FIFTEEN CONSECUTIVE INTEGERS WITH EXACTLY k PRIME FACTORS

Chun-Xuan Jiang

Beijing 100854, P. O. Box 3924 P. R. China

Liukxi@public3.bta.net.cn

Abstract

In this paper using the arithmetic function $J_2(\mathbf{w})$ we prove that there exist infinitely many integers n such that each of consecutive integers $n, n+1, \dots, n+14$ is exactly k prime factors.

AMS Mathematics subject classification: Primary 11N05 11N32, 11A51.

We have proved that there exist infinitely many integers n such that each of n, n+1, n+2 is product of k distinct primes [1]. In this paper using the arithmetic function $J_2(\mathbf{w})$ we prove that there exist infinitely many integers n such that each of consecutive integers $n, n+1, \dots, n+14$ is exactly k prime factors.

Theorem 1 There exist infinitely many integers n such that each of consecutive integers $n, n+1, \dots, n+14$ is exactly five prime factors.

Proof. The first number is

$$m_1 = 488995430567765317569$$

and for each of the fifteen integers $m_1 + i, i = 0, 1, 2, \dots, 14$ as can be seen from the factorizations [2]:

$$\begin{split} m_1 &= 3 \cdot 3 \cdot 3 \cdot 18110941872880196947 \\ m_2 &= m_1 + 1 = 2 \cdot 5 \cdot 11 \cdot 4445413005161502887 \\ m_3 &= m_1 + 2 = 6917 \cdot 19973 \cdot 130843 \cdot 27051617 \\ m_4 &= m_1 + 3 = 2 \cdot 2 \cdot 3 \cdot 40749619213980443131 \\ m_5 &= m_1 + 4 = 13 \cdot 17 \cdot 283 \cdot 7818547728247211 \\ m_6 &= m_1 + 5 = 2 \cdot 7 \cdot 7 \cdot 4989749291507809363 \\ m_7 &= m_1 + 6 = 3 \cdot 5 \cdot 5 \cdot 6519939074236870901 \\ m_8 &= m_1 + 7 = 2 \cdot 2 \cdot 2 \cdot 61124428820970664697 \\ m_9 &= m_1 + 8 = 149 \cdot 28229 \cdot 4622647 \cdot 25149671 \\ m_{10} &= m_1 + 9 = 2 \cdot 3 \cdot 3 \cdot 27166412809320295421 \\ m_{11} &= m_1 + 10 = 31 \cdot 2963 \cdot 34871 \cdot 152667661633 \\ m_{12} &= m_1 + 11 = 2 \cdot 2 \cdot 5 \cdot 24449771528388265879 \\ m_{13} &= m_1 + 12 = 3 \cdot 7 \cdot 11 \cdot 2116863335791191851 \\ m_{14} &= m_1 = 13 = 2 \cdot 37 \cdot 922213309 \cdot 7165420727 \\ m_{15} &= m_1 + 14 = 19 \cdot 29 \cdot 60607 \cdot 14643011879719 \end{split}$$

Suppose that $m = \prod_{i=1}^{15} m_i$. We define the prime equations

$$P_i = \frac{m}{m_i} x + 1 \tag{1}$$

where $i = 1, 2, \dots, 15$.

We have the arithmetic function [3-14]

$$J_{2}(\mathbf{w}) = \prod_{3 \le P} (P - 16 - \mathbf{c}(P)) \neq 0,$$
 (2)

where c(P) = -15 if P = 3,5,7,11; c(P) = -14 if $P \mid m$, but $P \neq 3$,

5,7,11;
$$\boldsymbol{c}(P) = 0$$
 otherwise, $\boldsymbol{w} = \prod_{2 \le P} P$

Since $J_2(\mathbf{W}) \to \infty$ as $\mathbf{W} \to \infty$, there exist infinitely many integers x such that P_1, P_2, \dots, P_{15} are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [3-14]

$$p_{16}(N,2) \sim \frac{J_2(\mathbf{w})\mathbf{w}^{15}}{f^{16}(\mathbf{w})} \frac{N}{\log^{16} N},$$
 (3)

where $f(w) = \prod_{2 \le P} (P-1)$.

From (1) we have $n = m_1 P_1 = mx + m_1$, $n+1 = m_1 P_1 + 1 = mx + m_1 + 1 = mx$

$$+ m_2 = m_2 \left(\frac{m}{m_2} x + 1\right) = m_2 P_2, \dots, \quad n + 14 = mx + m_1 + 14 = mx + m_{15}$$
$$= m_{15} \left(\frac{m}{m_{15}} x + 1\right) = m_{15} P_{15}.$$

If P_1, P_2, \dots, P_{15} are all primes, then each of consecutive integers $n, n+1, \dots, n+14$ is exactly five prime factors.

Theorem 2 There exist infinitely many integers n such that each of consecutive integers $n, n+1, \dots, n+14$ is exactly k prime factors.

Proof. From theorem 1 we have that each of consecutive integers $m_1, m_2 = m_1 + 1$, $\dots, m_{15} = m_1 + 14$ is exactly k - 1 prime factors.

Suppose that $m = \prod_{i=1}^{15} m_i$. We define the prime equations

$$P_i = \frac{m}{m_i} x + 1, \tag{4}$$

where $i = 1, 2, \dots, 15$.

We have the arithmetic function [3-14]

$$J_{2}(\mathbf{w}) = \prod_{3 \le P} (P - 16 - \mathbf{c}(P)) \neq 0,$$
 (5)

where c(P) = -15 is P = 3,5,7,11; c(P) = -14 if $P \mid m$, but $P \neq 3$,

5,7,11; c(P) = 0 otherwise...

Since $J_2(\mathbf{W}) \to \infty$ as $\mathbf{W} \to \infty$, there exist infinitely many integers x such that P_1, P_2, \dots, P_{15} are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [3-14]

$$p_{16}(N,2) \sim \frac{J_2(w)w^{15}}{f^{16}(w)} \frac{N}{\log^{16} N}$$

From (4) we have $n = m_1 P_1 = mx + m_1$, $n+1 = m_1 P_1 + 1 = mx + m_1 + 1 = mx$

$$+ m_{2} = m_{2} \left(\frac{m}{m_{2}} x + 1 \right) = m_{2} P_{2}, \dots, \quad n + 14 = mx + m_{1} + 14 = mx + m_{15}$$
$$= m_{15} \left(\frac{m}{m_{15}} x + 1 \right) = m_{15} P_{15}$$

If P_1, P_2, \dots, P_{15} are all primes, then each of consecutive integers $n, n+1, \dots, n+14$ is exactly k prime factors.

References

- C. X.. Jiang. Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. International Academic Press, 2002. WWW. i-b-r.org
- 2. Tony Forbes. Fifteen consecutive integers with exactly four prime factors. Math. Comp. 71 (2002) 449-452.
- 3. C. X. Jiang. On the Yu-Goldbach prime theorem. Guangxi Sciences (in Chinese), 3 (1996) 9-12. CMP 1998.9.
- 4. C. X. Jiang. Foundations of Santilli's isonumber theory 1. Algebras, Groups and

Geometries 15 (1998) 351-393. MR2000c: 11214.

- 5. C. X. Jiang. Foundations of Santilli's isonumber theory 2. Algebras, Groups and Geometries 15 (1998) 509-544. CMP 2000.4.
- C. X. Jiang. Foundations of Santilli's isonumber theory. In: Foundamental open problems in sciences at the end of the millennium, T. Gill, K. Liu and E. Trell (Eds) Hadronic Press, USA, (1999) 105-139. MR 2001c: 11109; MR 2000k: 00034; ZM 990. 11059.
- C. X. Jiang. Proof of Schinzel's hypothesis, Algebras Groups and Geometries 18 (2001) 411-420. CMP 2002. 6.
- 8. C. X. Jiang. Prime theorem in Santilli's isonumber theory $P_n = aP_1^m + P_2 + \dots + P_{n-1} \pm b$. Algebras Groups and Geometries 19(2002) 475-494. CMP 2003.7.
- 9. C. X. Jiang. Prime theorem is Santilli's isonumber theory (II). To appear.

10. C. X. Jiang, Diophantine equation
$$P_{n+1}^{I_{n+1}} = \frac{P_{n+2} + \dots + P_{2n+1} + b}{P_1^{I_1} + \dots + P_1^{I_n} + b}$$
 has infinitely

many prime solution. To appear.

- 11. C. X. Jiang. Santilli's prime chains: $P_{i+1} = aP_i \pm b$. To appear.
- 12. C. X. Jiang. Proof of the Bateman-Horn conjecture. To appear.
- 13. C. X. Jiang. Generalized Quadratics Representing Primes. To appear.
- 14. C. X. Jiang. Generalized Arithmetic Progressions $P_i = P + i \mathbf{w}_g$ and $P_{k+i} = P^m + i \mathbf{w}_g$. To appear.