getting mixing of \(\gamma \) and \(Z^0 \) also in this
case perhaps characterizable in terms of the value of the Weinberg angle. Also \(W \) fields can be
present in this case.

6. Assuming that the values of \((P,Q)\) coordinates are the same for the neuronal group representing
an object of the perceptive field and the mind like space-time sheet associated with it (this
could be forced by the wormhole contacts), \((P,Q)\) coding for the positions and velocities for the
objects of the perceptive field follows if these observables are coded into the properties of the
classical \(Z^0 \) field associated with the neuronal membrane. This seems plausible since a change of
the classical \(Z^0 \) field implies a change of the classical em field if the induced Kähler field remains
invariant (as is natural). Thus the problem of understanding \((P,Q)\) coding for position and
velocity reduces to the problem of understanding why the position and velocity should affect
some natural em field associated with cell membrane. Obviously membrane resting potential is
an excellent candidate for this em field.

7. The dependence of the value of the membrane resting potential for the representation of an
object of the perceptive field on the the position and velocity of the object is natural. For
instance, it is advantageous for the neurons representing object near to the observer to be
nearer to the criticality for firing. Thus the membrane potential must be reduced by a suitable
color rotation and effective code position of the object to \(Q \) coordinates. Also, when the object
moves towards/away from the observer, the resting potential should be reduced/increased and
this means that velocity is coded to \(P \) value (note that there is infinite number of symplectic
coordinates at use). From these correlations it is quite plausible that \((P,Q)\) coding could be
a result of natural selection. Of course, the coding of position and velocity to \((P,Q)\) values
need not be one-to-one. For instance, simple organisms are sensitive for velocity only and some
organisms experience world as 2-dimensional.

8.7 Exotic representations of super-symplectic algebra

The unique feature of the Super Virasoro algebra is that it allows a fractal hierarchy of sub-algebras and
one obtains hierarchy of exotic representations in p-adic sector. One must however assume that Super
Virasoro gauge conditions allow arbitrary values of the super-symplectic scaling quantum number \(L_0 \)
non-vanishing. \(L_0 = 0 \) condition would be replaced by \(L_0 \mod p^n = 0 \) condition in the p-adic
context so that conformal invariance would become approximate in p-adic sense. The alternative
interpretation would be as fractality in the sense that scalings would leave the states almost invariant.

One could however argue that exotic Super Virasoro representations can make sense only in the
purely p-adic sense and the assumption that mass values values \(M^2 \propto p^n \), which are gigantic in
real sense, can be mapped by the canonical identification to \(M^2 \propto p^{-n} \) is highly counter intuitive
and has no physical basis. Also in p-adic mass calculations the canonical identification is applied
only to fix the real probabilities as canonical images of the p-adic probabilities. Essentially the
same predictions would result by using a real statistical ensemble defined by the real counterparts
of the p-adic probabilities since the three lowest powers of \(p \) determine the outcome in an excellent
approximation (that is only the states with \(M^2 \propto n \), \(n \in \{0,1,2\} \) are included).

The idea that the states \(L_0 \mod p^n = 0 \) are light in some well-defined physical sense is however too
beautiful to be given up immediately, and an analogy with condensed matter lattice systems comes in
rescue. For a one-dimensional lattice with lattice constant \(a \) only a discrete sub-group of translations
acts as symmetries and momentum cutoff emerges via the condition \(p \equiv p + nh/a \). Although the large
momenta \(p = nh/a \) are still real, they correspond to the motion of the entire lattice.
8.7. Exotic representations of super-symplectic algebra

By replacing the lattice obtained by translations with a lattice obtained by scalings one would obtain a highly analogous situation. More concretely, suppose that L_0 act as infinitesimal scaling of the imbedding space coordinates of the space-time surface. The action is almost trivial if the space-time surface has a fractal structure in the sense of being approximately invariant under the scaling of the points of M^4 by powers of p. Let a be a positive integer replacing e as the base of exponential so that a^{mL_0} defines an exponentiated scaling. The condition $a^{mL_0} \mod p = 1$ states that the state remains invariant under this scaling and corresponds to the invariance of lattice state under translation by a multiple ma of the lattice vector. By Fermat’s little theorem this condition is satisfied if one has $L_0 \mod p^n = 0$.

One can consider also the 2-based exponential of L_0 giving $2^{mL_0} \mod p = 0$. P-Adic length scale hypothesis in its most general form stating $p \simeq 2^m$, m a positive integer, provides an approximate solution to this condition. Note that the fractal lattice picture suggests that p-adic cognitive codons corresponds to octaves of the p-adic frequency $f(n,k) = h/T(n,k)$. In the case of memetic code this would mean that the frequency range 10^{-10^5} Hz dictated by the time scale 1 ms of nerve pulse activity would contain 6 octaves meaning an effective reduction to genetic code with 6 bits. The prediction would be that the frequencies $10, 20, 40, 80, 160, 320, 640$ Hz are in a special role in neural dynamics.

The idea p-adic local dynamics codes for the p-adic fractality of the long length scale real dynamics indeed leads to this kind of picture and leads to a concrete quantum model for intentional action allowing even to show that the S-matrix for intention-to-action transitions has the same general form as the ordinary S-matrix [74] [49].

8.7.1 Exotic p-adic representations as representations for which states are almost p-adic fractals

When the value of L_0 is power of p: $L_0 \propto p^n$, $n = 1, 2, \ldots$, the real counterpart of the scaling quantum number is extremely small since it is proportional to $1/p^n$ in this case. In particular, the scalings a^{L_0} are p-adically very near to identity transformation for any integer by Fermat’s theorem. Fractals are invariant under scalings and since the states of exotic representations are in good approximation invariant under the group of scalings one could say that they are fractals modulo $O(1/p)$, perhaps resulting as asymptotic states of self-organization processes. One can also say that Virasoro conditions are satisfied to order $O(1/p)$ and that approximate conformal invariance is realized ($L_0 = 0$ condition would completely trivialize the super-symplectic representations since mass squared operator is not involved now). Note that the subalgebra of super-symplectic algebra with conformal weights proportional to p^n emerges naturally as an algebra replacing the entire super-conformal algebra.

One could sharpen the notion of approximate super-conformal representation. The failure of L_0 to annihilate the states means that L_{mp^n} can generate zero norm state only in order $O(p^n)$. Thus only the generators L_{-mp^n}, $m \geq 0$, but not L_{mp^n} can annihilate the physical states. Same would hold true also for the super generators and super-symplectic generators. Also multi-p-adic exotic representations are possible since any integer $n = \prod_i p_i^{k_i}$ defines a sub-algebra spanned by the generators for which conformal weights are proportional to n.

The representations of the conformal algebra with a non-vanishing central charge could be in question. The central charge term in the commutators of the conformal generators, being proportional to $(c/12)(n^3 - n)$ (c is central charge) is of order $O(p^k)$ unless p divides 12 (that is $p = 2$ or $p = 3$ holds true) or p divides the denominator of c, which is in general rational number. The central extension term for the anti-commutator of the fermionic super-generators G_n and G_{-n} is $\frac{c}{12}(2n -1)(2n + 1)$ and is not of order $O(p^k)$ for n multiple of p^k.

Semiclassical argument suggests that the lengths of MEs associated with these representations correspond to p-adic length scales and it turns out that corresponding fundamental frequencies correspond to important EEG frequencies in ELF frequency range. This encourages to think that the exotic representations of super-symplectic algebra might of special interest from the point of view of cognition.

Also quaternion conformal representations allow similar phenomenon and in this case p-adic mass squared proportional to L_0 has extremely small real counterpart. The mass squared associated with the corresponding real states is however astrophysical and, in contrast to the original working hypothesis, it will be assumed that these states are not important for consciousness. There are however indications
supporting the importance of these states in hadron physics: one could perhaps understand non-perturbative aspects of QCD in terms of exotic p-adic quaternion-conformal representations.

8.7.2 Mersenne primes and Gaussian Mersennes are special

Mersenne primes

One can also consider the milder requirement that the exponent $\lambda = 2^{eL_0}$ represents trivial scaling represented by unit in good approximation for some p-adic topology. Not surprisingly, this is the case for $L_0 = mp^k$ since by Fermat’s theorem $a^p \mod p = 1$ for any integer a, in particular $a = 2$. This is also the case for $L_0 = mk$ such that $2^k \mod p = 1$ for p prime. This occurs if $2^k - 1$ is Mersenne prime: in this case one has $2^{L_0} = 1$ modulo p so that the sizes of the fractal sub-algebras are exponentially larger than the sizes of $L_0 \propto p^0$ algebras. Note that all scalings a^{L_0} are near to unity for $L_0 = p^n$ whereas now only $a = 2$ gives scalings near unity for Mersenne primes. Perhaps this extended fractality provides the fundamental explanation for the special importance of Mersenne primes.

In this case integrated scalings 2^{L_0} leave the states almost invariant so that even a stronger form of the breaking of the exact conformal invariance would be in question in the super-symplectic case. The representation would be defined by the generators for which conformal weights are odd multiples of the breaking of the exact conformal invariance would be in question in the super-symplectic case.

Especially interesting is the hierarchy of primes defined by the so called Combinatorial Hierarchy resulting from TGD based model for abstraction process. The primes are given by $2^{L_0} = 1$ modulo p and that the resulting $2^{L_0} - 1$ defines astro-

Gaussian Mersennes are also special

If one allows also Gaussian primes then the notion of Mersenne prime generalizes: Gaussian Mersennes are of form $(1 \pm 1)^n - 1$. In this case one could replace the scaling operations by scaling combined with a twist of $\pi/4$ around some symmetry axis: $1 + i = \sqrt{2}exp(i\pi/4)$ and generalized p-adic fractality would mean that for certain values of n the exponentiated operation consisting of n basic operations would be very near to unity.

1. The integers k associated with the lowest Gaussian Mersennes are following: 2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113. $k = 113$ corresponds to the p-adic length scale associated with the atomic nucleus and muon. Thus all known charged leptons, rather than only e and τ, as well as nuclear physics length scale, correspond to Mersenne primes in the generalized sense.

2. The primes $k = 151, 157, 163, 167$ define perhaps the most fundamental biological length scales: $k = 151$ corresponds to the thickness of the cell membrane of about ten nanometers and $k = 167$ to cell size about 2.56 μm. This observation also suggests that cellular organisms have evolved to their present form through four basic evolutionary stages. This also encourages to think that $\sqrt{2}exp(i\pi/4)$ operation giving rise to logarithmic spirals abundant in living matter is fundamental dynamical symmetry in bio-matter.

Logarithmic spiral provides the simplest model for biological growth as a repetition of the basic operation $\sqrt{2}exp(i\pi/4)$. The naive interpretation would be that growth processes consist of $k = 151, 157, 163, 167$ steps involving scaling by $\sqrt{2}$. This however requires the strange looking assumption that growth starts from a structure of size of order CP_2 length. Perhaps this exotic growth process is associated with pair of MEs or magnetic flux tubes of opposite time orientation and energy emerging CP_2 sized region in a mini big bang type process and that the resulting structure serves as a template for the biological growth.

3. $k = 239, 241, 283, 353, 367, 379, 457$ associated with the next Gaussian Mersennes define astronomical length scales. $k = 239$ and $k = 241$ correspond to the p-adic time scales .55 ms and 1.1 ms: basic time scales associated with nerve pulse transmission are in question. $k = 283$ corresponds to the time scale of 38.6 μm. An interesting question is whether this period could define a fundamental biological rhythm. The length scale $L(353)$ corresponds to about 2.6×10^6 light years, roughly the size scale of galaxies. The length scale $L(367)$ $\simeq 3.3 \times 10^8$ light years is of same order of magnitude as the size scale of the large voids containing galaxies on
their boundaries (note the analogy with cells). \(T(379) \approx 2.1 \times 10^{10} \) years corresponds to the lower bound for the order of the age of the Universe. \(T(457) \sim 10^{22} \) years defines a completely superastronomical time and length scale.

Connection with the electromagnetic realization of genetic code and Gaussian Mersennes?

The considerations above suggest that \(\sqrt{2} \times exp(i \pi/4) \) might code for a fundamental logarithmic spiral growth step in some sense. The powers of the phase factor \(exp(i \pi/4) \) define 8-element cyclic group which should be thus fundamental for 2-adic logarithmic spiral growth process in which the diagonal of square becomes the side of the next square rotated by \(\pi/4 \) with respect to original one.

Perhaps it is worth of noticing that for 3-bit Boolean algebra with one statement excluded the maximal Boolean algebra corresponds to 2 bits of information, and is naturally associated with the predecessor of the genetic code in the hierarchy of codes predicted by the TGD based model for abstraction process. In this case the counterpart of 64 DNA triplets code for 4 statements and the 4 DNA nucleotides themselves might correspond to these "basic truths".

Second point perhaps worth of noticing is that the model of electromagnetic realization of the genetic code discussed in [49], which was inspired by the observations Cyril Smith [54] about the coding of arithmetic operations to the sequences of 7 binary electromagnetic pulses, led to a guess for a 7-bit binary code for binary arithmetic operations of type \(f = f(f_1, f_2) = X f_1 O Y f_2 \) giving output frequency as a function of two input frequencies \(f_1 \) and \(f_2 \). \(O \) codes for the arithmetic operation proper represented by single bit and the eight operations \(X \) and \(Y \) acting on the operands are represented by 3 bits each. Depending on context, \(O = 0/1 \) represents either \(+/- \) or \(\times/\). There are eight different operations \(X (Y) \), which suggests an interpretation in terms of 8-element cyclic group. Perhaps the coding of the growth process might be achieved by this kind of coding. Each DNA triplet would code this kind of elementary growth process whereas conjugate triplet would code its time reversal. MEs would read genes to sequences of pulses of light-like vacuum current generating hologram realized in terms of coherent photons in turn coding the growth program and conjugate DNA would give rise to time reversed phase conjugate hologram coding for the time reversal of the growth step.

What remains to be understood is the meaning of the arithmetic operation in the growth process. The coding of growth process might reduce to coding of the growth of MEs and super-conducting magnetic flux tubes. If the eight rotations are accompanied by scalings, then multiplication and division of two growth steps would make sense since also the inverse of growth step makes sense. What remains however mysterious why DNA triplets would code the growth steps in this manner. An alternative interpretation is that a growth process of binary structures in question and that arithmetic operation \(\pm \) tells something about the second member of the binary structure. For instance, pairs of mind like space-time sheets might be in question (pairs of spiralling MEs with light-like boundaries or wormhole magnetic fields) and \(\pm \) might tell whether the other space-time sheet has positive or negative time orientation.

8.7.3 The huge degeneracies of the exotic states make them ideal for representational purposes

For a given eigenvalue of \(L_0 \) there is degeneracy of states given essentially by the exponent of \(L_0 \). The states with \(L_0 = O(p^n) \) have enormous degeneracy since the degeneracy of states increases exponentially as function of mass (this in fact leads to Hagedorn temperature). Huge ground state degeneracy is just what also spin glass analogy suggests and effective information storage and processing requires. The huge (really!) information processing potential suggests that these states correspond to an infinite hierarchy of life forms. Thus matter or 'flesh' would correspond to states of super-symplectic algebra with \(L_0 = 0 \) whereas the 'spirit' would correspond to states with \(L_0 \) eigenvalue divisible by \(p^n, n = 1, 2, \ldots, p \) prime and to states with \(L_0 \propto n, 2^n - 1 \) Mersenne prime. The identification of mind like space-time sheets as MEs which allow these sub-Super Virasoro representations, means that this hypothesis is consistent with TGD inspired theory of consciousness.

Thus one can conclude that life forms would be characterized by integer triplets

\[(p, m, n), \quad p \text{ prime} \, . \]
This is a rather far-reaching prediction effectively promising a resolution to the riddle of life as a quantum physical phenomenon and gives a hint about the predictive and explanatory powers of geometrization of physics using p-adic numbers.

The Super Virasoro representations in question are associated with the algebra of super-symplectic transformations. There are two kinds of bosonic generators. The generators of first kind correspond to infinitesimal symplectic transformations of $E^2 \times CP_2$ localized with respect to the light-like coordinate S_+ of the light-like projection of the light-like boundary of ME. The coordinate lines of S_+ correspond in geometric optics picture curved light rays. E^2 denotes $S_+ = \text{constant}$ (or $S_- = \text{constant}$) 2-surface and can be obviously chosen in several manners. If ME is glued along a space-like section to some matter like 4-surface then this section most naturally corresponds to $S_+ = \text{constant}$ section. A tempting assumption is that sensory experience could be determined by the properties of the quantum state in this section. The generators of second type correspond to the radial Virasoro algebra (functions of S_+ coordinate) localized with respect to CP_2 coordinates so that they act as CP_2-local radial deformations of the light-like boundary. Fermionic generators are in one-one correspondence with the bosonic generators and correspond to configuration space gamma matrices. In the case of future light cone boundary similar algebra generates the isometries of the configuration space of 3-surfaces [16].

As noticed super-symplectic and super-conformal degrees of freedom do not contribute to mass squared unlike quaternion conformal degrees of freedom. This means an immense degeneracy of states with respect to energy broken only by the non-commutativity of Poincare algebra and super-symplectic and super-conformal algebras. It is not at all obvious whether one can assign this degeneracy to elementary particles or only with the light-like boundaries of MEs.

Any function of $E^2 \times CP_2$ coordinates and of the radial coordinate S_+ of the light-like boundary (that is function of the coordinates of light-cone boundary δM^+_2) defines Hamiltonian and thus configuration space isometry. It is convenient to assume that Hamiltonians correspond to CP_2 partial waves with well defined color quantum numbers. In the case of S^2 one could assume angular momentum eigenstates but this choice is not practical. Generalized Super Virasoro algebra acts as CP_2-local conformal symmetries of light-cone boundary which by its metric 2-dimensionality indeed allows infinite-group of conformal symmetries. The functions of $E^2 \times CP_2$ coordinate have no dependence on the light-like coordinate E_+ of the light-cone boundary define the Hamiltonians of symplectic transformations of $E^2 \times CP_2$. The subset of Hamiltonians with vanishing color and angular momentum quantum numbers ($\{I_3, Y\}$ and J_3) correspond to the zero modes in the proposed complexification of the configuration space tangent space [18]. The group of these symplectic transformations divided by the Cartan group of $U(1) \times SU(3)$ defines infinite-dimensional flag-manifold parametrizing all possible choices of quantization axes.

Super generators are expressible in terms of fermionic oscillator operators carrying quantum numbers of quarks and leptons. The Super Virasoro representations differ from the standard representations used in superstring models in that super generators are not Hermitian $G^\dagger_i \neq G_{-i}$ and carry fermion number [18]. In quaternion conformal case Super generators carry lepton number in the case of Ramond type representations and quark number in the case of Neveu-Schwartz type representations. super-symplectic representations are Ramond type representations. Both quaternion conformal and super-symplectic representations carry all possible quark/lepton numbers and thus spans what is very much like the Fock states of second quantized theory with configuration space degrees of freedom included as additional degrees of freedom and reflecting the fact that point like particles are replaces with 3-D surfaces.

8.7.4 Could one assign life-forms to the exotic Super-Virasoro representations?

First order life forms associated with elementary particles

Exotic representations are possible also in quaternion-conformal sector. In this case mass squared operator is of order $M^2 = O(p)$ p-adically so that the real counterpart of the p-adic mass would be of the order of elementary particle mass. Also now degeneracies of the states are gigantic. Unless p-adic and real string tensions are different, the mass of the corresponding real state is by a factor of order p higher ($\sim 10^{-4} \times \sqrt{p}$ Planck masses). This can be seen as a strong objection either against the existence of light real counterparts of the exotic p-adic states or against the applicability of the canonical identification map outside the realm of p-adic thermodynamics.
It is not clear whether super-symplectic degeneracy is present for the quaternion conformal representations. In fact, it might be that quaternion conformal representations are associated with \mathbb{CP}_2 type extremals representing elementary particles and cannot be assigned to the light-like boundaries of MEs. This would mean that the boundaries of MEs represent completely new form of light-like matter. Massless states with super-symplectic conformal weight $L_0 = O(p)$ are possible and momentum scale for these states is naturally determined by p. They define a more promising fractal hierarchy of life forms.

The lowest quaternion-conformal life form in the hierarchy are states having mass squared $M^2 \propto O(p)$ could be called first order life. These states have masses which are same order of magnitude as the masses of elementary particles with same value of p but have nothing to do with the elementary particles themselves. The extremely weak direct interaction between these these representations and ordinary elementary particles might mean that these life forms do not affect elementary particle physics directly. On the other hand, there is intriguing numerical evidence that non-perturbative aspects of hadron physics might be understood if transition from high energy hadron physics to low energy hadron physics corresponds to a phase transition replacing ordinary Super Virasoro representations with exotic Super Virasoro representations (Regge slope and pion mass are predicted with few percent accuracy: see the chapter \[44\]). This result is intriguing and forces to keep mind open for new interpretations of the p-adicity. Life requires also the presence of macroscopic quantum phases and one cannot therefore exclude the possibility of hadronic life when macroscopic quantum phases like Bose-Einstein condensates of pions or of super conducting neutron pairs are possible. Neutron super-conductivity is indeed believed to be possible in neutron stars.

To generate first order life forms in elementary particle length scales one would need MEs with wavelengths of order elementary particle Compton length. Presumably also temperature should be in interval around the energy defined by the secondary p-adic length scale. The Darwinian selection implied by self-organization should select some preferred p-adic primes as winners in the struggle for survival. Elementary particles are survivors at the lowest level and the first guess is that the primes corresponding to elementary particles provide good candidates for survivors at higher levels. The p-adic length scale $L(169) \approx 5.1$ microns associated with neutrinos is especially interesting as far as first order life is considered and could (actually should, as the model of memetic code suggests) be an essential aspect of life in cell length scale.

Also the other primary p-adic lengths scales seem to be important for the structure of bio-matter, which suggests that first order life in these length scales is important for the understanding of living matter.

Higher order life forms in biologically interesting length scales

$L_0 = O(p^n)$, $n \geq 1$, representations of p-adic super-symplectic algebra defining 'n:th order life' are especially interesting as far as living matter is considered. The reason is that the energy scale for these excitations is so small that the 'matter-mind interaction' with low frequency classical fields associated with MEs becomes possible. There seems to be no obvious difference between life forms with different values of n having p-adic length scales $L(n,k)$ of same order of magnitude as far as degeneracy of states is considered. However, if the negentropy gain in single quantum jump is limited by $\log(p)$ or $p\log(p)$ as the simplest scenario suggests \[43\]), then first order life forms have potential for more information rich conscious experiences than higher order life forms with roughly the same p-adic length scale. Also the estimate for the maximal number of primary qualia allows more primary qualia for first order life forms.

What makes the hypothesis so interesting is that the number of interesting-to-us p-adic length scales associated with the exotic representations is rather small. Especially interesting are the secondary p-adic length- and time scales defined by Mersenne primes. Mersenne primes M_{69}, M_{107} and M_{137} define fundamental p-adic length scale in elementary particle physics and correspond to intermediate gauge bosons, hadrons and electron. M_{61} could correspond also to new ultra high energy physics. The natural guess is that secondary p-adic length scales, and those associated with Mersenne primes in particular, are especially important for consciousness and life.

1. **Higher order life in nanoscales**

1 Note that also Super Virasoro representations associated with ordinary particles allow light excitations with $L_0 - n_0 = O(p)$.
The secondary p-adic length associated with M_{69} is $L(127) / 2^{3/2}$ and is slightly below electron length scale. Besides primary p-adic length scales L_k, $k = 127, 131, 137, 139$ listed in table below, also the secondary p-adic length scales $L_2(k) = L(2k)$, $k = 67, 71, 73$ and even the tertiary length scales $L_3(43) = L(129)$ and $L(47) = L(141)$ could have been important for the evolution of bio-intelligence. $L_2(67)$ is 28 Angstroms, $L_3(47) = 3.1$ Angstroms, $L_2(71) = 4.4$ Angstroms and $L_2(73) = 1.8$ nanometers might be crucial for self-organization and intelligence at level of DNA and proteins. Thus the miracles of biochemical self-organization would not be reducible to standard chemistry but would involve in absolutely essential manner the symbiosis with higher life forms. The energy scale involved is in nanometer length scales of order keV and seems quite too high for life: room temperature which corresponds to 10^{-2} eV or at least the energy scale of atomic transitions seems to be the natural energy scale in protein length scales.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
k & 127 & 131 & 672 & 137 & 139 & 712 & 732 \\
\hline
L(k,n) / 10^{-10} m & .025 & .1 & .28 & .8 & 1.6 & 4.5 & 18.0 \\
\hline
\end{array}
$$

Table 1. p-Adic length scales $L(k,n)$ possibly relevant to consciousness and life in atomic and nanolength scales. The length scale $L(151)$ is taken to be the thickness of cell membrane, which is 10^{-8} meters in a good approximation.

2. Higher order life forms in subcellular length scales and retina as living creature

First order life forms in subcellular length scales correspond to $k = 149, 151, 157, 163, 167$ and 169: corresponding p-adic length scales vary in the range of 5 nanometers and 5 micrometers and are given in the table below. Second order life forms associated with $L_2(79) = L(158) = 113$ nanometers, $L_2(83) = L(166) = 1.8$ micrometers as well as third order life form associated with $L_3(53) = L(159) = 160$ nanometers could also be important for self-organization and intelligence at subcellular levels. The energies for the secondary excitations of $k = 83$ Super Virasoro are in the region of visible light and an interesting possibility is that that these excitations might be excited when photons are absorbed by retina and that retina could be regarded as an intelligent conscious living being. This would also partially explain why our vision is just in this particular wavelength range. To decide whether interaction between photons and secondary Super Virasoro excitations is strong enough one should be able to device a model for this interaction.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
k & 149 & 151 & 157 & 79 & 53 & 163 & 83 & 167 & 169 \\
\hline
L_p / 10^{-8} m & .5 & 1 & 8 & 11.3 & 16 & 64 & 181 & 256 & 512 \\
\hline
\end{array}
$$

Table 2. p-Adic length scales $L(k,n)$ possibly relevant to consciousness and life between cell membrane and cellular length scales.

3. Higher order life in submillimeter length scales

The length scale range between $k = 169$ and $k = 191$ contains primary length scales $k = 173, 179, 181$ given in table below, secondary length scale $L_2(89) = L(178) = 1.1 \times 10^{-4}$ meters, and tertiary length scale $L_3(59) = L(177) = .8 \times 10^{-4}$ meters. The special importance of Mersenne primes suggests M_{99} second order life have managed to survive and might have meant a breakthrough in evolution. The size scale of largest neurons, say pyramidal neurons in cortex is indeed of order $L_2(M_{99})$. The fact that the lengths of micro-tubuli inside axons have length of order 10^{-4} meters suggests that they are accompanied by MEs corresponding to M_{99}. This hypothesis is inspired also by quantum antenna hypothesis and by the notion that MEs associated with axons serve as neural windows. The frequency scale associated with M_{99} is 3.3×10^{12} Hz and in infrared range. The energies involved correspond to 10^{-12} eV which is the thermal energy associated with the room temperature. This might explain the crucial importance of temperature for biolife. In too low temperatures secondary Super Virasoro excitations would be frozen whereas in too high temperatures situation would be thermalized.

$$
\begin{array}{|c|c|c|c|c|c|}
\hline
k & 173 & 59 & 89 & 179 & 181 \\
\hline
L_p / 10^{-8} m & .2 & .8 & 1.1 & 1.6 & 3.2 \\
\hline
\end{array}
$$
Table 4. p-Adic length scales $L(k,n)$ possibly relevant to consciousness and life between cellular and submillimeter length scales.

IR radiation is known to be important for odor perception of at least insects [16]: the energies of $k = 89$ Super Virasoro are in this energy range. The structure of olfactory receptors also resembles the structure of the photoreceptors in retina. This would suggest that odor (and possibly also taste) perception might be regarded basically as IR vision with various odors playing the role of colors. The large number of different odors suggests that the number of different 'cones' is much higher than in the case of vision. The secondary p-adic length scale associated with M_{89} could give rise to secondary excitations of electro-weak fields with huge degeneracies. If the size of the 'pixel' characterizing sensory experience corresponds to the p-adic length scale of Super Virasoro associated with primary sensory organ, then one must conclude that also tactile senses could correspond to M_{89} or some smaller prime. Quite generally, vision, olfaction (and possibly also tastes) and tactile senses could thus be related with the secondary p-adic length scales $L_2(83)$ and $L_2(89)$ and/or with the primary length scales $L(169)$ and $L(173)$ and $L(179) = \sqrt{2}L_2(89)$. Note that the classical gauge fields associated with MEs could be used to generate secondary sensory experiences in longer p-adic length scales.

4. Higher order life forms in human length scales

The length scale range relevant to the structures of human brain contains the primary length scales corresponding to $k = 191, 193, 197$ and 199 varying in the range of 1-16 cm and are listed in the table below. The secondary and tertiary length scales $L_2(97) = 2.8$ cm, $L_3(67) = .32$ meters, $L_2(101) = .45$ meters and $L_2(103) = 1.81$ meters covers length scale range between brain nuclei and human body size. The fact that these primes correspond to the p-adic length scales associated with elementary particles (quarks) suggest that also second order life in these length scales is winner in the fight for survival. $L_2(97)$ corresponds to the size scale of brain nuclei which suggests that single pixel now provides a summary about sensory experience of brain nucleus. For instance, 'amygdalar emotions' might be in question.

It could be that the mind like space-times sheet with the size of brain and other body parts and entire body correspond carries exotic representations of $k = 67_3$, $k = 101_2$ and $k = 103_2$ Super Virasoro. The hypothesis that these levels correspond to emotions understood as generalized sensory experiences about the state of body solve the puzzles why emotions are 'single pixel' emotions and determined by the state of body. Secondary p-adic length scale should determine the size of the pixel in the bitmap provided by generalized sensory experience: since the size of pixel is of order human brain or even body, one could understand why emotions are 'single-pixel' emotions. Note that 'our experience' about these emotions probably does not correspond to this experience but experience coded to ELF level of self hierarchy. Body length scale would be associated with 'body-consciousness' quite different from our consciousness which corresponds to much higher level of the hierarchy.

<table>
<thead>
<tr>
<th>k</th>
<th>191</th>
<th>193</th>
<th>67</th>
<th>197</th>
<th>199</th>
<th>101</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_p/m</td>
<td>.01</td>
<td>.02</td>
<td>2.8</td>
<td>.08</td>
<td>.16</td>
<td>.32</td>
<td>.45</td>
</tr>
</tbody>
</table>

Table 5. p-Adic length scales $L(k,n)$ possibly relevant to consciousness and life at length scales relevant to human brain and body.

5. Higher order life above body length scale

The primary p-adic length scales $k = 211, 223, 227, 229, 233, 239, 241$ and 251 between body size and $L_2(127)$ (quite near to Earth’s circumference), and also longer p-adic length scales are listed in the table above. This range contains the secondary length scales $k = 107, 113$ and $k = 127$ correspond to a hierarchy of collective consciousness from the point of view of body (but, as it seems, not from our point of view!). The reader is encouraged to find the tertiary length scales in this range.
to the sequence of fundamental Super Virasoro frequencies L_1 which makes roughly 189 years. These time scales could be important for human life cycle and the emergence of Mersenne prime M_{107} could perhaps be associated with the emergence of social groups. Amusingly, M_{107} is hadronic length scale and associated with the emergence of color confined many-quark states, kind of societies also these! More seriously, color confinement should make sense also for the exotic Super Virasoro representations and might have some counterpart at the level of consciousness. For M_{107} the p-adic length scale is about 29.0 meters, which is between $L(211) = 10.2$ meters and $L(223) = 655$ meters. The corresponding frequency scale is 6 MHz. $L_2(113) \approx 1853$ meters is the length scale associated with the next secondary Super Virasoro.

The tertiary length scales $L_3(83) = L(249)$, $L_2(k = 5^3 = 125) = L(250)$; secondary length scale $L_2(127)$, and the primary p-adic length scales $L(251), L_2(127)$, $L(2^{23}) = L(256)$ and $L(257)$ correspond to the sequence of fundamental Super Virasoro frequencies

$$\frac{f(1,0)}{Hz} \in \{56.4, 40, 28.2, 10.0, 5.0, 3.5\},$$

which are important resonance frequencies of EEG which strongly encourages the view that exotic Super Virasoro are involved with our qualia.

M_{127} corresponds to Earth size and to frequency of 10 Hz which is in EEG range. Next Merseenne prime corresponds to a completely super-astronomical length scale. Uncertainty Principle suggests that if EEG frequencies stimulate the quantum transitions giving rise to our conscious experiences, then our mental images should correspond to MEs with $k = 127$ and 131. $k = 131$ indeed corresponds to frequencies above .63 Hz (1.6 seconds) covering delta, theta and alpha frequencies up to 10 Hz where the range of $k = 127$ frequencies begins (note however that the difference of M_{127} energies can be also below 10 Hz). Also the basic rhythms of body (heart beat and respiration) could correspond to $k = 131$ time scales.

The next secondary p-adic time scales corresponding to $k = 137, 139, 149$ and $k = 151$. $T_2(137)$ is 1 minute 40 seconds, $T_2(139)$ is 6 minutes 40 seconds, $T_2(149)$ is 4.2 days roughly, $T_2(151)$ is 16.8 days roughly. $T_2(157)$ is roughly 1078.5 days (roughly three years). $T_2(163)$ is roughly 69024 days which makes roughly 189 years. These time scales could be important for human life cycle and the secondary excitations of these Super Virasoros could define important biological rhythms.

Table 6. p-Adic length and time scales above length scale $L(211) = 10$ meters possibly relevant to life and consciousness.

<table>
<thead>
<tr>
<th>k</th>
<th>L_p/m</th>
<th>$T_p/\mu s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>10</td>
<td>20</td>
<td>28.3</td>
<td>113</td>
<td>640</td>
<td>113</td>
<td>640</td>
<td>113</td>
<td>640</td>
<td>113</td>
</tr>
<tr>
<td>5.1E+2</td>
<td>6.6E-2</td>
<td>3.3E-2</td>
<td>5.2E+3</td>
<td>17</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td>2.8E+10</td>
<td>8.6</td>
<td>6.1</td>
<td>2.5E+3</td>
<td>17</td>
<td>69</td>
<td>69</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td>3.9E-2</td>
<td>3.2E+5</td>
<td>2.8E+5</td>
<td>1.6E+5</td>
<td>1.1</td>
<td>2.2</td>
<td>17.6</td>
<td>24.9</td>
<td>24.9</td>
<td>24.9</td>
<td>24.9</td>
</tr>
<tr>
<td>131</td>
<td>251</td>
<td>1272</td>
<td>257</td>
<td>1312</td>
<td>263</td>
<td>1312</td>
<td>263</td>
<td>1312</td>
<td>263</td>
<td>1312</td>
</tr>
<tr>
<td>35 ms</td>
<td>2.8E+7</td>
<td>.1 s</td>
<td>2.8E+7</td>
<td>8E + 7</td>
<td>4.4</td>
<td>6.4E+8</td>
<td>4.4</td>
<td>6.4E+8</td>
<td>4.4</td>
<td>6.4E+8</td>
</tr>
<tr>
<td>2.1 s</td>
<td>1372</td>
<td>.28 s</td>
<td>2.8E+10</td>
<td>7.7E+10</td>
<td>4.3 s</td>
<td>11.2E+10</td>
<td>4.3 s</td>
<td>11.2E+10</td>
<td>4.3 s</td>
<td>11.2E+10</td>
</tr>
<tr>
<td>18.1 s</td>
<td>36.2 s</td>
<td>1.7 min</td>
<td>5.2E+12</td>
<td>1.1E+13</td>
<td>4.6 h</td>
<td>2.1E+13</td>
<td>4.6 h</td>
<td>2.1E+13</td>
<td>4.6 h</td>
<td>2.1E+13</td>
</tr>
<tr>
<td>281</td>
<td>3.2E+11</td>
<td>6.4E+11</td>
<td>17.3 min</td>
<td>34.6 min</td>
<td>4.6 h</td>
<td>18.5 h</td>
<td>4.6 h</td>
<td>18.5 h</td>
<td>4.6 h</td>
<td>18.5 h</td>
</tr>
<tr>
<td>2.9E-2</td>
<td>289</td>
<td>973</td>
<td>2.9E+13</td>
<td>2.1E+13</td>
<td>7.2E+6</td>
<td>2.1E+13</td>
<td>7.2E+6</td>
<td>2.1E+13</td>
<td>7.2E+6</td>
<td>2.1E+13</td>
</tr>
<tr>
<td>1492</td>
<td>1512</td>
<td>1013</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
<td>1034</td>
</tr>
<tr>
<td>4.9</td>
<td>19.5</td>
<td>27.6</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
</tr>
<tr>
<td>4.9</td>
<td>19.5</td>
<td>27.6</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
<td>98.6</td>
<td>197.2</td>
</tr>
</tbody>
</table>

Acknowledgements
I want to thank for Daniel Dubois and Peter Marcer for providing the opportunity to participate CASYS’2000 conference. It was the very enlightening representation of Peter Marcer experimental data concerning the effects of laser light on DNA which re-stimulated the work with massless extremals and quantum antenna hypothesis and led to the realization of connection with the spectroscopy of consciousness. An important stimulus came from Claude Rifat to whom I am also grateful. I want also to express my gratitude to Gene Johnson for sending all kinds of material as well as enlightening debates concerning the relation between quantum brain to neuroscientist’s brain.
Books related to TGD

558 BOOKS RELATED TO TGD

Articles about TGD

Mathematics

Theoretical Physics

Particle and Nuclear Physics

Condensed Matter Physics

[1] Burning salt water. http://www.youtube.com/watch?v=aGg0ATfoBgo

Cosmology and Astro-Physics

Physics of Earth

Fringe Physics

Biology

Neuroscience and Consciousness

Chapter 1

Appendix

A-1 Basic properties of $\mathbb{C}P_2$

A-1.1 $\mathbb{C}P_2$ as a manifold

$\mathbb{C}P_2$, the complex projective space of two complex dimensions, is obtained by identifying the points of complex 3-space \mathbb{C}^3 under the projective equivalence

$$(z^1, z^2, z^3) \equiv \lambda(z^1, z^2, z^3) .$$

(A-1.1)

Here λ is any non-zero complex number. Note that $\mathbb{C}P_2$ can be also regarded as the coset space $SU(3)/U(2)$. The pair z^j/z^i for fixed j and $z^i \neq 0$ defines a complex coordinate chart for $\mathbb{C}P_2$. As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering $\mathbb{C}P_2$, the charts being holomorphically related to each other (e.g. $\mathbb{C}P_2$ is a complex manifold). The points $z^3 \neq 0$ form a subset of $\mathbb{C}P_2$ homeomorphic to \mathbb{R}^4 and the points with $z^3 = 0$ a set homeomorphic to S^2. Therefore $\mathbb{C}P_2$ is obtained by "adding the 2-sphere at infinity to \mathbb{R}^4".

Besides the standard complex coordinates $\xi^i = z^i/z^3$, $i = 1, 2$ the coordinates of Eguchi and Freund [9] will be used and their relation to the complex coordinates is given by

$$\begin{align*}
\xi^1 &= z + it , \\
\xi^2 &= x + iy .
\end{align*}$$

(A-1.2)

These are related to the "spherical coordinates" via the equations

$$\begin{align*}
\xi^1 &= r\exp(i\frac{\Psi + \Phi}{2})\cos\left(\frac{\Theta}{2}\right) , \\
\xi^2 &= r\exp(i\frac{\Psi - \Phi}{2})\sin\left(\frac{\Theta}{2}\right) .
\end{align*}$$

(A-1.3)

The ranges of the variables r, Θ, Φ, Ψ are $[0, \infty], [0, \pi], [0, 4\pi], [0, 2\pi]$ respectively.

Considered as a real four-manifold $\mathbb{C}P_2$ is compact and simply connected, with Euler number Euler number 3, Pontryagin number 3 and second $b = 1$.

A-1.2 Metric and Kähler structure of $\mathbb{C}P_2$

In order to obtain a natural metric for $\mathbb{C}P_2$, observe that $\mathbb{C}P_2$ can be thought of as a set of the orbits of the isometries $z^i \rightarrow \exp(i\alpha)z^i$ on the sphere S^5: $\sum z^i\bar{z}^i = R^2$. The metric of $\mathbb{C}P_2$ is obtained by projecting the metric of S^5 orthogonally to the orbits of the isometries. Therefore the distance between the points of $\mathbb{C}P_2$ is that between the representative orbits on S^5.

The line element has the following form in the complex coordinates
\[ds^2 = \ g_{a\bar{b}}d\xi^a d\bar{\xi}^\bar{b}, \]
(A-1.4)

where the Hermitian, in fact Kähler metric \(g_{a\bar{b}} \) is defined by

\[g_{a\bar{b}} = R^2 \partial_a \partial_{\bar{b}} K, \]
(A-1.5)

where the function \(K \), Kähler function, is defined as

\[K = \log(F), \]
\[F = 1 + r^2. \]
(A-1.6)

The Kähler function for \(S^2 \) has the same form. It gives the \(S^2 \) metric

\[dz d\bar{z}/(1 + r^2)^2 \]
related to its standard form in spherical coordinates by the coordinate transformation \((r, \phi) = (\tan(\theta/2), \phi)\).

The representation of the \(CP^2 \) metric is deducible from \(S^5 \) metric is obtained by putting the angle coordinate of a geodesic sphere constant in it and is given

\[ds^2 / R^2 = \left(dr^2 + r^2 \sigma_1^2 \right) F^2 + r^2 \frac{2\sigma_2^2}{F^2} \left(d\Psi + \cos \Theta d\Phi \right)^2 + r^2 \frac{2\sigma_3^2}{F^2} \left(d\Theta^2 + \sin^2 \Theta d\Phi^2 \right). \]
(A-1.7)

where the quantities \(\sigma_i \) are defined as

\[r^2 \sigma_1 = Im(\xi^1 d\xi^2 - \xi^2 d\xi^1), \]
\[r^2 \sigma_2 = -Re(\xi^1 d\xi^2 - \xi^2 d\xi^1), \]
\[r^2 \sigma_3 = -Im(\xi^1 d\bar{\xi}^1 + \xi^2 d\bar{\xi}^2). \]
(A-1.8)

\(R \) denotes the radius of the geodesic circle of \(CP^2 \). The vierbein forms, which satisfy the defining relation

\[s_{kl} = R^2 \sum_A e_A^k e_A^l, \]
(A-1.9)

are given by

\[e^0 = \frac{dr}{r}, \quad e^1 = \frac{r \sigma_1}{\sqrt{F}}, \]
\[e^2 = \frac{r \sigma_2}{\sqrt{F}}, \quad e^3 = \frac{r \sigma_3}{F}. \]
(A-1.10)

The explicit representations of vierbein vectors are given by

\[e^0 = \frac{dr}{r}, \quad e^1 = \frac{r(s(\sin \Theta \cos \Phi d\Phi + \sin \Phi d\Theta))}{2\sqrt{F}}, \]
\[e^2 = \frac{r(s(\sin \Theta \sin \Psi d\Phi - \cos \Psi d\Theta))}{2\sqrt{F}}, \quad e^3 = \frac{r(\cos \Theta d\Phi)}{2F}. \]
(A-1.11)

The explicit representation of the line element is given by the expression

\[ds^2 / R^2 = \frac{dr^2}{F^2} + \frac{r^2}{4F^2} (d\Psi + \cos \Theta d\Phi)^2 + \frac{r^2}{4F} (d\Theta^2 + \sin^2 \Theta d\Phi^2). \]
(A-1.12)

The vierbein connection satisfying the defining relation
\(\text{de}^A = -V_B^A \wedge e^B \), \hspace{1cm} (A-1.13)

\[
\begin{align*}
V_{01} &= -\frac{e_1^1}{r}, & V_{23} &= \frac{e_1^1}{r}, \\
V_{02} &= -\frac{e_1^2}{r}, & V_{31} &= \frac{e_1^2}{r}, \\
V_{03} &= (r - \frac{1}{2})e_1^3, & V_{12} &= (2r + \frac{1}{2})e_1^3.
\end{align*} \] \hspace{1cm} (A-1.14)

The representation of the covariantly constant curvature tensor is given by

\[
\begin{align*}
R_{01} &= e_0^0 \wedge e_1^1 - e_2^1 \wedge e_3^3, & R_{33} &= e_0^0 \wedge e_1^1 - e_2^1 \wedge e_3^3, \\
R_{02} &= e_0^0 \wedge e_2^2 - e_3^3 \wedge e_1^1, & R_{31} &= -e_0^0 \wedge e_2^2 + e_3^3 \wedge e_1^1, \\
R_{03} &= 4e_0^0 \wedge e_3^3 + 2e_1^1 \wedge e_2^2, & R_{12} &= 2e_0^0 \wedge e_3^3 + 4e_1^1 \wedge e_2^2.
\end{align*} \] \hspace{1cm} (A-1.15)

Metric defines a real, covariantly constant, and therefore closed 2-form

\(J = -i g_{ab} d\xi^a d\bar{\xi}^b \), \hspace{1cm} (A-1.16)

the so called Kähler form. Kähler form \(J \) defines in \(CP_2 \) a symplectic structure because it satisfies the condition

\[J^k_\ell J^{\ell r} = -s^{k r} \]. \hspace{1cm} (A-1.17)

The form \(J \) is integer valued and by its covariant constancy satisfies free Maxwell equations. Hence it can be regarded as a curvature form of a \(U(1) \) gauge potential \(B \) carrying a magnetic charge of unit \(1/2g \) (\(g \) denotes the gauge coupling). Locally one has therefore

\(J = dB \), \hspace{1cm} (A-1.18)

where \(B \) is the so called Kähler potential, which is not defined globally since \(J \) describes homological magnetic monopole.

It should be noticed that the magnetic flux of \(J \) through a 2-surface in \(CP_2 \) is proportional to its homology equivalence class, which is integer valued. The explicit representations of \(J \) and \(B \) are given by

\[
\begin{align*}
B &= 2re_3^3, \\
J &= 2(e_0^0 \wedge e_3^3 + e_1^1 \wedge e_2^2) = \frac{r}{F^2} dr \wedge (d\Psi + \cos\Theta d\Phi) + \frac{r^2}{2F} \sin\Theta d\Theta d\Phi.
\end{align*} \] \hspace{1cm} (A-1.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex coordinates only components of type (1,1).

Useful coordinates for \(CP_2 \) are the so called canonical coordinates in which Kähler potential and Kähler form have very simple expressions

\(B = \sum_{k=1,2} P_k dQ_k \), \hspace{1cm} (A-1.20)

\(J = \sum_{k=1,2} dP_k \wedge dQ_k \).

The relationship of the canonical coordinates to the "spherical" coordinates is given by the equations
\[
P_1 = -\frac{1}{1 + r^2}, \\
P_2 = \frac{r^2 \cos \Theta}{2(1 + r^2)}, \\
Q_1 = \Psi, \\
Q_2 = \Phi.
\]

(A-1.21)

A-1.3 Spinors in \(CP_2\)

\(CP_2\) doesn’t allow spinor structure in the conventional sense [7]. However, the coupling of the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure. Because the delicacies associated with the spinor structure of \(CP_2\) play a fundamental role in TGD, the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel transport of the vierbein in a simply connected space \(M\). The parallel propagation around a closed curve with a base point \(x\) leads to a rotated vierbein at \(x\): \(e^A = R^A_B e^B\) and one can associate to each closed path an element of \(SO(4)\).

Consider now a one-parameter family of closed curves \(\gamma(v) : v \in (0, 1)\) with the same base point \(x\) and \(\gamma(0)\) and \(\gamma(1)\) trivial paths. Clearly these paths define a sphere \(S^2\) in \(M\) and the element \(R^A_B(v)\) defines a closed path in \(SO(4)\). When the sphere \(S^2\) is contractible to a point e.g., homologically trivial, the path in \(SO(4)\) is also contractible to a point and therefore represents a trivial element of the homotopy group \(\Pi_1(SO(4)) = \mathbb{Z}_2\).

For a homologically nontrivial 2-surface \(S^2\) the associated path in \(SO(4)\) can be homotopically nontrivial and therefore corresponds to a nonclosed path in the covering group \(Spin(4)\) (leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also spinors and by the above construction associate a closed path of \(Spin(4)\) to the surface \(S^2\). Now, however this path corresponds to a lift of the corresponding \(SO(4)\) path and cannot be closed. Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed \(-1\)-factor associated with the parallel transport of the spinor around the sphere \(S^2\) by coupling it to a gauge potential in such a way that in the parallel transport the gauge potential introduces a compensating \(-1\)-factor. For a \(U(1)\) gauge potential this factor is given by the exponential \(e^{i2\Phi}\), where \(\Phi\) is the magnetic flux through the surface. This factor has the value \(-1\) provided the \(U(1)\) potential carries half odd multiple of Dirac charge \(1/2g\). In case of \(CP_2\) the required gauge potential is half odd multiple of the Kähler potential \(B\) defined previously. In the case of \(M^4 \times CP_2\) one can in addition couple the spinor components with different chiralities independently to an odd multiple of \(B/2\).

A-1.4 Geodesic sub-manifolds of \(CP_2\)

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the imbedding space. As a consequence the second fundamental form of the geodesic manifold vanishes, which means that the tangent vectors \(h_a^k\) (understood as vectors of \(H\)) are covariantly constant quantities with respect to the covariant derivative taking into account that the tangent vectors are vectors both with respect to \(H\) and \(X^4\).

In [4] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric space \(G/H\) is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple systems of the Lie-algebra \(g\) of the group \(G\). The Lie triple system \(t\) is defined as a subspace of \(g\) characterized by the closedness property with respect to double commutation

\[
[X, [Y, Z]] \in t \quad \text{for} \quad X, Y, Z \in t.
\]

(A-1.22)

\(SU(3)\) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres. This is understood by observing that \(SU(3)\) allows two nonequivalent \(SU(2)\) algebras corresponding to
subgroups $SO(3)$ (orthogonal 3×3 matrices) and the usual isospin group $SU(2)$. By taking any subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating this system, one obtains a 2-dimensional geodesic sub-manifold of CP^2.

Standard representatives for the geodesic spheres of CP^2 are given by the equations

$$S^2_I : \xi^1 = \xi^2 \quad \text{or equivalently} \quad (\Theta = \pi/2, \Psi = 0) ,$$

$$S^2_{II} : \xi^1 = \xi^3 \quad \text{or equivalently} \quad (\Theta = \pi/2, \Phi = 0) .$$

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as holomorphic transformations in CP^2. The vanishing of the second fundamental form is also easy to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler form vanishes identically for S^2_I. S^2_{II} is homologically nontrivial and the flux of the Kähler form gives its homology equivalence class.

A-2.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP^2 make it a unique candidate for space S. First, the coupling of the spinors to the $U(1)$ gauge potential defined by the Kähler structure provides the missing $U(1)$ factor in the gauge group. Secondly, it is possible to couple different H-chiralities independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated that the couplings of the induced spinor connection are indeed those of the GWS model \[6\] and in particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors. Spinors with fixed H-chirality $e = \pm 1$, CP^2-chirality l, r and M^4-chirality L, R are defined by the condition

$$\Gamma \Psi = e \Psi ,$$

$$e = \pm 1 , \quad (A-2.1)$$

where Γ denotes the matrix $\Gamma_9 = \gamma_5 \times \gamma_5$, $1 \times \gamma_5$ and $\gamma_5 \times 1$ respectively. Clearly, for a fixed H-chirality CP^2- and M^4-chiralities are correlated.

The spinors with H-chirality $e = \pm 1$ can be identified as quark and lepton like spinors respectively. The separate conservation of baryon and lepton numbers can be understood as a consequence of generalized chiral invariance if this identification is accepted. For the spinors with a definite H-chirality one can identify the vielbein group of CP^2 as the electro-weak group: $SO(4) = SU(2)_L \times SU(2)_R$.

The covariant derivatives are defined by the spinorial connection

$$A = V + \frac{B}{2} (n_+ 1_+ + n_- 1_-) . \quad (A-2.2)$$

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and $1_{+(-)}$ projects to the spinor H-chirality $+(-)$. The integers n_\pm are odd from the requirement of a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

$$V_{01} = -\frac{e^1}{r} , \quad V_{02} = -\frac{e^2}{r} , \quad V_{03} = (r - \frac{1}{2})e^3 , \quad V_{12} = (2r + \frac{1}{2})e^3 , \quad (A-2.3)$$

and

$$B = 2re^3 , \quad (A-2.4)$$
respectively. The explicit representation of the vielbein is not needed here.

Let us first show that the charged part of the spinor connection couples purely left handedly. Identifying \(\Sigma_0^3 \) and \(\Sigma_1^2 \) as the diagonal (neutral) Lie-algebra generators of \(SO(4) \), one finds that the charged part of the spinor connection is given by

\[
A_{ch} = 2V_{23}I_1^1 + 2V_{13}I_2^1 ,
\]

where one have defined

\[
I_1^1 = \frac{(\Sigma_{01} - \Sigma_{23})}{2} ,
I_2^1 = \frac{(\Sigma_{02} - \Sigma_{13})}{2} .
\]

\(A_{ch} \) is clearly left handed so that one can perform the identification

\[
W^\pm = \frac{2(e^1 \pm ie^2)}{r} ,
\]

where \(W^\pm \) denotes the charged intermediate vector boson.

Consider next the identification of the neutral gauge bosons \(\gamma \) and \(Z^0 \) as appropriate linear combinations of the two functionally independent quantities

\[
X = re^3 ,
Y = e^3 ,
\]

appearing in the neutral part of the spinor connection. We show first that the mere requirement that photon couples vectorially implies the basic coupling structure of the GWS model leaving only the value of Weinberg angle undetermined.

To begin with let us define

\[
\tilde{\gamma} = aX + bY ,
\]

\[
\tilde{Z}^0 = cX + dY ,
\]

where the normalization condition

\[
ad - bc = 1 ,
\]

is satisfied. The physical fields \(\gamma \) and \(Z^0 \) are related to \(\tilde{\gamma} \) and \(\tilde{Z}^0 \) by simple normalization factors.

Expressing the neutral part of the spinor connection in term of these fields one obtains

\[
A_{nc} = [(c + d)2\Sigma_{03} + (2d - c)2\Sigma_{12} + d(n_+ 1_+ + n_- 1_-)]\tilde{\gamma}
+ [(a - b)2\Sigma_{03} + (a - 2b)2\Sigma_{12} - b(n_+ 1_+ + n_- 1_-)]\tilde{Z}^0 .
\]

Identifying \(\Sigma_{12} \) and \(\Sigma_{03} = 1 \times \gamma_5 \Sigma_{12} \) as vectorial and axial Lie-algebra generators, respectively, the requirement that \(\gamma \) couples vectorially leads to the condition

\[
c = -d .
\]

Using this result plus previous equations, one obtains for the neutral part of the connection the expression

\[
A_{nc} = \ldots
\]
\[A_{nc} = \gamma Q_{em} + Z^0(I_3^L - \sin^2 \theta_W Q_{em}) \]
(A-2.12)

Here the electromagnetic charge \(Q_{em}\) and the weak isospin are defined by

\[
Q_{em} = \Sigma^{12} + \frac{(n_+1_+ + n_-1_-)}{6}, \\
I_3^L = \frac{(\Sigma^{12} - \Sigma^{03})}{2}.
\]
(A-2.13)

The fields \(\gamma\) and \(Z^0\) are defined via the relations

\[
\gamma = 6d \bar{\gamma} = \frac{6}{(a+b)} (aX + bY), \\
Z^0 = 4(a+b) \bar{Z}^0 = 4(X - Y).
\]
(A-2.14)

The value of the Weinberg angle is given by

\[
\sin^2 \theta_W = \frac{3b}{2(a+b)},
\]
(A-2.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is completely fixed once the YM action is fixed by requiring that action contains no cross term of type \(\gamma Z^0\). Pure symmetry non-broken electro-weak YM action leads to a definite value for the Weinberg angle. One can however add a symmetry breaking term proportional to Kähler action and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part \(F_{nc}\) of the induced gauge field as

\[
F_{nc} = 2R_{03}\Sigma^{03} + 2R_{12}\Sigma^{12} + J(n_+1_+ + n_-1_-),
\]
(A-2.16)

where one has

\[
R_{03} = 2(2e^0 \wedge e^3 + e^1 \wedge e^2), \\
R_{12} = 2(e^0 \wedge e^3 + 2e^1 \wedge e^2), \\
J = 2(e^0 \wedge e^3 + e^1 \wedge e^2),
\]
(A-2.17)

in terms of the fields \(\gamma\) and \(Z^0\) (photon and Z- boson)

\[
F_{nc} = \gamma Q_{em} + Z^0(I_3^L - \sin^2 \theta_W Q_{em}) .
\]
(A-2.18)

Evaluating the expressions above one obtains for \(\gamma\) and \(Z^0\) the expressions

\[
\gamma = 3J - \sin^2 \theta_W R_{03}, \\
Z^0 = 2R_{03}.
\]
(A-2.19)

For the Kähler field one obtains

\[
J = \frac{1}{3}(\gamma + \sin^2 \theta_W Z^0).
\]
(A-2.20)
Expressing the neutral part of the symmetry broken YM action

\[L_{ew} = L_{sym} + f J^{\alpha\beta} J_{\alpha\beta} , \]
\[L_{sym} = \frac{1}{4g^2} Tr(F^{\alpha\beta} F_{\alpha\beta}) , \] (A-2.21)

where the trace is taken in spinor representation, in terms of \(\gamma \) and \(Z^0 \) one obtains for the coefficient \(X \) of the \(\gamma Z^0 \) cross term (this coefficient must vanish) the expression

\[X = -K \frac{f p}{18} , \]
\[K = Tr \left[Q_{em} (I_L^3 - \sin^2 \theta W Q_{em}) \right] , \] (A-2.22)

In the general case the value of the coefficient \(K \) is given by

\[K = \sum_i \left[-\frac{(18 + 2n_i^2) \sin^2 \theta W}{9} \right] , \] (A-2.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and \(n_i \) is the integer describing the coupling of the spinor field to the Kähler potential. The cross term vanishes provided the value of the Weinberg angle is given by

\[\sin^2 \theta_W = \frac{9 \sum_i 1}{(fg^2 + 2 \sum_i (18 + n_i^2))} . \] (A-2.24)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg angle is given by

\[\sin^2 \theta_W = \frac{9}{(fg^2 + 28)} . \] (A-2.25)

The bare value of the Weinberg angle is \(9/28 \) in this scenario, which is quite close to the typical value \(9/24 \) of GUTs [9].

A-2.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

a) Symmetries must be realized as purely geometric transformations.

b) Transformation properties of the field variables should be essentially the same as in the conventional quantum field theories [3].

The action of the reflection \(P \) on spinors is given by

\[\Psi \rightarrow P \Psi = \gamma^0 \otimes \gamma^0 \Psi . \] (A-2.26)

in the representation of the gamma matrices for which \(\gamma^0 \) is diagonal. It should be noticed that \(W \) and \(Z^0 \) bosons break parity symmetry as they should since their charge matrices do not commute with the matrix of \(P \).

The guess that a complex conjugation in \(CP^2 \) is associated with \(T \) transformation of the physicist turns out to be correct. One can verify by a direct calculation that pure Dirac action is invariant under \(T \) realized according to

\[m^k \rightarrow T(M^k) , \]
\[\xi^k \rightarrow \xi^k , \]
\[\Psi \rightarrow \gamma^1 \gamma^3 \otimes 1 \Psi . \] (A-2.27)
The operation bearing closest resemblance to the ordinary charge conjugation corresponds geometrically to complex conjugation in CP_2:

$$
\begin{align*}
\xi^k & \to \bar{\xi}^k , \\
\Psi & \to \Psi^\dagger \gamma^2 \gamma^0 \otimes 1 .
\end{align*}
$$

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not possible to have space-time sheets carrying only single kind of gauge field. For instance, em fields are accompanied by Z^0 fields for extremals of Kähler action. Weak forces is however absent unless the space-time sheets contains topologically condensed exotic weakly charged particles responding to this force. Same applies to classical color forces. The fact that these long range fields are present forces to assume that there exists a hierarchy of scaled up variants of standard model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z^0 field and some components of color gauge field. For extremals having homologically non-trivial sphere as a CP_2 projection em and Z^0 fields are the only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the net gauge field has $U(1)$ holonomy by 2-dimensionality of the CP_2 projection. Color gauge field has $U(1)$ holonomy for all space-time surfaces and quantum classical correspondence suggest a weak form of color confinement meaning that physical states correspond to color neutral members of color multiplets.

A-3.1 Induced gauge fields for space-times for which CP_2 projection is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP_2 projection, only vacuum extremals and space-time surfaces for which CP_2 projection is a geodesic sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields and homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z^0. This can be verified by explicit examples.

If $r = \infty$ surface gives rise to a homologically non-trivial geodesic sphere for which e_0 and e_3 vanish imply the vanishing of W field. For space-time sheets for which CP_2 projection is $r = \infty$ homologically non-trivial geodesic sphere of CP_2 one has

$$
\gamma = \left(3 \frac{\sin^2(\theta_W)}{2}\right) Z^0 \simeq \frac{5 Z^0}{8} .
$$

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by $SU(3)$ rotation.

$Im(\xi^1) = Im(\xi^2) = 0$ corresponds to homologically trivial geodesic sphere. A more general representative is obtained by using for the phase angles of standard complex CP_2 coordinates constant values. In this case e^1 and e^3 vanish so that the induced em, Z^0, and Kähler fields vanish but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can say that for non-vacuum extremals with 2-D CP_2 projection color rotations and weak symmetries commute.

A-3.2 Space-time surfaces with vanishing em, Z^0, or Kähler fields

In the following the induced gauge fields are studied for general space-time surface without assuming the extremal property. In fact, extremal property reduces the study to the study of vacuum extremals and surfaces having geodesic sphere as a CP_2 projection and in this sense the following arguments are somewhat obsolete in their generality.
Space-times with vanishing em, Z^0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial geodesic sphere and extremal property are not assumed. It must be emphasized that this case is possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r, Θ, Ψ, Φ) for CP^2, the expression of Kähler form reads as

$$J = \frac{r}{F^2} dr \wedge (d\Psi + \cos(\Theta)d\Phi) + \frac{r^2}{2F} \sin(\Theta)d\Theta \wedge d\Phi,$$

$$F = 1 + r^2 .$$

(A-3.1)

The general expression of electromagnetic field reads as

$$F_{em} = (3 + 2p) \frac{r}{F^2} dr \wedge (d\Psi + \cos(\Theta)d\Phi) + (3 + p) \frac{r^2}{2F} \sin(\Theta)d\Theta \wedge d\Phi,$$

$$p = \sin^2(\Theta_W) ,$$

(A-3.2)

where Θ_W denotes Weinberg angle.

a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

$$\Psi = k\Phi ,$$

$$(3 + 2p) \frac{1}{r^2F^2}(d(r^2)/d\Theta)(k + \cos(\Theta)) + (3 + p)\sin(\Theta) = 0 ,$$

(A-3.3)

hold true. The conditions imply that CP^2 projection of the electromagnetically neutral space-time is 2-dimensional. Solving the differential equation one obtains

$$r = \sqrt{\frac{X}{1 - X}} ,$$

$$X = D \left[\frac{(k + u)}{C} \right]^\epsilon ,$$

$$u \equiv \cos(\Theta) , \; C = k + \cos(\Theta_0) , \; D = \frac{r_0^2}{1 + r_0^2} , \; \epsilon = \frac{3 + p}{3 + 2p} ,$$

(A-3.4)

where C and D are integration constants. $0 \leq X \leq 1$ is required by the reality of r. $r = 0$ would correspond to $X = 0$ giving $u = -k$ achieved only for $|k| \leq 1$ and $r = \infty$ to $X = 1$ giving $|u + k| = [(1 + r_0^2)/(r_0^2)]^{(3+2p)/(3+p)}$ achieved only for

$$\text{sign}(u + k) \times \left[\frac{1 + r_0^2}{r_0^2} \right]^{3+2p} \leq k + 1 ,$$

where $\text{sign}(x)$ denotes the sign of x.

The expressions for Kähler form and Z^0 field are given by

$$J = -\frac{p}{3 + 2p} X du \wedge d\Phi ,$$

$$Z^0 = -\frac{6}{p} J .$$

(A-3.5)

The components of the electromagnetic field generated by varying vacuum parameters are proportional to the components of the Kähler field: in particular, the magnetic field is parallel to the Kähler magnetic field. The generation of a long range Z^0 vacuum field is a purely TGD based feature not encountered in the standard gauge theories.

b) The vanishing of Z^0 fields is achieved by the replacement of the parameter ϵ with $\epsilon = 1/2$ as becomes clear by considering the condition stating that Z^0 field vanishes identically. Also the relationship $F_{em} = 3J = -\frac{3}{4} \frac{r^2}{F} du \wedge d\Phi$ is useful.
c) The vanishing Kähler field corresponds to $\epsilon = 1, p = 0$ in the formula for em neutral space-times. In this case classical em and Z^0 fields are proportional to each other:

$$Z^0 = 2e^0 \wedge e^3 = \frac{r}{F^2} (k + u) \frac{\partial r}{\partial u} du \wedge d\Phi = (k + u) du \wedge d\Phi ,$$

$$r = \sqrt{\frac{X}{1 - X} }, \quad X = D|k + u| ,$$

$$\gamma = -\frac{p}{2} Z^0 .$$ \hspace{1cm} (A-3.6)

For a vanishing value of Weinberg angle ($p = 0$) em field vanishes and only Z^0 field remains as a long range gauge field. Vacuum extremals for which long range Z^0 field vanishes but em field is non-vanishing are not possible.

The effective form of CP_2 metric for surfaces with 2-dimensional CP_2 projection

The effective form of the CP_2 metric for a space-time having vanishing em,Z^0, or Kähler field is of practical value in the case of vacuum extremals and is given by

$$ds_{eff}^2 = (s_{rr} \frac{dr}{d\Theta})^2 + (s_{\Theta \Theta})^2 d\Theta^2 + (s_{\Phi \Phi} + 2ks_{\Phi \Phi}) d\Phi^2 = \frac{R^2}{4} [s_{\Theta \Theta}^2 + s_{\Phi \Phi}^2] ,$$

$$s_{\Theta \Theta} = X \times \left[\frac{r^2 (1 - u^2)}{(k + u)^2} \times \frac{1}{1 - X} + 1 - X \right] ,$$

$$s_{\Phi \Phi} = X \times \left[(1 - X)(k + u)^2 + 1 - u^2 \right] ,$$ \hspace{1cm} (A-3.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z^0, or Kähler field vanishes decompose into regions characterized by six vacuum parameters: two of these quantum numbers (ω_1 and ω_2) are frequency type parameters, two (k_1 and k_2) are wave vector like quantum numbers, two of the quantum numbers (n_1 and n_2) are integers. The parameters ω_1 and n_1 will be referred as electric and magnetic quantum numbers.

The existence of these quantum numbers is not a feature of these solutions alone but represents a much more general phenomenon differentiating in a clear cut manner between TGD and Maxwell’s electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the derivatives of CP_2 coordinates on the common boundary of two neighboring regions with different vacuum quantum numbers is topological field quantization, 3-space decomposes into disjoint topological field quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

$$\Psi = \omega_2 m^0 + k_2 m^3 + n_2 \phi + \text{Fourier expansion} ,$$

$$\Phi = \omega_1 m^0 + k_1 m^3 + n_1 \phi + \text{Fourier expansion} .$$ \hspace{1cm} (A-3.8)

m^0, m^3 and ϕ denote the coordinate variables of the cylindrical M^4 coordinates) so that one has $k = \omega_2/\omega_1 = n_2/n_1 = k_2/k_1$. The regions of the space-time surface with given values of the vacuum parameters ω, k, and n and C are bounded by the surfaces at which space-time surface becomes ill-defined, say by $r > 0$ or $r < \infty$ surfaces.

The space-time surface decomposes into regions characterized by different values of the vacuum parameters r_0 and Θ_0. At $r = \infty$ surfaces n_2, ω_2 and m can change since all values of Ψ correspond to the same point of CP_2, at $r = 0$ surfaces also n_1 and ω_1 can change since all values of Φ correspond to same point of CP_2, too. If $r = 0$ or $r = \infty$ is not in the allowed range space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible to find a smooth global imbedding for, say a constant magnetic field. Although global imbedding exists.
it decomposes into regions with different values of the vacuum parameters and the coordinate u in general possesses discontinuous derivative at $r = 0$ and $r = \infty$ surfaces. A possible manner to avoid edges of space-time is to allow field quantization so that 3-space (and field) decomposes into disjoint quanta, which can be regarded as structurally stable units a 3-space (and of the gauge field). This doesn’t exclude partial join along boundaries for neighboring field quanta provided some additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

$$\Omega \equiv \frac{\omega_2}{n_2} - \frac{\omega_1}{n_1} = 0,$$ \hspace{1cm} (A-3.9)

is satisfied. In particular, the ratio ω_2/ω_1 is rational number for the electromagnetically neutral regions of space-time surface. The change of the parameter n_1 and n_2 (ω_1 and ω_2) in general generates magnetic field and therefore these integers will be referred to as magnetic (electric) quantum numbers.
Mathematics

Theoretical Physics

Index

H-chirality, 589
acceptors, 524
acoustic soliton, 232
altered states of consciousness, 137
auroras, 147 148
axons, 540
Betti number, 585
bio-hologram, 203
bio-photons, 104 218
Bose Einstein condensate, 207
brain as an associative net, 201
broadcasting, 214
Ca\(^{2+}\) waves, 480
cellular respiration, 103
chemical bond, 231 233
cognitive codes, 212
cohert domains, 207
cpuuter metaphor, 108
cordinates of Eguchi and Freund, 585
covariantly constant, 587
cyclotron oscillation, 144
deo-Sitter space, 224
defect regions, 41
delta band, 144 156
delectric-magnetic duality, 121
electro-weak couplings, 589
electro-weak interactions, 589
elves, 107
emergence of symbols, 108
endogenous magnetic field, 106
endoplasma membrane, 290
entraightment, 117
enzyme-substrate interaction, 280
exotic atoms, 344
exotic ionization, 111 112
exotic Super Virasoro representations, 209
flow equilibrium, 112
Fröhlich condensate, 202
frequency imprinting, 114 117
gap energy, 370
gap junctions, 212
gels, 107
Geodesic sub-manifolds, 588
geometric correlates of selves, 231 285
glial cell, 529
healing by time reversal, 203
high T\(c\) superconductivity, 370 372
hippocampus, 158
holonomy, 583
homeopathic potency, 116 117
homeopathic remedy, 116
homotopy group, 588
identification experiences, 137
induced sinpor connection, 589
information molecule-receptor complex, 203
ionic currents, 103
ionic superconductors, 260
Josephson junction, 422
Kähler form, 587
Kähler function, 586
Kähler metric, 586
Kähler potential, 587
levitation, 370
Lie triple system, 588
line element, 585
lock and key mechanism, 214
magnetic circulation, 135 233
magnetic mirrors, 118
magnetic monopole, 587
magnetic storms, 152 153
Maldacena, 224
many-sheeted DNA, 118
Matter-Mind duality, 275
MEs and quantum holography, 203
messenger pathways, 213
mind-like space-time sheet, 209 259
model for the generation of nerve pulse, 514
music metaphor, 209
neural window, 200 201
neuronal firing, 144
Ohmic currents, 111
orbifold singularities, 320
parallel transport, 588
paranormal phenomena, 285
personal magnetic body, 137
phantom DNA effect, 232
phase locking, 200
Pontryagin number, 585
preferred values of Planck constant, 205
pump-channel paradigm, 108
quantum antenna hypothesis, 199, 200, 217
radiation pattern, 208
reconnection, 146
reconnection mechanism, 149, 152
reference wave, 203
regions of coherence, 274
rods, 200, 221
scaled up Compton length, 344
scaling laws, 105, 151
sensory canvas hypothesis, 107, 144, 158
sensory modalities, 201
spinor connection, 590
spinor structure, 588
sprites, 153
SQUID, 69
stereo consciousness, 204
stochastic resonance, 115, 232
super-symplectic invariance, 228
symplectic structure, 587
synchronous firing, 141, 212
tactile senses, 229
tetraneutron, 356
thalamocortical resonance band, 139
transcription factors, 213, 287, 288
UFO experiences, 137
vierbein group, 589
vierbein, 586
vierbein connection, 586
wake-up EEG, 157
wave-DNA, 231
weakly coupled super conductors, 69
Weinberg angle, 591
wormhole flux tube, 80, 260, 275
dwormhole superconductivity, 290