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Abstract

A novel class of static spherically symmetric (SSS) solutions of Einstein’s equa-
tions are explicitly constructed in terms of a family of admissible radial functions
R = R(r). The proper generalizations of the (Anti) de Sitter solutions are pre-
sented that could provide a very plausible resolution of the cosmological constant
problem along with a natural explanation of the ultraviolet/infrared ( UV/IR) en-
tanglement required to solve this problem. A nonvanishing value of the vacuum
energy density of the order of 10−121M4

Planck is derived in perfect agreement with
the experimental observations. Exact solutions of the cubic equations associated
with the location of the horizons of a novel class of ( Anti ) de Sitter-Schwarzschild
metrics are found. These solutions are very appealing because one could inter-
pret M as the mass of an unbounded universe ( since the range of values for r
are 0 ≤ r ≤ ∞ ) and whose magnitude of the cosmological constant is λ = R−2

H

when RH = RHubble(today). In addition we obtain a lower bound to the mass of
the universe of the order 2M ∼ 1061MPlanck ∼ 1080 mproton that agrees with the
Dirac-Eddington large number result.

1 On the class of Schwarzchild Solutions

We begin by writing down the class of static spherically symmetric (SSS) vacuum solu-
tions of Einstein’s equations studied by Abrams [5] (where there are NO mass sources
anywhere) given by a infinite family of solutions parametrized by a family of admissible
radial functions R(r)

(ds)2 = g00 (dt)2 + grr (dr)2 − (R(r))2 (dΩ)2 (1.1)

1Dedicated to the loving memory of Rachael Bowers
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the solid angle infinitesimal element is

(dΩ)2 = sin2(φ)(dθ)2 + (dφ)2. (1.2)

and
g00 = (1− α

R(r)
)

grr = −(1− α

R(r)
)−1 (

dR(r)

dr
)2. (1.3)

where α is an arbitrary constant that happens to have dimensions of mass when c = G = 1
( but there are no masses at all in this vacuum case ) and R(r) are an infinite family of
functions like

R(r) = r +α; R(r) = [r3 +α3]1/3; R(r) = [rn +αn]1/n; R(r) =
α

1− e−α/r
..... (1.4)

found by Brouillin [3] , Schwarzschild [2], Crothers [7] and Fiziev-Manev [12] , respectively
obeying the conditions that

R(r = 0) = α; and when r >> α ⇒ R(r) → r (1.5)

Numerous authors have corroborated over the years through lengthy but straightforward
calculations [5], [6], [7], [8], [9] that there exist an infinite class of solutions to the vacuum
SSS Einstein’s equations Rµν = R = 0 for an arbitrary family of radial functions R(r) of
the type displayed above ( but the curvature Riemnan tensor Rµ

νρσ 6= 0 ). This arbitrary
family of radial functions R(r) resemble the travelling wave Maxwell solutions in the
vacuum that are given by arbitrary functions of x − ct and x + ct like Φ = f(x − ct) +
f(x + ct).

One may notice that the Hilbert-Droste-Weyl form of the metric [4] when α = 2M is
obtained automatically from the solutions given by eq-(1.1) at large distances r compared
to 2M such that

r >> 2M ⇒ R(r) → r (1.6)

that yields
(ds)2 ∼ g00 (dt)2 + grr (dr))2 − (r)2 (dΩ)2 (1.7)

with

g00 → (1− 2M

r
) (1.8)

grr → − (1− 2M

r
)−1 (1.9)

Because the behaviour of eqs-(1.7-1.9) is only valid for r >> 2M it is meaningless and
contradictory to claim that when one (erroneously) equates r = 2M ( since this would
invalidate the previous condition r >> 2M ) one has g00 = 0 at the so-called ”horizon”
r = 2M . Notice that when one sets r = 2M in the genuine and true Schwarzchild solution
the value of g00 6= 0 !. Such behaviour g00 = 0 in eqs-(1.1-1.3) only occurs at :

2



r = 0 ⇒ R(r = 0) = 2M ⇒ g00(r = 0) = 0 (1.10)

It was explicitly shown in [16] why one must introduce the absolute values |r| [10]
in these solutions eqs-(1.1-1.3) in order to account for the field of a point mass source
at r = 0. This is the key reason why the vacuum SSS solutions ( NO mass sources
anywhere ) differ crucially from the solutions due to a point mass source. There is a true
curvature singularity at r = 0 ( at the location of the point mass source ) due to a delta
function. This is not the case of the true vacuum solutions ( NO mass sources anywhere
so Rµν = R = 0).

Thus, when one goes ahead and inserts a point mass M source at r = 0 matters
will change drastically. In order to find the correct solutions to the modified Einstein’s
equations in units of G = c = 1 one must write those radial functions as R(|r|) by
replacing the r variable by its modulus |r| in eqs-(1.1-1.3) This is what will account for
the delta function terms δ(r) in Einstein’s equations resulting from the singularity at
r = 0. A different and detailed treatment of point masses, point charges, delta function
sources and the physical implications of the many different choices of the radial functions
R(r) in General Relativity has been given by Fiziev [12].

There is no region with R < 2M in this point mass case. This makes sense since
a point mass located at r = 0 has no interior by definition. As trite as this argument
may be it lies at the root of the so-called Hilbert’s ”error” [5] and whose legacy led to
black-holes research. The gist of the argument by Abrams [5] lies in the fact that Hilbert
projected the timelike one-dimensional worldline of the physical r = 0 singularity onto
the whole null horizon surface of cylindrical topology R×S2 by mapping the point r = 0
onto the whole sphere R = 2M .

To illustrate how relevant it is to take the proper absolute values, we recall (in flat
space) that the Laplacian in spherical coordinates of 1/|r| is

1

r2
(d/dr)[ r2(d/dr)(1/|r|) ] =

1

r2
(d/dr)[ r2(−1/|r|2) sign(r) ] =

− 1

r2
(d/dr)sign(r) = −(1/r2) δ(r) (1.11)

since r2 = |r|2, which is consistent with Poisson’s law which states that the Laplacian
of the Newtonian potential −GM/|r| is 4πGρ. This is true here if, and only if, ρ =
(M/4πr2)δ(r) that is indeed the case in Newtonian gravity. However, the Laplacian in
spherical coordinates of (1/r) is zero. For this reason, there is a fundamental difference in
dealing with expressions involving absolute values |r| like 1/|r| from those which depend
on r like 1/r [10].

In [16] it was shown that when one inserts a point mass M at r = 0, the class of SSS
solutions ( in G = c = 1 units ) given by the genuine Schwarzschild form, and in terms
of radial functions R(|r|), lead to the Einstein’s equations ( for signature +,−,−,− ) of
the form

G00 =
2

R(dR/d|r|)
(1− 2M

R
)2 δ(r) = −8πT00 6= 0. (12a)
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Grr = −8πTrr = 0. (12b)

Gθθ = − R sin2φ

(dR/d|r|)
(1− 2M

R
) δ(r) − 1

2

2M sin2φ

(dR/d|r|)
δ(r) = −8πTθθ 6= 0. (12c)

Gφφ = − R

(dR/d|r|)
(1− 2M

R
) δ(r) − 1

2

2M

(dR/d|r|)
δ(r) = −8πTφφ 6= 0. (12d)

meaning that the singular mass distribution at r = 0 has pressure terms in addition to a
pure mass density term.

Since R(r = 0) = 2M at the location of the singularity r = 0 the scalar curvature
obeys the trace condition [16]

R = − [
2M

R2(dR/d|r|)
+

4

R(dR/dr)
(1− 2M

R
) ] δ(r) = − [

2M

R2(dR/d|r|)
] δ(r) =

8π [ g00T00 + grrTrr + gθθTθθ + gφφTφφ ]. (1.12e)

In order to evaluate the curvature tensor, the Ricci tensor and the scalar curvature
based on the solutions (1.1-1.3) obtained by replacing r → |r| and α = 2M one must
use properly the rules of derivatives of quantities involving absolute values r as indicated
below :

(d|r|/dr) = sign(r). sign(r) = +1, r > 0. sign(r) = −1, r < 0 (1.13)

and sign(0) is ill defined since there is a discontinuity of the derivative of |r| at r = 0; i.e
a discrete jump from −1 to +1. For this reason the second derivatives

d2|r|
dr2

=
dsign(r)

dr
= δ(r) (1.14)

furnish the required delta function term. The derivatives of the metric elements w.r.t the
variable r are attained by a simple use of the chain rule

(dg00(R(|r|)/dr) = (dg00(R)/dR) (dR/d|r|) (d|r|/dr) =

(dg00(R)/dR) (dR/d|r|) sign(r) (1.15)

Thus the second derivative terms (d/dr)2g00(|R|) yields a term containing a delta function
stemming from the sign(r) term giving :

(dg00(R)/dR) (dR/d|r|) δ(r) (1.16)

etc............
Such δ(r) terms would never appear had one used R = R(r). Unfortunately, these δ(r)

factors have not been properly accounted for by many authors [7] and erroneously misled
them to conclude that there are no curvature singularities in General Relativity ( R was
erroneously claimed to be identically zero everywhere ) when we know this cannot be true.
There is a delta function singularity at r = 0 which originates from properly using the
modulus |r| in the radial functions R(|r|) instead of erroneously writing R = R(r) [10]
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After a lengthy computation the scalar curvature was shown [16] to be given by :

R = − [
2M

R2(dR/d|r|)
] δ(r). (1.17)

and since R(r = 0) = 2M it is consistent with the trace condition in eq-(1.12e). One may

notice that if, and only if, the measure ( Jacobian )
√
|g| = R2(dR/d|r|) sinφ = r2 sinφ

coincides with the ordinary measure in spherical coordinates, then the scalar curvature
when one sets R(r = 0) = 2M in eq-(1.18) becomes

R =
−2M

R2(dR/d|r|)
δ(r) =

−2M

r2
δ(r) ⇒

∫
R2dR =

∫
r2 d|r| =

∫
|r|2 d|r| ⇒

R3 = |r|3 + constant (1.19)

the boundary condition R(|r| = 0) = 2M leads precisely to the genuine cubic solution
R3 = |r|3 + (2M)3 found by Schwarzschild [2].

In order to check the consistency of eqs-(1.12) one must solve Einstein’s equations
for a point mass, and begin firstly by writing the components of Tµν associated with a
point mass particle which is moving in its own gravitational background in terms of the
appropriately defined covariantized delta function The worldline of the point mass source
is parametrized by the four functions

X0 = t(τ), X1 = r(τ); X2 = θ(τ); X3 = φ(τ) (1.20)

The matter action is

Smatter = −M
∫

dτ = −M
∫ √

gµν(dXµ/dτ)(dXν/dτ) dτ =

−M
∫ √

g dnx
∫ δn(xµ −Xµ(τ))√

|g|

√
gµν(dxµ/dτ)(dxν/dτ) dτ. (1.21)

From which we can deduce the expression for the stress energy tensor density

T µν = 2
δSmatter

δgµν

=

−M
∫ (dxµ/dτ)(dxν/dτ)√

(dxσ/dτ)(dxσ/dτ)

1√
|g|

δ(r − r(τ)) δ(θ − θ(τ)) δ(φ− φ(τ))δ(t− x0(τ)) dτ.

(1.22a)
The reason why there is a factor of 2 in the definition of T µν is due to the symmetrization
of indices in the variation of Sm w.r.t (1/2)δgµν .

The worldline of an inert point mass at fixed values of

r = ro = constant 6= 0; θ = θo = constant, φ = φo = constant (1.22b)
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is determined by the temporal function x0 = t = x0(τ) such that

(dτ)2 = g00(dt)2 ⇒
∫

τ =
∫ √

g00 dt⇒ dt

dτ
=

1
√

g00

(1.22c)

(dx0/dτ)(dx0/dτ) =
1

g00

= g00. (1.22d)

For this particular timelike worldline history (on-shell so (dxσ/dτ)(dxσ/dτ) = 1) the
only non-vanishing component of the stress energy tensor is

T00 = −M
∫ (dx0/dτ)2√

|g|
δ(r − r(τ)) δ(θ − θ(τ)) δ(φ− φ(τ))

δ(t− x0(τ))√
(dxσ/dτ)(dxσ/dτ)

dτ =

T00 = −M
∫ g00( |~r − ~ro| )√

|g|
δ(r − ro) δ(θ − θo) δ(φ− φo) δ(t− x0(τ)) dτ =

T00 = −M
g00( |~r − ~ro| )√

|g|
δ(r − ro) δ(θ − θo) δ(φ− φo) (1.22e)

As expected, we have found that the T00 component is just related to the mass density
ρ in spherical ccordinates for a point mass source located at ~ro = (xo, yo, zo) 6= 0. If the
point mass source is located at the origin of the spherical coordinates system ~ro = 0,

the Jacobian in this case becomes
√
|g| = R2(dR/dr) sinφ, and g00(|~r − ~ro|) = g00(r) .

However, since the angles are degenerate at r = 0 ( the angles are not well defined at the
origin ) to cure this ambiguity one can perform the average over all solid angle directions
( from 0 to 4π) and which furnishes a crucial (1/4π) factor that is deeply connected to
the ubiquitous 2M term, as follows

1

4π

∫
T00 sin(φ) dφ dθ = −M

4π

∫ g00(r)

R2(dR/dr) sinφ
δ(r) δ(θ−θo) δ(φ−φo) sin(φ) dφ dθ =

< T00 >solid angle = − M

4πR2(dR/dr)
g00(r) δ(r) ⇒ 8πg00 < T00 >= − 2M

R2(dR/dr)
δ(r)

(1.23)
Notice that this averaging procedure in eq-(1.23) does not yield the same answer for T00 as
indicated by eq-(1.12a) and which results from the direct evaluation of the Einstein tensor
associated with the class of generalized Schwarzchild solutions. The rigorous procedure
would require locating the point mass source away from the origin r = 0 in order to
have a well defined delta function in spherical coordinates. However, despite this fact one
can verify from eq-(1.23) that 8πg00 < T00 >= − 2M

R2(dR/dr)
δ(r) does indeed agree with

the expression 8πgµνTµν of eq-(1.12e). Therefore, to sum up, we have checked that the
relation

R = 8πg00 < T00 >solid angle = 8πgµνTµν = − 2M

R2(dR/dr)
δ(r). (1.24)
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holds relating eq-(1.12e ) with eq-(1.23) in the Schwarzchild class of SSS solutions of
Einstein’s equations. This is a sign of consistency.

To sum up the salient features of the novel class of Schwarzschild solutions : the world
line of the singularity r = 0 is timelike despite that g00(r = 0) = 0 because there is a
tilt of the light-cone at r = 0 such that the ingoing null lines at r = 0 coincide with the
timelike worldline of the singularity and the outgoing null lines will reach an observer
at asymptotic infinity. By definition, the point mass source is a naked singularity and
we have shown that the spacetime background generated by this point mass is derived
from eqs-(1.1-1.3) by replacing α = 2M and by inserting the proper modulus function |r|
in the infinite family of admissible radial functions R = R(|r|) with the provision that
R(r = 0) = 2M and R(|r| → ∞)→ |r|. This completes the review of [16] .

2 On the Cosmological Constant Problem

In this final and main section we shall study some of the most pertinent cosmological im-
plications of introducing radial functions R(r) 6= r in the ( Anti ) de Sitter-Schwarzschild
solutions as follows

g00 = ( 1− 2M

R(|r|)
−λ R(|r|)2 ). grr = −( 1− 2M

R(|r|)
−λ R(|r|)2 )−1 (dR(|r|)/dr)2 (2.1)

The angular part is given as usual in terms of the solid angle by −(R(|r|))2(dΩ)2. We
choose the parameter λ = Λ/3 where Λ is the cosmological constant. The λ < 0 case
corresponds to Anti de Sitter-Schwarzschild solution and λ > 0 corresponds to the de
Sitter-Schwarzschild solution. The physical interpretation of these solutions is that they
correspond to ”black holes” in curved backgrounds that are not asymptotically flat. For
very small values of R one recovers the ordinary Schwarzschild solution. For very large
values of R one recovers asymptotically the ( Anti ) de Sitter backgrounds of constant
scalar curvature.

These are the SSS solutions to Einstein’s equations with a cosmological constant.
These solutions were studied earlier by [7] but unfortunately this author performed an
erroneous analysis of these cosmological models. Thus, contrary to the claims [7], we will
show below that there are nontrivial solutions with a nonvanishing cosmological constant
λ when the correct expression for the radial functions R(r) are introduced.

One particular expression for the radial function in the de Sitter-Schwarzschild ( λ > 0
) case is

1

R2 − (2M)2
=

1

r2
+ λ. (2.2)

since r2 = |r|2 there is no need to explicitly write the modulus sign in (2.2) and in the
discussion below. When λ = 0 one recovers R2 = r2 + (2M)2 as before in the pure
Schwarzschild case given by a family of admissible radial functions obeying R(r = 0) =
2M and asymptotically tending to R ∼ r for large values of r compared to 2M . When
M = 0 the radial function becomes
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1

R2
=

1

r2
+ λ. (2.3)

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : ( i ) when r tends to zero ( instead of r = ∞ ) the radial
function behaves R(r → 0) → r ; in particular R(r = 0) = 0 and (ii) when r = ∞ (

instead of r = 0 ) the value of R(r = ∞) = RHorizon =
√

1
λ

and one reaches the location

of the horizon given by the condition g00[R(r =∞)] = 0.
The proper radius Rp(r) is given by the integral

Rp(r) =
∫ dR√

1− λ R2
=

1√
λ

arcsin [ R(r)
√

λ ] ⇒

Rp(r = 0) = 0 since R(r = 0) = 0; and Rp(r =∞) =
π

2

1√
λ

=
π

2
RHorizon. (2.4)

When M 6= 0 one has for the de Sitter case

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
− λ R(r∗)

2 = 0 (2.5)

a cubic equation whose solutions R∗ will restrict the values of the radial function R∗ =
R(r∗) at r = r∗ 6=∞ , in terms of the mass parameters M and the cosmological constant
λ = 16πGρvacuum . The cubic equation will be solved exactly as shown below contrary to
the assertions of [7] that it cannot be solved exactly.

Let us begin with the de Sitter case ( by setting M = 0 ), the condition

g00(r =∞) = 0 ⇒ 1− λ R(r =∞)2 = 0 (2.6)

has a real valued solution

R(r =∞) =

√
1

λ
= RHorizon. (2.7)

the correct order of magnitude of the observed cosmological constant can be derived from
eq-(2.7) by equating R(r =∞) = RHorizon = Hubble Horizon Radius as seen today of the
order of 1060 LPlanck and setting G = L2

Planck ( h̄ = c = 1 units) in

16π G ρvacuum = Λ = 3λ =
3

R(r =∞)2
=

3

R2
H

⇒

ρvacuum =
3

16π

1

L2
P

1

R2
H

=
3

16π

1

L4
P

(
LP

RH

)2 ∼ 10−121 (MPlanck)
4. when RH ∼ 1060LP .

(2.8)
which agrees with the experimental observations.

We continue with a relevant analysis of the UV/IR ( ultraviolet-infrared ) entangle-
ment involving the interaction of small-large scales within the context of the cosmological
constant problem. The transformation
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r → 1

λr
; λ 6= 0. (2.9)

exchanges small distances with large distances and vice versa, reminiscent of the T -
duality in string theory compactifications, and leads to a dual radial function of the form

1

R̃2
= (λr)2 + λ. (2.10a)

where now one has the reciprocal ( ”dual” ) behaviour as that of eq-(2.7)

R̃(r =∞) = 0; R̃(r = 0) =
1√
λ

. (2.10b)

and the horizon condition g00(RHorizon) = 0 is now attained at r = 0 ( due to the small-
large scales exchange)

g00(r = 0) = 0 ⇒ 1− λ R̃(r = 0)2 = 0 ⇒ R̃(r = 0) =
√

1/λ = RHorizon. (2.11)

and once again we get the same result as before in (2.8).
It is clear now why if one had written R̃(r) = r in eq-(2.11) and introduced the Planck

scale as an ultraviolet cutoff, instead of setting r = 0, one would have obtained an answer
in eq-(2.11) that is off by 120 orders of magnitude ! ( which is the cosmological constant
problem ) . What the dual radial function R̃(r) achieves in eqs-(2.10a, 2.11) is to map the
extreme ultraviolet ( UV ) region r = 0 onto the infrared ( IR ) region R̃(r = 0) = RHubble.
Hence, the presence of the dual radial function R̃(r) implements the necessary UV/ IR
entanglement associated with the resolution of the cosmological constant problem.

In [15] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-
Hilbert action with a cosmological constant plus Gauss-Bonnet terms can be obtained from
the vacuum state of a BF-Chern-Simons-Higgs theory without introducing by hand the
zero torsion condition imposed in the MacDowell-Mansouri-Chamsedine-West construc-
tion. One of the most salient features of [15] was that a geometric mean relationship
was derived ( from scratch, instead of postulating it ) among the vacuum energy density
ρ , the Planck area L2

P and the AdS4 throat size squared R2 given by ρ = (LP )−2 R−2.
Upon setting the throat size to coincide with the Hubble scale RH ( since the throat size
of de Sitter and Anti de Sitter is the same ) one obtains the observed value of the vacuum
energy density ρ = L−2

PlanckR
−2
H = L−4

P (LP /RH)2 ∼ 10−120(MPlanck)
4.

To finalize we will analyze in detail the exact solutions to the cubic equation in the (
Anti ) de Sitter-Schwarzschild solutions. Let us begin with de Sitter-Schwarzschild case.
The cubic equation that sets the location R∗ of the horizon g00(R = R∗) = 0 is given by

R3
∗ −

R∗

λ
+

2M

λ
= 0. λ > 0. (2.12)

whose 3 solutions are

R1 = (S + T ). (2.13a)
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R2 = − 1

2
(S + T ) +

i
√

3

2
(S − T ). (2.13b)

R3 = − 1

2
(S + T ) − i

√
3

2
(S − T ). (2.13c)

where

S = [ − M

λ
+

√
M2

λ2
− 1

27λ3
]1/3. (2.14a)

T = [ − M

λ
−

√
M2

λ2
− 1

27λ3
]1/3. (2.14b)

If we don’t wish to have complex roots one has two cases to study. One case is when
S = T and the other case is when S 6= T by disregarding the complex roots and keeping
only the real root R1. Let us focus now on the S = T case :

S = T ⇒ M2

λ2
− 1

27λ3
= 0 ⇒ M

λ
=

1√
27λ3

. (2.15)

the roots become

R1 = −2 [
M

λ
]1/3 < 0. (2.16a)

R2 = R3 = −1

2
(−2) [

M

λ
]1/3 = [

M

λ
]1/3 = [

1√
27λ3

]1/3 =
1√
3λ

= 0.5773 RH . (2.16b)

The fact hat we have found one negative root for the radial function R(r1) does not
necessarily mean that the value of r1 is negative. We will discuss this R1 < 0 case in
detail below. There are two equal positive roots R2 = R3 whose value is less than the
Hubble scale RH

R∗ = R2 = R3 =
1√
3λ

<
1√
λ

= RH . (2.17)

as it should, otherwise there would not have been a real valued solution for r∗ such that
R(r∗) = R2 = R3. Plugging the value of R∗ = R2 = R3 = (3λ)−1/2 into the defining
relation for the radial function in eq-(2.2) yields the finite value of r∗ ( compared to the
r =∞ value when M = 0 ) after one uses the relation M2 = (1/27λ) of eq-(2.15 ) in

1

R2
∗ − (2M)2

=
1

r2
∗

+ λ ⇒ r∗ =

√√√√ R2
∗ − (2M)2

1− λ((R2
∗ − (2M)2)

=

r∗ =

√
15

66

1√
λ

= 0.4767 RH . (2.18)

To sum up, the solutions to the cubic equation yield in the S = T case the following
numerical relations
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R(r = 0) = 2M ; R(r =∞) =

√
(2M)2 +

1

λ
> 2M. (2.19)

and

2M =

√
4

27

1√
λ

< R(r∗) = R∗ =
1√
3

1√
λ

<

√
(2M)2 +

1

λ
=

√
31

27

1√
λ

. (2.20)

The case S 6= T is obtained by disregarding the two complex roots while maintaing
the real root R1 . However, one ends up with another negative root R1

R1 = [ − M

λ
+

√
M2

λ2
− 1

27λ3
]1/3 + [ − M

λ
−

√
M2

λ2
− 1

27λ3
]1/3 < 0. (2.21)

because one is required to choose in this S 6= T case the condition

M2

λ2
− 1

27λ3
> 0. (2.22)

that, in turn, will force R1 < 0. Despite the fact that R1(r = r1) < 0 this does not
necessarily mean that the value of r1 is negative. If R2

1 > (2M)2 there are real-valued
solutions for r = r1 that could still be positive by direct inspection of eq-(2.18). The
inequality R1(M, λ)2 > (2M)2 obtained from eq-(2.21) in conjunction with the other
inequality given by eq-(2.22) will yield the constraint relation of the values M, λ in the
M − λ parameter space that would determine whether or not there exists a real-valued
and positive r1 > 0 despite having R1 < 0. Whether or not such conditions can be met
simultaneously for the values M > 0; λ > 0 needs to be studied further. Unfortunately
the expressions are rather unwieldy. If one had chosen the radial function to be R(r) = r
then one would immediately conclude that r1 < 0. But since R(r) 6= r one can still
have r1 > 0 for R1 < 0 ! which is a very interesting possibility that warrants further
investigation.

It is important to remark at this point that

g00 = (1− 2M

R
− λR2) ≤ 0 (2.23)

not only when 2M ≤ R ≤ R∗ but also when R > R∗ due to the double-root nature
of the solutions to the cubic equation given by eq-(2.16b). Because the component g00

does not change sign as one crosses R∗, strictly speaking, one does not have a horizon
as such for R∗ because g00 ≤ 0 in the domain of values of the radial function defined by

2M ≤ R ≤
√

(2M)2 + 1
λ

that is associated, respectively, with the values of r in the
domain 0 ≤ r ≤ ∞ .

However, there is a horizon in the case of the simple real root R1 < 0 ( when S 6= T )
in eq-(2.21) because g00 ≥ 0 when R1 < R < 0 provided (2M)2 < R2 < R2

1 ; and g00 ≤ 0
when R < R1 < 0 . Thus g00 does change sign when one crosses R1 < 0. The same
conclusions apply to the negative simple root R1 < 0 found earlier for the S = T case
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and given by eq-(2.16a). One has a true horizon since g00 changes sign as one crosses R1.
Since the solution of eq-(2.16a) obeys the requirement R2

1 = (4/3λ) > (2M)2 = (4/27λ)
one could have real-valued and positive r1 > 0 solutions by inspection of eq-(2.18).

Let us study now the Anti de Sitter-Schwarzschild case. The location of the horizon
involves finding solutions of the cubic equation

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
+ λ R(r∗)

2 = 0 (2.24)

It is very important to emphasize that one has already taken into account the fact λAdS =
−λdS in eq-(2.24). Therefore in eq-(2.24), and all the expressions that follow, when we
write λ it should be understood as |λ| and hence it is a positive quantity. The unique
real-valued positive solution (obtained by replacing λ→ −λ in the above solutions of the
de Sitter case ) is :

R∗ = [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 > 0. (2.25)

We must disregard the two complex roots. There are no double roots in the AdS case
because M2

λ2 + 1
27λ3 6= 0. A careful study reveals that the radial function R(r) in the Anti de

Sitter case must differ from the de Sitter case and is obtained from eq-(2.2) by replacing
λ→ −λ

1

R2 − (2M)2
=

1

r2
− λ ⇒ R(r = 0) = 2M ; R(r =∞) =

√
(2M)2 − 1

λ
< 2M. (2.26)

and it leads to the inequality 2M > R∗ > R(r =∞) because it is a decreasing function
of r and which can be recast explicitly as

2M > [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 >

√
(2M)2 − 1

λ
≥ 0 (2.27)

Hence, eq-(2.27) defines the explicit constraint relation between the allowed values of M
and λ in the M − λ parameter space. In this case one has a true horizon since the metric
component

g00(R(r)) = 1− 2M

R(r)
+ λ R(r)2 ≥ 0; when 2M ≥ R ≥ R∗ (2.28)

will change sign

g00(R(r)) = 1− 2M

R(r)
+ λ R(r)2 ≤ 0; when R∗ ≥ R ≥

√
(2M)2 − 1

λ
≥ 0 (2.29)
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The UV/IR entanglement map r → 1/λr in eq-(2.26) yields the dual version of the
radial function R̃(r)

1

R̃2 − (2M)2
= (λr)2 − λ ⇒ R̃(r =∞) = 2M ; R̃(r = 0) =

√
(2M)2 − 1

λ
< 2M.

(2.30)
which is an increasing function of r, instead of a decreasing function like R(r) in eq-(2.26).
In this dual case the metric component

g00(R̃(r)) = 1− 2M

R̃(r)
+ λ R̃(r)2 ≤ 0; when

√
(2M)2 − 1

λ
≤ R̃ ≤ R∗ (2.31)

will change sign and become

g00(R̃(r)) = 1− 2M

R̃(r)
+ λ R̃(r)2 ≥ 0; when R∗ ≤ R̃ ≤ 2M (2.32)

One notices that the g00 > 0 behaviour occurs when R > R∗ = RHorizon and/or
R̃ > R∗ = RHorizon and it is is similar to the behaviour of g00 in the exterior region of
a ”black hole” horizon. From eqs-(2.29, 2.31) one can infer from the condition√

(2M)2 − 1

λ
≥ 0 ⇒ 2M ≥ 1√

λ
. (2.32)

If one were to interpret 2M = 1√
λ

= RHubble as the lower bound for the mass of the

universe and take a value of RHubble ∼ 1061LPlanck one would have in the appropriate
units the following

2M ∼ 1061 MPlanck ∼ 1080 mproton. (2.33)

that agrees with the Dirac-Eddington large number coincidences

N = 1080 ∼ (
Fe

FG

)2 ∼ (
RHubble

re

)2. (2.34)

where Fe = e2/r is the electrostatic force between an electron and a proton; FG =
Gmemp/r

2 is the corresponding gravitational force and re = e2/me ∼ 10−13cm is the
classical electron radius in natural units of h̄ = c = 1. Of course, this is not to say
that the AdS-Schwarzchild case is the same as the Friedman-Robertson-Walker model,
but only that one could equate the net mass ( inside RH ) of the latter with the 2M
parameter of the former to get an estimate of the lower bound of the mass of the observable
universe. To match the observational data requires further work since it is more likely
that 2M > 1√

λ
= RHubble due to the presence of dark matter.

By inspection one can verify that the lower bound 2M = 1√
λ

obeys the condition

given by eq-(2.27). The latter becomes
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2M =
1√
λ

> ( [
1

2
+

√
31

108
]1/3 + [

1

2
−

√
31

108
]1/3 )

1√
λ

= 0.6823
1√
λ
≥ 0 (2.35)

It is clear that a lot of work and re-thinking remains to be done pertaining the proper
use of the radial functions R(r) in the class of SSS solutions to Einstein’s equations with
and without a cosmological constant. The fact that we were able to obtain the correct
magnitude of the observed cosmological constant and the correct lower estimate of the
mass of the universe related to the Dirac-Eddington’s large number N = 1080 is a positive
sign that one should use the solutions displayed in this work based on a suitable class
of radial functions R(r) rather than the naive choice R = r we have been familiar with
during all these decades !
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