Conformal Gravity, Maxwell and Yang-Mills Unification in $4 D$ from a Clifford Gauge Field Theory

Carlos Castro
Center for Theoretical Studies of Physical Systems
Clark Atlanta University, Atlanta, GA. 30314, castro@ctps.cau.edu

March 2009

Abstract

A model of Emergent Gravity with the observed Cosmological Constant from a BF-Chern-Simons-Higgs Model is revisited which allows to show how a Conformal Gravity, Maxwell and $S U(2) \times S U(2) \times U(1) \times U(1)$ Yang-Mills Unification model in four dimensions can be attained from a Clifford Gauge Field Theory in a very natural and geometric fashion.

Keywords: C-space Gravity, Clifford Algebras, Grand Unification.

1 Emergent Gravity and Cosmological Constant from a BF-Chern-Simons-Higgs Model

In this introduction we shall review how Einstein Gravity with the observed Cosmological Constant emerges from a BF-Chern-Simons-Higgs Model [1]. The $4 D$ action is inspired from a BF-CS model defined on the boundary of the open $5 D$ tubular region $D^{2} \times R^{3}$, where D^{2} is the open domain of the two-dim disk. For instance, $A d S_{4}$ has the topology of $S^{1} \times R^{3}$ which can be seen as the lateral boundary of the tubular region $D^{2} \times R^{3}$. The upper/lower boundaries at $\pm \infty$ of the open tubular region have a topology of $D^{2} \times S^{2}$. The relevant BF-CS-Higgs inspired action is based on the isometry group of $A d S_{4}$ space given by $S O(3,2)$, that also coincides with the conformal group of the 3-dim projective boundary of $A d S_{4}$ of topology $S^{1} \times S^{2}$. The action involves the $S O(3,2)$ valued gauge fields $A_{\mu}^{A B}$ and a family of Higgs scalars ϕ^{A} that are $S O(3,2)$ vector-valued 0 -forms and the indices run from $A=1,2,3,4,5$. The action is comprised of an integral
associated with the open tubular 5-dim region M_{5} and an integral associated with the 4 -dim boundary M_{4}. It can be written in a compact notation using gauge-covariant differential forms as

$$
\begin{align*}
& S_{B F-C S-H i g g s}=\int_{M_{4}} \phi F \wedge F+\phi d_{A} \phi \wedge d_{A} \phi \wedge d_{A} \phi \wedge d_{A} \phi- \\
& \int_{M_{5}} V_{H}(\phi) d_{A} \phi \wedge d_{A} \phi \wedge d_{A} \phi \wedge d_{A} \phi \wedge d_{A} \phi \tag{1}
\end{align*}
$$

Strictly speaking, because we are using a covariantized exterior differential $d_{A}=d+A$ operator, we don't have the standard BF-CS theory. For this reason we use the terminology BF-CS-Higgs inspired model. The $5 D$ origins of the BF-CS inspired action is due to the correspondence

$$
\begin{equation*}
\int_{D^{2} \times R^{3}} d \phi \wedge F \wedge F \longleftrightarrow \int_{D^{2} \times R^{3}} B \wedge F_{4} . \quad B=d \phi . \quad F_{4}=F \wedge F \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{D^{2} \times R^{3}} d \phi \wedge F \wedge F & =\int_{M_{4}} \phi F \wedge F \\
\int_{D^{2} \times R^{3}} d \phi \wedge d \phi \wedge d \phi \wedge d \phi \wedge d \phi & =\int_{M_{4}} \phi d \phi \wedge d \phi \wedge d \phi \wedge d \phi \tag{3}
\end{align*}
$$

after an integration by parts when d is the ordinary exterior differential operator obeying $d^{2}=0$ and $F=d A$. When one uses the gauge-covariant exterior differential $d_{A}=d+A, F$ and $F \wedge F$ fields satisfy the Bianchi-identity:
$F=d_{A} A=d A+A \wedge A . \quad d_{A}^{2} \phi=F \phi \neq 0 . \quad d_{A}^{2} A=d_{A} F=0 \Rightarrow d_{A}(F \wedge F)=0$.
The Higgs-like potential is:

$$
\begin{equation*}
V_{H}(\phi)=\kappa\left(\eta_{A B} \phi^{A} \phi^{B}-v^{2}\right)^{2} ; \quad \eta_{A B}=(+,+,+,-,-) . \quad \kappa=\text { constant } . \tag{5}
\end{equation*}
$$

The gauge covariant exterior differential is defined: $d_{A}=d+A$ so that $d_{A} \phi=$ $d \phi+A \wedge \phi$ and the $S O(3,2)$-valued field strength $F=d A+A \wedge A$ corresponds to the $S O(3,2)$-valued gauge fields in the adjoint representation

$$
\begin{equation*}
A_{\mu}^{A B}=A_{\mu}^{a b} ; A_{\mu}^{5 a} ; a, b=1,2,3,4 . \tag{6}
\end{equation*}
$$

which, after symmetry breaking, will be later identified as the Lorentz spin connection $\omega_{\mu}^{a b}$ and the vielbein field respectively: $A_{\mu}^{5 a}=\lambda e_{\mu}^{a}$ where λ is the inverse scale of the throat of $A d S_{4}$. Notice that the scalars Φ^{A} are dimensionless and so is the parameter κ, compared to the usual Higgs scalars in $4 D$ of dimensions of mass. Also, the action (1) does not have the standard kinetic terms $g^{\mu \nu}\left(D_{\mu} \varphi\right)\left(D_{\nu} \varphi\right)$.

The Lie algebra $S O(3,2)$ generators obey the commutation relations:

$$
\begin{equation*}
\left[M_{A B}, M_{C D}\right]=\eta_{B C} M_{A D}-\eta_{A C} M_{B D}+\eta_{A D} M_{B C}-\eta_{B D} M_{A C} \tag{7}
\end{equation*}
$$

We will show next how gravitational actions with the observed cosmological constant can be obtained from an action inspired from a BF-CS-Higgs theory. If one writes the action (1) explicitly in terms of coordinates, one can see that it is spacetime covariant since the metric factors in the products of the covariant epsilon symbol and measures $\left[\sqrt{|g|} d^{n} x\right]\left[\frac{\epsilon^{\mu_{1} \mu_{2} \cdots \cdots \mu_{n}}}{\sqrt{|g|}}\right]$ cancel out as they should. In this sense one may view the action (1) as being "topological" due to the fact that the metric does not appear explicitly. Different actions where the scalars play the role of a Jacobian-like measure have been proposed by [2]. Before we continue with our derivation we must emphasize that our action (1) (and procedure) is not the same as the action studied by [3]; we have a covariantized Chern-Simons term instead of a Jacobian-squared expression and it is not necessary to choose a preferred volume, leaving a residual invariance under volume-preserving diffeomorphisms, in order to retrieve the MacDowell-Mansouri-Chamseddine-West (MMCW) action for gravity [4], [5].

We shall perform a separate minimization of the $4 D$ and $5 D$ terms. The Higgs-like potential is minimized at tree level when the vev (vacuum expectation values) are

$$
\begin{equation*}
<\phi^{5}>=v . \quad<\phi^{a}>=0 . \quad a=1,2,3,4 . \tag{8}
\end{equation*}
$$

which means that one is freezing-in at each spacetime point the internal 5 direction of the internal space of the group $S O(3,2)$. Using these conditions (8) in the definitions of the gauge covariant derivatives acting on the internal $S O(3,2)$-vector-valued spacetime scalars $\phi^{A}(x)$, we have that at tree level:

$$
\begin{equation*}
\nabla_{\mu} \phi^{5}=\partial_{\mu} \phi^{5}+A_{\mu}^{5 a} \phi^{a}=0 ; \quad \nabla_{\mu} \phi^{a}=\partial_{\mu} \phi^{a}+A_{\mu}^{a b} \phi^{b}+A_{\mu}^{a 5} \phi^{5}=A_{\mu}^{a 5} v \tag{9}
\end{equation*}
$$

A variation of the action (1) w.r.t the scalars ϕ^{a} yields the zero torsion condition after imposing the results $(8,9)$ solely after the variations have been taken place. Therefore it is not necessary to impose by hand the zero torsion condition like in the MMCW procedure. Despite that the v.e.v of $\phi^{a}(a=1,2,34)$ are 0 one must not forget the constraint equations which arise from their variation. Thus, varying the action w.r.t the ϕ^{a} yields the $S O(3,2)$-covariantized Euler-Lagrange equations that lead naturally to the zero torsion $T_{\mu \nu}^{a}$ condition (without having to impose it by hand)

$$
\begin{gather*}
\frac{\delta S}{\delta \phi^{a}}-d_{A} \frac{\delta S}{\delta\left(d_{A} \phi^{a}\right)}=0 \Rightarrow F^{5 b} \wedge F^{c d} \epsilon_{a b c d}=0 \Rightarrow \\
F_{\mu \nu}^{5 b}=T_{\mu \nu}^{b}=\partial_{\mu} e_{\nu}^{b}+\omega_{\mu}^{b c} e_{\nu}^{c}-\mu \leftrightarrow \nu=0 \\
\Rightarrow \omega_{\mu}^{b c}=\omega_{\mu}^{b c}\left(e_{\mu}^{a}\right) \sim e^{\nu b} \partial_{\nu} e_{\mu}^{c}-e^{\nu c} \partial_{\nu} e_{\mu}^{b} \tag{10}
\end{gather*}
$$

and one recovers the standard Levi-Civita (spin) connection in terms of the (vielbein) metric. A variation w.r.t the remaining ϕ^{5} scalar yields after using the relation $A_{\mu}^{a 5}=\lambda e_{\mu}^{a}$:

$$
F_{\mu \nu}^{a b} F_{\rho \tau}^{c d} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau}+5 \lambda^{4} v^{4} e_{\mu}^{a} e_{\nu}^{b} e_{\rho}^{c} e_{\tau}^{d} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau}=0 \Rightarrow
$$

$$
\begin{equation*}
-\frac{1}{5} \phi^{5} F_{\mu \nu}^{a b} F_{\rho \tau}^{c d} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau}={ }_{o n-\text { shell }} \phi^{5} \nabla_{\mu} \phi^{a} \nabla_{\nu} \phi^{b} \nabla_{\rho} \phi^{c} \nabla_{\tau} \phi^{d} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau} \tag{11}
\end{equation*}
$$

The origins of the crucial factor 5 in (11) arises from the variation w.r.t ϕ^{5} of the terms in the action (1)

$$
\begin{gather*}
\phi^{5} \nabla_{\mu} \phi^{a} \nabla_{\nu} \phi^{b} \nabla_{\rho} \phi^{c} \nabla_{\tau} \phi^{d} \epsilon_{5 a b c d} \epsilon^{\mu \nu \rho \tau}+\phi^{a} \nabla_{\mu} \phi^{5} \nabla_{\nu} \phi^{b} \nabla_{\rho} \phi^{c} \nabla_{\tau} \phi^{d} \epsilon_{a 5 b c d} \epsilon^{\mu \nu \rho \tau}+ \\
\ldots \ldots+\phi^{a} \nabla_{\mu} \phi^{b} \nabla_{\nu} \phi^{c} \nabla_{\rho} \phi^{d} \nabla_{\tau} \phi^{5} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau} . \tag{12}
\end{gather*}
$$

Using these last equations (8-11), after the minimization procedure, will allows us to eliminate on-shell all the scalars ϕ^{A} from the action (1) furnishing the MacDowell-Mansouri-Chamseddine-West action for gravity as a result of an spontaneous symmetry breaking of the internal $S O(3,2)$ gauge symmetry due to the Higgs mechanism leaving unbroken the $S O(3,1)$ Lorentz symmetry:

$$
\begin{equation*}
S_{M M C W}=\frac{4}{5} v \int d^{4} x F_{\mu \nu}^{a b} F_{\rho \tau}^{c d} \epsilon_{a b c d 5} \epsilon^{\mu \nu \rho \tau} \tag{13}
\end{equation*}
$$

with the main advantage that it is no longer necessary to impose by hand the zero Torsion condition in order to arrive at the Einstein-Hilbert action. On the contrary, the zero Torsion condition is a direct result of the spontaneous symmetry breaking and the dynamics of the orginal BF-CS inspired action. Upon performing the decomposition

$$
\begin{equation*}
A_{\mu}^{a b}=\omega_{\mu}^{a b} . \quad A_{\mu}^{a 5}=\lambda e_{\mu}^{a} \tag{14a}
\end{equation*}
$$

where λ is the inverse length scale of the model (like the $A d S_{4}$ throat), taking into account that $\eta_{55}=-1$, the antisymmetry $A^{a 5}=-A^{5 a}$, and inserting these relations (14a) into the definition

$$
\begin{gather*}
F^{a b}=d A^{a b}+A^{a c} \wedge A^{c b}-A^{a 5} \wedge A^{5 b}= \\
d \omega^{a b}+\omega^{a c} \wedge \omega^{c b}+\lambda^{2} e^{a} \wedge e^{b}=R^{a b}+\lambda^{2} e^{a} \wedge e^{b} \tag{14b}
\end{gather*}
$$

leads to the MMCW action (13) comprised of the Einstein-Hilbert action, the cosmological constant term (vacuum energy density) plus the Gauss-Bonnet Topological invariant in $D=4$, respectively

$$
\begin{equation*}
S=\frac{8}{5} \lambda^{2} v \int R \wedge e \wedge e+\frac{4}{5} \lambda^{4} v \int e \wedge e \wedge e \wedge e+\frac{4}{5} v \int R \wedge R \tag{15}
\end{equation*}
$$

which implies that the gravitational constant $G=L_{\text {Planck }}^{2}$ (in natural units of $\hbar=c=1$) and the vacuum energy density ρ are fixed in terms of the throat-size of the $A d S_{4}$ space $(\lambda)^{-1}$ and $|v|$ as

$$
\begin{equation*}
\frac{8}{5} \lambda^{2}|v|=\frac{1}{16 \pi G}=\frac{1}{16 \pi L_{P}^{2}} ; \quad|\rho|=\frac{4}{5} \lambda^{4}|v| . \tag{16}
\end{equation*}
$$

Eliminating the vacuum expectation value (vev) value v from eq-(16) yields a geometric mean relationship among the three scales:

$$
\begin{equation*}
\frac{\lambda^{2}}{32 \pi} \frac{1}{L_{P}^{2}}=|\rho| \tag{17}
\end{equation*}
$$

By setting the throat-size of the $A d S_{4}$ space $(1 / \lambda)=R_{H}$ to coincide precisely with the Hubble radius $R_{H} \sim 10^{61} L_{P}$, the relation (17) furnishes the observed vacuum energy density [1]

$$
\begin{equation*}
|\rho|=\frac{1}{32 \pi} \frac{1}{R_{H}^{2}} \frac{1}{L_{P}^{2}} \sim\left(\frac{L_{P}}{R_{H}}\right)^{2} \frac{1}{L_{P}^{4}} \sim 10^{-122}\left(M_{\text {Planck }}\right)^{4} \tag{18}
\end{equation*}
$$

A value of $\lambda^{-1}=l=L_{p}$ in (17) would yield a huge vacuum energy density (cosmological constant). The (Anti) de Sitter throat size must be of the order of the Hubble scale. The reason one can obtain the correct numerical value of the cosmological constant is due to the key presence of the numerical factor $<\phi^{5}>=v$ in (16) and whose value is not of the order of unity which would have led to $\lambda^{-1} \sim L_{P}$ and a huge cosmological constant. On the contrary, its v.e.v value is of the order of $|v| \sim\left(R_{H} / L_{p}\right)^{2} \sim 10^{122}$. The results here also apply to the de Sitter case with positive cosmological constant after replacing the $A d S_{4}$ gauge group $S O(3,2)$ with the $d S_{4}$ group $S O(4,1)$ and breaking the symmetry $S O(4,1) \rightarrow S O(3,1)$.

2 Conformal Gravity and Yang-Mills from Gauge Field Theory based on Clifford Algebras

Let $\eta_{a b}=(+,-,-,-), \epsilon_{0123}=-\epsilon^{0123}=1$, the Clifford $C l(1,3)$ algebra associated with the tangent space of a $4 D$ spacetime \mathcal{M} is defined by $\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 \eta_{a b}$ such that

$$
\begin{gather*}
{\left[\Gamma_{a}, \Gamma_{b}\right]=2 \Gamma_{a b}, \quad \Gamma_{5}=-i \Gamma_{0} \Gamma_{2} \Gamma_{3} \Gamma_{4}, \quad\left(\Gamma_{5}\right)^{2}=1 ; \quad\left\{\Gamma_{5}, \Gamma_{a}\right\}=0} \tag{19}\\
\Gamma_{a b c d}=\epsilon_{a b c d} \Gamma_{5} ; \quad \Gamma_{a b}=\frac{1}{2}\left(\Gamma_{a} \Gamma_{b}-\Gamma_{b} \Gamma_{a}\right) \tag{20a}\\
\Gamma_{a b c}=\epsilon_{a b c d} \Gamma_{5} \Gamma^{d} ; \quad \Gamma_{a b c d}=\epsilon_{a b c d} \Gamma_{5} \tag{20b}\\
\Gamma_{a} \Gamma_{b}=\Gamma_{a b}+\eta_{a b}, \quad \Gamma_{a b} \Gamma_{5}=\frac{1}{2} \epsilon_{a b c d} \Gamma^{c d} \tag{21a}\\
\Gamma_{a b} \Gamma_{c}=\eta_{b c} \Gamma_{a}-\eta_{a c} \Gamma_{b}+\epsilon_{a b c d} \Gamma_{5} \Gamma^{d} \tag{21b}\\
\Gamma_{c} \Gamma_{a b}=\eta_{a c} \Gamma_{b}-\eta_{b c} \Gamma_{a}+\epsilon_{a b c d} \Gamma_{5} \Gamma^{d} \tag{21c}\\
\Gamma_{a} \Gamma_{b} \Gamma_{c}=\eta_{a b} \Gamma_{c}+\eta_{b c} \Gamma_{a}-\eta_{a c} \Gamma_{b}+\epsilon_{a b c d} \Gamma_{5} \Gamma^{d} \tag{21d}\\
\Gamma^{a b} \Gamma_{c d}=\epsilon_{c d}^{a b} \Gamma_{5}-4 \delta_{[c}^{[a} \Gamma_{d]}^{b]}-2 \delta_{c d}^{a b} \tag{21e}
\end{gather*}
$$

$$
\begin{equation*}
\delta_{c d}^{a b}=\frac{1}{2}\left(\delta_{c}^{a} \delta_{d}^{b}-\delta_{d}^{a} \delta_{c}^{b}\right) \tag{22}
\end{equation*}
$$

the generators $\Gamma_{a b}, \Gamma_{a b c}, \Gamma_{a b c d}$ are defined as usual by a signed-permutation sum of the anti-symmetrizated products of the gammas. A representation of the $C l(1,3)$ algebra exists where the generators $\mathbf{1}, \Gamma_{0}, \Gamma_{5}, \Gamma_{i} \Gamma_{5}, i=1,2,3$ are chosen to be Hermitian; while the generators $-i \Gamma_{0} \equiv \Gamma_{4} ; \Gamma_{a}, \Gamma_{a b}$ for $a, b=1,2,3,4$ are chosen to be anti-Hermitian. For instance, the anti-Hermitian generators Γ_{k} for $k=1,2,3$ can be represented by 4×4 matrices, whose block diagonal entries are 0 and the 2×2 block off-diagonal entries are comprised of $\pm \sigma_{k}$, respectively, where σ_{k}, are the 3 Pauli's spin Hermitian 2×2 matrices obeying $\sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon_{i j k} \sigma_{k}$. The Hermitian generator Γ_{0} has zeros in the main diagonal and $-\mathbf{1}_{2 \times 2},-\mathbf{1}_{2 \times 2}$ in the off-diagonal block so that $-i \Gamma_{0}=\Gamma_{4}$ is anti-Hermitian. The Hermitian Γ_{5} chirality operator has $\mathbf{1}_{2 \times 2},-\mathbf{1}_{2 \times 2}$ along its main diagonal and zeros in the off-diagonal block. The unit operator $\mathbf{1}_{4 \times 4}$ has 1 along the diagonal and zeros everywhere else.

Using eqs-(19-22) allows to write the $C l(1,3)$ algebra-valued one-form as

$$
\begin{equation*}
\mathbf{A}=\left(i a_{\mu} \mathbf{1}+i b_{\mu} \Gamma_{5}+e_{\mu}^{a} \Gamma_{a}+i f_{\mu}^{a} \Gamma_{a} \Gamma_{5}+\frac{1}{4} \omega_{\mu}^{a b} \Gamma_{a b}\right) d x^{\mu} \tag{23}
\end{equation*}
$$

the anti-Hermitian gauge field obeys the condition $\left(\mathcal{A}_{\mu}\right)^{\dagger}=-\mathcal{A}_{\mu}$.
The Clifford-valued anti-Hermitian gauge field A_{μ} transforms according to $A_{\mu}^{\prime}=U^{-1} A_{\mu} U+U^{-1} \partial_{\mu} U$ under Clifford-valued gauge transformations. The anti-Hermitian Clifford-valued field strength is $F=d A+[A, A]$ so that F transforms covariantly $F^{\prime}=U^{-1} F U$. Decomposing the anti-Hermitian field strength in terms of the Clifford algebra anti-Hermitian generators gives

$$
\begin{equation*}
F_{\mu \nu}=i F_{\mu \nu}^{1} \mathbf{1}+i F_{\mu \nu}^{5} \Gamma_{5}+F_{\mu \nu}^{a} \Gamma_{a}+i F_{\mu \nu}^{a 5} \Gamma_{a} \Gamma_{5}+\frac{1}{4} F_{\mu \nu}^{a b} \Gamma_{a b} \tag{24}
\end{equation*}
$$

where $F=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$. The field-strength components are given by

$$
\begin{gather*}
F_{\mu \nu}^{1}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu} \tag{25a}\\
F_{\mu \nu}^{5}=\partial_{\mu} b_{\nu}-\partial_{\nu} b_{\mu}+2 e_{\mu}^{a} f_{\nu a}-2 e_{\nu}^{a} f_{\mu a} \tag{25b}\\
F_{\mu \nu}^{a}=\partial_{\mu} e_{\nu}^{a}-\partial_{\nu} e_{\mu}^{a}+\omega_{\mu}^{a b} e_{\nu b}-\omega_{\nu}^{a b} e_{\mu b}+2 f_{\mu}^{a} b_{\nu}-2 f_{\nu}^{a} b_{\mu} \tag{25c}\\
F_{\mu \nu}^{a 5}=\partial_{\mu} f_{\nu}^{a}-\partial_{\nu} f_{\mu}^{a}+\omega_{\mu}^{a b} f_{\nu b}-\omega_{\nu}^{a b} f_{\mu b}+2 e_{\mu}^{a} b_{\nu}-2 e_{\nu}^{a} b_{\mu} \tag{25d}\\
F_{\mu \nu}^{a b}=\partial_{\mu} \omega_{\nu}^{a b}+\omega_{\mu}^{a c} \omega_{\nu c}^{b}+4\left(e_{\mu}^{a} e_{\nu}^{b}-f_{\mu}^{a} f_{\nu}^{b}\right)-\mu \longleftrightarrow \nu \tag{25e}
\end{gather*}
$$

A Clifford-algebra-valued dimensionless anti-Hermitian scalar field $\Phi\left(x^{\mu}\right)=$ $\Phi^{A}\left(x^{\mu}\right) \Gamma_{A}$ belonging to a section of the Clifford bundle in $D=4$ can be expanded as

$$
\begin{equation*}
\Phi=i \phi^{(1)} \mathbf{1}+\phi^{a} \Gamma_{a}+\phi^{a b} \Gamma_{a b}+i \phi^{a 5} \Gamma_{a} \Gamma_{5}+i \phi^{(5)} \Gamma_{5} \tag{26}
\end{equation*}
$$

so that the covariant exterior differential is

$$
d_{A} \Phi=\left(d_{A} \Phi^{C}\right) \Gamma_{C}=\left(\partial_{\mu} \Phi^{C}+\mathcal{A}_{\mu}^{A} \Phi^{B} f_{A B}^{C}\right) \Gamma_{C} d x^{\mu}
$$

where

$$
\begin{equation*}
\left[\mathcal{A}_{\mu}, \Phi\right]=\mathcal{A}_{\mu}^{A} \Phi^{B}\left[\Gamma_{A}, \Gamma_{B}\right]=\mathcal{A}_{\mu}^{A} \Phi^{B} f_{A B}^{C} \Gamma_{C} \tag{27}
\end{equation*}
$$

The generalization of the action in section 1 to the full-fledged Cliffordalgebra case is given by three terms. The first term is

$$
\begin{equation*}
I_{1}=\int_{M_{4}} d^{4} x \epsilon^{\mu \nu \rho \sigma}<\Phi^{A} F_{\mu \nu}^{B} F_{\rho \sigma}^{C} \Gamma_{A} \Gamma_{B} \Gamma_{C}>_{0} \tag{28}
\end{equation*}
$$

where the operation $<\ldots \ldots .>_{0}$ denotes taking the scalar part of the Clifford geometric product of $\Gamma_{A} \Gamma_{B} \Gamma_{C}$. The scalar part of the Clifford geometric product of the gammas is for example

$$
\begin{align*}
<\Gamma_{a} \Gamma_{b}>=\delta_{a b}, \quad<\Gamma_{a_{1} a_{2}} \Gamma_{b_{1} b_{2}}>=\delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}}-\delta_{a_{1} b_{2}} \delta_{a_{2} b_{1}} \\
<\Gamma_{a_{1}} \Gamma_{a_{2}} \Gamma_{a_{3}}>=0, \quad<\Gamma_{a_{1} a_{2} a_{3}} \Gamma_{b_{1} b_{2} b_{3}}>=\delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}} \delta_{a_{3} b_{3}} \pm \ldots \ldots \\
<\Gamma_{a_{1}} \Gamma_{a_{2}} \Gamma_{a_{3}} \Gamma_{a_{4}}>=\delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}}-\delta_{a_{1} a_{3}} \delta_{a_{2} a_{4}}+\delta_{a_{2} a_{3}} \delta_{a_{1} a_{4}}, \text { etc } \ldots . . \tag{29}
\end{align*}
$$

The integrand of (28) is comprised of terms like

$$
\begin{gather*}
F^{a b} \wedge F^{c d} \phi^{(5)} \epsilon_{a b c d} ; \quad F^{(1)} \wedge F^{(5)} \phi^{(5)} ; \quad F^{a} \wedge F^{a 5} \phi^{(5)} \\
2 F_{b}^{a} \wedge F_{a}^{b} \phi^{(1)} ; \quad F^{(1)} \wedge F^{(1)} \phi^{(1)} ; \quad F^{(5)} \wedge F^{(5)} \phi^{(1)} \\
F^{(1)} \wedge F^{a b} \phi_{a b} ; \quad F^{(1)} \wedge F^{a 5} \phi_{a 5} ; \quad F^{(1)} \wedge F^{a} \phi_{a} \\
F^{a} \wedge F_{a} \phi^{(1)} ; \quad F^{a 5} \wedge F_{a 5} \phi^{(1)} ; \quad F^{a b} \wedge F^{c}\left(\eta_{b c} \phi_{a}-\eta_{a c} \phi_{b}\right) \\
F^{a b} \wedge F^{c} \phi^{5 d} \epsilon_{a b c d} ; \quad F^{a} \wedge F^{b 5} \phi^{c d} \epsilon_{a b c d} ; \ldots \ldots . \tag{30}
\end{gather*}
$$

The numerical factors and signs of each one of the above terms is determined from the relations in eqs-(19-22). Due to the fact that $\epsilon^{\mu \nu \rho \sigma}=\epsilon^{\rho \sigma \mu \nu}$ the terms like

$$
\begin{gather*}
F_{b}^{a} \wedge F^{b c} \phi_{a c}=F^{b c} \wedge F_{b}^{a} \phi_{a c}=F^{c b} \wedge F_{b}^{a} \phi_{a c}= \\
F_{b}^{c} \wedge F^{b a} \phi_{a c}=-F_{b}^{a} \wedge F^{b c} \phi_{a c} \Rightarrow F_{b}^{a} \wedge F^{b c} \phi_{a c}=0 \\
F^{a} \wedge F^{b} \phi_{a b}=0 ; \quad F^{a 5} \wedge F^{b 5} \phi_{a b}=0 ; F^{a 5} \wedge F^{b 5} \phi^{c d} \epsilon_{a b c d}=0 \tag{31}
\end{gather*}
$$

vanish. Thus the action (28) is a generalization of the McDowell-Mansouri-Chamseddine-West action. The Clifford-algebra generalization of the ChernSimons terms are

$$
I_{2}=\int_{M_{4}}<\Phi^{E} d \Phi^{A} \wedge d \Phi^{B} \wedge d \Phi^{C} \wedge d \Phi^{D} \Gamma_{[E} \Gamma_{A} \Gamma_{B} \Gamma_{C} \Gamma_{D]}>_{0}=
$$

$$
\begin{equation*}
\int_{M_{4}}\left(\phi^{(5)} d \phi^{a} \wedge d \phi^{b} \wedge d \phi^{c} \wedge d \phi^{d} \epsilon_{a b c d}-\phi^{a} d \phi^{(5)} \wedge d \Phi^{b} \wedge d \Phi^{c} \wedge d \Phi^{d} \epsilon_{a b c d}+\ldots \ldots \ldots\right) \tag{32}
\end{equation*}
$$

The Clifford-algebra generalization of the Higgs-like potential is given by

$$
\begin{aligned}
I_{3}=-\int_{M_{5}} & <d \Phi^{A} \wedge d \Phi^{B} \wedge d \Phi^{C} \wedge d \Phi^{D} \wedge d \Phi^{E} \Gamma_{[A} \Gamma_{B} \Gamma_{C} \Gamma_{D} \Gamma_{E]}>_{0} V(\Phi)= \\
& -\int_{M_{5}} d \Phi^{5} \wedge d \Phi^{a} \wedge d \Phi^{b} \wedge d \Phi^{c} \wedge d \Phi^{d} \epsilon_{a b c d} V(\Phi)+\ldots \ldots .
\end{aligned}
$$

where

$$
\begin{equation*}
V(\Phi)=\kappa\left(\Phi_{A} \Phi^{A}-\mathbf{v}^{2}\right)^{2} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{A} \Phi^{A}=\phi^{(1)} \phi_{(1)}+\phi^{a} \phi_{a}+\phi^{a b} \phi_{a b}+\phi^{a 5} \phi_{a 5}+\phi^{(5)} \phi_{(5)} \tag{34}
\end{equation*}
$$

Vacuum solutions can be found of the form

$$
\begin{equation*}
<\phi^{(5)}>=\mathbf{v} ;<\phi^{(1)}>=<\phi^{a}>=<\phi^{a b}>=<\phi^{a 5}>=0 \tag{35}
\end{equation*}
$$

Similarly as it occurred in section 1, a variation of $I_{1}+I_{2}+I_{3}$ given by eqs- $(28,32,33)$ w.r.t ϕ^{5}, following similar steps as in eqs- $(9,11,12)$ and taking into account the v.e.v of eq-(35) which minimize the potential (33) solely after the variation w.r.t the scalar fields is taken place, allows to eliminate the scalars on-shell leading to

$$
\begin{gather*}
I_{1}+I_{2}+I_{3}=\frac{4}{5} \mathbf{v} \int_{M} d^{4} x\left(F^{a b} \wedge F^{c d} \epsilon_{a b c d}+F^{(1)} \wedge F^{(5)}+F^{a} \wedge F^{a 5}\right)= \\
\frac{4}{5} \mathbf{v} \int_{M} d^{4} x\left(F_{\mu \nu}^{a b} F_{\rho \sigma}^{c d} \epsilon_{a b c d}+F_{\mu \nu}^{(1)} F_{\rho \sigma}^{(5)}+F_{\mu \nu}^{a} F_{\rho \sigma}^{a 5}\right) \epsilon^{\mu \nu \rho \sigma} \tag{36}
\end{gather*}
$$

where Einstein's summation convention over repeated indices is implied.
The upshot of having started with the action $I_{1}+I_{2}+I_{3}$ involving the three expressions of eqs- $(28,32,33)$ is that one does not have to impose by hand constraints on the field strengths in eq-(36) in order to recover Einstein gravity. Despite that one has chosen the v.e.v conditions (35) on the scalars, one must not forget the equations which result from their variations. Hence, performing a variation of $I_{1}+I_{2}+I_{3}$ w.r.t the remaining scalars $\phi^{1}, \phi^{a}, \phi^{a b}, \phi^{a 5}$, following similar steps as in eqs- $(9,11,12)$ and taking into account the v.e.v of eq-(35) which minimize the potential (33), yields

$$
\begin{gather*}
2 F_{b}^{a} \wedge F_{a}^{b}+F^{(1)} \wedge F^{(1)}+F^{(5)} \wedge F^{(5)}+F^{a} \wedge F_{a}+F^{a 5} \wedge F_{a 5}=0 \tag{37a}\\
F^{(1)} \wedge F^{a}+F^{a b} \wedge F^{c} \eta_{b c}=0 \tag{37b}\\
F^{(1)} \wedge F_{a b}+F^{c} \wedge F^{d 5} \epsilon_{a b c d}=0 \tag{37c}
\end{gather*}
$$

$$
\begin{equation*}
F^{(1)} \wedge F_{a 5}+F^{b c} \wedge F^{d} \epsilon_{a b c d}=0 \tag{37d}
\end{equation*}
$$

From eqs-(37) one can infer that $F^{1}=F^{a}=0, a=1,2,3,4$ are solutions compatible with eqs-(37b, 37c, 37 d), while the non-zero values $F^{a b}, F^{5}, F^{a 5}$ will be constrained to obey

$$
\begin{equation*}
2 F_{b}^{a} \wedge F_{a}^{b}+F^{(5)} \wedge F^{(5)}+F^{a 5} \wedge F_{a 5}=0 \tag{37e}
\end{equation*}
$$

Therefore, when $F^{1}=F^{a}=0$ the action (36) will then reduce to

$$
\begin{equation*}
S=\frac{4}{5} \mathbf{v} \int_{M} d^{4} x \quad\left(F_{\mu \nu}^{a b} F_{\rho \sigma}^{c d} \epsilon_{a b c d}\right) \epsilon^{\mu \nu \rho \sigma} \tag{38}
\end{equation*}
$$

A solution to the the zero torsion condition $F^{a}=0$ can be simply found by setting $f_{\mu}^{a}=0$ in eq- $(25 \mathrm{c})$, and which in turn, furnishes the Levi-Civita spin connection $\omega_{\mu}^{a b}\left(e_{\mu}^{a}\right)$ in terms of the tetrad e_{μ}^{a}. Upon doing so, the field strength $F^{a b}$ in eq-(25e) when $f_{\mu}^{a}=0$ and $\omega_{\mu}^{a b}\left(e_{\mu}^{a}\right)$ becomes then $F^{a b}=R^{a b}\left(\omega_{\mu}^{a b}\right)+4 e^{a} \wedge e^{b}$, where $R^{a b}=\frac{1}{2} R_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}$ is the standard expression for the Lorentzcurvature two-form in terms of the Levi-Civita spin connection. Finally, the action (38) becomes once again the Macdowell-Mansouri-Chamseddine-West action

$$
\begin{equation*}
S=\frac{4}{5} \mathbf{v} \int d^{4} x\left(R^{a b}+4 e^{a} \wedge e^{b}\right) \wedge\left(R^{c d}+4 e^{c} \wedge e^{d}\right) \epsilon_{a b c d} \tag{39}
\end{equation*}
$$

comprised of the Gauss-Bonnet term $R \wedge R$; the Einstein-Hilbert term $R \wedge e \wedge e$, and the cosmological constant term $e \wedge e \wedge e \wedge e$.

In order to have the proper dimensions of (length) ${ }^{-2}$ in the above curvature $R+e \wedge e$ terms, one has to introduce the suitable length scale parameter l in the terms $\frac{1}{l^{2}} e \wedge e$. If we wish to recover the same results as those found in section 1 obtained after the elimination of the v.e.v $<\phi^{5}>=v$ in eq-(16), and consistent with the correct value of the observed vacuum energy density one requires to set $l \sim R_{H}$. A value of $l=L_{p}$ would yield a huge cosmological constant. The (Anti) de Sitter throat size can be set to the Hubble scale as we explained above in section 1 due to the key presence of the numerical factor $\left\langle\phi^{5}\right\rangle=v$ in eq-(16) and whose value is not of the order of unity.

At this stage we can also provide the relation of the action (36) to the Conformal Gravity action based in gauging the conformal group $S O(4,2) \sim$ $S U(2,2)$ in $4 D$. The anti-Hermitian operators of the Conformal algebra can be written in terms of the Clifford algebra anti-Hermitian generators as [6]
$P_{a}=\frac{1}{2} \Gamma_{a}\left(1+i \Gamma_{5}\right) ; \quad K_{a}=\frac{1}{2} \Gamma_{a}\left(1-i \Gamma_{5}\right) ; \quad D=\frac{i}{2} \Gamma_{5}, \quad L_{a b}=\frac{1}{2} \Gamma_{a b}$.
$P_{a}(a=1,2,3,4)$ are the translation generators; K_{a} are the conformal boosts; D is the dilation generator and $L_{a b}$ are the Lorentz generators. The total number of generators is respectively $4+4+1+6=15$. Having established this, a realvalued tetrad V_{μ}^{a} field and its real-valued partner \tilde{V}_{μ}^{a} can be defined in terms of the real-valued gauge fields e_{μ}^{a}, f_{μ}^{a}, as follows

$$
\begin{equation*}
e_{\mu}^{a}+f_{\mu}^{a}=V_{\mu}^{a} ; \quad e_{\mu}^{a}-f_{\mu}^{a}=\tilde{V}_{\mu}^{a} \tag{41}
\end{equation*}
$$

such that the combination

$$
\begin{equation*}
e_{\mu}^{a} \Gamma_{a}+i f_{\mu}^{a} \Gamma_{a} \Gamma_{5}=V_{\mu}^{a} P_{a}+\widetilde{V}_{\mu}^{a} K_{a} \tag{42}
\end{equation*}
$$

is anti-Hermitian for real-valued e_{μ}^{a}, f_{μ}^{a} fields. The components of the torsion and conformal-boost curvature two-forms of conformal gravity are given respectively by the linear combinations of eqs-(25c, 25d)

$$
\begin{align*}
& F_{\mu \nu}^{a}+F_{\mu \nu}^{a 5}=\widetilde{F}_{\mu \nu}^{a}[P] ; \quad F_{\mu \nu}^{a}-F_{\mu \nu}^{a 5}=\widetilde{F}_{\mu \nu}^{a}[K] \Rightarrow \\
& F_{\mu \nu}^{a} \Gamma_{a}+i F_{\mu \nu}^{a 5} \Gamma_{a} \Gamma_{5}=\widetilde{F}_{\mu \nu}^{a}[P] P_{a}+\widetilde{F}_{\mu \nu}^{a}[K] K_{a} . \tag{43}
\end{align*}
$$

The components of the curvature two-form corresponding to the Weyl dilation generator are $F_{\mu \nu}^{5}$ (25b). The Lorentz curvature two-form is contained in $F_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}(25 \mathrm{e})$ and the Maxwell curvature two-form is $F_{\mu \nu}^{1} d x^{\mu} \wedge d x^{\nu}$ (25a). To sum up, the real-valued tetrad gauge field V_{μ}^{a} (that gauges the translations P_{a}) and the real-valued conformal boosts gauge field \widetilde{V}_{μ}^{a} (that gauges the conformal boosts K_{a}) of conformal gravity are given, respectively, by the linear combination of the gauge fields $e_{\mu}^{a} \pm f_{\mu}^{a}$ associated with the anti-Hermitian $\Gamma_{a}, i \Gamma_{a} \Gamma_{5}$ generators of the Clifford algebra $C l(1,3)$ of the tangent space of spacetime \mathcal{M}^{4} after performing a Wick rotation $-i \Gamma_{0}=\Gamma_{4}$.

If one wishes to recover ordinary Einstein gravity directly from the action (36) without invoking the equations of motion (37) resulting from a variation of $I_{1}+I_{2}+I_{3}$ w.r.t the scalar components of Φ^{A}, one would require, firstly, to set the fields $f_{\mu}^{a}=0$ and $b_{\mu}=0$ in the expressions for the field strengths in eqs-(25). Secondly, by imposing by hand the zero torsion and conformal boost curvature conditions $\widetilde{F}_{\mu \nu}^{a}[P]=\widetilde{F}_{\mu \nu}^{a}[K]=0 \Rightarrow F_{\mu \nu}^{a}=F_{\mu \nu}^{a 5}=0$ in eqs-(25c, 25 d), furnish the Levi-Civita spin connection $\omega_{\mu}^{a b}\left(e_{\mu}^{a}\right)$, so that $F^{a b}$ in eq-(25e) becomes then $F^{a b}=R^{a b}\left(\omega_{\mu}^{a b}\right)+4 e^{a} \wedge e^{b}$, where $R^{a b}=\frac{1}{2} R_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}$ is the standard expression for the Lorentz-curvature two-form in terms of the LeviCivita spin connection. Since $F_{\mu \nu}^{5}=0$ in eq-(25b) when $f_{\mu}^{a}=b_{\mu}=0$, the remaining nonvanishing terms in the action (36), after setting $\phi^{5}=\mathbf{v}$ and $F_{\mu \nu}^{a}=F_{\mu \nu}^{a 5}=F_{\mu \nu}^{5}=0$, are comprised once again of the Gauss-Bonnet term $R \wedge R$; the Einstein-Hilbert term $R \wedge e \wedge e$, and the cosmological constant term $e \wedge e \wedge e \wedge e$.

One should emphasize that our results in this section are based on a very different action (28) (plus the terms in eqs- $(32,33)$) than the invariant gravitational action studied by Chameseddine [7] based on the constrained gauge group $U(2,2)$ broken down to $U(1,1) \times U(1,1)$. In general, our action (28) is comprised of many more terms displayed by eq-(30) than the action chosen by Chamseddine

$$
\begin{equation*}
I=\int_{M} \operatorname{Tr}\left(\Gamma_{5} F \wedge F\right) . \tag{44}
\end{equation*}
$$

Secondly, as shown in section 1, our procedure furnishes the correct value of the cosmological constant via the key presence of the v.e.v $<\phi^{5}>=v$ in all the terms of the action (15). Thirdly, by invoking the equations of motion (37) resulting from a variation of $I_{1}+I_{2}+I_{3}$ w.r.t the scalar components of Φ^{A}, one does not need to impose by hand the zero torsion constraints as done by [7]. The condition $F^{a}=0$ results from solving eqs-(37).

To sum up, ordinary gravity with the correct value of the cosmological constant emerges from a very specific vacuum solution. Furthermore, there are many other vacuum solutions of the more fundamental action associated with the expressions $I_{1}+I_{2}+I_{3}$ of eqs- $(28,32,33)$ and involving all of the terms in eq-(30). For example, for constant field configurations Φ^{A}, the inclusion of all the gauge field strengths in eq-(30) contain the Euler type terms $F^{a b} \wedge F^{c d} \epsilon_{a b c d}$; theta type terms $F^{1} \wedge F^{1} ; F^{5} \wedge F^{5}$ corresponding to the Maxwell a_{μ} and Weyl dilatation b_{μ} fields, respectively; Pontryagin type terms $F_{b}^{a} \wedge F_{a}^{b}$; torsion squared terms $F^{a} \wedge F^{a}$, etc \ldots all in one stroke.

Tensorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on poly-vector valued (anti-symmetric tensor fields) gauge fields $\mathcal{A}_{M}(\mathbf{X})$ and field strengths $\mathcal{F}_{M N}(\mathbf{X})$ have ben studied in [6] where $\mathbf{X}=X_{M} \Gamma^{M}$ is a C-space polyvector valued coordinate and $\mathcal{A}_{M}(\mathbf{X})=A_{M}^{I}(\mathbf{X}) \Gamma_{I}$ is a Clifford-value gauge field whose Clifford algebra is spanned by the Γ_{I} generators. The Clifford-algebra-valued gauge field $\mathcal{A}_{\mu}^{I}\left(x^{\mu}\right) \Gamma_{I}$ in ordinary spacetime is naturally embedded into a far richer object in C-spaces. In order to retrieve (Conformal) Gravity one required earlier to choose the $C l(1,3)$ tangent spacetime algebra because the chosen signature of the underlying spacetime manifold was chosen to be $(+,-,-,-)$. The advantage of recurring to C-spaces associated with the $4 D$ spacetime manifold is that one can have a Conformal Gravity, Maxwell and $S U(2)$ Yang-Mills unification in a very geometric fashion. To briefly illustrate how it can be attained, let us write in $4 D$ the several components of the C-space poly-vector valued gauge field $\mathbf{A}(\mathbf{X})$ as

$$
A_{0}^{I}=\Phi^{I} ; \quad \mathcal{A}_{\mu}^{I} ; \quad \mathcal{A}_{\mu \nu}^{I} ; \quad \mathcal{A}_{\mu \nu \rho}^{I}=\epsilon_{\mu \nu \rho \sigma} \widetilde{\mathcal{A}}_{\sigma}^{I} ; \quad \mathcal{A}_{\mu \nu \rho \sigma}^{I}=\epsilon_{\mu \nu \rho \sigma} \widetilde{\Phi}^{I}
$$

where $\Phi, \widetilde{\Phi}$ correspond to the scalar (pseudo-scalars) components of a polyvector. Let us freeze all the degrees of freedom of the poly-vector C-space coordinate \mathbf{X} in $\mathbf{A}(\mathbf{X})$ except those of the ordinary spacetime vector coordinates x^{μ}. As we have shown in this section, Conformal Gravity and Maxwell are encoded in the components of \mathcal{A}_{μ}^{I}. The antisymmetric tensorial gauge field of rank three $\mathcal{A}_{\mu \nu \rho}^{I}$ is dual to the vector $\widetilde{\mathcal{A}}_{\sigma}^{I}$ and has 4 independent spacetime components $(\sigma=1,2,3,4)$, the same number as the vector gauge field \mathcal{A}_{μ}^{I}. Therefore, the Yang-Mills group $U(2,2)$ is encoded in $\widetilde{\mathcal{A}}_{\sigma}^{I}$, it has 16 generators and contains the compact subgroup $U(2) \times U(2)=S U(2) \times S U(2) \times U(1) \times U(1)$ after symmetry breaking. $U(4)$ is not large enough to accommodate the Standard Model Group $S U(3) \times S U(2) \times U(1)$ as its maximally compact subgroup. The GUT group $S U(5)$ is large enough to achieve this goal. In general, the group $S U(m+n)$ has $S U(m) \times S U(n) \times U(1)$ for compact subgroups. Other
approaches, for instance, to Grand Unification with Gravity based on C-spaces and Clifford algebras have been proposed by [9] and [10], respectively. In the model by [9] the 16 -dim C-space (corresponding to $4 D$ Clifford algebra) metric $G_{M N}$ has enough components to accommodate ordinary gravity and Yang-Mills in the decomposition $G_{\mu \nu}=g_{\mu \nu}+A_{\mu}^{i} A_{\nu}^{j} g_{i j}$. Furthermore, it is shown how a unified theory of generalized branes coupled to gauge fields, including the gravitational and Kalb-Ramond fields can be attained in C-spaces. A large number of references pertaining the role of Clifford algebras in Geometric Unification models is also provided. The Gravity-Yang-Mills-Maxwell-Matter GUT model in [10] relies on the $C l(8)$ algebra in $8 D$. In forthcoming work we will present further details of the Unification program within the C-space framework. To conclude, Conformal Gravity, Maxwell and $S U(2) \times S U(2)$ Yang-Mills unification can be attained in a very natural and geometric way in four dimensions. To incorporate the $S U(3)$ (QCD) symmetry and the fermion family flavor symmetry requires going to higher dimensions. For instance, the E_{8} Geometry of the Clifford Superspace associated with $C l(16)$ and Conformal Gravity Yang-Mills Grand Unification can be found in [8].

Acknowledgments

We thank M. Bowers for her assistance.

References

[1] C. Castro, Mod. Phys Letts A 17, no. 32 (2002) 2095.
[2] E. Guendelman and A. Kaganovich, "Physical Consequences of a Theory with Dynamical Volume Element" arXiv : 0811.0793.
[3] F. Wilczek: Physical Review Letters 80 (1998) 4851.
[4] S. W. MacDowell and F. Mansouri: Phys. Rev. Lett 38 (1977) 739; F. Mansouri: Phys. Rev D 16 (1977) 2456.
[5] A. Chamseddine and P. West, Nuc. Phys. B 129 (1977) 39.
[6] C. Castro, M. Pavsic, Progress in Physics 1 (2005) 31; Phys. Letts B 559 (2003) 74; Int. J. Theor. Phys 42 (2003) 1693;
[7] A. Chamseddine, "An invariant action for Noncommutative Gravity in four dimensions" hep-th/0202137.
[8] C. Castro, IJGMMP 4, No. 8 (2007) 1239; "The Noncommutative and Nonassociative Geometry of Octonionic Spacetime, Modified Dispersion Relations and Grand Unification" J. Math. Phys 48, no. 7 (2007) 073517; "The Exceptional E_{8} Geometry of Clifford (16) Superspace and Conformal Gravity Yang-Mills Grand Unification" to appear in the IJGMMP, May 2009; "An Exceptional E_{8} Gauge Theory of Gravity in $D=8$, Clifford Spaces and Grand Unification", to appear in the IJGMMP, to appear in Sept 2009.
[9] M. Pavsic, Found. Phys. 37 (2007) 1197; "A Novel view on the Physical Origin of $E_{8} "$ arXiv : 0806.4365 (hep-th).
[10] Frank (Tony) Smith, The Physics of E_{8} and $C l(16)=C l(8) \otimes C l(8)$ www.tony5m17h.net/E8physicsbook.pdf (Carterville, Georgia, June 2008, 367 pages). Int. J. Theor. Phys 24, 155 (1985); Int. J. Theor. Phys 25, 355 (1985).

