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Abstract

This paper presents a comprehensive review of existing TSP (Travelling Salesman Problem) algorithms,
followed by the introduction of a novel algorithm designed to efficiently provide optimal solutions
within polynomial time. The proposed algorithm not only yields a lower bound on the TSP weight but
also guarantees optimality under specific conditions. Through rigorous analysis and experimentation,
this research contributes to advancing the field of TSP optimization by offering a reliable and scalable

solution.
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1 Introduction

The Traveling Salesman Problem (TSP) has fascinated researchers across disciplines for decades.
At its core, TSP is about finding the shortest route for a salesman to visit a list of cities once and
return to the starting point. But its implications go far beyond a simple puzzle; they extend to
real-world challenges like planning delivery routes in cities and scheduling tasks in factories.

TSP represents the complexities of decision-making under constraints. Its classification as NP-
hard means that finding the best solution quickly is incredibly difficult, driving researchers to explore
a range of solution methods, from exact algorithms to heuristic approaches.

In this research paper, we explore these methods in detail. We’ll discuss exact algorithms like
the Held-Karp algorithm, as well as heuristic methods like Ant Colony Optimization and Genetic
Algorithms. By examining their strengths and weaknesses, we aim to shed light on their practical
applications in solving TSP and similar optimization problems.

Beyond theory, we’ll also look at how TSP solutions are used in the real world. From optimizing
delivery routes to improving manufacturing efficiency and designing computer circuits, we’ll explore
how these methods are making a tangible impact across industries.

Through this exploration, we hope to provide a comprehensive understanding of the importance
of TSP and the diverse strategies employed to tackle it, highlighting its relevance in contemporary
optimization endeavors.

To illustrate the Traveling Salesman Problem (TSP), consider the following example: a traveling
salesman needs to visit a set of cities, each exactly once, and return to the original city while
minimizing the total distance traveled. Suppose there are four cities labeled 1, 2, 3, and 4 with
distances between them as follows:
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Figure 1: The Traveling Salesman Problem

The optimal solution to the Traveling Salesman Problem for the given graph in Figure 1 is
achieved with a total weight of 80 units, wherein the salesman follows the path 1 — 2 -4 — 3 — 1,
visiting each city exactly once and returning to the initial city.



2 Importance and Applications of TSP

The Traveling Salesman Problem (TSP) is not only a cornerstone in the fields of optimization and
computer science but also has significant applications in various real-world scenarios. These include
logistics, where it models route-planning problems; manufacturing, for optimizing the movements
of robotic arms; and the design of electronic circuits, where it assists in efficient layout planning.
Below, we delve into some of the key areas where TSP plays a crucial role.

2.1 Optimization

TSP serves as a benchmark for many optimization methods. Its complexity and universality make
it an ideal candidate for testing new optimization algorithms. Insights and innovations developed
from solving or approximating TSP can often be applied to other optimization problems, making it
a foundational problem in the study of algorithmic efficiency.

2.2 Logistics and Routing

One of the direct applications of TSP is in the domain of logistics, where efficient route planning is
crucial. This includes:

e Planning routes for delivery trucks to minimize travel time and fuel consumption.
e Optimizing postal routing to ensure timely delivery of mail.

e Laying out cable or pipeline routes to connect multiple points with the least amount of mate-
rial.

2.3 Manufacturing

In the manufacturing industry, TSP is used to optimize the sequence of movements of robotic arms.
This is particularly relevant in operations such as drilling or welding, where the goal is to minimize
the time taken to complete all tasks without repeating a position, thereby enhancing efficiency and
reducing production time.

2.4 Computer Wiring

The design and layout of computer circuits can also benefit from solutions to the TSP. By optimizing
the wiring between circuit components, manufacturers can minimize the length of the wiring, which
can lead to reductions in cost and improvements in performance due to shorter electrical paths.

3 Computational Complexity

TSP is known to be NP-hard, implying that there is no known algorithm that can solve all instances
of the problem efficiently, i.e., in polynomial time. This complexity makes it a fascinating subject
for researchers in algorithm design and computational theory.



4 Solution Approaches

4.1 Exact Algorithms

Exact algorithms aim to find the optimal solution. Methods include brute-force search, dynamic
programming approaches like the Held-Karp algorithm, and the branch and bound technique.

4.2 Heuristic and Metaheuristic Methods

For larger instances of TSP, heuristic methods such as the nearest neighbor, genetic algorithms, and
simulated annealing are used to find approximate solutions.

4.3 Approximation Algorithms

In specific cases like the metric TSP, where the triangle inequality holds, polynomial-time approxi-
mation algorithms can provide solutions close to the optimal.

5 Solution Methods used for the Traveling Salesman Problem (TSP)

To provide a more comprehensive understanding of each solution method for the Traveling Salesman
Problem (TSP), here are detailed descriptions that delve into how each algorithm works, its com-
plexity, and its classification.The code repository containing the implementation can be accessed
here.

5.1 2-opt Algorithm

Category: Heuristic Method

Time Complexity: Typically O(n?)

The 2-opt algorithm is a heuristic approach that seeks to improve a given tour by removing two
edges and then reconnecting the two paths that result in a different manner. This process is
based on the premise that by eliminating crossings, a shorter path can often be achieved. The
algorithm iteratively examines all pairs of edges and tests whether swapping them would reduce
the tour’s length. This process is repeated until no further improvements can be made. Despite its
simplicity, 2-opt can significantly enhance the quality of a solution. However, it does not guarantee
the discovery of the optimal tour. Its O(n?) complexity makes it a practical choice for moderately
sized datasets.

5.2 3-opt Algorithm

Category: Heuristic Method

Time Complexity: Generally O(n?)

Expanding upon the 2-opt algorithm, the 3-opt approach allows for the removal of three edges
in a tour and explores different ways of reconnecting these segments to form a shorter tour. By
considering triplets of edges for reconnection, the 3-opt method can explore a larger portion of
the solution space compared to 2-opt, potentially finding better improvements. The increased
computational effort (O(n3)) means that this method is more time-consuming but can lead to more



significant improvements in the tour’s length. Like other heuristic methods, 3-opt does not ensure
an optimal solution but is effective for enhancing solution quality.

5.3 Ant Colony Optimization (ACO)

Category: Metaheuristic Method

Time Complexity: Problem-dependent, often O(n?)

Ant Colony Optimization (ACO) is inspired by the foraging behavior of ants, particularly their
ability to find the shortest path between their colony and food sources using pheromone trails. In
the context of TSP, artificial ants construct solutions incrementally, favoring paths that are shorter
and have a higher pheromone concentration. Over successive iterations, the pheromone on each path
evaporates (reducing its attractiveness) and is reinforced (increased) by ants that have found shorter
paths, guiding the colony toward optimal or near-optimal solutions. The complexity of ACO varies
with the specifics of the implementation and problem size but is often O(n?), balancing between
exploration of new paths and exploitation of known good paths. This method is particularly suited
for problems where the solution space is large and complex.

5.4 Branch and Bound

Category: Exact Algorithm

Time Complexity: Worst-case O(2"), but highly problem-specific

Branch and Bound is an exact optimization algorithm that systematically explores the solution
space by dividing it into smaller subproblems (branching) and evaluating a lower bound on the
optimal path length within each subproblem. If a subproblem’s lower bound exceeds the length
of the best solution found so far, it can be discarded (pruned) from further consideration. This
method guarantees the identification of an optimal tour by effectively narrowing the search space.
However, due to its exponential worst-case time complexity, its practical application is limited to
relatively small problem instances.

5.5 Dynamic Programming (Held-Karp Algorithm)

Category: Exact Algorithm

Time Complexity: O(n?2")

The Dynamic Programming approach to TSP, specifically the Held-Karp algorithm, tackles the
problem by decomposing it into smaller, overlapping subproblems and solving each just once, storing
the results for future reference. This strategy significantly reduces the computational redundancy
inherent in brute-force approaches. With a time complexity of O(n?2"), the Held-Karp algorithm
is much more efficient than enumerative methods but still faces limitations as the number of cities
grows due to its exponential growth in complexity. It is ideal for instances of the TSP where
obtaining an exact solution is feasible.

5.6 Genetic Algorithm (GA)

Category: Metaheuristic Method
Time Complexity: Varies significantly with implementation



Genetic Algorithms are inspired by the principles of natural selection and genetics, employing mech-
anisms such as selection, crossover, and mutation to evolve a population of solutions towards opti-
mality. In the context of TSP, a population of tours is iteratively improved through these genetic
operations. Solutions are selected for reproduction based on their fitness (shorter tours are pre-
ferred), and new generations are formed through crossover and mutation, introducing variation.
The process repeats over many generations, with the population converging towards better solu-
tions. The time complexity of GAs is not fixed, as it depends on the population size, number
of generations, and specific implementation details, but they are particularly useful for large-scale
problems where exact solutions are impractical.

5.7 Greedy Algorithm

Category: Approximation Algorithm

Time Complexity: O(n?)

The Greedy algorithm for TSP builds a tour step by step, always choosing the shortest available
edge that can be added without violating the tour’s constraints (e.g., creating a cycle). While this
method is quick and easy to implement, it often leads to suboptimal solutions because the local
optimum choices do not necessarily lead to a global optimum. Its O(n?) complexity makes it fast,
but it is best used when solution quality is less critical or as a starting point for more sophisticated
optimization methods.

5.8 Nearest Neighbour Algorithm

Category: Heuristic Method
Time Complexity: O(n?)
The Nearest Neighbour algorithm constructs a tour by starting from an arbitrary city and, at each
step, traveling to the closest unvisited city until all cities are visited. This method is intuitive and
easy to implement, providing quick solutions. However, the tours generated are not guaranteed to
be optimal, and the algorithm’s performance can significantly vary depending on the starting city.
With a time complexity of O(n?), it is efficient for smaller instances but may require additional
optimization steps for better solution quality on larger problems.

Each of these methods offers a different approach to tackling the TSP, ranging from heuristic
strategies that provide quick, approximate solutions to exact algorithms that guarantee optimality
at the cost of higher computational requirements.

5.9 Prim’s Algorithm with Edge Evaluation and TSP Conditions
Category: Exact Algorithm (Prim’s Algorithm)

Time Complexity: O(V?) (for building the adjacency list) + O(VZ2logV) (for computing
MSTs for all pairs of vertices)

Description:

The method utilizes Prim’s algorithm to construct Minimum Spanning Trees (MSTs) for all
pairs of vertices in the given graph. Prim’s algorithm is a greedy algorithm that grows an MST
from a single vertex by iteratively adding the shortest edge that connects a vertex in the MST to



a vertex outside the MST. Here, the algorithm is adapted to evaluate the MSTs for all pairs of
vertices and check conditions for solving the Traveling Salesman Problem (TSP) optimally.

1.

Building Adjacency List:
The given graph is represented using an adjacency list where each vertex stores its adjacent
vertices and corresponding edge weights.

. Selecting Start and End Points:

For each pair of vertices (start and end points), the method selects these vertices to compute
the MST.

. Adding Hypothetical Node:

A hypothetical node is added to the graph, connected with an edge to the end point. The
weight of this edge is equal to the weight of the edge between the start and end vertices.

. Computing MSTs:

For each pair of vertices, including the hypothetical node, Prim’s algorithm is applied to find
the MST. The algorithm starts with an arbitrary vertex and grows the MST by selecting the
shortest edge at each step until all vertices are included. Priority Queue (min-heap) is used
to efficiently select the minimum weight edge.

. Edge Evaluation:

After computing the MST for each pair, the method evaluates the edges between the start
and end vertices. If there exists a direct edge between the start and end vertices, its weight is
added to the MST’s weight.

. Optimality Check (TSP Conditions):

The method checks the conditions for optimality in the T'SP:

(a) If the MST has the lowest weight among all MSTs computed for different pairs of vertices.

(b) If the outdegree of the start vertex is at most 1 and the end vertex has an outdegree of
0 in the MST.

(c) If the start and end vertices of the MST match the assumed start and end vertices.

Output:

Finally, the method outputs the weight of the MST. Note that this weight serves as a lower
bound for the Traveling Salesman Problem (TSP) on the given graph. The optimal TSP
solution must be at least this weight, as it represents the shortest tour that visits all vertices
exactly once.

Theorem 1

Let T' be the minimum spanning tree (MST) obtained using Prim’s algorithm on a graph G,
and let C be the cycle formed by adding the minimum-weight edge between the root and a leaf in
T. Then, the weight of the resultant path for the Traveling Salesman Problem (TSP) will not be
less than the weight of cycle C.

Proof:



1. Introduction: We denote the weight of 7" as w(T") and the weight of C' as w(C'). The weight
of C is calculated as the sum of the weight of 1" and the weight of the minimum-weight edge
added to form C, given by:

w(C) = w(T') + minWeight(T")

where minWeight(7') represents the weight of the minimum-weight edge that connects the root
and a leaf in T'.

2. Assumption of Contradiction: Suppose there exists another cycle C’ in G with weight
w(C") < w(C). Let € be the edge in C”’ that is not present in 7" and has the least weight.

3. Formation of New Spanning Tree: By replacing the heaviest edge in C with ¢/, we can
form a new spanning tree 7”. Since €’ has the least weight among the edges not in T, the
weight of 7”7 will be less than w(T).

4. Contradiction: This contradicts the fact that 7" is the minimum spanning tree of G.

5. Conclusion: Therefore, our assumption that there exists another cycle C’ with weight
w(C") < w(C) is false. Thus, the weight of the resultant path for the TSP will not be
less than the weight of cycle C.

Note:

e The time complexity of the method depends on the number of vertices V' and the size of the
input graph. Building the adjacency list takes O(V2) time, and computing MSTs for all pairs
of vertices takes O(V?1og V') time. Overall, the method has a time complexity of O(V?log V).

e This method provides a lower bound for the TSP solution. The actual optimal solution to the
TSP may be greater than or equal to this lower bound weight. Theorem 1

e The method efficiently handles graphs with a moderate number of vertices. However, for large
graphs, the time complexity may become a limiting factor.

6 Conclusion

The Traveling Salesman Problem (TSP) is a classic example of combinatorial optimization that has
challenged mathematicians and computer scientists for decades. It has substantial applications in
various fields such as logistics, manufacturing, and computer wiring, making its study not only aca-
demically interesting but also commercially important. The quest to solve TSP within polynomial
time remains elusive due to its NP-hard nature, highlighting the intricate dance between theoretical
computer science and practical problem-solving strategies.

In our exploration, we have discussed various solution approaches that span exact algorithms,
heuristic methods, and approximation algorithms. Exact algorithms like the Held-Karp dynamic
programming approach and the branch and bound method, although guaranteed to find the optimal
solution, are often impractical for large instances due to their exponential time complexities. On
the other hand, heuristic and metaheuristic methods such as the 2-opt and 3-opt algorithms, Ant
Colony Optimization, and Genetic Algorithms offer more scalable, albeit approximate, solutions.



These methods are particularly valuable in real-world applications where near-optimal solutions are
acceptable and desired swiftly.

Approximation algorithms, especially in metric spaces where the triangle inequality holds, pro-
vide a compromise between the certainty of exact algorithms and the efficiency of heuristics. The
Greedy and Nearest Neighbour algorithms, for example, are highly efficient and simple to implement
but do not always yield the best solutions.

It is evident from our review that no single approach currently exists that can universally solve
TSP in polynomial time for all possible instances. The diversity in the algorithmic approach to
tackling the TSP not only reflects the complexity of the problem but also the variety of practical
requirements and constraints encountered in different applications.

Future research might focus on hybrid algorithms that intelligently combine features of both
exact and heuristic methods or on the development of more sophisticated metaheuristic techniques
that can adaptively refine their strategies based on the problem instance characteristics. Addi-
tionally, advancements in quantum computing hold a promising yet largely unexplored frontier for
tackling NP-hard problems like the T'SP.

As computational power increases and new algorithms are devised, the boundary of what is
considered computationally feasible will undoubtedly shift. However, the inherent complexity of
the Traveling Salesman Problem ensures that it will remain a rich source of research opportunities
and practical applications for years to come.. The code repository containing the implementation
can be accessed here.
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