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Abstract

We learn how to quantize a two dimensional constrained system that
functions as the building block of Dirac field.

Suppose you are interested in quantizing the system defined by the La-
grangian

L(ϕ, ∂tϕ) =
1

2

∫
R3

(
(∂tϕ(x))

2 − ∥∇ϕ(x)∥2 − m2(ϕ(x))2
)
d3x,

where ϕ : R3 → R and ∂tϕ : R3 → R are fields, and m ∈ R is some
constant. The equation of motion for this system is Klein-Gordon equation,
and the field ϕ appearing here can be called a Klein-Gordon field. If you
know the basic principles of quantum mechanics, you might consider the
approach that maybe we first solve the Hamiltonian H(ϕ,Π), where Π is the
canonical momentum field of the system, and then turn this Hamiltonian
into an operator with the substitution

Π(x) ← −iℏ δ

δϕ(x)
.

The Hamiltonian operator can then be used to write down a Schrödinger
equation, which in this case can be seen to be an infinite dimensional partial
differential equation. The problem that we then encounter is that the infinite
dimensional partial differential equation can seem intimidating, and it is not
immediately obvious how to study its solutions.

If you take a Fourier transform of the Klein-Gordon field, you can find
the result that actually the system can be seen to be an infinite product of
one dimensional systems defined by a Lagrangian of the form

L(x, ẋ) =
1

2
ẋ2 − ω2

2
x2.

Here x, ẋ ∈ R are coordinates, and ω ∈ R is some constant. This Lagrangian
defines a one dimensional harmonic oscillator. We see that Klein-Gordon
field can be seen to be an infinite dimensional harmonic oscillator. Main-
stream physicists have realized that if you quantize the one dimensional
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harmonic oscillator, that quantized system can then be used as a building
block to construct the full quantized Klein-Gordon field. If we assume that
our equations make sense, the quantized Klein-Gordon field found in this
way should also provide solutions to the original infinite dimensional partial
differential equation.

Next, suppose you are interested in quantizing the system defined by the
Lagrangian

L(ψ, ∂tψ) =

∫
R3

Re
(
ψ(x)

(
i(γ0∂t + γ · ∇) − m

)
ψ(x)

)
d3x,

where ψ : R3 → C4 and ∂tψ : R3 → C4 are fields, and m ∈ R is some
constant. Here we used a notation ψ(x) = ψ†(x)γ0, and γ0, γ1, γ2, γ3 are
the gamma matrices of Dirac equation. The symbol “Re” means the real
part of a complex number. The equation of motion for this system is Dirac
equation, and the field ψ appearing here can be called a Dirac field. In
this system the field ψ and the canonical momentum field Π must satisfy a
primary constraint Π = −iψ. The presence of this constraint means that the
system cannot be quantized by simply substituting a differential operator
in the place of Π. Those who have studied Dirac’s 1964 book Lectures on
Quantum Mechanics have some idea of what maybe should work: We should
find the Dirac-Poisson brackets of this system, and then find operators with
the same commutation structure. The problem that we then encounter
is that the Dirac-Poisson brackets define an infinite set of commutation
relations that can seem intimidating, and it is not obvious what kind of
ansatz could be used find the correct operators.

If we recall how the quantization of Klein-Gordon field was made to
work, we get an obvious idea that maybe it is possible to write the Dirac field
system as an infinite product of some simpler finite dimensional systems too.
The answer is that yes this does work. If you take a Fourier transform of the
Dirac field, and if you find the correct 8-dimensional real linear transforms,
you can find the result that actually the system can be seen to be an infinite
product of two dimensional systems defined by a Lagrangian of the form

L(x, y, ẋ, ẏ) = ẋy − ẏx− a(x2 + y2). (1)

Here x, y, ẋ, ẏ ∈ R are coordinates, and a ∈ R is some constant. Both
positive and negative values for a are relevant for Dirac field. So a strategy
to quantize Dirac field will be that first we learn how to quantize the two
dimensional system defined by Equation (1), and then that quantized system
will be used as a building block to construct the full quantized Dirac field.
The quantization of the system defined by Equation (1) is the main topic of
this article.
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Let’s first have a look at the classical behavior of the system defined by
Equation (1). The partial derivatives of this Lagrangian are

∂xL = −ẏ − 2ax, ∂yL = ẋ− 2ay,

∂ẋL = y and ∂ẏL = −x.

In this case the Euler-Lagrange equations

Dt∂ẋL(x(t), y(t), ẋ(t), ẏ(t)) = ∂xL(x(t), y(t), ẋ(t), ẏ(t))

and
Dt∂ẏL(x(t), y(t), ẋ(t), ẏ(t)) = ∂yL(x(t), y(t), ẋ(t), ẏ(t))

can be simplified into the form

ẋ(t) = ay(t) and ẏ(t) = −ax(t).

If initial values x(0) and y(0) are fixed, the solution to the time evolution
equations will then be given by the formula(

x(t)
y(t)

)
=

(
cos(at) sin(at)
− sin(at) cos(at)

)(
x(0)
y(0)

)
.

We see that the time evolution is simple rotation around the origin, and
the angular speed does not depend on the vector’s distance to the origin.
The direction of the rotation is determined by the sign of a: If a > 0, the
solutions rotate clockwise, and if a < 0, then counterclockwise.

The canonical momenta of this system are given by formulas

px = y and py = −x.

We see that it is not possible to write the velocities ẋ and ẏ as functions
of x, y, px, py (without using the time evolution equations), which is what
happens with constrained systems.

We can write down constraint functions

ϕ1(x, y, px, py) = px − y and ϕ2(x, y, px, py) = py + x,

and state that the system must obey the primary constraints

ϕm(x, y, px, py) = 0 for m ∈ {1, 2}.

The values of a Hamiltonian are supposed to be equal to the quantity

pxẋ + pyẏ − L(x, y, ẋ, ẏ).

By using the contraints this naturally simplifies to

H(x, y, px, py) = a(x2 + y2).
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Since this is a contrained system, there does not exist a unique Hamiltonian
for all x, y, px, py. The different Hamiltonians give unique values for only
those x, y, px, py that satisfy the constraints ϕm(x, y, px, py) = 0 for m ∈
{1, 2}. The Hamiltonian we found now above is probably the simplest one.
We see that if a > 0, the energies are positive and bounded from below, but
if a < 0, the energies are negative and bounded from above. This is related
to the fact that the energies of Dirac field can reach arbitrarily low values
(approach −∞), which is one of the confusing features of Dirac field.

The partial derivatives of the chosen Hamiltonian are

∂xH = 2ax, ∂yH = 2ay, ∂pxH = 0 and ∂pyH = 0.

If f and g are some functions (x, y, px, py) 7→ f(x, y, px, py) and (x, y, px, py)
7→ g(x, y, px, py), their Poisson bracket is defined as

[f, g] = ∂xf∂pxg + ∂yf∂pyg − ∂pxf∂xg − ∂pyf∂yg.

To apply the Dirac’s constraint theory, we must define a matrix [ϕ] as the
matrix whose elements are [ϕm, ϕm′ ], where m,m′ ∈ {1, 2}. The matrix [ϕ]
turns out to be

[ϕ] =

(
0 −2
2 0

)
.

Its inverse is

[ϕ]−1 =

(
0 1

2
−1

2 0

)
.

The Poisson brackets between the constraint functions and the Hamiltonian
are

[ϕ1, H] = −2ax and [ϕ2, H] = −2ay.

According to the Dirac’s constraint theory the time evolution of the system
is supposed to come from the equations

ẋ(t) = ∂pxH −
2∑

m,m′=1

∂pxϕm([ϕ]−1)m,m′ [ϕm′ , H],

ẏ(t) = ∂pyH −
2∑

m,m′=1

∂pyϕm([ϕ]−1)m,m′ [ϕm′ , H],

ṗx(t) = −∂xH +
2∑

m,m′=1

∂xϕm([ϕ]−1)m,m′ [ϕm′ , H],

ṗy(t) = −∂yH +
2∑

m,m′=1

∂yϕm([ϕ]−1)m,m′ [ϕm′ , H].
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If we substitute the solved results into these equations, they turn out to be

ẋ(t) = ay(t),

ẏ(t) = −ax(t),
ṗx(t) = −ax(t),
ṗy(t) = −ay(t).

The two first equations are the same as those that we got from the Euler-
Lagrange equations, so they are right. The two latter ones we haven’t
yet seen above, but we can check that they are right too. If a path t 7→
(x(t), y(t), px(t), py(t)) evolves according to these equations, it has a conse-
quence that

Dtϕ1
(
x(t), y(t), px(t), py(t)

)
= ṗx(t)− ẏ(t) = −ax(t)− (−ax(t)) = 0

and

Dtϕ2
(
x(t), y(t), px(t), py(t)

)
= ṗy(t) + ẋ(t) = −ay(t) + ay(t) = 0.

This means that if the inital values x(0), y(0), px(0), py(0) have been chosen
so that the constraints ϕm(x(0), y(0), px(0), py(0)) = 0 for m ∈ {1, 2} are
satisfied, then the constraints ϕm(x(t), y(t), px(t), py(t)) = 0 for m ∈ {1, 2}
remain satisfied for all t > 0 under this time evolution.

The Dirac-Poisson bracket for this system is defined as

[f, g]∗ = [f, g] −
2∑

m,m′=1

[f, ϕm]([ϕ]−1)m,m′ [ϕm′ , g]

= [f, g] − 1

2
[f, ϕ1][ϕ2, g] +

1

2
[f, ϕ2][ϕ1, g].

It could be a good idea to first write down

[x, ϕ1] = 1, [x, ϕ2] = 0, [y, ϕ1] = 0, [y, ϕ2] = 1,

[px, ϕ1] = 0, [px, ϕ2] = −1, [py, ϕ1] = 1 and [py, ϕ2] = 0

somewhere. Using these we can then easily calculate the Dirac-Poisson
brackets

[x, y]∗ =
1

2
, [x, px]

∗ =
1

2
, [x, py]

∗ = 0,

[y, px]
∗ = 0, [y, py]

∗ =
1

2
and [px, py]

∗ =
1

2
.

(2)

The rest of the Dirac-Poisson brackets between the quantities x, y, px, py
follow from the identities [g, f ]∗ = −[f, g]∗ and [f, f ]∗ = 0.
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The key idea in our quantization of the system defined by Equation (1)
is to start studying a regularized system defined by a Lagrangian

Lε(x, y, ẋ, ẏ) = ε(ẋ2 + ẏ2) + ẋy − ẏx− a(x2 + y2),

where ε > 0. No matter how small ε is, as long as it is not precisely zero, this
system will not be a constrained system, and this system can be quantized
in the ordinary way with differential operators.

The partial derivatives of this regularized Lagrangian are

∂xLε = −ẏ − 2ax, ∂yLε = ẋ− 2ay,

∂ẋLε = 2εẋ+ y and ∂ẏLε = 2εẏ − x,

and the Euler-Lagrange equations are

ẍ(t) = −1

ε

(
ẏ(t) + ax(t)

)
and ÿ(t) =

1

ε

(
ẋ(t)− ay(t)

)
.

It is not impossible to solve these via ansatz that uses trigonometric func-
tions, but next we will solve the time evolution via Hamilton’s equations of
motion.

The canonical momenta of this system are

px = 2εẋ+ y and py = 2εẏ − x.

The velocities can be solved to be

ẋ =
1

2ε
(px − y) and ẏ =

1

2ε
(py + x).

By substituting these into the quantity

pxẋ + pyẏ − Lε(x, y, ẋ, ẏ)

we get a Hamiltonian

Hε(x, y, px, py) =
1

4ε
(p2x + p2y) +

1

2ε
(pyx− pxy) +

( 1

4ε
+ a

)
(x2 + y2).

This Hamiltonian can also be written in the form

Hε(x, y, px, py) =
1

4ε
(x, y, px, py)


1 + 4aε 0 0 1

0 1 + 4aε −1 0
0 −1 1 0
1 0 0 1




x
y
px
py


which can sometimes be useful. The partial derivatives of this Hamiltonian
are

∂xHε =
1

2ε
py +

( 1

2ε
+ 2a

)
x, ∂yHε = − 1

2ε
px +

( 1

2ε
+ 2a

)
y,
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∂pxHε =
1

2ε
(px − y) and ∂pyHε =

1

2ε
(py + x).

In this case the Hamilton’s equations of motion

ẋ(t) = ∂pxHε, ẏ(t) = ∂pyHε,

ṗx(t) = −∂xHε and ṗy(t) = −∂yHε

can be written in the form
ẋ(t)
ẏ(t)
ṗx(t)
ṗy(t)

 =
1

2ε


0 −1 1 0
1 0 0 1

−1− 4aε 0 0 −1
0 −1− 4aε 1 0




x(t)
y(t)
px(t)
py(t)

 .

We can find the solutions to this by diagonalizing the encountered matrix.
Let’s find the eigenvalues with Gaussian elimination technique:

det


−λ −1 1 0
1 −λ 0 1

−1− 4aε 0 −λ −1
0 −1− 4aε 1 −λ



= det


−λ −1 1 0

0 −λ2+1
λ

1
λ 1

0 1+4aε
λ −λ2+1+4aε

λ −1
0 −1− 4aε 1 −λ



= det


−λ −1 1 0

0 −λ2+1
λ

1
λ 1

0 0 −λ(λ2+2+4aε)
λ2+1

4aε−λ2

λ2+1

0 0 λ2−4aε
λ2+1

−λ(λ2+2+4aε)
λ2+1



= det


−λ −1 1 0

0 −λ2+1
λ

1
λ 1

0 0 −λ(λ2+2+4aε)
λ2+1

4aε−λ2

λ2+1

0 0 0 −λ4+(4+8aε)λ2+16a2ε2

λ(λ2+2+4aε)


= λ4 + (4 + 8aε)λ2 + 16a2ε2

According to the solution formula for quadratic equation this determinant
equals zero when

λ2 = −2(1 + 2aε) ± 2
√
1 + 4aε.

We should keep in mind that a can be either positive or negative. Anyway,
since in the end we are interested in the limit ε → 0, we can here assume

7



that 1 + 4aε > 0. It turns out that this square root expression can be
simplified, and the previous equation is actually equivalent with

λ2 = −
(√

1 + 4aε ∓ 1
)2
.

It can be difficult to discover this, but once the simplified formula has been
seen, it is straightforward to check that it is true. We conclude that the
eigenvalues of the matrix encountered in the Hamilton’s equations of motion
are

± i

2ε

(√
1 + 4aε ± 1

)
.

Here the choices in “±”-signs can be made independently, which gives four
different eigenvalues.

How do you solve non-trivial x, y, px, py ∈ R such that
−y + px
x+ py

−(1 + 4aε)x− py
−(1 + 4aε)y + px

 = ±i
(√

1 + 4aε− 1
)

x
y
px
py

?

One way is that we substitute x = 1 and ignore the last coordinate of the
equation. Then we have three unknowns and three equations, and we can
solve the unknowns with a finite amount of algebraic operations. This way
we find eigenvectors 

1
±i

±i
√
1 + 4aε

−
√
1 + 4aε

 .

When we do the same with the equation
−y + px
x+ py

−(1 + 4aε)x− py
−(1 + 4aε)y + px

 = ±i
(√

1 + 4aε+ 1
)

x
y
px
py

 ,

we find eigenvectors 
1
∓i

±i
√
1 + 4aε√

1 + 4aε

 .

We are only interested in those linear combinations of the basis solutions
where the imaginary parts cancel. When we do this, we get the result that if
α1, α2, α3, α4 ∈ R are some constants, and if the path t 7→ (x(t), y(t), px(t),
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py(t)) is defined according to the formula
x(t)
y(t)
px(t)
py(t)

 =


α1

α2

α2

√
1 + 4aε

−α1

√
1 + 4aε

 cos
(√1 + 4aε− 1

2ε
t
)

+


α2

−α1

−α1

√
1 + 4aε

−α2

√
1 + 4aε

 sin
(√1 + 4aε− 1

2ε
t
)

+


α3

α4

−α4

√
1 + 4aε

α3

√
1 + 4aε

 cos
(√1 + 4aε+ 1

2ε
t
)

+


−α4

α3

−α3

√
1 + 4aε

−α4

√
1 + 4aε

 sin
(√1 + 4aε+ 1

2ε
t
)
,

then this path satisfies the time evolution equation. The initial values
x(0), y(0), px(0), py(0) are related to the coefficients α1, α2, α3, α4 according
to a relation

x(0)
y(0)
px(0)
py(0)

 =


1 0 1 0
0 1 0 1
0

√
1 + 4aε 0 −

√
1 + 4aε

−
√
1 + 4aε 0

√
1 + 4aε 0




α1

α2

α3

α4

 .

The determinant of this matrix is 4(1 + 4aε). We have already assumed
above that 1+4aε > 0, so since the determinant is non-zero, we can conclude
that if arbitrary initial values x(0), y(0), px(0), py(0) are fixed, it is always
possible to find the coefficients α1, α2, α3, α4 that determine the solution
t 7→ (x(t), y(t), px(t), py(t)) that has those initial values. This means that
we have now found all the solutions to the time evolution equation.

By substituting this initial value formula into the Hamiltonian we get a
result that the energies of the solutions depend on the coefficients α1, α2, α3,
α4 according to a formula

Hε

(
x(0), y(0), px(0), py(0)

)
=

1 + 4aε−
√
1 + 4aε

2ε
(α2

1 + α2
2)

+
1 + 4aε+

√
1 + 4aε

2ε
(α2

3 + α2
4).

We know from the theory of Hamiltonian mechanics that this will also be
the constant value of Hε(x(t), y(t), px(t), py(t)) for all t > 0. Let’s have a

9



look at what happens to these solutions in the limit ε → 0. By using the
Taylor series

√
1 +A = 1 + 1

2A+O(A2) we get an approximation
x(t)
y(t)
px(t)
py(t)

 =


α1

α2

α2 +O(ε)
−α1 +O(ε)

 cos
((
a+O(ε)

)
t
)

+


α2

−α1

−α1 +O(ε)
−α2 +O(ε)

 sin
((
a+O(ε)

)
t
)

+


α3

α4

−α4 +O(ε)
α3 +O(ε)

 cos
((1

ε
+O(1)

)
t
)

+


−α4

α3

−α3 +O(ε)
−α4 +O(ε)

 sin
((1

ε
+O(1)

)
t
)
.

We see that the solutions that use the coefficients α1 and α2 converge to the
solutions of the original contrained system. These solutions rotate around
the origin, and the sign of a determines the direction of the rotation: If
a > 0, the solutions rotate clockwise, and if a < 0, then counterclockwise.
The solutions that use the coefficients α3 and α4 instead do not converge:
They rotate counterclockwise with an angular speed that diverges to infinity.
The energies of these solutions are approximately

Hε

(
x(0), y(0), px(0), py(0)

)
=

(
a+O(ε)

)
(α2

1 + α2
2)

+
(1
ε
+O(1)

)
(α2

3 + α2
4).

We see that the energies of the solutions that use the coefficients α1 and α2

converge to the energies of the original constrained system. These energies
work so that if a > 0, the energy is positive, and if a < 0, the energy is
negative. The energies of the solutions that use the coefficients α3 and α4

instead diverge to infinity.
At this point we are ready to ponder the question that does the sys-

tem defined by the regularized Lagrangian Lε converge to the original con-
strained system defined by the Lagrangian L defined in Equation (1) in the
limit ε → 0. One possible answer is that well the values of Lagrangian
Lε certainly converge pointwisely to the values of Lagrangian L. That is
obvious, but do the solutions of the time evolution equation of the regu-
larized system converge to the solutions of the time evolution equation of
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the original constrained system? The simple answer is that actually no.
This maybe means that the system defined by Lε does not converge to the
system defined by L, but let’s think about this more carefully. One way of
approaching this issue is that we let t 7→ (x(t), y(t)) be some solution to the
original constrained system with some initial values (x(0), y(0)). We then
let t 7→ (x(t), y(t)) be a part of some solution to the regularized system with
some small ε > 0. Let’s assume that these solutions have the same initial
values of these two coordinates, meaning that (x(0), y(0)) = (x(0), y(0)).
Do these assumptions imply that the solutions are approximately the same,
meaning that (x(t), y(t)) ≈ (x(t), y(t)) for (at least small) t > 0? The answer
is no; these solutions can differ significantly. So in this sense the regularized
system does not approximate the original constrained system. However, if
the solution t 7→ (x(t), y(t)) is significantly different from t 7→ (x(t), y(t)),
this implies that the solution t 7→ (x(t), y(t)) is an extreme high energy
solution. Suppose we are not interested in extreme high energy solutions.
Let’s fix some upper bound Emax > 0 that does not depend on ε, and say
that all solutions whose energies exceed this bound will be discarded. If
a solution t 7→ (x(t), y(t), px(t), py(t)) survives this condition, then the ap-
proximation (x(t), y(t)) ≈ (x(t), y(t)) will be true. The approximation will
become extremely accurate in the limit ε→ 0. We can conclude that yes the
regularized system defined by Lε does converge to the original constrained
system defined by L defined in Equation (1) in the limit ε → 0, but this
convergence works only if we interpret it in such way that the extreme high
energy solutions get discarded in the limit process.

The Schrödinger eigenvalue equation of the regularized system is(
− ℏ2

4ε
(∂2x+∂

2
y) +

iℏ
2ε

(y∂x−x∂y) +
( 1

4ε
+a

)
(x2+y2)

)
ψ(x, y) = Eψ(x, y).

Let’s switch to polar coordinates defined by the relations

x = r cos(θ) and y = r sin(θ).

By using the differential operator relations

∂x = cos(θ)∂r −
1

r
sin(θ)∂θ,

∂y = sin(θ)∂r +
1

r
cos(θ)∂θ,

we can transform the Schrödinger eigenvalue equation into a form(
− ℏ2

4ε

(
∂2r +

1

r
∂r +

1

r2
∂2θ

)
− iℏ

2ε
∂θ +

( 1

4ε
+ a

)
r2
)
ψ(r, θ) = Eψ(r, θ).

We get started in solving the Schrödinger eigenvalue equation by using an
ansatz

ψ(r, θ) = e−Ar2 .

11



When we substitute this into the Schrödinger eigenvalue equation, the result
is that it works if

A =

√
1 + 4aε

2ℏ
and E =

ℏ
√
1 + 4aε

2ε
.

Having found this solution, we can next try a more elaborate ansatz with
infinite series

ψ(r, θ) = e−
√
1+4aε
2ℏ r2

∞∑
k1=0

∞∑
k2=−∞

bk1,k2r
k1eik2θ

with some coefficients bk1,k2 ∈ C where (k1, k2) ∈ N×Z. When we substitute
this into the Schrödinger eigenvalue equation, we get an equation

e−
√

1+4aε
2ℏ r2

∞∑
k2=−∞

(ℏ2
4ε
k22b0,k2

1

r2
+

ℏ2

4ε
(k22 − 1)b1,k2

1

r

+

∞∑
k1=0

(( ℏ
2ε

(√
1 + 4aε(k1 + 1) + k2

)
− E

)
bk1,k2

+
ℏ2

4ε

(
k22 − (k1 + 2)2

)
bk1+2,k2

)
rk1

)
eik2θ = 0.

If we ignore the convergence question, we can conclude that the ansatz works
if

k22b0,k2 = 0 ∀ k2 ∈ Z,

(k22 − 1)b1,k2 = 0 ∀ k2 ∈ Z,

and( ℏ
2ε

(√
1 + 4aε(k1 − 1) + k2

)
− E

)
bk1−2,k2 +

ℏ2

4ε

(
k22 − k21

)
bk1,k2 = 0

∀ k1 ∈ {2, 3, 4, . . .}, k2 ∈ Z.

The first condition is equivalent with the condition that b0,k2 = 0 if k2 ̸=
0 (and in the light of this condition b0,0 can be arbitrary). The second
condition is equivalent with the condition that b1,k2 = 0 if k2 ̸= 1 and
k2 ̸= −1 (and in the light of this condition b1,1 and b1,−1 can be arbitrary).
The third condition is equivalent with the condition that if |k2| = |k1| and
k1 ∈ {2, 3, 4, . . .}, then( ℏ

2ε

(√
1 + 4aε(k1 − 1) + k2

)
− E

)
bk1−2,k2 = 0

(that turns out to be a redundant relation,) (and in the light of this condition
bk1,±k1 can be arbitrary) and if |k2| ≠ |k1| and k1 ∈ {2, 3, 4, . . .}, then

bk1,k2 =
ℏ
2ε

(√
1 + 4aε(k1 − 1) + k2

)
− E

ℏ2
4ε (k

2
1 − k22)

bk1−2,k2 .

12



If one spends some time thinking about these conditions, one can eventually
see that they imply the b-matrix to have the form

b =



· · · 0 0 0 0 b0,0 0 0 0 0 · · ·
· · · 0 0 0 b1,−1 0 b1,1 0 0 0 · · ·
· · · 0 0 b2,−2 0 b2,0 0 b2,2 0 0 · · ·
· · · 0 b3,−3 0 b3,−1 0 b3,1 0 b3,3 0 · · ·
· · · b4,−4 0 b4,−2 0 b4,0 0 b4,2 0 b4,4 · · ·
..
. ...

...
...

...
...

...
...

...
...

...


.

The elements b0,0, b1,±1, b2,±2, . . . can have arbitrary values, and the rest of
the non-trivial elements are determined by the recursion relation. It looks
like a good idea to study such solutions where only one of the coefficients
b0,0, b1,±1, b2,±2, . . . is non-zero, so let’s fix some k2 ∈ Z, and set b|k′2|,k′2 = 0
for k′2 ̸= k2. Then for any fixed b|k2|,k2 the recursion relation determines
a sequence b|k2|,k2 , b|k2|+2,k2 , b|k2|+4,k2 , . . ., and all other b-coefficients will
be zero. Let’s demand that E must have a such value that the sequence
b|k2|,k2 , b|k2|+2,k2 , b|k2|+4,k2 , . . . contains only a finite amount of non-zero el-
ements. This technique usually works in quantum mechanics. This means
that

E =
ℏ
2ε

(√
1 + 4aε(k1 − 1) + k2

)
with some k1 ∈ {|k2|+ 2, |k2|+ 4, |k2|+ 6, . . .}. If we denote n = k1−|k2|−2

2 ,
then the corresponding values of n are 0, 1, 2, . . .. Let’s define energies En,k2

with the formula

En,k2 =
ℏ
2ε

(√
1 + 4aε(2n+ |k2|+ 1) + k2

)
∀ n ∈ N.

Now E0,k2 , E1,k2 , E2,k2 , . . . are the energies that make the sequence b|k2|,k2 ,
b|k2|+2,k2 , b|k2|+4,k2 , . . . contain only a finite amount of non-zero elements.

We should be interested to check that which one the found energies En,k2 ,
where (n, k2) ∈ N×Z, is the lowest energy. It can be seen easily that if the
lowest energy exists, it must be one of the energies E0,0, E0,−1, E0,−2, . . ..
We can calculate that if k2 ≤ 0, then

E0,k2−1 − E0,k2 =
ℏ
2ε

(√
1 + 4aε− 1

)
.

We see that if a > 0, then E0,0 is the lowest energy, but if a < 0, then the
lowest energy doesn’t exist because E0,0 > E0,−1 > E0,−2 > · · · . Anyway,
the energy E0,0 still feels like some kind of “zero-point energy”, because it
is associated with the simplest found wave function that is also localized
around the origin.

We can use the index (n, k2) ∈ N×Z to define a wave function ψn,k2(r, θ)
as that function that the energy En,k2 and the recursion relation determine

13



when we use the initial value b|k2|,k2 = 1. The factor
√
1 + 4aε appears in

these wave functions a lot, so let’s make our formulas slightly nicer by using
a notation ∆ :=

√
1 + 4aε. The solutions to the Schrödinger eigenvalue

equation that we have now found look like this:

ψ0,0(r, θ) = e−
∆
2ℏ r

2
E0,0 =

ℏ∆
2ε

ψ1,0(r, θ) = e−
∆
2ℏ r

2(
1− ∆

ℏ r
2
)

E1,0 =
3ℏ∆
2ε

ψ2,0(r, θ) = e−
∆
2ℏ r

2(
1− 2∆

ℏ r
2 + ∆2

2ℏ2 r
4
)

E2,0 =
5ℏ∆
2ε

ψ3,0(r, θ) = e−
∆
2ℏ r

2(
1− 3∆

ℏ r
2 + 3∆2

2ℏ2 r
4 − ∆3

6ℏ3 r
6
)

E3,0 =
7ℏ∆
2ε

...
...

ψ0,1(r, θ) = e−
∆
2ℏ r

2+iθr E0,1 =
ℏ(2∆+1)

2ε

ψ1,1(r, θ) = e−
∆
2ℏ r

2+iθ
(
r − ∆

2ℏr
3
)

E1,1 =
ℏ(4∆+1)

2ε

ψ2,1(r, θ) = e−
∆
2ℏ r

2+iθ
(
r − ∆

ℏ r
3 + ∆2

6ℏ2 r
5
)

E2,1 =
ℏ(6∆+1)

2ε

ψ3,1(r, θ) = e−
∆
2ℏ r

2+iθ
(
r − 3∆

2ℏ r
3 + ∆2

2ℏ2 r
5 − ∆3

24ℏ3 r
7
)

E3,1 =
ℏ(8∆+1)

2ε
...

...

ψ0,2(r, θ) = e−
∆
2ℏ r

2+2iθr2 E0,2 =
ℏ(3∆+2)

2ε

ψ1,2(r, θ) = e−
∆
2ℏ r

2+2iθ
(
r2 − ∆

3ℏr
4
)

E1,2 =
ℏ(5∆+2)

2ε

ψ2,2(r, θ) = e−
∆
2ℏ r

2+2iθ
(
r2 − 2∆

3ℏ r
4 + ∆2

12ℏ2 r
6
)

E2,2 =
ℏ(7∆+2)

2ε

ψ3,2(r, θ) = e−
∆
2ℏ r

2+2iθ
(
r2 − ∆

ℏ r
4 + ∆2

4ℏ2 r
6 − ∆3

60ℏ3 r
8
)

E3,2 =
ℏ(9∆+2)

2ε
...

...

ψ0,3(r, θ) = e−
∆
2ℏ r

2+3iθr3 E0,3 =
ℏ(4∆+3)

2ε

ψ1,3(r, θ) = e−
∆
2ℏ r

2+3iθ
(
r3 − ∆

4ℏr
5
)

E1,3 =
ℏ(6∆+3)

2ε

ψ2,3(r, θ) = e−
∆
2ℏ r

2+3iθ
(
r3 − ∆

2ℏr
5 + ∆2

20ℏ2 r
7
)

E2,3 =
ℏ(8∆+3)

2ε

ψ3,3(r, θ) = e−
∆
2ℏ r

2+3iθ
(
r3 − 3∆

4ℏ r
5 + 3∆2

20ℏ2 r
7 − ∆3

120ℏ3 r
9
)

E3,3 =
ℏ(10∆+3)

2ε
...

...
. . . ,

ψ0,−1(r, θ) = e−
∆
2ℏ r

2−iθr E0,−1 =
ℏ(2∆−1)

2ε

ψ1,−1(r, θ) = e−
∆
2ℏ r

2−iθ
(
r − ∆

2ℏr
3
)

E1,−1 =
ℏ(4∆−1)

2ε

ψ2,−1(r, θ) = e−
∆
2ℏ r

2−iθ
(
r − ∆

ℏ r
3 + ∆2

6ℏ2 r
5
)

E2,−1 =
ℏ(6∆−1)

2ε

ψ3,−1(r, θ) = e−
∆
2ℏ r

2−iθ
(
r − 3∆

2ℏ r
3 + ∆2

2ℏ2 r
5 − ∆3

24ℏ3 r
7
)

E3,−1 =
ℏ(8∆−1)

2ε
...

...

ψ0,−2(r, θ) = e−
∆
2ℏ r

2−2iθr2 E0,−2 =
ℏ(3∆−2)

2ε

ψ1,−2(r, θ) = e−
∆
2ℏ r

2−2iθ
(
r2 − ∆

3ℏr
4
)

E1,−2 =
ℏ(5∆−2)

2ε

ψ2,−2(r, θ) = e−
∆
2ℏ r

2−2iθ
(
r2 − 2∆

3ℏ r
4 + ∆2

12ℏ2 r
6
)

E2,−2 =
ℏ(7∆−2)

2ε

ψ3,−2(r, θ) = e−
∆
2ℏ r

2−2iθ
(
r2 − ∆

ℏ r
4 + ∆2

4ℏ2 r
6 − ∆3

60ℏ3 r
8
)

E3,−2 =
ℏ(9∆−2)

2ε
...

...
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. . . .
So we have now found a large set of solutions to the Schrödinger eigen-

value equation. The question that we should be interested at this point is
that are these all the solutions, or could there still be more to be found. This
is maybe the same question as that do these wave functions span the Hilbert
space L2(R2). At the time of writing this, I don’t know how to rigorously
prove that these functions would span the Hilbert space L2(R2), or that
these would be all the solutions, but we can make few remarks that suggest
that this probably is the case. We can assume it to be known that the finite
complex span of the polynomials xnym, where n,m ∈ N, is dense in many
relevant function spaces where the functions’ support, that is some subset of
R2, is bounded. Let’s denote z = x+ iy and z∗ = x− iy. Then x = 1

2(z+z
∗)

and y = − i
2(z− z

∗). We see that any finite linear combination of xnym can
also be written as a finite linear combination of zn(z∗)m, where n,m ∈ N.
Using this result, it is maybe possible to next prove that the finite complex
span of the functions e−|z|2zn(z∗)m also is dense in many relevant function
spaces where we assume the functions to converge to zero sufficiently fast
as |z| → ∞. Let’s denote z = reiθ. Then zn(z∗)m = rn+mei(n−m)θ. Notice
that if n +m is even, also n −m is even, and if n +m is odd, also n −m
is odd. Also n +m ≥ |n −m| is true for all n,m ∈ N. So any finite linear
combination of the functions e−|z|2zn(z∗)m can be written as a finite linear
combination the functions e−r2rk1eik2θ, where (k1, k2) ∈ N × Z, and where
in each term k1 and k2 have the same parity, and k1 ≥ |k2|. If we ignore
the ∆

2ℏ factor in the exponent, then if k1 ∈ N and k2 ∈ Z have the same

parity and k1 ≥ |k2|, e−r2rk1eik2θ can be written as a linear combination of
ψ0,k2 , ψ1,k2 , . . . , ψ k1−|k2|

2
,k2

. So a finite linear combination of e−|z|2zn(z∗)m,

where n,m ∈ N, can be written as a finite linear combination of ψn,k, where
(n, k) ∈ N×Z. In the light of these remarks it looks like that the finite com-
plex span of the functions ψn,k is dense in many relevant function spaces,
and it looks like extremely likely that these are all the solutions to the
Schrödinger eigenvalue equation. We will next continue under the assump-
tion that we know the solutions (ψn,k, En,k) to be all the solutions, although
strictly speaking we didn’t prove this rigorously.

In the limit ε→ 0 the energies are approximately

En,k2 =
ℏ(2n+ |k2|+ k2 + 1)

2ε
+ ℏa(2n+ |k2|+ 1) + O(ε).

We see that all these energies diverge to positive infinity in the limit ε→ 0.
The key to making progress in understanding the behavior of this quantized
system in this limit is to start studying the energy differences En,k2 −E0,0.
They are

En,k2 − E0,0 =
ℏ(2n+ |k2|+ k2)

2ε
+ ℏa(2n+ |k2|) + O(ε).
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We see that if n > 0, then En,k2−E0,0 →∞ as ε→ 0, and if k2 > 0, also then
E0,k2−E0,0 →∞ as ε→ 0, but if k2 ≤ 0, then E0,k2−E0,0 → ℏa|k2| as ε→ 0.
So sometimes En,k2 − E0,0 diverges to infinity, and sometimes it converges
to a finite value. We interpret this to mean that if En,k2 − E0,0 diverges to
infinity, then the state described by the index (n, k2) vanishes in this limit.
This means that only the states (n, k2) = (0, 0), (0,−1), (0,−2), . . . remain.
We conclude that the eigenstates of the limit system are described by the
wave functions and the energies

ψk(r, θ) =
1√

πℏk+1k!
e−

1
2ℏ r

2−ikθrk and Ek = Ezero + ℏka

for all k ∈ N. The normalization has been done using the integral formula∫ ∞

0
e−Ax2

x2k+1dx =
k!

2Ak+1
,

that works for k ∈ N. We have now successfully found the energy eigenstates
of the constrained system defined in Equation (1) with the Lagrangian L =
ẋy− ẏx−a(x2+y2), which is a major achievement. There’s a lot to wonder
about this quantization. One of the features of these energy eigenstates
is that they do not span the full Hilbert space L2(R2), but instead some
non-trivial subspace of it.

If a > 0, then E0 < E1 < E2 < · · · , and if a < 0, then E0 > E1 > E2 >
· · · , which is somewhat consistent with the classical energies of this system.
The value of Ezero should not have a physical significance, so we can maybe
ignore it, but if somebody insists that some value has to be assigned to it,
the answer is Ezero =∞.

Suppose we define some initial value as

ψ(0, r, θ) =

∞∑
k=0

ckψk(r, θ)

with some coefficients c0, c1, c2, . . . ∈ C. The time evolution of this wave
function is then

ψ(t, r, θ) =
∞∑
k=0

cke
− i

ℏEktψk(r, θ)

= e−
i
ℏEzerot

∞∑
k=0

ck√
πℏk+1k!

e−
1
2ℏ r

2−ik(θ+a)rk

= e−
i
ℏEzerot

∞∑
k=0

ckψk(r, θ + a)

= e−
i
ℏEzerotψ(0, r, θ + a).
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We see that the time evolution is simple rotation around the origin. If a > 0,
then the graph of the wave function rotates clockwise, and if a < 0, then
counterclockwise. This implies the correct classical time evolution that we
saw in the beginning. There is also a complex phase factor that rotates with
an infinite angular speed, but it can be ignored.

Let’s have a look at the operatorsMx,My,−iℏ∂x and−iℏ∂y in the energy
eigenbasis. Here Mx and My mean the multiplication operators defined
by the formulas (Mxf)(x, y) = xf(x, y) and (Myf)(x, y) = yf(x, y). The
matrix elements are

⟨ψk|Mx|ψj⟩

=
1

πℏ
1√

ℏk+jk!j!

∞∫
0

dr

2π∫
0

dθ re−
1
2ℏ r

2+ikθrk · r cos(θ) · e−
1
2ℏ r

2−ijθrj

=
1

πℏ
1√

ℏk+jk!j!

( ∞∫
0

e−
1
ℏ r

2
rk+j+2dr

)( 2π∫
0

1

2

(
ei(k−j+1)θ + ei(k−j−1)θ

)
dθ

︸ ︷︷ ︸
=π(δk+1,j+δk−1,j)

)

=

√
ℏ
2

(√
j + 1δk−1,j +

√
jδk+1,j

)
,

⟨ψk|My|ψj⟩

=
1

πℏ
1√

ℏk+jk!j!

∞∫
0

dr

2π∫
0

dθ re−
1
2ℏ r

2+ikθrk · r sin(θ) · e−
1
2ℏ r

2−ijθrj

= − i

πℏ
1√

ℏk+jk!j!

( ∞∫
0

e−
1
ℏ r

2
rk+j+2dr

)( 2π∫
0

1

2

(
ei(k−j+1)θ − ei(k−j−1)θ

)
dθ

︸ ︷︷ ︸
=π(δk+1,j−δk−1,j)

)

=
i
√
ℏ

2

(√
j + 1δk−1,j −

√
jδk+1,j

)
,
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⟨ψk| − iℏ∂x|ψj⟩

=
1

πℏ
1√

ℏk+jk!j!

∞∫
0

dr

2π∫
0

dθ re−
1
2ℏ r

2+ikθrk

(−iℏ)
(
cos(θ)∂r −

1

r
sin(θ)∂θ

)
e−

1
2ℏ r

2−ijθrj

= − i
π

1√
ℏk+jk!j!

∞∫
0

e−
1
ℏ r

2
((
jrk+j − 1

2ℏ
rk+j+2

) 2π∫
0

ei(k−j+1)θdθ

︸ ︷︷ ︸
=2πδk+1,j

− 1

2ℏ
rk+j+2

2π∫
0

ei(k−j−1)θdθ

︸ ︷︷ ︸
=2πδk−1,j

)
dr

=
i
√
ℏ

2

(√
j + 1δk−1,j −

√
jδk+1,j

)
and

⟨ψk| − iℏ∂y|ψj⟩

=
1

πℏ
1√

ℏk+jk!j!

∞∫
0

dr

2π∫
0

dθ re−
1
2ℏ r

2+ikθrk

(−iℏ)
(
sin(θ)∂r +

1

r
cos(θ)∂θ

)
e−

1
2ℏ r

2−ijθrj

=
1

π

1√
ℏk+jk!j!

∞∫
0

e−
1
ℏ r

2
(( 1

2ℏ
rk+j+2 − jrk+j

) 2π∫
0

ei(k−j+1)θdθ

︸ ︷︷ ︸
=2πδk+1,j

− 1

2ℏ
rk+j+2

2π∫
0

ei(k−j−1)θdθ

︸ ︷︷ ︸
=2πδk−1,j

)
dr

= −
√
ℏ
2

(√
j + 1δk−1,j +

√
jδk+1,j

)
.
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So if we first define matrices B+ and B− as

B± =



0 ±1 0 0 0 0 · · ·
1 0 ±

√
2 0 0 0 · · ·

0
√
2 0 ±

√
3 0 0 · · ·

0 0
√
3 0 ±

√
4 0 · · ·

0 0 0
√
4 0 ±

√
5 · · ·

0 0 0 0
√
5 0 · · ·

...
...

...
...

...
...

. . .


,

we can then use these to define the matrices

X =

√
ℏ
2
B+, Y =

i
√
ℏ

2
B−, Px =

i
√
ℏ

2
B− and Py = −

√
ℏ
2
B+,

and these are the operators corresponding to the quantities x, y, px and py
in the energy eigenbasis. If we first calculate

B±B∓ =



±1 0 −
√
2 0 0 0 · · ·

0 ±1 0 −
√
2 · 3 0 0 · · ·√

2 0 ±1 0 −
√
3 · 4 0 · · ·

0
√
2 · 3 0 ±1 0 −

√
4 · 5 · · ·

0 0
√
3 · 4 0 ±1 0 · · ·

0 0 0
√
4 · 5 0 ±1 · · ·

...
...

...
...

...
...

. . .


,

we can then use this formula to easily calculate the commutation relations

[X,Y ] =
iℏ
2
, [X,Px] =

iℏ
2
, [X,Py] = 0,

[Y, Px] = 0, [Y, Py] =
iℏ
2

and [Px, Py] =
iℏ
2
.

We see that the commutation structure of the matricesX,Y, Px and Py is the
same as the Dirac-Poisson bracket structure shown in Equation (2). It is un-
likely that we got a result like this by chance, so this supports the hypothesis
that there probably isn’t a major mistake in the above calculations. Notice,
strictly speaking the matrices X,Y, Px and Py are not representations of the
operatorsMx,My,−iℏ∂x and −iℏ∂y; instead they are representations of the
operators Q ◦Mx, Q ◦My, Q ◦ (−iℏ∂x) and Q ◦ (−iℏ∂y), where Q is the or-
thogonal projection to the non-trivial space spanned by the wave functions
ψ0, ψ1, ψ2, . . .. This is why it is possible that the matrices X,Y, Px and Py

have a different commutation structure than the operators Mx,My,−iℏ∂x
and −iℏ∂y.

These matrices satisfy the relations Px = Y and Py = −X, so apparently
the classical constraints apply to the operators too.
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If we first calculate

(B±)2 =



±1 0
√
2 0 0 0 · · ·

0 ±3 0
√
2 · 3 0 0 · · ·√

2 0 ±5 0
√
3 · 4 0 · · ·

0
√
2 · 3 0 ±7 0

√
4 · 5 · · ·

0 0
√
3 · 4 0 ±9 0 · · ·

0 0 0
√
4 · 5 0 ±11 · · ·

...
...

...
...

...
...

. . .


,

we can then use this formula to easily calculate that

a(X2 + Y 2) =
ℏa
2



1 0 0 0 0 0 · · ·
0 3 0 0 0 0 · · ·
0 0 5 0 0 0 · · ·
0 0 0 7 0 0 · · ·
0 0 0 0 9 0 · · ·
0 0 0 0 0 11 · · ·
...

...
...

...
...

...
. . .


.

We see that a(X2 + Y 2) functions as a Hamiltonian operator too. The
only difference between a(X2 + Y 2) and the original Hamiltonian operator
implicitly found above is that the zero-point energies are different.

At the time of publication of this article many people believe that it
is an important axiom or feature of quantum mechanics that the energy
eigenstates of a system always span the full Hilbert space. Above we just
found a quantized system that has the feature that the energy eigenstates
span only some non-trivial subspace of the full Hilbert space. For exam-
ple, this means that if an initial value ψ(0, r, θ) is some arbitrary element
of L2(R2), then the time evolution ψ(t, r, θ) doesn’t necessarily exist at all.
The time evolution exists only if the initial value ψ(0, r, θ) is in the right
subspace spanned by the energy eigenstates. Some people might feel that
this is a sign of something having gone wrong in the quantization. If you
think about this more, you can eventually see that most likely nothing has
gone wrong in this quantization, but instead this is the way quantized con-
strained systems are. For example, let’s think about what kind of wave
packets can be constructed as superpositions of some energy eigenstates.
Suppose somebody has fixed a vector (x, y) ∈ R2. Suppose you want to
construct a wave packet |ψ⟩ as a superposition of some energy eigenstates
in a such way that ⟨ψ|(Mx,My)|ψ⟩ = (x, y). This can be done. Suppose
the available energy eigenstates span the full Hilbert space L2(R2). This
means that there are a lot of eigenstates available, and it is possible to
construct many different kinds of wave packets |ψ⟩ that all have the same
property ⟨ψ|(Mx,My)|ψ⟩ = (x, y). Then suppose somebody fixes a vector
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(px, py) ∈ R2, and that we want the equation ⟨ψ| − iℏ(∂x, ∂y)|ψ⟩ = (px, py)
to be true too. Because it is possible to construct many different kinds
of wave packets that keep the condition ⟨ψ|(Mx,My)|ψ⟩ = (x, y) true, it
is possible adjust the wave packet in a such way that also the condition
⟨ψ| − iℏ(∂x, ∂y)|ψ⟩ = (px, py) becomes true. So these two conditions can
be true simultaneously. Then suppose instead that we are allowed to only
use the energy eigenstates ψ0, ψ1, ψ2, . . . found above that only span some
non-trivial subspace of the full Hilbert space L2(R2). Also in this case we
can construct a wave packet |ψ⟩ in a such way that ⟨ψ|(Mx,My)|ψ⟩ = (x, y).
However, because the set of eigenstates is now more limited, it is not pos-
sible to construct many different kinds of wave packets with this property
in the same way as with the full Hilbert space L2(R2). Then suppose some-
body fixes a vector (px, py) ∈ R2. Now, because the set of eigenstates is so
limited, it turns out that it will not necessarily be possible to adjust the
wave packet in a such way that ⟨ψ| − iℏ(∂x, ∂y)|ψ⟩ = (px, py) would become
true. It can be seen from the relations between the matrices X,Y, Px and Py

that if ⟨ψ|(Mx,My)|ψ⟩ has been fixed, at that point also ⟨ψ| − iℏ(∂x, ∂y)|ψ⟩
has been fixed. So the fact that the energy eigenstates span only some
non-trivial subspace of the full Hilbert space implies a constraint between
the quantities ⟨ψ|(Mx,My)|ψ⟩ and ⟨ψ| − iℏ(∂x, ∂y)|ψ⟩. This constraint then
becomes the classical constraint in the classical limit.

How strange was it that all energies diverged to infinity in the limit ε→
0? It is perhaps enlightening to compare this phenomenon to some simpler
example with a similar limit. Suppose we are interested in a Newtonian
point particle in two dimensions, meaning that we have a Hamiltonian H =
p2x+p2y
2m + U(x, y). Let’s define the potential U(x, y) to be 0 when (x, y) is

in a rectangle [0, ℓ1] × [0, ℓ2] with some positive constants ℓ1, ℓ2 ∈ R, and
to be ∞ when (x, y) is outside this rectangle. What are the solutions t 7→
(x(t), y(t)) that describe the motion of the point particle in this rectangle?
The answer is that the particle moves in straight lines inside the rectangle
and bounces off the walls elastically. What happens to the system and
the solutions, if we take the limit ℓ2 → 0? The answer is that the system
becomes a one-dimensional system. Then the particle moves right and left
on the one-dimensional interval [0, ℓ1]×{0}, and bounces off the end points
elastically. Suppose we are interested in the quantum mechanical model
of this two-dimensional system. We can solve the Schrödinger eigenvalue
equation. The wave functions are ψn1,n2(x, y) = sin

(
n1πx
ℓ1

)
sin

(n2πy
ℓ2

)
, where

n1, n2 ∈ {1, 2, 3, . . .}, and the energies are En1,n2 = ℏ2π2

2m

(n2
1

ℓ21
+

n2
2

ℓ22

)
. What

happens to the quantized system in the limit ℓ2 → 0? Does it become a
one-dimensional quantized system? As can be seen from the formula for
the energies, actually En1,n2 → ∞ for all n1, n2 ∈ {1, 2, 3, . . .} in the limit
ℓ2 → 0. So if you have a problem with the energies diverging to infinity,
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then you don’t get the one-dimensional quantized system. Let’s have a look
at the energy differences En1,n2 − E1,1. If n2 > 1, then En1,n2 − E1,1 → ∞
in the limit ℓ2 → 0, but En1,1 − E1,1 = ℏ2π2

2m
n2
1−1

ℓ21
remain constant (and

converge trivially) for all n1 ∈ {1, 2, 3, . . .}. If we interpret this to mean
that the energy states where n2 > 1 vanish in this limit, then we are left
with the correct one-dimensional quantized system. The energies of the

one-dimensional system become En1 = Ezero +
ℏ2π2

2m
n2
1−1

ℓ21
, where Ezero =∞,

which is not precisely the same as what we get with the ordinary one-
dimensional quantization, but which is essentially the same. This example
suggests that it is probably a common phenomenon that if a limit process
reduces the dimension of some system, then all energies diverge to infinity
in that limit. It doesn’t mean that the limit would be nonsense; we just
have to use the differences of the energies to the zero-point energy. In the
light of what we saw in this article above it seems that the same is also true
in limit processes that produce constraints between spatial coordinates and
canonical momenta.
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