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ABSTRACT

Heat is defined in classical thermodynamics as an energy

transfer mechanism, but its fundamental nature is not yet

fully understood. After reviewing previous macroscopic,

mesoscopic, andmicroscopic approaches to heat, we pro-

pose a fundamental definition of heat in terms of a fully

detailed microscopic description and apply this definition

to a one-component gas with constant composition for

comparison with the usual macroscopic formulae. Us-

ing the new definition, we debunk common claims in the

literature that associate heat with our ignorance of the

microscopic details of a thermodynamic system.
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1 INTRODUCTION

Thermodynamics was born with the concepts of temperature and

heat. One could imagine that more than four hundred years after

the invention of the thermometer, the concept of heat would be

defined in a rigorous and complete way. This is not the case and

we can even find some commonmisconceptions in the literature,

as we will see in a moment.

Every scientist and engineer has an intuitive concept of heat as

something related to the concepts of heating and cooling and, in

fact, the textbook
11
by Greiner, Neise, and Stöcker, initially defines

heat by the expression
–d = d , in which  is a proportionality

constant and  is the temperature. A similar characterization

is provided by Guggenheim, for whom heat is “determined by a
temperature difference”.22 However, in more advanced expositions
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of thermodynamics we learn that bodies can exchange energy in

the form of heat even when the temperature remains constant,

the so-called isothermal heat.

Swendsen states that “heat is a form of energy”.33 Feynman, Leighton,
and Sands

44
claim that “heat energy” is simply another form of en-

ergy, they immediately add that “it is not really a new form, it is just
kinetic energy-internal motion”, and when discussing the crystalline
structure of a piece of ice, the trio of authors claims that “ice has
heat”. Such statements are incorrect. Ice, like any other material,
has no heat. As Landau, Lifshitz, and Pitaevskii correctly men-

tion, “we can therefore speak of the energy E in a given state, but not, for
example, of the quantity of heat which a body possesses in a given state”.55

We know from classical thermodynamics that heat and work are

energy transfer mechanisms, and not forms of energy. Kinetic

energy, internal energy, relativistic rest energy, and potential en-

ergy (gravitational, electromagnetic, nuclear, or any other kind)

are properly forms of energy.

Heat is modernly understood as a mechanism of transfer of en-

ergy, but what is its fundamental nature? We will review previous

attempts to answer this question in section 2 and provide a mi-

croscopic definition in section 3.

2 PREVIOUS DEFINITIONS OF HEAT

According to Haase,
66
the first scientist who attempted to answer

the aforementioned question unequivocally was Max Born in 1921

who, with the help of the first law of classical thermodynamics,

defined the heat
–d as the change in energy  not caused by work

–d = d – –d. (1)
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However, Bryan provided the same definition
77
in 1907. Accord-

ingly, we will refer to (1) as Bryan’s definition of heat. In the above

formula,
–d denotes an inexact differential.

Note: Bryan used a different sign criterion for work (his is our – ), but the

physics described are the same.

Bryan’s definition has two shortcomings. The first is that assign-

ing heat to a remainder of the energy change implies that if we do

not identify all sources ofwork, then all thework that has not been

identified would be incorrectly characterized as heat. The distinc-

tion between work and heat is obvious in most typical situations,

but becomes difficult in certain critical cases.

Neither Brian nor Bohr provided a general expression for work,

whichmeans that different concepts of heat will follow depending

on the definition of work used in (1). For example, would the

energy released by a chemical reaction be included as part of heat

or not? And the changes in the kinetic energy of diffusion? Do

we count them as work or heat? Furthermore, (1) is only valid

for closed systems, because for open systemwemust include an

extra term related to the flow of matter into or out the system.

The second deficiency of (1) is that the characterization of heat as

residual does not provide a true insight into what heat really is.

We only know from Bryan’s definition that heat is distinct from

thermodynamic work.

For systems at rest, all energy  is internal energy. This is the case

typically considered in standard textbooks and applications. In

the remainder of this section, we will consider thermodynamic

systems at rest.

Definition (1) and its integral version, = 𝛥 –, are used in

main thermodynamics textbooks for physicists and chemists.
55, 88–1111
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If we use
–d = –d for the work and take  = ( ,) for the

internal energy in (1), we obtain the following expression for the

heat for a one-component gas with constant composition
77

–d = d +( +
𝜕
𝜕) d , (2)

with  being the so-called heat capacity at constant volume, and

the term within parentheses is what they call the latent heat of

expansion at constant temperature. We will derive a microscopic

generalization of (2) in section 4.

Note:The terms “heat capacity at constant volume” and “latent heat of expansion at
constant temperature” are two unfortunate names since heat is only an energy
transfer mechanism, and not a property of systems. The historical origin of

this inappropriate terminology is found in the ancient caloric theory, when

it was believed that heat was an invisible, tasteless, odorless, and weightless

fluid that could permeate bodies.

We have seen an attempt to define heat using the first law of clas-

sical thermodynamics. Another attempt to define heat is based on

the second law; see for example section “10.4.2Heat” in Swendsen’s
textbook.

33
The definition is

–d =  d. (3)

However, this definition is based on a version of the second law

that is only valid for closed systems and reversible processes and

therefore (3) does not define heat inmore general situations, even

if we limit ourselves to the realm of classical thermodynamics.

Furthermore, since entropy is often identified with “ignorance”,
more specifically with the lack of information we have about the

system,
33, 99
the use of expressions like (3) can generate all kinds of

misconceptions aboutheat. Anexample iswhenGell-Mannclaims

that the thermodynamic entropy of any systemwould be zero for a
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perfectly informedobserverwhoknows all themicroscopic details

of this system. Consequently, Gell-Mann also affirms that:
1212

“Indeed, it is mathematically correct that the entropy of a system
described in perfect detail would not increase; it would remain con-
stant.”

However, his claims do not make any sense, because if d = 0
then the heat should always be zero for any reversible processes

in a closed system by virtue of (3). This is absurd because heat is a

physical property of the system and therefore independent of the

information acquired by an observer about the system; it is even

independent of the existence of any observer. We will show in the

next section how heat is not zero when the system is described in

detail.

As an introduction, we have reviewed howheat is defined in classi-

cal thermodynamics texts, but classical thermodynamics ignores

the structure of matter and instead treats it as a continuous ma-

terial medium. Therefore, this discipline is not helpful for under-

standing the nature of heat at a fundamental level. However, sta-

tistical mechanics is generally considered to provide “a foundation
for thermodynamics and the ultimate justification of why thermodynam-
ics works”.33 We might therefore expect statistical mechanics to
provide a fundamental definition of heat valid in arbitrary cases

and, althoughmost texts avoid this question, some provide the

following line of reasoning.
99, 1414

The starting point is the ensemble average for the energy

⟨E⟩ = ∑
i
PiEi, (4)

in which, Pi is the probability that a member of the ensemble has
the internal energy Ei.
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Differentiating the above expression for the average energy, we

obtain

d⟨E⟩ = ∑
i
EidPi +∑

i
PidEi, (5)

and heat is then identified with the change in energy caused by

the variation in probabilities

–d⟨Q⟩ = ∑
i
EidPi. (6)

Hill uses
1414
the canonical ensemble to obtain a specific expression

for the probabilities in the expression above, but (6) could be used,

in principle, for arbitrary ensembles, as long as there is no flow

of mater with the surroundings.

Le Bellac, Mortessagne, and Batrouni provide a similar definition

for heat, but they use operator methods from quantum statistical

mechanics and propose
–d⟨Q⟩ = Tr{Ĥd�̂�} =∑i∑j⟨zi|Ĥ|zj⟩d⟨zj|�̂�|zi⟩,

with Ĥ and �̂� being the Hamiltonian and state operators, respec-
tively and |zi⟩ a basis set.99 By choosing a diagonal basis, the evalu-
ation of Tr{Ĥd�̂�}matches expression (6).

Hill asserts that definition (6) provides us with a molecular inter-

pretation of the thermodynamic concept of heat as the change in

the energy of the system “accomplished not by changing the energy
levels of the system but rather by a shift in the fraction of time the system
spends in the various energy states”.1414 Le Bellac et al.make a similar
assertion; for them heat is associated to “amodification of [...] the
probabilities of energy level occupations”.

We can find similar statements in the rest of the statistical me-

chanics literature, but this so-called molecular interpretation of

the concept of heat is open to several objections, as we will see in

a moment.
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The first objection is that (4) is not the energy of the thermody-

namic system, but an ensemble average. But first we must intro-

duce the concept of ensemble used in statistical mechanics:
1414

“An ensemble is simply a (mental) collection of a very large num-
ber of systems, each constructed to be a replica on a thermo-
dynamic (macroscopic) level of the actual thermodynamic system
whose properties we are investigating.”

A thermodynamic systemwill have an internal energy E at each
instant and, in general, E ≠ ⟨E⟩. In expression (4), Ei is the energy
of system i and the system we are studying could be any of the

systems that conform the ensemble. Since (6) is obtained by dif-

ferentiating (4), this implies that (6) does not provide a molecular

interpretation of the heat exchanged by the system. At best,
–d⟨Q⟩

would describe an average heat in the ensemble sense.

Another objection to this alleged molecular interpretation of heat

is related to the interpretation of the probabilities that enter in

expression (6). Gibbs introduced the concept of ensemble to deal

with situations in which we do not know the molecular details of

large systems. In this view, probabilities (P1, P2,… P ) describe
our lack of knowledge about the positions, velocities... of all the

entities that make up the thermodynamic system that we are

studying.

However, if (6) were the fundamental definition of heat, then

heat would be a subjective or anthropomorphic quantity associ-

ated with changes in our ignorance about themicroscopic details,

which is very difficult to accept because, as mentioned at the be-

ginning of the introduction, thermodynamic heat is a physical

quantity that can be related to temperature changes in certain

processes, and it is obvious that a thermometer provides the same
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readings regardless of our knowledge about the molecular details

of the thermodynamic system under study.

Even if we reinterpret the meaning of the probabilities that enter

into definition (6), this only provides an characterization of the

average heat
–d⟨Q⟩ associated with the statistical ensemble and

not the actual heat
–dQ for the system under study.

Note: So far,wehavediscussedprobabilities abstractly,without giving concrete
values for specific physical situations. However, as mentioned above, Hill uses

the canonical ensemble toobtain the followingexpression
1414
for theprobabilities

Pi = exp(–Ei/kB )/∑j exp(–Ej/kB ). It would also be emphasized that the
temperature appearing in this expression is not the current temperature of

the thermodynamic system, but rather a statistical concept of temperature

associated with the canonical ensemble.  in the above expression is a fixed

parameter, while the temperature of any thermodynamic system fluctuates.

Both temperatures only coincide in the limit of an infinite system. This is

another drawback of the “molecular interpretation” of heat.

For all the above reasons, we may abandon statistical mechan-

ics and look for a fundamental definition of heat that does not

use ensembles, averages, or probabilities. Sekimoto takes a step

in this direction when, with the help of the theory of stochastic

processes, he provides a mesoscopic definition of heat.
1515

Sekimoto first introduces a “mesoscopic (or Landau) free energy”
F = F(x, a, 𝛽), where x is the slowvariable of interest –theposition
of themagnetic bead in the context of the exampledescribed in the

introduction of his paper–, while a is an external control parame-
ter and 𝛽 = 1/kB , where again  is not the actual temperature

of the thermodynamic system, but an ensemble temperature. Dif-

ferentiating this mesoscopic free energy at constant temperature,

we obtain

dF =
𝜕F
𝜕x

dx +
𝜕F
𝜕a

da. (7)
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Sekimoto then associates a mesoscopic heat to the first compo-

nent of the differential; that is,

–dQ =
𝜕F
𝜕x

dx, (8)

and using a Langevin equation, he rewrites this heat as

–dQ = [–𝛾
dx
dt

+ 𝜉(t)] dx, (9)

with 𝛾 the friction coefficient for the slow variable x, and 𝜉(t) a
white Gaussian random force.

The first thing that I want to point out is that, contrary to the

title of his paper,
1515
expression (8) does not provide a microscopic

definition of heat. Sekimoto’s work is based on a Langevin-type

mesoscopic dynamics. However, the biggest concern with his

approach is that (8) does not represent thermodynamic heat, as

we will see in a moment.

Consider a system at rest. The position x of the system is constant

and only the random force 𝜉(t) contributes to (9). Now, for cer-
tain sufficiently large systems, fluctuations can be ignored, as is

usually done in classical thermodynamics, and from definition

(9) we would conclude that heat is always zero, which contradicts

not only classical thermodynamics, but also our entire experience

with those systems.

Note: Sekimoto makes a distinction between the heat that he defines in his
paper and the heat that, in principle, can be measured experimentally using

calorimetric techniques. However, the distinction between both is simply

related to temperature changes and does not affect our criticism of (8) and (9).

The problem with Sekimoto’s work and similar so-called stochas-

tic approaches to thermodynamics is that they identify the energy

absorbed or released as heat with changes in the kinetic energy
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of the system, when heat is related to changes in internal energy.

This is the reason why when we heat a tennis ball we increase its

internal energy, but not its speed.

Wemust abandon the so-called stochastic approach todefineheat,

not only because it is actually amesoscopic approach, but because

it is incorrect. Expression (8) is, in fact, the standard definition

of mechanical work, since it gives the variation in the energy of

the system caused by a change in its position.

A truly microscopic attempt to define heat was recently made by

MenonandAgrawal.
1616
Thetwoauthors startwith theHamiltonian

for the universe, extract the Hamiltonian Ha for the system of

interest, and provide expressions for heat and work. Heat for

system a is defined as1616

dQa = –∑
b≠a

(
𝜕Hb

𝜕xb
dxb +

𝜕Hb

𝜕pb
dpb) –∑

b≠a

∑
c
(
𝜕Vbc
𝜕xc

dxc +
𝜕Vbc
𝜕pc

dpc) .

(10)

In the above definition,Hb is the Hamiltonian for all the systems

that are not the system under study, p and x are momenta and
position coordinates, respectively, and Vbc is the interaction en-
ergy between b and c; the index c runs over all the systems in the
universe, while b runs over all the systems excluding the system
of interest.

We cannot accept (10) as a microscopic definition of heat because

it conflictswith classical thermodynamics andwith experience. If,

instead of startingwith theHamiltonian for the universe, we start

with the HamiltonianHa for the system of interest and calculate

its infinitesimal variation,

dHa = –∑
b≠a

(
𝜕Vba
𝜕xa

dxa +
𝜕Vba
𝜕pa

dpa) . (11)
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We can see that this variation is just one of the components in (10).

More specifically the terms with c = a, which implies that the rest
of components in (10) cancel the term that Menon and Agrawal

identify with work

dWa =∑
b≠a

(
𝜕Vba
𝜕xb

dxb +
𝜕Vba
𝜕pb

dpb) . (12)

We cannot accept (10), because it has been derived from an arbi-

trary split of the energy change of the system plus its surround-

ings. Note also that Menon and Agrawal identify work with a

change in the coordinates of the environment, when work is tra-

ditionally associated to changes in the coordinates of the system

under study. A similar criticism also applies to their heat defi-

nition, which contains a term that describes the variation in the

energy of the bodies that are not the system under study. The two

authors have only provided a formal analogy of thefirst lawof ther-

modynamicswithout any link to the true thermodynamic laws. In

fact, they do not provide any derivation of known thermodynamic

formulae or thermal phenomena.

Amuchmore interesting approach is that developed by DeVoe,
1717

who uses Newtonian mechanics to derive the total work done

by the forces acting on all the entities of a system and then as-

sociates thermodynamic work and heat to the Newtonian work

done on a thin outer layer of the system that is located next to the

boundary surface of the system by contact forces exerted by the

surroundings. DeVoe defines heat as

Q =∑
𝜏

∑
i
∫ 𝛿i𝜏Fcnti ⋅ dri𝜏. (13)

In the definition above, 𝛿i𝜏 is a Kronecker-like delta, equal to one
when the entity i is in segment 𝜏 of the boundary layer and equal to
zero otherwise. Fcnti is the net contact force exerted on the entity i
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by nearby particles in the surroundings, and ri𝜏 is a vector from a

point fixed on the outer face of the segment 𝜏 at the boundary to
the entity i inside the segment (see figure 1 on ref. 1717 for details).
Besson developed a closely related approach.

1818

One objection to the Newtonian approaches of DeVoe and Besson

is that they associate heat with short-range interactions at meso-

scopic boundaries. There is no reason why heat should only be a

local mechanism for energy transfer. In classical diffusive energy

transfer, the heat flux can be calculated from Fourier’s law, in

terms of the local thermal conductivity and the local temperature

gradient, but in more general situations the local quantities are

not sufficient to calculate the heat and wemust take into account

the physical conditions of a larger part of the system or even the

entire system. This show the general nonlocal nature of heat.

Another objection is that both approaches are based on the ad hoc
definition of an arbitrary-size subset of the system under study:

the “mesoscopic elements”1818 or the “segments of the interaction layer”.1717

Besson offers some qualitative arguments about the minimum

andmaximum sizes of those mesoscopic elements, but the split

of energy transfer into heat and work remains subjective. Finally,

both authors use Newtonian mechanics, while we look for the

more general possible definition of heat.

3 MICROSCOPIC DEFINITION OF HEAT AND FIRST LAW

Before presenting amicroscopic definition of heat, it is necessary

to remember that thermodynamic relations are usually expressed

in terms of differentials becausemost introductory texts describe

all transformations of state as idealized, infinitely slow changes:

the so-calledquasistatic processes. With that restriction, heat and
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work cannot be defined in terms of a time interval dt in classical
thermodynamics, since the transformations do not occur in a

finite time.

Moreover, since heat andwork are not state functions, these quan-

tities cannot be uniquely specified by initial and final states and

“imperfect”88 or “inexact”11, 33, 1010 differentials –dQ and –dW are used to

represent heat and work in classical thermodynamics. However,

our approach is purely dynamical, contains time as a variable,

and we can replace the classical expression (1) with the modern

dQ = dE – dW, where the quantities dQ and dW are well defined.

For example, the energy supplied in a time dt by a heating coil of
resistance R carrying a current J is given by dQ = (J2R) dt.

Since we are looking for a fundamental concept of heat that is of

general validity, we will consider an arbitrary system withN enti-
ties and energy E. The entities can be elementary particles, atoms,

molecules, ions, macromolecules, stars, etc. This energy can be

expressed in terms of different variables, such as the positions

and velocities of the entities, momenta and positions, or others.

For greater convenience, we will work with momenta pi and po-
sitions ri, in which case the energy E = E(r1, p1, r2, p2,… , rN, pN)
is just the Hamiltonian of the system. Wemake no assumptions

about the equations of motion.

Using a dot notation

.
Z ≡ (dZ/dt) for the rate of change of the

quantity Z , the rate of change of the energy of the system is given

by

.
E =

N

∑
i

𝜕E
𝜕ri

.ri +
N

∑
i

𝜕E
𝜕pi

.pi. (14)

The constituent entities of the thermodynamic system aremoving

and we intuitively associate thermodynamic work with a kind of

‘ordered’ motion that modifies some mechanical property that
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characterizes the system as a whole; for concreteness, we will con-

sider the volume variations produced by a change in pressure. We

also intuitively associate heat with a kind of ‘disordered’ motion.

Greiner and coworkers offer an intuitive graphical distinction

between heat and work
11
that we reproduce in figure 1.

Figure 1: Collective movement of entities in the same direction and sense (left).
Individual movement of each entity in random directions (right).

Callen talks
88
about “mechanical modes” and “hidden atomic modes” of

motion regarding work and heat. I think his terminology is mis-

leading and the basis for amisinterpretation of heat as something

associated with our ignorance. Besson talks about the coherence

or incoherence of the interactions, which ismuch better terminol-

ogy. Wewill discuss this topic inmore depth below. Asmentioned

in the former section, Besson’s approach is really mesoscopic; he

also writes:
1818

“The distinction between work and heat cannot be made at the mi-
croscopic level of molecules or atoms; on that scale, there is no differ-
ence between the two types of interaction. When one heats a glass
by touching it or moves it by pushing it, the interaction between a
molecule of the hand and amolecule of the glass is similar in kind.”

We will show in this section how the distinction between thermo-

dynamic work and heat can be made at the microscopic level.
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Our goal will be to make this distinction rigorous and precise. To

obtain a microscopic definition of heat, we want to characterize

the total variation of energy of the system under study in terms of

different microscopic modes of motion of the entities. To divide

the total energy variation into different components, we must

first reparametrize the position variables as ri = 𝜆si, where 𝜆 is a
lineal scale parameter that characterizes the system as a whole

and si are the new position variables. Considering that the system
is enclosed in a cubic box of volume V = 𝜆3, then the result is
ri = V1/3si. We have derived this expression assuming a cubic box
for simplicity, but the reparametrization of the coordinates ri into
the collective parameter V and the individual remainders si can
be done for any geometry of the volume.

This change of variables for the position coordinatesmust be done

in a manner consistent with mechanics. Therefore, to preserve

the conjugacy of positions andmomenta

drNdpN = [V1/3ds]
N
dpN = dsN [V1/3dp]

N
= dsNdgN, (15)

and we can infer the expression pi = V–1/3gi from the phase space

structure, with gi the newmomentum variables.

Using this reparametrization of the position andmomenta vari-

ables in (17), we obtain for the rate of change of the energy of the

system the following expression

.
E =

N

∑
i

𝜕E
𝜕ri [

𝜕ri
𝜕si

.si +
𝜕ri
𝜕V

.
V] +

N

∑
i

𝜕E
𝜕pi [

𝜕pi
𝜕gi

.gi +
𝜕pi
𝜕V

.
V] . (16)

Partial derivatives on volume are easy to calculate, (𝜕ri/𝜕V) =
(ri/3V) and (𝜕pi/𝜕V) = –(pi/3V), which yields

.
E =

N

∑
i
[
𝜕E
𝜕si

.si +
𝜕E
𝜕gi

.gi] –
1
3V

N

∑
i
[
𝜕E
𝜕pi

pi –
𝜕E
𝜕ri
ri]

.
V. (17)
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We have finally expressed the rate of change of the energy of the

system as the sum of a collective term associated to the rate of

change of the volume of the system and individual terms asso-

ciated with each
.si and

.gi. However, we have not simplified the
description, because we need 6N scalar variables plus the volume
to calculate the rate of change of the energy. That is, our approach

remains microscopic.

In the low velocity regime, the energy of a system ofN entities can
be divided into the kinetic energy of the center of mass and the

internal energy of the system, E = (P2
/2M) + U, with P ≡ ∑N

i pi
the totalmomentum,M ≡ ∑N

i mi the totalmassof the system, and

U the internal energy. The concept of internal energy is necessary

to adequately define heat, since the motion of the system as a

whole is exclusively associated with work. However, there are

difficulties indefining the centerofmass in thehigh-speed regime

and in introducing an adequate generalization of the concept of

internal energy used in classical thermodynamics. Wewill explore

those difficulties elsewhere.
1919
For the purposes of this article, we

will consider a reference system for which P = 𝟎, in which case
E = U and we can continue using previous expressions such as
(17) without worrying about the distinction between total energy

and internal energy.

Tomake contact with thermodynamics, we first define the heat

rate as

.
Q ≡

N

∑
i
[
𝜕E
𝜕si

.si +
𝜕E
𝜕gi

.gi] (18)

and next define the system pressure as

p ≡
1
3V

N

∑
i
[
𝜕E
𝜕pi

pi –
𝜕E
𝜕ri
ri] , (19)
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finally obtaining from (17) a very compact expression for the rate

of change of internal energy

.
E =

.
Q – p

.
V. (20)

This is a microscopic generalization of the first law of classical

thermodynamics, and the physical interpretation of each quantity

is now evident. The –p
.
V term describes the change in internal

energy due to microscopic modes of motion that affect to all the

particles at once through a change in volume, with the pressure

measuring the sensitivity of the energy to such changes since

p = –(𝜕E/𝜕V) in (20). We call those modes collective. The heat

rate

.
Q describes the change in internal energydue tononcollective

microscopic modes of motion. Heat is a total differential defined

in themicroscopic state space (s1, g1, s2, g2,… , sN, gN). Contrary to
conventional wisdom, heat is not associated with our ignorance,

since we are using a complete description of microscopic motion

to define heat. We will see in section 4 that the conventional heat

used in classical thermodynamics corresponds to an average of

this microscopic concept of heat, but even after averaging heat

cannot be associated with ignorance. Heat is a physical property

as velocity or energy are.

Note:Theminus sign in (20) is a historical consequence of theway that pressure

was first defined in physics. We could absorb the sign into the definition of

pressure and describe exactly the same phenomena, but our pressure values

would be different from those found in tables and measured with standard

apparatus.

Recall that we derived the –p
.
V term by associating a lineal scale

parameter 𝜆 to the volume V = 𝜆3 of the system. If, instead, we
had related the parameter to the area A of the system or to its

length L, using A = 𝜆2 or L = 𝜆 respectively, we should have
obtained alternative expressions for the energy rate, with the area

or the length of the system being the new collective parameter.
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It is not necessary to repeat the entire derivation for such cases,

we can simply take the –p
.
V term, and use the geometric relation

V = AL to obtain

p
.
V = (pA)

.
L + (pL)

.
A. (21)

This can be simplified to

p
.
V = –𝜏

.
L – 𝛾

.
A (22)

by introducing two new concepts: the linear tension 𝜏 ≡ –pA and
the surface tension 𝛾 ≡ –pL. Once again, the presence of the minus
signs is a historical artifact.

4 CLASSICAL THERMODYNAMICS AND THE THERMODYNAMIC
LIMIT

If we multiply both sides of (20) by dt and define the infinitesimal
work as dW = –pdV, we obtain

dE = dQ + dW. (23)

This differential version of the first law is more like that found

in classical thermodynamics textbooks.
11, 22, 88, 1010

The difference is

that all the differentials in (23) are exact, while those textbooks

must use inexact differentials because they do not consider the

time variable as wewill show in amoment (see also the comments

made at the beginning of section 3).

We can obtain alternative expressions for heat by writing explicit

expressions for the internal energy E. Wementioned before that
there are difficulties in defining the center of mass of a system

of entities in the high-speed regime. There are also related dif-

ficulties in relation to the generalization of the concept of tem-

perature used in classical thermodynamics.
1919
This is the reason

19



why a special relativistic thermodynamics that is both complete

and consistent has not yet been developed. However, when the

speeds of the entities are small compared to the speed of light,

the internal energy is given by

E = CVT + 𝛷, (24)

in which 𝛷 is the interaction energy of the system and the micro-

scopic temperature T is defined by

T ≡
1

kB3N

N

∑
i

p2i
mi

, (25)

with kB the Boltzmann constant.

Expression (24) for the energy is exact in the low-speed regime.

Differentiating it and putting it in (23) yields

dQ = CVdT +(p +
𝜕E
𝜕V)

dV +
N

∑
i

𝜕𝛷
𝜕si

dsi, (26)

which is a microscopic generalization of the classical thermody-

namics expression (2).

Our new formulation is more general than that of classical ther-

modynamics, but not only because all the quantities in our expres-

sions are microscopic and instantaneous, and therefore include

fluctuations and size effects, but because our expressions include

additional terms like the last term in (26), which does not appear

in (2). For an isothermal system at constant volume, the classical

expression (2) predicts there is no heat, but (26) associates a heat

to noncollective changes in the internal potential energy.

In the remainder of this section, we will discuss the relationship

of (23) to classical thermodynamics. First of all, we must elimi-

nate fluctuations and size effects. To do this wemust take time
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averages and the limit of an infinite systemwithout gravitation:

G → 0,N → ∞, and V → ∞. Classical thermodynamics works in
the quasistatic approximation and we can take the averages over

an infinite time span [0,∞].

Defining the following quantities

 ≡ lim
G→0

lim
N→∞
V→∞

lim
𝜏→∞

1
𝜏 ∫

𝜏

0
E(t) dt, (27)

–d ≡ lim
G→0

lim
N→∞
V→∞

lim
𝜏→∞

1
𝜏 ∫

𝜏

0
dQ(t) dt, (28)

and

–d ≡ lim
G→0

lim
N→∞
V→∞

lim
𝜏→∞

1
𝜏 ∫

𝜏

0
dW(t) dt, (29)

results in the classical thermodynamics expression found in text-

books
11, 22, 88, 1010

d = –d + –d. (30)

We can see now explicitly how time averaging removes the time

variable from all classical thermodynamics quantities, forcing the

formalism of classical thermodynamics to use inexact differen-

tials for heat and work.

In the textbook-like expression (30), the thermodynamic work

is given by
–d = –d. We have mentioned before that (23)

uses exact differentials and the time variable, while (30) does not.

Other fundamental differences between (23) and (30) are that the

energy in (23) is not an extensive quantity and the pressure is not

intensive.

Note: Classical thermodynamics distinguishes between variables that are in-
dependent of the quantity of matter in a system, the intensive variables, and

variables that depend on the quantity of matter, which are called extensive

variables. Temperature, pressure, viscosity, concentration, and molar heat
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capacity are examples of intensive variables in classical thermodynamics be-

cause they do not depend on the number of particles, whereas volume and heat

capacity are typical examples of extensive variables. For example, if we divide

an infinite systemwithout gravitation in half,N → (N/2), its energy decreases
by the same proportion  → (/2), but pressure remains unchanged → .

Our new thermodynamics is valid for any classical system en-

closed in a volume. If we divide the system into two subsystems

A and B, the total energy is not the sum of the energy of each

subsystem but it is given by E = EA + EB + 𝛷AB, where 𝛷AB is the
energy of the interaction between A and B. If we introduce this
split of the energy into the definition of pressure (19), we obtain

p =
VA
V
pA +

VB
V
pB +

1
3V

N

∑
i
[
𝜕𝛷AB
𝜕pi

pi –
𝜕𝛷AB
𝜕ri

ri] , (31)

where we have recursively applied the definition (19) to each sub-

system to obtain pA and pB. If we multiply both sides of the above
expression by the total volume V = VA + VB, we obtain

pVA + pVB = pAVA + pBVB + (𝛷AB). (32)

We can now easily check that the identity p = pA = pB is only
possible if we ignore the interaction between systems A and B.
Therefore, thermodynamic pressure is not an intensive quantity

in the general case.

It is often stated in textbooks that ordinary thermodynamics is

valid for any macroscopic system:
88

“In contrast to the specificity of mechanics and electromagnetism,
the hallmark of thermodynamics is generality. Generality first in
the sense that thermodynamics applies to all types of systems in
macroscopic aggregation, and second in the sense that thermody-
namics does not predict specific numerical values for observable
quantities.”
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However, we have just shown that ordinary thermodynamic quan-

tities such as pressure are intensive only when interactions are

weak and energy is additive E = EA + EB. We must conclude
that the thermodynamic formalism described in ordinary text-

books
11, 22, 88, 1010

is only valid for systems that are not too small tomake

electromagnetic or nuclear interactions important and, at the

same time, the systems cannot be too big as to do gravitational

interactions relevant.

This is the meaning of the limits G → 0 and ofN → ∞, V → ∞ in

(27), (28), and (29). The formalism described in the cited textbooks

does not apply “to all types of systems in macroscopic aggregation”,
as Callen pretends, but only to macroscopic systems in which

gravitation, fluctuations, and other size effects can be neglected.

Note: Scaling a material system to an infinitely large size implies that the

gravitational potential energy grows more rapidly than linearly with the mass

of the system, since the potential energy increases as the five-thirds power of

the mass. What happens when we scale the size of a self-gravitating system

while keeping the temperature and density constant is that it begins to fall

apart into separate groups as soon as the systems exceed a critical mass, called

the Jeans mass in astrophysics.

On the other hand, our thermodynamic expressions are com-

pletely general, because they have been derived from first prin-

ciples without limiting the number of particles or the type of

interactions.

TheN → ∞ and V → ∞ limit deserves additional comments. This

limit is called the thermodynamic limit
33, 99
and it is sometimes

said that thermodynamics is only valid in the limit of infinite

system sizes. But an obvious difficulty with this view is that we

only carry out experiments on finite systems, which would imply

that thermodynamics could never be applied to the real world.
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The limitsN → ∞ and V → ∞would be taken in thermodynamics

in the same sense as the limit c → ∞ in mechanics. If we take

c → ∞ literally, thenNewtonianmechanics could never be applied

to the real world since c has a finite value in our universe. For an
entity i with velocity vi, we recover the Newtonian expressions
when (v2i /c2) → 0. Being rigorous, wewould takeN limits, one per
entity (v2i /c2) → 0, if wewant to recover theNewtonianmechanics
of a system of N entities; however, since c is common to all the
entities, we formally apply a single c → ∞ limit to the whole

mechanical system.

To recover classical thermodynamics, we cannot takeN → ∞ and

V → ∞ literally. Readersmight object that our remarks about this

limit are trivial, but I want to emphasize that in the physics litera-

turewe canfind statements such as “thermodynamics is a special case
of statistical mechanics for verymany particles (N → ∞)”11 or that sta-
tistical mechanics presents paradoxes “that can be resolved only by
acknowledging the thermodynamic limit”.2020,2121 LeBellac, Mortessagne,
and Batrouni mention the thermodynamic limit in their discus-

sion of the physical basis of irreversibility and the problem of the

Poincaré recurrences, and state that “in rigorous arguments, we take
the thermodynamic limit in order to avoid such recurrences”.33, 99 There is

nothing rigorous in these arguments because it can be demon-

strated that the laws of classical thermodynamics stop working

at that limit, in such a way that not only can we not explain irre-

versibility, but we could not explain any thermodynamic process.

By considering the thermodynamic limit we can resolve several

paradoxes of statistical mechanics, but at the cost of introducing

paradoxes and inconsistencies in the thermodynamic formalism.

A simple way to understand why thermodynamics stops working

in the thermodynamic limit is by calculating the second deriva-

tives of the thermodynamic entropy in classical thermodynamics.
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Differentiating entropy twice with respect to the internal energy,

we obtain

𝜕2
𝜕2 =

𝜕
𝜕 (

1
 ) = –

1
 2

𝜕
𝜕

= –
1

 2
. (33)

The so-called heat capacity  is proportional to the number of

entities, so taking theN → ∞ limit implies that the temperature

of the system cannot vary when the system absorbs or releases

energy since (𝜕 /𝜕) = 0.

Additionally, differentiating the thermodynamic entropy twice

with respect to the volume gives

𝜕2
𝜕2 =

𝜕
𝜕 (


 ) = –


 2

𝜕
𝜕

+
1

𝜕
𝜕

= –


 2𝛼
–

1
 𝜅

, (34)

with 𝛼 the coefficient of thermal expansion and 𝜅 the isothermal
compressibility. Taking the  → ∞ limit, we conclude that the

temperature and pressure of the system remain constant with

changes in the volume.

We can repeat the calculation for the rest of second-order deriva-

tives of the thermodynamic entropy and the result is the same.

This has an easy explanation: the first-order derivatives of the

entropy are intensive quantities in classical thermodynamics and

the second-order derivatives are proportional to (1/N) or (1/)
and, consequently, they vanish in the thermodynamic limit. The

lawsof thermodynamicsdonot apply in the limit of infinitely large

systems since, for example, heating an infinite system would not

increase its temperature, contrary to what experimentation and

observation in real systems shows.

Popular claims that the formalism of thermodynamics is rigor-

ously derived from statistical mechanics in the thermodynamic

limit and that the behavior of matter is governed by the laws of
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thermodynamics only in this limit are commonmisconceptions.

The thermodynamic limit must be interpreted physically in the

same sense as the low-velocity limit in mechanics.

5 OPEN SYSTEMS

Traditional definitions of heat such as (1) and (3) are only valid

when the total amount of matter in the system remains constant.

The same is true formost classical thermodynamics formulae. For

open systems, the macroscopic first law (30) must be generalized

to

d = –d + –d + –d, (35)

with
–ddescribing the variation in energy causedbymatter enter-

ing or leaving the system. Experts disagree on how to define this

new term.
66, 88, 1313

Different definitions of heat for open systems are

reviewed in ref 2222, in which a new definition for –dwas also pro-

posed. The aforementioned authors usemoles as unit for amount

ofmatter, but we can use the number of entities instead, in which

case
–d = ∑kk deNk, where deNk is the variation of the number

of entities of substance k due to exchanges with the environment.
Obviously, the physical meaning of the new quantityk depends

of the definition of heat used.
2222

The macroscopic differential law (35) assumes that matter has

a continuous nature. We could replace it with a macroscopic

integral law 𝛥 =  + +, in which is defined in terms of

discrete variations of matter 𝛥eNk, but we will not be able to find
amicroscopic analogue of any of these laws. The difficulty here

lies in the fact that the macroscopic laws assume the existence of

three independent energy transfer mechanisms (heat, work, and

matter), when only two of them are microscopically independent,

as we will show in a moment.
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For simplicity, consider an adiabatic process with no chemical,

electromagnetic, or interfacial work. In this case themacroscopic

first law (35) reduces to

d = –d + –d. (36)

The work term is the product of an intensive quantity, the macro-

scopic pressure, and the change in volume. This product does

not depend on the number of entities Nk and this is the reason

why the term
–d is necessary to describe energy variations due

to changes inNk caused by surrounding flows of matter.

However, the microscopic pressure (19) is not an intensive quan-

tity, since it depends on the number of entities, and if this number

changes fromN to (N+ A) as a consequence of matter flows, then
the microscopic law (23) applied to the same adiabatic process,

with no chemical, electromagnetic, or interfacial work, changes

from

dEN = –pNdV (37)

to

dEN+A = –pN+AdV, (38)

making it unnecessary to include an additional term to account

for the energy change caused by matter entering or leaving the

system.

Of course, we could formallywrite the last microscopic law as

dEN+A = –pNdV + dRA, (39)

with dRA ≡ (dEN+A – dEN), but in general –pNdV is not the work
in the system with (N + A) entities. Only in the limit of a very
large system,N → ∞, do we find that pN+A ≈ pN and recover an
analogue of the classical law (36).
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6 CONCLUDING REMARKS

Many conventional textbooks
11, 88, 99, 1414, 2323

identify the entropy of clas-

sical thermodynamics with ignorance –more explicitly with the

lack of information about “the exact microscopic state of a many-body
system”–33 and, by means of Clausius law –d =  d, they also
associate heat with ignorance. Gell-Mann even claims that the

entropy of a system described in perfect detail would remain con-

stant,
1212
but this would imply that the system cannot be heated or

cooled, which is absurd.

This modern association of the thermodynamic concept of heat

with ignorance can also be found in the usual statistical mechan-

ics approach, in which the molecular interpretation of heat is

explicitly associated with modifications of our knowledge about

the microstate. In fact, authors like Hill consider that thermody-

namic variables such as temperature and entropy are instances

of “nonmechanical properties”,1414 while by mechanical properties he
refers to pressure, energy, volume, number of molecules, etc. For

Hill, onlymechanical properties can be defined in purelymechani-

cal terms “without, for example, introducing the concept of temperature”.

However, this dominant academic view on the nature of heat does

not standup to critical scrutiny, and someauthors have attempted

to offer a purely mechanistic, probability-free definition of heat.

After reviewing previous attempts to define heat, we provide a

fundamental microscopic definition of heat and of the first law

valid for both closed and open systems. This definition makes no

assumptions about sizes, extensivity, the type of interactions, or

velocity regimes, and is completely general. Paraphrasing Hill,

our concept of heat is defined inpurelymechanical terms,without

introducing the concept of temperature, although temperature is

used to make contact with classical thermodynamic formulae.
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We then apply the definition to a simple system, a one-component

gas with constant composition, to make explicit contact with

classical thermodynamics and show that our approach not only

provides anonstatistical foundation for classical thermodynamics

but also offers generalized formulae.

We have shown that heat is the energy transfer mechanism result-

ing from the noncollective (incoherent) movement of the entities

that constitute the system. We can also define temperaturemicro-

scopically, and this opens the possibility of a future microscopic

definition of entropy in terms of mechanical quantities. This pa-

per is the first in a research program to redefine thermodynamics

from a real microscopic basis, without ensembles or probabilities.
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