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Abstract 
 
The discovery of mathematical complements, assembled under the name of the eccentric mathematics, gave the opportunity 

for a series of applications, amongst which, in this article, are presented the impulse, step, and unitary ramp functions. The difference, 
in comparison with the same classic functions, from the distributions theory, is that those eccentric are periodical with a 2π period. By 
combining these between them, new mathematical functions have been defined; united under the name Smarandache stepped 
functions. 
 

1. Introduction 
 
 Romanian mathematician Octavian Stănăşilă sustains that the physics became a science when the 
calculus (mathematical analysis) has been discovered. In turn, the physics’ development imposed the calculus’ 
development. 

The theoretical physics, and especially, the quantum mechanics, optics, wave propagation, different 
electromagnetism phenomena, and the solving of certain limit problems, imposed the introduction of new 
notions, which are not confined anymore to classical calculus (mathematical analysis), and whose justification 
could not be made within this frame [6]. This does not mean that it will not come a moment, in mathematics, 
when this thing can be done. It consists in the discovery of some mathematical complements, included in 
eccentric mathematics (EM) [8], [9], [10], [11], [12] etc., which extend at infinitum all current mathematical 
forms and objects, ensuring a vast extension of classical/ordinary mathematics, which will be named centric 
mathematics (CM). The reunion of this two mathematics forms what is called the supermathematics (SM). 

 
2. The representation of derivatives of some functions 

 
The fact that not every continue function is derivable, having as consequence the inexistence of velocity 

of a material point, in every moment of its movement, which, evidently, does not correspond to the reality, 
constitutes a sever difficulty in the CM, which affects the unity and the generalization of the results, which is 
not the case in the EM. 

For example, let’s consider the first nowhere-derivable function, presented by Weierstrass [7, p. 105, 
Chapter 11 “About Peano curves and their non-differentiability”]: 
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 A modification of Weierstrass’ example will be obtained by the substitution in equation (1) of cos  tπ  
with linear Euler spline ( )E t , which interpolates the argument cos  tπ  in all integer values of t , and we obtain 
the graph [7] from figure 1. Next to it, it was presented the eccentric supermathematics functions family, of 
eccentric variable tθ ≡ , named  bex t , and which is a component/term of the eccentric amplitude function 
( )aexθ , defined by the relation 
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where θ  is the eccentric variable or the angle that a positive semi straight line, revolving around the excenter 
( ,  )S s ε  – or solar point, (Kepler affirmed that planets rotate around the Sun on circular orbits, but the Sun is 

not in the center of the orbits) – it makes it with Ox  axis [8], [9], [10], and α  is the centric variable or the 
circular arc, of the unity circle, from the origin of the arc (1,0)A  to a current point on circle 

(1, ) ( , )W W r rexα θ θ≡ =  The unitary eccentricity is es
R

= , or the distance between S  and O , and excenter S  

or E  are ejected from the center O  on the ε direction. 

 For  tθ π⇒  and a phase difference 
2
πε = −  will obtain the function or, more precisely, the functions family. 
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Fig. 1 Modified Weierstrass’ function Fig.2.  The Eccentric SM function bex t 

 

(3)  arcsin sin
2

bex t s t ππ⎡ ⎤⎛ ⎞= ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, 

whose graphs, of the numeric eccentricity ]1,0[∈s , with the step 0.1, are presented in figure 2.  
It can be observed, without difficulty, that for 0  t = 0s aex= →  and for 1s = , the maximum limit (in 

graphs) of s , we obtain the graph of a function in “symmetric triangle teeth” (Fig. 1).  
Because, the derivative of the function aex t  is the eccentric derivative function dexθ : 
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it results that the second term from the relation (4) is exactly the derivative of the function  bex θ , that is: 
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which is the product between the numerical eccentricity s  and the quadrilob cosine function coqθ  [12], with a 

phase difference 
2
πε = − , therefore it results s siqθ− ⋅ , whose graphs family are presented in the figure 4, for 

]1,0[∈s , with the step 0.1 and in the figure 3, for 1s = . 
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FIGURE 3. Modified derivative of function 

Weierstrass 
FIGURE 4. The derivatives of the function bex θ 

 
The quadrilob sinus function ( )siqθ , for the numerical eccentricity 1s = , represents, in the signals 

theory, the response of a relay to a sinusoidal signal; this function is also called square sinus [13, p. 31], which 
is exactly the eccentric sinus trigonometric function, with the numerical eccentricity 1s = , defined on a square, 

non-rotated with 
4
π , as in the case of Alaci quadratic functions [12]. 

Corroborating the functions and their derivatives, it can be observed that they correspond between them. 
Thus, modified Weierstrass function, from figure 1, viewed as a bex t  function of numerical eccentricity 1s = , 
becomes complete derivable. 

 
3. About distributions 
 

In 1926 P. A. M. Dirac introduced, in the quantum mechanics, the delta “function” (δ), which is over all 
null, with the exception of a point (in origin taking ∞ value), defined as follows:  
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and whose integral is: 
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The same value of the integral is also for the unitary impulse function ( , )x λΔ  defined by 
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It can be observed that for 0λ →  we obtain the Dirac function ( )xδ . It must be mentioned that a 
rigorous definition of Dirac’s impulse can be given within distributions theory [6] or of generalized functions, a 
chapter of functional analysis. 

The unitary impulse can be viewed also as the derivative of the (ideal) unitary step function, or as of 
Heaviside function ( )xΓ , defined as:  
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admitting, in this way, the derivability of any continue function on sections.      
The unitary ramp function is defined as: 
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and its derivative is the ideal unitary step function (Heaviside). 
 

4. Periodical unitary step, impulse and ramp functions expressed as eccentric circular 
supermathematics functions (EC-SMF) and with eccentric quadrilob supermathematics functions 
(QL-SMF) 

 
In figures 5 and 6 are presented the graphs of the eccentric cosine functions (  cex t ) and eccentric 

quadrilob cosine (  coq t ) respectively [12] for super-unitary numerical eccentricities s. 
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FIGURE 5,A. The function cex t, for s = 1,2,3,4 and 6 FIGURE 5,B. The function cex t, for s =  4 π = 12,566 
  

It can be observed, in the same time with the increase of the numerical eccentricity value s , the 
functions existence domain becomes restricted to the interval where a line, revolving from the excenter 

( ,  )S s ε , external to unity circle, intersects the unity circle. This interval I is periodical, with the period of 2π  
and it is defined by relation (9).  

(11) 12 2arcsinfinal initialI t t
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, 

for which the function  
(12) 2 21 sin ( ) 0del sθ θ ε= − − = , 

where, 
(13)  initialt π ε γ π= + − =  and  finalt π ε γ π= + + = , 

the eccentrical variable: (mod 2 )t θ π≡  such that, for the excenter S going, on the x axis ( 0ε = ), to infinite 
( s →∞ ), the domain I  goes to zero ( 0I → ). From (12) it results that at t π=  and s →∞ , the function 1cex t  is 
an impulse signal of amplitude –1, that periodically repeats with a 2π  period, and the second determination - 
with index 2 – of the function, 2 1cex t =  for 0 2 ,  ( 0,1,2,...)t k kπ= + = , therefore also at 2t π= , for s →∞ , as 
it results also from the figures 5,A and 5,B. 
 We will call, these functions “periodical impulse functions cext of unity amplitude with s →∞ ”. For 

2
πε = , analogously, for s →∞ , we obtain “periodical impulse functions sext of unity amplitude”. 



 Because 
 (14) 12

2,1
2

2,1 =+ θθ sexcex , where 1,2 1,21 0cex t sex t= ± → =  and vice versa. 
 Therefore, at t π= , the function 1 0sex t =  with the period 2π  and the function 

 
1

1( , )I t s
sex t

= ⇒∞ , obtaining periodical unitary impulse functions, of an infinite amplitude, similar to  

Dirac’s function, the difference being that it is periodic with a 2π  period. 
  Also the quadrilob cosine function [12] 
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s

θ
θ ε

=
− −

 ( )tθ ≡ , for s →∞  has at 2 ,  ( 0,1,2,...)t k kπ π= ± =  the denominator 

 0del t =  and cos 0 1= , such that the amplitude goes to infinite and, this way, will obtain, again, a periodical 
unitary impulse function (Figure 6). 

A periodical rectangular function of unity amplitude (Figure 6a) is given by the supermathematics 
eccentric quadrilob function:  
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Figure 6,a. The function 0,5.dext, by numerical 
eccentricity s = 1, as periodical rectangular function or 

periodical unity stepped function 

Figure 6,b.The function 0,5.dex(t/10) as unity step 
function 

 
0,5(1  )siq t− , with a phase difference π   
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, 

which can be named periodical unitary step function, if the numerical eccentricity 1s = . 

If  
10
tt → ,  (Figure 6b), the first step extends from π  to 10π . It results that for  0tt → →

∞
 it will be 

obtained a unitary step function on all axis  >0t .  
An analogous function can be obtained also with the eccentric derivative function dex t of 1s =  (Figure 

7a) and with  
10
tt →  and ε π= −  (Figure 7b). 
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Figure7a The function dex t as periodical step function Figure 7b 

 
An ideal unitary ramp function can be obtained as a straight line passing through origin, of an angular 

coefficient m equal with unity ( 1)m = . 

(17) 
, 0

  0,   0
mx x

y
x
≥⎧

= ⎨ <⎩
 

A real unitary ramp function, that will admit certain aberrations from linearity, can also be obtained as a 
twisted [13] which passes through the origin (0,0)O . 

A twisted family, obtained for 0s ≠  in the interval [ 1,1]s∈ − , are presented in figure 8a, where, for 
0s = , will obtain a ramp for [0,  ]t∈ ∞ .   
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Figure 8a. The function aex t with s = -1,…,+1  Figure 8b. The function aex t as real unitary ramp 
functions. For s = 0 we will obtain the ideal ramp  

 
Unitary ramp functions can be obtained by the substitution of the constant tanm α=  with the variable 

m texθ=  for a unitary eccentricity 0,1s = . 



 
5. Smarandache stepped functions 
 

Combining the eccentric ramp functions, of numerical eccentricity 1s = , with eccentrically rectangular 
functions will result the stepped functions, called Smarandache stepped functions, in honor of the Romanian 
mathematician Florentin Smarandache. Some of these functions, along with their relations of definition, are 
presented in the following graphs. 
 

 [ [{ , [ [ ]]  [ ] / [1 [ ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi− − −  
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[ [{ , [ [ ]]  [ ] / [1 [ ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Sin t qrt Cos t t Pi Pi− − −  
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[ [{ ,  [ [ ]] ( [ ] / [1 [ ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Sin t Sqrt Cos t t Pi Pi+ − −  
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[ [{ , 2 [ [2 ]]  [ ] / [1 [ ]^ 2])},  { , 2 ,  2 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi− − −  
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[ [{ , ( [ [ ]]  ( [ ] / [1 [ ]^ 2])) ( [10 ] / [1 [10 ]^ 2])},  { , 2 ,  6 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t Cos t Sqrt Sin t t Pi Pi− − − −  
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[ [{ , [ [ ]]  ( [20 ] / [1 [20 ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi− − −  
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[ [{ , [ [ ]]  ( [ ] / [1 [ ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi+ − −  
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[ [{ , [ [ ]]  (1 [ ] / [1 [ ]^ 2])},{ , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi− − − −  
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[ [{ , [ [ ]]  [ ] / [1 [ ] ^ 2])) ( [ [10 ]] [10 ] / [1 10 ]^ 2])},  { , 2 ,  4 }]Parametric Plot t t ArcSin Sin t Cos t Sqrt Sin t t ArcSin Sin t Cos t Sqrt Sin t t Pi Pi− − − − −
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