
 
Moment of the Poynting vector is not spin. V. 2 

 
Radi I. Khrapko 

Moscow Aviation Institute, 125993, Moscow, Russia 
 

Abstract 
A common opinion that a moment of the Poynting vector is spin is a common delusion due to a serious 
defect of the general field theory. We present a circularly polarized Laguerre-Gaussian beam without an 
azimuth phase structure as an evidence of this. It is shown that the moment of the Poynting vector in 
this beam is an orbital angular momentum, not spin. Meanwhile, this beam, as well as a circularly 
polarized plane wave, clearly carries spin. But the standard electrodynamics does not sight it. Spin 
tensor of the standard electrodynamics is zero. So, this delusion causes many conflicts, vagueness, and 
paradoxes concerning electromagnetic angular momentum. The only way to resolve the problems is to 
use an electrodynamics spin tensor, which we introduced into the electrodynamics and demonstrate in 
this paper. 
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1. Introduction 
 

All physicists, who consider polarized light beam, start from an expression for the magnetic potential A  
),,())(exp(2 zyxutiikz yxA β+αω−= ,                                                 (1.1) 

(see, e.g., Loudon [1] (2.1), Allen et al. [2] (2.9), Zambrini et al. [3] (2)). is a degree of a 
circularity of the polarization, and  

σ=βα−αβ ∗∗ )(i

1|||| 22 =β+α                                                    (1.2) 
(see, e.g., [3] p. 1046). Eqn (1.1) leads to 
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(see, e.g., [1] (2.17), [2] (2.10), (2.11)). It is cozily to set, accordingly to (1.2), 2/1,2/ =β−=α i , 1=σ  for 
a right-circularly polarized beam. Then we arrive to  
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These coincide with the Jackson’s expressions [4] (p. 350), 
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if . uE ω=0

We set the speed of light . Thus z-component of the time-average Pointing vector, i.e. 1=c >< tzT -
component of the energy-momentum tensor, is equal to the time-average z-component of the momentum density 

 and is equal (for arbitrary  and u) to  >=< ztz Tp βα,
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I must note here that the cited authors [1 – 3] mistakenly do not write the factor 2  in the formulae 
(1.1), (1.3), (1.4) [5]. 

The rest of the Poynting vector or momentum density components, 
, depends on a form of the function . The paraxial 

approximation means that a Gaussian beam is considered [6]. 
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However, usually generalizations of the Gaussian beam are considered. 
For the Hermite-Gaussian beams we have 
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where 2/1)!!2/(2 π= + nmA nm
mn  is the normalization constant; )(ξmH stands for the Hermite polynomial of 

order m in . For example, ξ
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For the Laguerre-Gaussian beams we have 
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where  is the normalization constant;  is a generalized Laguerre polynomial, for example, l
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Here  are mode indices: l  is the azimuthal mode index, and pl, p  is the number of dark rings. 
Note, . Guuu == 0

000

The radial component of the Poynting vector , relates to the spread of the beam as it propagates, is 
independent explicitly on the mode indices  and on the degree of the circularity σ  in the case of the 
Laguerre-Gaussian beams: 
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however, the azimuthal component of the Poynting vector, , consists of two terms: φp
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The first term is proportional to the azimuthal index l  and is independent on . This term holds for a 
linearly polarized beam, but vanishes if the beam has no azimuthal phase variation. Moment of this term is 
identified as the orbital angular momentum. A volume V of the beam contains 

σ
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as a z-component of the orbital angular momentum.  
The second term of (1.14) is independent on l. This term is known very well. In the case of the simple 

Jackson’s beam (1.7), or a Gaussian beam (1.9), i.e. the Laguerre-Gaussian beam , it is the Poynting vector 
located on the surface of a circularly polarized beam.  
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“In a wave of finite transverse extent, the E and B fields have a component parallel to the wave vector (the field 
lines are closed loops), and the energy flow 
has components perpendicular to the wave 
vector… The circulating energy flow in the 
wave implies the existence of angular 
momentum, whose direction is along the 
direction of propagation.” (See Fig. 1)  

Simmonds and Guttman [8] wrote: 
“The electric and magnetic field can have a 
nonzero z-component only within the skin 
region of the wave. Having z-component 
within this region implies the possibility of a 
nonzero z-component of angular momentum 
within this region. Since the wave is 
identically zero outside the skin and constant 
inside the skin region, the skin region is the 
only one in which the z-component of angular 
momentum does not vanish.” (See Fig. 9.3). 

Heitler [9] wrote:  
“A plane wave traveling in the z-direction a
with infinite extension in the xy-direc
can have no angular momentum about the z-

axis, because BE×  is in t direction and )]([

nd 
tions 

he z- 0=×× z . However,

n and 
e 

BEr  this is no longer the case for a wave 
with finite extension in the xy-
plane. Consider a cylindrical wave 
with its axis in the z-directio
traveling in this direction. At th
wall of the cylinder, Rr =  sa
let the amplitude drop to zero. It 
can be shown that the wall of such
a wave packet gives a finite 
contribution to zJ .” 

y, we 

 

Unfortunately, moment of 
the seco

lled a 
 

nd term of the Poynting 
vector (1.14), according to the 
common opinion, unlike the 
moment of the first term, is ca

spin of the beam. Ohanian [7] wrote: “This angular momentum is the spin of the wave.” Allen and Padgett [10]
wrote: “The second term relates to the spin contribution”. Zambrini and Barnett [3] wrote: “The spin angular 
momentum density depends on the radial gradient of the intensity”. 

I raised objections against this delusion [11 - 15]. Now I consider the second term for the Laguerre-
Gaussian beam  ( 1l ).  beam has two virtues: this beam contains only the second term; the 
region where  is placed inside the beam, and a region where  exists. These virtues help to 
prove more convincingly that moment of the Poynting vector is an orbital angular momentum. 
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2. Consideration of the Laguerre-Gaussian beam 
 

It is a matter of common opinion that the moment of the Poynting vector, i.e. the expression 
>×<×= BErj ,                                                      (2.1) 

is a time average density of the total angular momentum, i.e. it contains both the spin and orbital angular 
momentum density of electromagnetic field (we set 10 =ε ). We intend to refute this opinion by the use of a 
concrete example. 

A circularly polarized Laguerre-Gaussian beam without an azimuth phase structure of a type  is 
specified by the formulae 
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For short we set here: , the Rayleigh range 1=ω=k 2/1=Rz , 1)0( 0 == ww . According to (1.14), an angular 
momentum density (which is considered as a moment of the azimuthal component of the Poynting vector ) is φp

2/||),( 2urrpzrj rz ∂−== φ ,                                                   (2.4) 
We intend to show that, contrary to the common opinion, z-component of the expression (2.1), which has 

the form  (2.4), is an orbital angular momentum rather than spin. Indeed, consider the beam (2.2), (2.3) at 
the beam waist . We have 

φrp
0=z

)exp()21()( 22 rrCru −−= .                                                      (2.5) 
Calculate  by substituting (2.5) into (2.4), φp

)2exp()32)(12(22/)]2exp()21[(2/|| 222222222 rrrrCrrCup rr −−−=−−∂−=−∂=φ .                (2.6) 
This  mode contains one dark ring of 
radius 
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12/1 rr ==  and one light ring of 
radius 22/3 rr == . You can see a negative 
image in the Fig. 2 from [2]. Between these 
rings, according to (2.6) and because of the 
positive derivative, , 
electromagnetic mass-energy orbits the beam 
axis opposite in a direction determined by the 
handedness of the circular polarization. We 
have  for  and for 

0|| 2>∂ ur

0>φp 1rr < 2/32 => rr , 
but  if 0<φp 21 rrr << . This behavior of 

mass-energy is incompatible with the concept of spin.  
Zambrini and Barnett [3] calculate the moment of a part of a beam relative to the beam axis, 

∫ ∫∫
φ

φ
∂φ−= b

a

b

a

r

r rz udrrddzdJ 2/)( 22 ,                                             (2.7) 

but a translation of the coordinate system changes this moment. This shows clearly that the moment of the 
Poynting vector is not an intrinsic angular momentum. Thus a moment of the Poynting vector is an orbital 
angular momentum rather than spin, and eqn. (2.4) must be rewritten as  

φ= rpzrlz ),( ,                                                             (2.8) 
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 If a target absorbs our beam, the target experiences a density of orbital forces >< φzT . This component 
of the Maxwell tensor [4] can be readily calculated: 

2/||,2/||,2/||)(2/)( 222 uTuTuEEBBEET r
z

x
yz

yzxzxzx
xz −∂>=<−∂>=<∂=−ℜ=+−ℜ>=< φ∗∗∗  (2.9) 

This means that a surface element  of the target experiences a force drrddaz φ=
2/|| 2 drrdudaTdF rz

z φ−∂=>=< φφ .                                        (2.10) 
This force is positive, , if limits of the Zambrini’s integrating are inside the central light spot or outside 
the light ring, i.e. in  the domain  or , but the force is negative, , in the middle domain 

. Spin cannot become apparent by such a way. Note that the middle domain is twice as big as the 
central spot. 

0>φdF
1rr < 2rr > 0<φdF

21 rrr <<

 Imagine that the target is divided into three concentric parts by circles of radiuses 2/11 =r  and 
2/32 =r . Then the inner disk ( ) and the outer ring ( ) should rotate clockwise, but the middle ring 

( ) should rotate anticlockwise. Reasoning along similar lines we must conclude that small particles, 
which are trapped off axis near the circle of maximum intensity at  should not orbit the beam axis. But when 
diffusing towards  they should orbit anticlockwise, while when diffusing towards  they should orbit 
clockwise. This proves that the force (2.10) bears no relation to a spin. 

1rr < 2rr >

21 rrr <<

2r

2rr < 2rr >

Now calculate the ratio of the energy flux to the angular momentum flux for our beam, i.e. the ratio of 
power to torque. This ratio is 1=ω  for spin. Eqns (2.2) permit to calculate z-component of the Poynting vector 
of the beam: 

2||)(2/)( uEiEBEBE yxxyyxz =ℜ=−ℜ=>×<
(((

BE .                                   (2.11) 
Consider power of the beam inside of a circle of radius r , . Then consider torque, which acts inside of the 
circle, . 
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When integrated over the complete cross section of the beam, i.e. from zero to infinity, we find ω==τ 1P/  
because . However, eqns (2.12) show a lack of torque in the central part of the target. A part of the 
target near the axis almost does not receive the angular momentum although the energy flux is maximal there. 
Using two terms of the Taylor expansion of , , yields , and 

0)( =∞u

)(ru )31()( 2rCru −≈ 22 || urr π≈)P( 0)( ≈τ r . In 
other words, the central part receives energy, but does not receive the angular momentum. Attention was paid 
on this fact in [11]. This proves once more that the angular momentum (2.1) is an orbital angular momentum 
rather than spin.  

At the same time, if we isolate the small central part of the target and illuminate it by the beam or by a 
plane circularly polarized wave, the part will receive  (2.1) per unit time that equals to  because zj ω/P zj−  per 
unit time will be carried away by the edge of the part’s shade. It was explained in [8]. However, neither plane 
wave nor the central part of our beam carry the angular momentum of a type (2.1) by themselves, i.e. without an 
interaction with a small part of a target. Thus this angular momentum (2.1) is not spin. 

 
3. Spin tensor 

 Meanwhile, spin obviously is present in a circularly polarized light. But it is out of all relation to eqn. 
(2.1). The standard electrodynamics has not caught sight of spin. Standard electrodynamics’ spin tensor is zero 
because of a serious defect of classical field theory. This causes many conflicts, vagueness, and paradoxes 
concerning electromagnetic angular momentum. I quote here some evidences of this phenomenon.  

“Experimental observations appear to be in conflict with theoretical considerations” [3]. 
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“If the above expression (2.1) was in fact the correct angular momentum flux density, then the angular 
momentum of a circularly polarized plane would be zero. Since the correct classical angular momentum density 
must agree with the classical limit of the quantum angular momentum density, this must be incorrect.” [16]. 

“The angular momentum of a classical electromagnetic plane wave of arbitrary extent is predicted to be 
exactly zero. However, finite sections of circularly polarized plane waves are found experimentally to carry 
angular momentum.” [17]  

“A circularly polarized plane wave has a linear momentum density only in the z-direction. When this is 
crossed with r to give the angular momentum density, there is no contribution in the z-direction. Thus, such a 
beam has no angular momentum to transfer to a waveplate. Yet, Beth was able to make such a transfer – a 
paradox.” [10]   

Note that aforementioned trapped particles, which can orbit in both directions, rotate about theirs own 
axes in the direction determined by the handedness of the circular polarization. The only way to resolve the 
problems is to use the electrodynamics spin tensor [11 – 15]: 

,]||[]||[ βγαβγααβγ Π∂Π+∂=Υ AA                                           (3.1) *
][][ 2,2 αββααββα FFA −=Π∂=∂

where are magnetic and electric vector potentials,  are the field strength tensor and 
the dual field strength tensor. Thus, eqn. (2.1) must be replaced by 

αα Π,A µν
αβµναβαβ FeFF =*,

t
z pj ρφφ Υ+ρ=                                                           (3.2) 

Eq. (3.1) explains [12] the Beth’s experiment [18]. Another use of the spin tensor (13) is presented at web 
sites www.mai.ru/projects/mai_works, www.sciprint.org.  
 

The result (3.1), (3.2) was submitted to “JETP” on Jan. 27, 1999. It was rejected more than 350 times by 
scientific journals. For example (I show an approximate number of the rejections in parentheses): JETP Lett. 
(8), JETP (13), TMP (10), UFN (9), RPJ (70), AJP (14), EJP (4), EPL (5), IJTP (2), PRA (6), PRD (4), PRE (2), 
PRL (6), APP (5), FP (6), PLA (9), OC (5), JPA (7), JPB (1), JMP (6), JOPA (4), JOSAB (2), JMO (2), CJP (1), 
OL (2), NJP (2), MREJ (3), arXiv (70).  
 

I am deeply grateful to Professor Robert H. Romer, Editor of AJP, for publishing my question [11] (was 
submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 
sci.physics.electromag). Unfortunately, Jan Tobochnik, the present-day Editor of AJP, rejected my papers more 
than 20 times. 
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