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Abstract 
In the framework of Quaternion (Q-) Theory of Relativity im-

plying invariance of the 6D-space-time vector “interval” the kine-
matics of two frames is considered under condition that one frame 
is inertial and the other is subject to action of harmonic force. Us-
ing mathematical tools of Q-relativity the cinematic problem is 
completely solved from the viewpoint of each frame, i.e. distance, 
velocity and acceleration are found as functions of observers’ time. 
Majority of cinematic relations are revealed to be represented by 
exact expressions: elementary functions and series; some relations 
though are found only approximately. Observed motions are of 
course not harmonic functions. Clock paradox is discussed. 
 

I. Introduction: Q-relativity in short 
There are many types of physics theories based on more than 

three space-time dimensions, but the only one, Einstein-
Minkowski 4D theory, has comprehensive reasons for number of 
its dimensions. All others, beginning from 5D Kaluza-Klien theory 
up to 21D supergravity or to 2nD Calabi-Yau string theory spaces, 
are heuristically postulated. It is worth mentioning that several at-
tempts to build “symmetric” 6D-relativities (3D-space + 3D-time) 
were made by Cole, Starr, Pavshic, Recami and others (see e.g. [1] 
and ref. therein). But the symmetry introduced also “ad hoc” to-
gether with abelian character of multiplication inherited from Ein-



stein’s relativity lead in these theories to a series of interpretational 
difficulties.  

Differently from these patterns 6D-theory of Q-relativity (or 
Rotational Relativity) suggested in 1996 [2,3] does not result from 
phenomenological considerations but is extracted from quaternion 
mathematics as its modest but quite natural part. The extraction 
goes through following six steps. First, basic multiplication rule for 
Q-numbers is discovered to be form-invariant under Q-units 
transformations composing rotational group SO(3,C). Second, and 
this was pointed out by W.Hamilton, three “imaginary” Q-units, 
behave exactly as a Cartesian vector triad. Fourth, it is shown that 
real rotations from SO(3,C) save form of Q-vector (with real 
components) defined in a Q-triad. Fifth, similar form-invariance 
property is observed for biquaternionic (BQ) vectors under mixed 
real-imaginary rotations reducing the initial group to SO(1,2); this 
distinguishes the set of BQ-vectors with definable norm. All these 
facts have purely mathematical nature with no evident relevance to 
physics. But knowledge that SO(3,C) and its subgroup SO(1,2) are 
closely related to Lorents group hints to make the sixth “physical” 
step: the BQ-vector components are taken for space and time “dis-
placements”, space-time acquires 3+3-symmetric geometry, and 
the basic BQ-vector turns out nothing else but a specific 6D Q-
square root of the interval of Einstein’s relativity. Since no limita-
tions are found for rotation parameters one is free to operate with 
inertial as well with non-inertial Q-frames. 

So, Q-Relativity exploits the fact of SO(1,2)-invariance of 6D-
space-time biquaternionic vector “interval”  

kkk dxidtd qz )( +=   

with definable real norm  
222 dxdtdz −= .  

If a Q-frame composed of “imaginary” vector Q-units  
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},,{ 321 ′′′′ =≡Σ′ qqqq k
∗  

is observed from another analogous Q-frame Σ , then the -
invariance results in a simple relation for time and space “dis-
placement” vectors  

zd

211 qqq dxidttid +=′ ′ ,  

vectors  and  obviously orthogonal to each other. The last 
condition naturally distinguishes scalar time out of 6-
dimensionality, and allows regarding physical situations. The Q-
frames may depend in general on 6 real parameters representing 
spatial rotations and boosts; in their turn the parameters are not 
banned to be variable e.g. dependent on time of observers hiding at 
the origins of the frames which are in this case non-inertial but 
nevertheless well described in the Q-approach. Technological tool 
of the theory is a Rotational Equation (RE) of the type  

td rd

Σ=Σ′ O   

where O is a combination of real R and hyperbolic H rotations 
from SO(1,2) “converting” the frame of the observer Σ  into the 
observed frame . From the RE cinematic effects of Q-frames 
relative motion are easily calculated, among them all effects of 
Einstein’s Special Relativity and a number of non-inertial motion 
effects, e.g. hyperbolic motion and Thomas precession [4].  

Σ′

The Q-relativity also represents a good mean to study non-
inertial clock behavior once largely discussed [5]. A desirable 
model to illustrate the problem is a “fast” linear harmonic oscilla-
tor. In Sect.2 definition of a relativistic harmonic oscillator is given 
and full cinematic problem is solved from the viewpoint of inertial 
and oscillating observers. Sect.3 is devoted to discussion of twin 
paradox issues associated with the solution. 
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∗ The multiplication rule for Q-units is jknjknnk qqq εδ +−=  where knδ , knjε  
are Kroneker and Levi-Civita 3D symbols, summation convention is assumed. 



II. Linear harmonic oscillator  problem in Q-relativity  
Mathematical tool of Q-relativity allows studying behavior of 

non-inertially moving clock. A natural model of such a clock is a 
harmonic oscillator, “spring pendulum”, arranged so that initial 
and final positions of its «massive body» (too, a body of reference 
of non-inertial harmonically moving observer) precisely coincide 
with position of immobile inertial observer, and relative velocity of 
the two observers at these moments is zero. 

Let Σ be inertial frame and Σ′ represent non-inertial frame 
whose body of reference is subject to action of a periodical har-
monic force along a straight line. Since kinematics of the system is 
the focus of this study nature of the force here is of no importance.   

 
CASE A. Σ′ IS OBSERVED FROM Σ 
If inertial frame Σ is modeled by a constant Q-triad  whose 

vector  is aligned with frames relative velocity, then rotational 
equation interconnecting two frames in question has the form 

kq

2q

Σ=Σ′ ′)(
3

tH ψ  (1)  

with  being -matrix of simple hyperbolic rotation (about 
axis parallel to ) and variable parameter 

)(
3

tH ′ψ 33×

3q )(t ′ψ  depending on 
time of moving observer 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

100
0coshsinh
0sinhcosh

3 ψψ
ψψ

ψ i
i

H .  

The first row of Eq.1  

211 sinhcosh qqq ψψ i−=′ ,  

under standard conditions  

dt
td ′

=ψcosh ,  (2) 

ψtanh=V   (3) 
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is equivalent to biquaternionic vector basic in Q-theory of relativ-
ity (fundamental velocity equals unity: 1=с ) 

211 qqqz dxidttidd +=′= ′  (4) 

so that Σ-time and Σ′-time are aligned respectively with , and 
. Eq.4 yields main cinematic vector characteristics, i.e. for Σ′-

observer one readily finds relative Q-vector velocity 

1q

1′q

1′=
′

≡′ qzv
tid

d
 

and Q-vector acceleration 

2221
1

′′′′
′ ′≡−=
′

=
′
′

≡′ qq
qva ai
tid

d
tid

d ω . (5) 

where the only non-vanishing component of Q-connection [3] 

td
di
′

=′′
ψω 21    

is computed as 

1−

′
=′ H

td
dHω .  

Thus value of Q-acceleration (5) aligned with  is simply ex-
pressed through velocity parameter 

2′q

td
da
′

=Σ′′ ψ)( .  

It is natural to attribute to Q-frame a type of motion corresponding 
to the type of acceleration “felt” by observer in this frame. Well 
known example is the hyperbolic motion where non-inertial ob-
server subject to constant acceleration feels constant force acting 
on him [6]. Similarly motion of Σ′ is represented as harmonic one 
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if Σ′-acceleration, force per unit mass, obeys harmonic, e.g. cosine, 
law measured in its own time∗∗  

t
td

da ′Ω′Ω′=
′

=Σ′′ cos)( βψ ;  (6) 

here β  is a real constant (amplitude is chosen in this form for fu-
ture commodity reasons), acceleration is maximal for 0=′t . Inte-
gration of Eq.6 gives dependence of hyperbolic parameter on 
proper Σ′-time 

tt ′Ω′=′ sin)( βψ .  (7) 

Constant of integration, initial phase, is chosen zero so that at the 
beginning and the end of oscillation period relative velocity vanish. 
It is worth noting here that the hyperbolic parameter, not velocity 
itself, has to be a harmonic function. 

Σ′(Σ) time ratio 

Now complete cinematic problem for the regarded mechanical 
system can be solved, i.e. coordinate, velocity and acceleration of 
Σ′ are to be found as functions of Σ-observer’s time. But prelimi-
nary integration of the time-correlation equation resulting from 
Eq.2  

)(cosh tdttd ′=′ ψ , 

is necessary to determine Σ′-Σ observers’ times interdependence 

∫ ∫ ′′Ω′=′′= tdttdtt )sincosh()(cosh βψ .  (8)  

An easy analysis shows that the integral can be computed exactly, 
not in elementary functions but as series. First, one applies well-
known development of hyperbolic cosine 

n

n

u
n

u 2

1 )!2(
11cosh ∑

∞

=

+= , ∞<u , 
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∗∗ Phase of the oscillation is chosen so that at initial and final moments of oscil-
lation period velocity vanishes. 



last condition being always fulfilled since ∞<′Ω′≡ tu sinβ . Sec-
ond, one uses the following table integral 

kn
ykn

k
n

y
n
n

dyy
n

k

k
n

n

n
n

22
)22(sin2

)1(
2

)1(2
2
1sin

0
122

2

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∫

=
− . (9) 

And third, the substitution ty ′Ω′≡  in Eq.9 gives the sought for 
result of integration in Eq.8 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Ω′−
′Ω′−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+′= ∑∑

−

=
−

∞

= )22(
)22sin(2

)1(
2

)1(2
2
1

)!2(

1

0
122

1

2

kn
tkn

k
n

t
n
n

n
tt

n

k

k
n

n

n
n

nβ
. (10) 

This result compels to recall that obtaining exact solutions in 
framework of relativity theory is a remarkable feature of simple 
and correctly formulated physical problems such as hyperbolic or 
circular motion. The relativistic oscillator problem seems to belong 
to the distinguished set. 

One oscillation is completed when π2=′Ω′T , T ′  being oscilla-
tion period measured in Σ′. Corresponding Σ-time interval, “pe-
riod” T , is straightforwardly found from Eq.10 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′= ∑

∞

=1
2

2 2
2
1

)!2(
1

n
n

n

n
n

n
TT β

, (11) 

as well as respective cycle frequencies ratio 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ω=Ω′ ∑

∞

=1
2

2 2
2
1

)!2(
1

n
n

n

n
n

n
β

. (12) 

Eq.12 tells that Σ-observed periodic motion possesses less fre-
quency than oscillations felt by Σ′-observer; the fact sounds con-
ventionally in relativity: moving clock is apparently slow.   

Inversion of Eq.10 is evidently hardly possible, so expression 
of Σ′-time as a function of Σ-time )(tt ′  is looked for in approxima-
tion. First several terms of series in Eq.10 are written as  
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...2sin24sin
4
113

!48

2sin
2

1
4

4

2

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′Ω′−′Ω′

Ω′
−′

⋅
+

+⎟
⎠
⎞

⎜
⎝
⎛ ′Ω′

Ω′
−′+′=

ttt

tttt

β

β

  (10a) 

Dimensionless factor β  may be given in the form 

1/0 <<= cVβ ,  

where  can be any characteristic value of relative velocity, e.g. 
mean value for ½ of period. Then the following ratios connecting 
frequencies and times are written up to the terms including  

0V

2β

4/1 2β+
Ω′

=Ω ,  (13a) 

⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
−−=′ tttt 2sin

2
1

4

2β
. (13b) 

Substitution of Eqs.13 into expression for velocity parameter 
(Eq.3) allows to find approximate solution of the cinematic prob-
lem for Σ-observer. 

Σ′(Σ) Velocity 

Velocity value of the frame Σ′ observed from Σ is (fundamental 
velocity c is explicitly shown)  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ Ω+−Ω≅′Ω′= ttVtctV 222

0 cos
12
7

3
11sinsintanh)( βββ . 

At the beginning and at the end of period velocity acquires mini-
mal value , i.e. at these moments the two frames are really 
immobile relative to each other. Maximal value of the velocity 

0)( =TV

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= 2

0 3
114/ βVTV  

may be regarded as “V-amplitude”  
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⎟
⎠
⎞

⎜
⎝
⎛ −= 2

0 3
11~ βVV ,  

and final expression has the form 

⎟
⎠
⎞

⎜
⎝
⎛ Ω+Ω≅ ttVtV 22 cos

12
71sin~)( β  (14) 

meaning that the periodic process observed from Σ definitely has 
no harmonic character.  

Σ′(Σ) Acceleration 

Value of Σ-observed acceleration of Σ′ is found as 

⎟
⎠
⎞

⎜
⎝
⎛ Ω+−ΩΩ≅= ttV

dt
tdVta 222 cos

4
7

6
71cos~)()( ββ . 

Minimal value acceleration acquires at the middle of period  

0)4/( =Ta ,  

and maximal value, “a-amplitude”, at its end 

AVTa ~
12
71~)( 2 =⎟

⎠
⎞

⎜
⎝
⎛ −Ω= β ; 

the final expression is 

⎟
⎠
⎞

⎜
⎝
⎛ Ω−Ω≅ ttAta 22 sin

4
71cos~)( β . (15) 

 
Σ′(Σ) Coordinate 
Σ-coordinate of Σ′ is computed as result of integration 

⎟
⎠
⎞

⎜
⎝
⎛ Ω+Ω

Ω
−≅= ∫ ttVxdttVtx 22

0 cos
36
71cos

~
)()( β , (16) 

the integration constant 

⎟
⎠
⎞

⎜
⎝
⎛ +

Ω
= 2

0 36
71 βVx

~
 

is chosen to satisfy the following initial conditions 
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0)()0( == Txx ,  0)4/( xTx = ,  02)2/( xTx = , 

meaning, that at the initial and final moments of period the two 
frames are not only relatively immobile but too are found at the 
same point in space. 

Thus the Σ′(Σ)-cinematic problem is solved in approximation 
1<<β ; the result is given in Eqs.10, 14, 15, 16. 

 
CASE B. Σ IS OBSERVED FROM Σ′ 

Rotational equation for this case  

Σ′=Σ ′− )(
3

tH ψ ,  (17) 

has the same parameter  
tt ′Ω′=′ sin)( βψ   

describing harmonic oscillations of Σ′. The first row of Eq.17 rep-
resent space-time vector “interval” 

211 ′′ ′−′= qqq xdtididt  (18) 

where xd ′  is space displacement of Σ and td ′  is respective time 
interval, both measured by non-inertially moving Σ′-observer.    
Calculated from Eq.18 proper Q-vector acceleration of Σ is natu-
rally zero  

01 =≡
idt
dq

a ,  

so study of this case considers cinematic magnitudes only as they 
are seen from genuinely accelerated frame Σ′.  

Σ (Σ′)-time ratio

Following from Eq.18 standard relativistic expression 

)(cosh tdttd ′=′ ψ   

leads to integral determining )(tt ′  functional dependence  
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∫ ∫ ′′Ω′=
′

′
= tdt

t
tdt )sin(sech

)(cosh
β

ψ
.  (19) 

This integration also can be performed exactly due to existence of 
development 

n

n

nn u
n

E
u 2

1 )!2(
)1(1sech ∑

∞

=

−+= , 2/π<u  (20) 

and table integral already used in the Case A and given by Eq.9. 
Series in Eq.20 includes Euler numbers  

∑
∞

=
+

−

+

+

−
−

≡
1

12

1

12

22

)12(
)1()!2(2

k
n

k

n

n

n k
nE

π
,  

and its convergence condition  

2/sin πβ <′Ω′≡ tu , 

is always satisfied since 

1/0 <= cVβ ,  1sin <′Ω′t . 
Resulting formula of integration in Eq.20 has the form 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Ω′−
′Ω′−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
+′= ∑∑

−

=
−

∞

= )22(
)22sin(2

)1(
2

)1(2
2
1

)!2(
)1( 1

0
122

1

2

kn
tkn

k
n

t
n
n

n
E

tt
n

k

k
n

n

n
n

n
n

n β
. (21) 

Eq.21 permits to Σ′-observer to measure real period of T ′  and cy-
cle frequency  and also to calculate similar characteristics Ω′ T , Ω  
theoretically attributed to the frame Σ and to find respective corre-
lations 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+′= ∑

∞

=1
2

2 2
2)!2(

)1(
1

n
n

n
n

n

n
n

n

E
TT

β
, (22) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+Ω=Ω′ ∑

∞

=1
2

2 2
2)!2(

)1(
1

n
n

n
n

n

n
n

n

E β
 (23) 
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of course different from analogous Eqs.11, 12 of the Case A due to 
different inertiality properties of the observers. But computing fre-
quency ratio in Eq.23 up to first approximation in  2β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
+Ω≅Ω′

1
2

!22
1

2
1βE , 

where 

 1...
9
1

7
1

5
1

3
112

33333

5

1 ≅⎟
⎠
⎞

⎜
⎝
⎛ −+−+−=

π
E , 

 gives result similar to Case A analog Eq.13a 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω≅Ω′

4
1

2β , (24) 

i.e. Σ′-frequency, normally for relativity, is smaller than that of Σ 
from the viewpoint of Σ′-observer.  

All cinematic functions in the Case B are to depend on time , 
hence there is no need to inverse variables in Eq.21, giving relation 
of time-lines length: proper one, 

t ′

t ′ , and “observed” one, . None-
theless it seems useful to put down several first terms of the devel-
opment   

t

( ) ...2sin44sin21
!416

52sin
2
1

4

42

+⎥⎦
⎤

⎢⎣
⎡ ′Ω′−′Ω′

Ω′
+′

⋅
+⎟
⎠
⎞

⎜
⎝
⎛ ′Ω′

Ω′
−′−′= ttttttt ββ  (21a) 

 
Comparing Eq.21a with its analogue Eq.10a one notes symmetry 
of time-functions in the least -approximation for Cases A and 
B; this is too an expected relativistic result of exchanging observa-
tion bases. 

2β

In the Case B whole of cinematic problem has exact solution.   

Σ (Σ′) Velocity 

( )tctV ′Ω′=′′ sintanh)( β . (24) 
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For practical purposes it is useful to consider approximation up to 
small  2

0
2 )/( cV=β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′Ω′−′Ω′≅′′ ttVtV 2

2

0 sin
3

1sin)( β . 

Minimal value velocity 0)( =′TV  acquires at the beginning and the 
end of each oscillation, at these moments the two frames are im-
mobile to each other. Maximal value (V-amplitude) velocity has at 
quarter of period 

( )
c

V
cTV 0tanh4/~ =′′ .  

Σ (Σ′) Acceleration  

( )t
tV

td
tdVta

′Ω′
′Ω′Ω′

=
′
′

=′′
sincosh

cos)()( 2
0

β
; (25) 

its -approximation is  2β

( )ttV
td
tdVta ′Ω′−ΩΩ≅
′
′

=′′ 22 sin1cos~)()( β . 

Minimal and maximal values respectively are  

0)4/( =′′ Ta ,  Ω′=′′ 0)( VTa . 

Σ (Σ′) Coordinate  

( ) tdtctdtVtx ′′Ω′=′′′=′′ ∫∫ sintanh)()( β . 

This function too can be integrated exactly due to (i) existence of 
divergent series 

12

1

22

)!2(
)12(2

tanh −
∞

=
∑ −

= n

n

n
nn

u
n

B
u , 2/sin πβ <′Ω′≡ tu ,  

whose coefficients are Bernoulli numbers tied by recurrent formula 

⎥
⎦

⎤
⎢
⎣

⎡ +−−−
−+−

+
−≡ ∑

−

=

−
1

1

1

)!2(
)22)...(22)(12)(2(

)1(
2
1

12
1)1(

n

k

kkn
n k

knnnnB
n

B   
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so that , , and (ii) existence of table integral  6/11 =B 30/12 −=B

kn
ykn

k
n

dyy
n

k

k
n

n
n

212
)212(cos12

)1(
2

)1(sin
1

0
22

12

−−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
= ∑∫

−

=
−

− ; 

here ty ′Ω′≡ . Resulting coordinate function of time has the form 

∑ ∑
∞

=

−

=
−

−

−−
′Ω′−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−−
Ω′

+=′′
1

1

0
22

12
22

0 212
)212(cos12

)1(
2

)1(
)!2(

)12(2
)(

n

n

k

k
n

n
nn

nn

kn
tkn

k
n

n
Bcxtx β , (26) 

its -approximation is  2β

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Ω−−′Ω′

Ω′
−′=′′ tt

V
xtx 220

0 cos
3
11

3
11cos)( β  .   

Integration constant  

⎟
⎠
⎞

⎜
⎝
⎛ −

Ω′
=′ 20

0 3
21 β

V
x  

is chosen so that the following conditions are satisfied 
0)()0( =′′=′ Txx ,  0)4/( xTx ′=′′ ,  02)2/( xTx ′=′′  

meaning that at the beginning and the end of oscillation relatively 
immobile frames are found at the same space point. 

Thus the cinematic problem for Σ′-observer is shown to have 
exact solution, it is represented by Eqs.24, 25, 26, and their week-
relativity approximations with 1<<β  are given. 

Clock paradox discussion 

Specific features of the discussed relativistic oscillator model 
make it an appropriate cinematic system for discussion of famous 
clock paradox formulated in Special Relativity (SR) a centaury 
ago. First, one of the two involved frames of the system is always 
immobile (inertial) while the other is accelerated hence obviously 
non-inertial. Second, at starting and final moments the initial 
points of the frames spatially coincide while the frames are recip-
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. 

rocally at rest. Third, oscillating frame itself can serve as a clock 
for both observers. And last but not least, the key formulae 
describing time correlations are exact solutions

Frequent explanation of the paradox relates clock delay to non-
inertiality of motion (e.g. [7,8]). But if one considers two identical 
non-inertial frames moving in opposite directions the paradox 
seems to arise again: alleged non-inertial (“gravitational”) delay of 
the both clocks should be exactly the same, but accordingly to SR 
locally, at any moment, each observer detects his/her partner’s 
time slowing down. Conventional SR seems not to be able to cope 
with the problem. 

The clock paradox can be regarded as a result of “one-side” 
measurement procedure, when two cinematically different time 
intervals of the same observation are measured by a time-unit of 
one observer; in this case they obviously will have different 
“length”. But if each interval is measured by time-unit of its own 
observer the lengths should be equal similar to the case of distance 
measurement: indeed, moving ruler seems to immobile observer 
shorter but it has the same “number of centimeters” as an identical 
ruler at rest.  

Discussed above oscillating frame seems to be a successful il-
lustration to the explanation of paradox given further in terms of 
space-traveling twins. Fig.1 shows Minkowski diagram of the os-
cillation process form the viewpoint of inertial (“immobile”) Σ-
twin. Let time-segments subject to measurement be periods T and 
T ′ “observed” from Σ, hence interconnected by Eq.11, while a “Σ-
second” (Σ-time-unit) is  

Ω=≡ 2/4/ πτ T .  

Then the “length” of segment T is 4 sec. Period T ′ measured in Σ-
twin time-units τ  appears obviously shorter, so that returning 
home twin-traveler is allegedly younger than his brother-observer. 
This “one-side” measurement gives incorrect result since for Σ-
twin not only Σ′-time-segment contracts but Σ′-time-unit too, ade-
quate change of  “Σ′-seconds” (in this case all equal) extracted 
from Eq.11    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
′0

′

′

′

′

τ′

Σ′

:2q

t∆:1q

t′∆′ :1q

light
signal 

x′∆′ :2q

Σ 
4

3

2

1

τ 

projection 
of τ′ 

 Fig.1. Minkowski diagram for relativistic 
 

 

1
2

2 2
2
1

)!2(
1

∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=′ ∑

n
n

n

n
n

n
β

ττ

using the units one finds the length of T ′ 
Σ′-twin on his way sends regular (at each h
then Σ-twin receives them irregularly, but 
Σ-twin will count exactly four such signal
 16
T′
x∆
0

1

2

3

4

T

oscillator. 

1−

; 

also to be 4 seconds. If 
is second) light signals 
during traveling period 
s. Exchange of the last 



 17

signal occurs at the very end of mission, at the same space point, at 
zero relative velocity, and the age of twins at the meeting point 
remains equal. 

Besides, Fig.1 shows that projections of equal in length but dif-
ferent Σ′-time segments onto Σ-time (straight) line are also differ-
ent, but they change steadily as smooth functions, and in three 
points of the twins relative immobility (0-0′, 2-2′, 4-4′) their units 
smoothly became equal. This means that this model is free of “lost 
time” or “unit gap” features sometimes present in discussions of 
non-inertial approach to the paradox from Special Relativity posi-
tion.  

There are two final remarks.  
1.  Found relativistic solution for oscillator system frequent in 

nature and in description of many physical processes remarkably 
incorporates to the set of non-inertial cinematic problems already 
solved in the framework of Q- relativity theory from the viewpoint 
of all involved observers: hyperbolic motion, circular motion and 
Thomas-like precession [9].   

2. In the study an accent may be made on the method used to 
endow a frame with definite non-inertial character. The method 
can serve as an instructive example helpful for construction of any 
non-inertial frame provided the acceleration law is given; this al-
lows easier formulation and solution of new relativistic problems 
involving non-inertially moving observers. 
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