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A circularly polarized electromagnetic beam is considered, which is absorbed by a plane, and the mechanical 
stress produced in the plane by the beam is calculated. It is shown that the central part of the beam produces 
a torque at the central region of the plane due to the spin of the beam, and the wall of the beam produces an 
additional torque due to orbital angular momentum of the beam. The total torque acting on the plane equals 
two power of the beam divided by the frequency. This fact contradicts the standard electrodynamics, which 
predicts the torque equals power of the beam divided by frequency, and means the electrodynamics is 
incomplete. An introducing of the spin tensor corrects the electrodynamics.  

PACS numbers: 42.25.Bs; 42.25.Ja; 42.87.-d 
OCIS codes: 300.1030; 260.5430; 260.0260 
Keywords: Electrodynamics torque, angular momentum, spin tensor 

 
I. Does electrodynamics’ spin tensor exist? 

As is well known, photons carry spin, energy, momentum and angular momentum that is a moment 
of the momentum relative to a given point or to a given axis. Energy and momentum of electromagnetic 
waves are described by the Maxwell energy-momentum tensor (density) 
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where ,  is the field strength tensor. For example,  is the 

momentum of a waves inside of the volume V, and  is the energy that has flowed through 

the area a in the time . The angular momentum that is a moment of the momentum can be defined as1  
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and this construction must be named an orbital angular momentum. However the modern electrodynamics 
has no describing of spin. Sometimes physicists consider the canonical spin tensor  
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where  is the canonical Lagrangian, and  is the magnetic vector potential, 4/µν
µν−= FF

c
L λA µννµ =∂ FA ][2 . 

But spin tensor (1.3) is invalid, as well as the canonical energy-momentum tensor independently of any 
divergence addend. So physicists eliminate the spin tensor by the Belinfante-Rosenfeld procedure.2,3  As a 
result, the electrodynamics has no spin tensor, or rather the modern classical electrodynamics spin tensor 
equals zero.  

Nevertheless, physicists understand they cannot shut eyes on existence of the classical 
electrodynamics spin. And they proclaim spin is in the moment of the momentum (1.2). I.e., the moment of 
momentum represents the total angular momentum, orbital angular momentum plus spin. I.e., equation (1.2) 
encompasses both the spin and orbital angular momentum density of a light beam:4-8  
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Contrary to this paradigm, we introduce a spin tensor λµνΥ  into the modern electrodynamics,9-14  i.e. 
we complete the electrodynamics by introducing the spin tensor, i.e. we claim the total angular momentum 
consists of the moment of momentum (1.2) and a spin term, i.e. we claim equation (1.4) is wrong, i.e. we 
state the moment of momentum does not contain spin at all: 
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The sense of the spin tensor  is as follows. The component λµνΥ 0ijΥ  is a volume density of spin. This means 
that  is the spin of electromagnetic field inside the spatial element . The component dVdS ijij 0Υ= dV ijkΥ  is 
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a flux density of spin flowing in the direction of the  axis. For example, 
 is the z-component of spin flux passing through the surface element 

 per unit time, i.e. the torque acting on the element. The explicit expression for the spin tensor is  
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where  and  are magnetic and electric vector potentials which satisfy λA λΠ µννµ =∂ FA ][2 , 

, where ,  is the field strength tensor of a free 
electromagnetic field. A relation between  and  can be readily obtained in the vector form as follows.  

αβ
µναβνµ −=Π∂ Fe][2 βααβ −= FF νβµα

αβ
µν ggFF =

Π F
If , then . And if , then 0=Ediv Π= curlE HE curl=∂∂ t/ H=∂Π∂ t/ . This reasoning is analogous to the 
common: if , then 0div =B AB curl= . And if EB curl/ −=∂∂ t , then EA −=∂∂ t/ . 

The difference between our statement (1.5) and the common equation (1.4) is verifiable. The cardinal 
question is, what angular momentum flux, i.e. torque τ , does a circularly polarized light beam of power P  
without an azimuth phase structure carry? The common answer, according to (1.4), is  

ω==τ P/dtdJ / ;                                                       (1.7) 
our answer, according to (1.5), is 

ω==τ P/2/ dtdJ .                                                     (1.8) 
Statements (1.5) & (1.8) are also valid in the case of plane waves or a beam which is much larger 

than the particle under action if P  is the power absorbed by the particle. 
Some quantity of theoretical calculations, in particular, the calculation of absorption of a circularly 

polarized light beam in a dielectric,7,12  the calculation of a radiation of spin by a rotating electric dipole,14  as 
well as numerous experimental works,8,15-18  confirm our result (1.8). Another manifestation of the spin 
tensor concerns the mechanical stress that arises in a target absorbing an circular polarization 
electromagnetic beam. A stress tensor density  describes this stress. The quantity  is calculated in Sect. 
2 and 3 of the present paper for the cases (1.4) and (1.5), respectively. The stress in the case (1.4) is prove to 
be in contradiction with the evidence. 

ijT∧
ijT∧

In Sect. 4, it is shown that so called decomposition (1.4) of the moment of the Poynting vector in an 
orbital and spin angular momentums4,19-22  is false. 

  
II. Absorbing of the moment of Poynting vector flux  

According to (1.4), a plane wave traveling in the z-direction and with infinite extension in the xy-
directions can have no angular momentum about 
the z-axis because BE×  is in the z-direction and 

0)]([ =×× zBEr . However, this is no longer the 
case for a wave with finite extension in the xy-
plane. Consider a circularly polarized beam with 
its axis in the z-direction and traveling in this 
direction4  

),()] 0 yxEi yx ∂−∂()[exp( iitiz ++−= zyxE
EB i−=

,    
.                         (2.1) 

Here )(),( 00 rEyxE =  is the electric field of the 
beam. Let Const)(0 =rE  inside the beam, and 

0)(0 =rE  outside the beam. For short we set 
1===ω ck . At the wall of the beam r 0R= , 

say, we let the amplitude drop to zero. It can be 
shown that the wall of such a beam gives a finite 
contribution to  because the E  and B  fields 
have components parallel to the wave vector (the 
field lines are closed loops) and the energy flow 

zJ

 
2



has component perpendicular to the wave vector. For instance, Fig. 1 from19  shows the time-average 
transverse energy flow in the beam. The circulating energy flow in the beam implies the existence of angular 
momentum, whose direction is along the direction of propagation. Since the fields are identically zero 
outside the wall and constant inside the wall region, the wall region is the only one in which the z-
component of angular momentum does not vanish. 

In Fig. 9.3 from20 an acceptable function  is plotted.  is explicitly made constant over a large 

central region of the wave and confined the variation of the function from this constant value to zero to lie 
within a wall of thickness , which lies a distance  from the axis. The profile  of the beam may be 
Gaussian,23 
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but it doesn't matter. We set  
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so, the power of the beam is  
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(the over lines mark complex conjugate complex numbers).  
We need also the  components of momentum density: yx pp ,

2/,2/2/)()( 2
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x −∂=∂=−ℜ>=×=< BE .                     (2.5) 
Let a plane  absorbs the beam. Then the plane, according to (1.7), must experience the torque  0=z

1==τ P .                                                            (2.6) 
(we ignore the light pressure). We will get the stress tensor density  of the plane.  ikT∧

We use the cylindrical coordinates  zr ,,φ
,sin,cos φ=φ= ryrx                                                   (2.7) 

with the metric 
2222222 /1,,1,,1, rgrggrggdzdrdrdl zz =====+φ+= φφ

∧φφρρ .                      (2.8) 
Square root of determinant of the metric tensor is a scalar density of weight . Gothic symbols are 

usually applied to denote tensor densities.24  We shall, instead, mark the density with the symbol ‘wedge’ at 
the level of bottom indices for a density of weight 

1+

1+  and at the level of top indices for a density of weight 
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1− . A volume element and a surface element are densities of weight 1− ,   as 
well as the absolute antisymmetric density , which equals 

,dzdrddV φ=∧ φ=∧ drdda
∧
ijke 1± , or 0. 

 -component is obtained by the formulae  ,  i.e. φ φp i
i
aa

i
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x ppp ∂∂=∂∂∂=∂∂+∂= φφφ ,, ,                                       (2.9) 

where the matrix elements  are i
a∂

22 /,/ rxry yx =∂−=∂ φφ ,   .                         (2.10) ryrx r
y

r
x /,/ =∂=∂

The physical component of momentum density  is equal coordinate component of the tensor density : φ̂p φ
∧p

2/2
0
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∧

φφφ
∧
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∧ .                                      (2.11) 

So, because , the tensor density  equals the momentum flux density, i.e. the force tensor density : 1=c φ
∧p φ

∧f
2/2

0Ef r−∂=φ
∧ .                                                  (2.12) 

This force density  acts on the absorbing plane if∧ 0=z , thus 
iik

k fT ∧∧ =∇ ,                                               (2.13) 
where  is the covariant divergence of the stress tensor density of the plane. As is known,24 

, where  are the Christoffel symbols. The nonzero symbols are 
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This equation has a solution 
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It is easy to verify that  0== φφ

∧∧ TT rr

Integrating the equation for  yields )(rC
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According to (2.17),  and  in the central region, where 0=C 0=φ
∧

rT )0()( 00 ErE = . Thus, there is no 
mechanical stress in the central region of the target, according to the standard paradigm (1.4). This is 
depicted in Fig. 2. 

)(rC  increases up to  in the wall region, in accordance with (2.3). 

Correspondingly,   

∫
∞

π==
0

2
0max 2/1drrEC

2ˆ 2/1 rTT rr π== φφ
∧ 0Rr >

ensor 
. A plo  

,                (2.18) 
outside the wall region. It is easy to verify that t
density (2.18) satisfies ∇ ∧

ik
kT t of (ˆ rT rφ

is in Fig. 2. 
0= )

By the use of Eq. (2.18), one can get the 
forces inside the target plane. An element of a 
circumference of radius 

dl
r  experiences the force 

ˆˆ r  and the torque 
. Thus, the outside part of the plane 

experiences the torque  

2/)( rdlrCdlTdF == φφ

rdlrCd /)(=τ
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that increases up to the whole torque  
1orbit =τ   for ,                                                        (2.20) 0Rr >

in accordance with (1.7), (2.6). 
However, a circularly polarized beam, as well as a circularly polarized plane wave, beyond doubt 

acts on a central region of an absorbing plane by a torque. This torque arises from the fact that the dielectric 
constant  is a tensor. Consequently the electric intensity  is, in general, not parallel to the electric 
polarization  in the medium of the plane. The torque per unit volume produced by the action of the electric 
field on the polarization of the medium is25  

ε E
P

EP×=τ V/

t

reEdtdJ tz

.                                     (2.21) 
But this torque is not connected with the moment of the 
Poynting vector (1.2), (1.4)  

R. Feynman repeated this explanation.26  We quote26  
with some abridgements. 
“If we have a beam of light containing a large number of 

photons all circularly polarized the same way, it will carry 
angular momentum. Now remember what right circularly 
polarized light is, classically. It’s described by an electric 
field so that the electric vector E  goes in a circle – as drawn 
in Fig. 17-5(a). Suppose that such a light shines on a plane 
which is going to absorb it – or at least some of it – and 
consider an atom in the plane according to the classical 
physics. We’ll suppose that the atom is isotropic, so the 
result is that the electron moves in a circle, as shown in Fig. 
17-5(b). The electron is displaced at some displacement r  
from its equilibrium position at the origin and goes around 
with some phase lag with respect to the vector E . The 
relation between E  and r  might be as shown in Fig. 17-
5(b). As time goes on, the electric field rotates and the 
displacement rotates with the same frequency, so their 
relative orientation stays the same. But look, there is angular 
momentum being poured into this electron, because there is 
always a torque about the origin. The torque is eE  which 
must be equal to the rate of change of angular momentum 

 

r

dtdJ z / :
=/ ”.                                (2.22) 

This torque is not connected with the moment of the 
Poynting vector (1.2), (1.4) as well. And the Poynting vector 
density is zero at the central region of the plane. Thus, the 
standard paradigm cannot explain this central region torque. 

However, Allen and Padgett27  try to explain the action of a circularly polarized plane wave by a 
torque on a central region of an absorbing plane in the frame of the standard paradigm. They cut the wave 
into coaxial pieces in their mind and then claim that every piece produces a torque because the large 
intensity gradient near the boundary of the piece results in azimuthal components to the momentum density.  

I think this is not correct. An intensity gradient near a wall of a beam results in the azimuthal 
components only in the case of a real beam satisfying the Maxwell equations. There are no azimuthal 
components in a piece of a wave that is simply cut off from a whole wave. Such a piece cannot be 
considered at all because it does not satisfy the Maxwell equations. Note, I submitted this reasoning to AJP 
on 03 Jun 2002 (# 15916). 
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III. Absorbing of the spin flux density 
Now we consider an addition to the tensor density  of Sect. 2. The tensor density  of this Sect. 

is due to absorbing of the angular momentum flux density (1.6), i.e. the spin flux density, by the central 
region of the target. The field of the central region of the beam (2.1) is 

ikT∧
ikT∧

)0())(exp( 0Eiitiz yxE +−= ,    EB i−= ,    .                     (3.1) 2
0

22 Ryx <+
The point  (see Fig. 9.3) satisfies the equation 0R

12)0(
0
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2
0∫ =π
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drrE ,                                                        (3.2) )/(1)0( 2
0

2
0 RE π=

The electromagnetic field (3.1), according to (1.6), corresponds to the component of the spin tensor 
)0(4/)()0( 2

0EAAAA xzyyzxxzyyzxxyz =Π∂Π−Π∂Π+∂−∂−ℜ=Υ .                           (3.3) 

Here ∫∫∫∫ =Π=Π−=−= dtBdtBdtEAdtEA yyxxyyxx ,,, , the over lines mark complex conjugate 

complex numbers, . Now we obtain the cylindrical components of the spin tensor density by the 
formula 
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As is well known, the local conservation law  is accompanied by the angular momentum 
conservation law (see, e.g.,28  p. 64) 
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In our case 
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3
2   if  0Rr <                                                     (3.6) 

where  is the antisymmetric part of the 3-dimensional stress tensor density in material of the absorbing 

plane. Using the Eq. (3.6), we arrive to an antisymmetric stress tensor, which characterizes medium 
absorbing angular momentum flux. Integrating Eq. (3.6) over  yields 
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3

φ
∧
rT

z

∫∫
∞

φ
∧

∞
φ

∧ Υ∂=
00

][

3
2 dzdzT zr

z
r ,  i.e.,   ,                            (3.7) )0(2 ][ zrrT φ

∧
φ

∧ Υ−=

where  stands for 2-tensor density as well as in Sect. 2. Thus,  ∫
∞ φ

∧
φ

∧ =
0 3

dzTT rr

)2/(12/)0(2/)0(2/)0( 2
0

2
0

ˆˆˆ RETTTT zrzrrrrr π==Υ=Υ=−==−= φφ
∧

φφφ
∧

φ
∧ ,  and       (3.8) 0== φφ

∧∧ TT rr

This means that the edge of a disk of radius r , which is cut off from the plane, i.e. a circle of radius r , acts 
on the remainder of the plane with a torque. The force acting on an element  of the edge is , 
and the torque corresponding to the element is  Integrating yields 

dl dlTdF rφφ =
ˆˆ

dlrTd rφ=τ ˆ

0

2

0

2
0

2ˆ
spin ,/ RrRrdlrT

r
r <==τ ∫

π
φ .                                   (3.9) 

Thus, material of the central region transmits the received torque to the periphery by inner tangential stress 
of (3.6), and the torque increases with r . 

The result (3.9) can be obtained in another way. By definition of , , i.e. 

. So a disk of radius 

zrφ
∧Υ

∧φ
∧

φ Υ=τ z
zrr dad

rdrd zr πΥ=τ φ 2)0(ˆ r , which is cut off from the plane, experienses the torque 

∫ π=π=τ
r

rErdrE
0

22
0

2
0spin )0(2)0( 2

0
2 / Rr= ,  .                  (3.10) 0Rr <

At the edge of the beam, , Eq. (3.5) is changed to 0Rr =

0
][ ,0 RrT ij >= .                                                (3.11) 
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So, for , 0Rr > φφ = rr TT , i.e. the stress tensor is symmetric. But  must be continuous . Thus, )(rT rφ φrT  
changes its sign at : .  0Rr = φφ −→ rr TT

22/1 rTT rr π== φ
∧

φ
∧ 0Rr >

rφ o,  

∫
π

φ ==τ
r

r dlrT
2

0

ˆ
spin 1  for  0Rr > .    (3.13) 

We denote the torque (2.19), (2.20) 
becaus  of 

d 
e 

f (1  
is 

  for ,   (3.12) 

as well as in (2.18). A plot ofT  is in Fig. 3. S)(ˆ r

orbitτ  
e the torque arises from the first term

(1.5), which is an orbital angular momentum, an
we denote the torque (3.10), (3.13) spinτ  because th
torque arises from the second term o .5), which
is the spin angular momentum. The total torque 

2
0

2 /)(2 RrrC +π=τ   for 0Rr < ,  and  2=τ   for 

0Rr > ,                           (3.14) 
according to (1.8). 

 
IV. Vain attempts to find a spin inside the orbital angular momentum 

A number of physicists try to decompose the angular momentum of a field (1.4) into the sum of the 
orbital angular momentum and a spin, and they interpret the circulating flow of a beam (see Fig. 1) as a 
spin.29,30  According to the standard procedure of the interpretation, the magnetic vector potential A  is used, 

AB ∇= . Then the integrand of (1.4) is written as  
([)( AErBEr ×∇××=××

×
])[()()] AErr ∇⋅×−∇×= i

i AE

Ei yx

.                              (4.1) 
2.1). Really, the Lorentz However, the first term in the right hand side can be shown to be zero for the beam (

gauge vector potential corresponding to (2.1) is (see, e.g.,31.) 
)(exp( itizA 0) .                                                (4.2) −= +−

So, 
0){ =∂−∂−∂+∂ℜ yx

y
xx

x
yy

y
xy

x AEyAEyAExAEx .                               (4.3) 
The second therm in the right hand side of (4.1), according to the standard procedure, is augmented by the 
zero, AEAE ×+×−=0 . Then the second term is written as 

AEAErAE AEArEAEr ×+×−∇=×+×−∇⋅×−=∇⋅× ])[(])[(− )]([ ,               (4.4) 
and so, the integrand of (1.2) takes the form 

AEArEBEr ×+×−∇=×× )]([)( .                                (4.5) 

Equation (4.5) is depicted in Fig. 4. When integrating, the first term on the right gives zero and we arrive to 
the famous equation 
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∫∫ ×=×× dVdV AEBEr )( .                                           (4.6) 
But the equation only expresses a change from integrating over the wall region of the beam to integrating 
over the bulk. This change does not prove that the torque acts from the bulk of the beam to the central region 
of the target, and that the moment of the Poynting vector is spin. This change proves nothing. For example, 
consider an analogous integral ∫∫ ×∇×=× dVdV )( Hrjr  over the surface of a long solenoid where j is an 
electric current density of the solenoid. We have 

∫ ∫ ∫ ∫=∂+∂−−∂=∂−∂=×∇× dVdVHrHrHHrdVHrHrdV k
i

ik
i

iki
i

kki
i

ik
i HHr 2])()([)()( . 

This equality between the moment of an electric current and the integral of H over the solenoid volume 
proves nothing. 

Another transformation of the angular momentum (1.4) is offered by Stewart. He uses the electric 
vector potential  (see Sect. 1) instead of the magnetic vector potential , and he obtains Π A

∫∫ ×Π=×× dVdV BBEr )(                                               (4.7) 
instead of (4.6) for the beam (2.1). This result can be easily obtained if one rewrites Eq. (4.1) as 

])[()()]([)()( Π∇⋅×+Π∇×−=Π×∇××−=××−=×× BrrBrEBrBEr i
iB              (4.1) 

and then changes  in Eq. (4.4).  Π→→ ABE ,
It must be noted that AE×  equals the component  of the invalid canonical spin tensor (1.3), 

and  is the magnetic addition to the canonical tensor presented in.32  For the beam (2.1) 

0xy

c
Υ

B×Π BAE ×Π=× . 
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