FIFTEEN CONSECUTIVE INTEGERS WITH EXACTLY k PRIME FACTORS

Chun-Xuan Jiang
Beijing 100854, P. O. Box 3924
P. R. China
Liukxi@public3.bta.net.cn

Abstract

In this paper using the arithmetic function $J_{2}(\omega)$ we prove that there exist infinitely many integers n such that each of consecutive integers $n, n+1, \cdots, n+14$ is exactly k prime factors.

AMS Mathematics subject classification: Primary 11N05 11N32, 11A51.

We have proved that there exist infinitely many integers n such that each of $n, n+1, n+2$ is product of k distinct primes [1]. In this paper using the arithmetic function $J_{2}(\omega)$ we prove that there exist infinitely many integers n such that each of consecutive integers $n, n+1, \cdots, n+14$ is exactly k prime factors.

Theorem 1 There exist infinitely many integers n such that each of consecutive integers $n, n+1, \cdots, n+14$ is exactly five prime factors.
Proof. The first number is

$$
m_{1}=488995430567765317569
$$

and for each of the fifteen integers $m_{1}+i, i=0,1,2, \cdots, 14$ as can be seen from the factorizations [2]:

$$
\begin{aligned}
& m_{1}=3 \cdot 3 \cdot 3 \cdot 18110941872880196947 \\
m_{2} & =m_{1}+1=2 \cdot 5 \cdot 11 \cdot 4445413005161502887 \\
m_{3} & =m_{1}+2=6917 \cdot 19973 \cdot 130843 \cdot 27051617 \\
m_{4} & =m_{1}+3=2 \cdot 2 \cdot 3 \cdot 40749619213980443131 \\
m_{5} & =m_{1}+4=13 \cdot 17 \cdot 283 \cdot 7818547728247211 \\
m_{6} & =m_{1}+5=2 \cdot 7 \cdot 7 \cdot 4989749291507809363 \\
m_{7} & =m_{1}+6=3 \cdot 5 \cdot 5 \cdot 6519939074236870901 \\
m_{8} & =m_{1}+7=2 \cdot 2 \cdot 2 \cdot 61124428820970664697 \\
m_{9} & =m_{1}+8=149 \cdot 28229 \cdot 4622647 \cdot 25149671 \\
m_{10} & =m_{1}+9=2 \cdot 3 \cdot 3 \cdot 27166412809320295421 \\
m_{11} & =m_{1}+10=31 \cdot 2963 \cdot 34871 \cdot 152667661633 \\
m_{12} & =m_{1}+11=2 \cdot 2 \cdot 5 \cdot 24449771528388265879 \\
m_{13} & =m_{1}+12=3 \cdot 7 \cdot 11 \cdot 2116863335791191851 \\
m_{14} & =m_{1}=13=2 \cdot 37 \cdot 922213309 \cdot 7165420727 \\
m_{15} & =m_{1}+14=19 \cdot 29 \cdot 60607 \cdot 14643011879719
\end{aligned}
$$

Suppose that $m=\prod_{i=1}^{15} m_{i}$. We define the prime equations

$$
\begin{equation*}
P_{i}=\frac{m}{m_{i}} x+1 \tag{1}
\end{equation*}
$$

where $i=1,2, \cdots, 15$.

We have the arithmetic function [3-14]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{3 \leq P}(P-16-\chi(P)) \neq 0, \tag{2}
\end{equation*}
$$

where $\quad \chi(P)=-15$ if $P=3,5,7,11 ; ~ \chi(P)=-14$ if $P \mid m$, but $P \neq 3$, 5,7,11; $\chi(P)=0$ otherwise, $\omega=\prod_{2 \leq P} P$.

Since $J_{2}(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$, there exist infinitely many integers x such that $P_{1}, P_{2}, \cdots, P_{15}$ are all primes.
We have the asymptotic formula of the number of integers $x \leq N \quad[3-14]$

$$
\begin{equation*}
\pi_{16}(N, 2) \sim \frac{J_{2}(\omega) \omega^{15}}{\phi^{16}(\omega)} \frac{N}{\log ^{16} N} \tag{3}
\end{equation*}
$$

where $\phi(\omega)=\prod_{2 \leq P}(P-1)$.
From (1) we have $n=m_{1} P_{1}=m x+m_{1}, \quad n+1=m_{1} P_{1}+1=m x+m_{1}+1=m x$
$+m_{2}=m_{2}\left(\frac{m}{m_{2}} x+1\right)=m_{2} P_{2}, \cdots, \quad n+14=m x+m_{1}+14=m x+m_{15}$
$=m_{15}\left(\frac{m}{m_{15}} x+1\right)=m_{15} P_{15}$.
If $P_{1}, P_{2}, \cdots, P_{15}$ are all primes, then each of consecutive integers $n, n+1, \cdots$, $n+14$ is exactly five prime factors.

Theorem 2 There exist infinitely many integers n such that each of consecutive integers $n, n+1, \cdots, n+14$ is exactly k prime factors.
Proof. From theorem 1 we have that each of consecutive integers $m_{1}, m_{2}=m_{1}+1$, $\cdots, m_{15}=m_{1}+14$ is exactly $k-1$ prime factors.

Suppose that $m=\prod_{i=1}^{15} m_{i}$. We define the prime equations
where $i=1,2, \cdots, 15$.

$$
\begin{equation*}
P_{i}=\frac{m}{m_{i}} x+1 \tag{4}
\end{equation*}
$$

We have the arithmetic function [3-14]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{3 \leq P}(P-16-\chi(P)) \neq 0, \tag{5}
\end{equation*}
$$

where $\quad \chi(P)=-15$ is $P=3,5,7,11 ; \quad \chi(P)=-14$ if $P \mid m$, but $P \neq 3$,

5,7,11; $\chi(P)=0$ otherwise..
Since $J_{2}(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$, there exist infinitely many integers x such that $P_{1}, P_{2}, \cdots, P_{15}$ are all primes.
We have the asymptotic formula of the number of integers $x \leq N \quad[3-14]$

$$
\pi_{16}(N, 2) \sim \frac{J_{2}(\omega) \omega^{15}}{\phi^{16}(\omega)} \frac{N}{\log ^{16} N}
$$

From (4) we have $n=m_{1} P_{1}=m x+m_{1}, \quad n+1=m_{1} P_{1}+1=m x+m_{1}+1=m x$ $+m_{2}=m_{2}\left(\frac{m}{m_{2}} x+1\right)=m_{2} P_{2}, \cdots, \quad n+14=m x+m_{1}+14=m x+m_{15}$ $=m_{15}\left(\frac{m}{m_{15}} x+1\right)=m_{15} P_{15}$

If $P_{1}, P_{2}, \cdots, P_{15}$ are all primes, then each of consecutive integers $n, n+1, \cdots$, $n+14$ is exactly k prime factors.

References

1. C. X.. Jiang. Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. International Academic Press, 2002. WWW. i-b-r.org
2. Tony Forbes. Fifteen consecutive integers with exactly four prime factors. Math. Comp. 71 (2002) 449-452.
3. C. X. Jiang. On the Yu-Goldbach prime theorem. Guangxi Sciences (in Chinese), 3 (1996) 9-12. CMP 1998.9.
4. C. X. Jiang. Foundations of Santilli's isonumber theory 1. Algebras, Groups and

Geometries 15 (1998) 351-393. MR2000c: 11214.
5. C. X. Jiang. Foundations of Santilli's isonumber theory 2. Algebras, Groups and Geometries 15 (1998) 509-544. CMP 2000.4.
6. C. X. Jiang. Foundations of Santilli's isonumber theory. In: Foundamental open problems in sciences at the end of the millennium, T. Gill, K. Liu and E. Trell (Eds) Hadronic Press, USA, (1999) 105-139. MR 2001c: 11109; MR 2000k: 00034; ZM 990. 11059.
7. C. X. Jiang. Proof of Schinzel's hypothesis, Algebras Groups and Geometries 18 (2001) 411-420. CMP 2002. 6.
8. C. X. Jiang. Prime theorem in Santilli's isonumber theory
$P_{n}=a P_{1}^{m}+P_{2}+\cdots+P_{n-1} \pm b$. Algebras Groups and Geometries 19(2002) 475-494. CMP 2003.7.
9. C. X. Jiang. Prime theorem is Santilli's isonumber theory (II). To appear.
10. C. X. Jiang, Diophantine equation $P_{n+1}^{\lambda_{n+1}}=\frac{P_{n+2}+\cdots+P_{2 n+1}+b}{P_{1}^{\lambda_{1}}+\cdots+P_{1}^{\lambda_{n}}+b}$ has infinitely many prime solution. To appear.
11. C. X. Jiang. Santilli's prime chains: $P_{j+1}=a P_{j} \pm b$. To appear.
12. C. X. Jiang. Proof of the Bateman-Horn conjecture. To appear.
13. C. X. Jiang. Generalized Quadratics Representing Primes. To appear.
14. C. X. Jiang. Generalized Arithmetic Progressions $P_{i}=P+i \omega_{g}$ and $P_{k+i}=P^{m}+i \omega_{g}$. To appear.

