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1 Quantum Mechanics

1. Use the variational method to estimate the energy of the ground state of a one-dimensional

harmonic oscillator by making use of the two following trial functions: (a) ψ(x, α) = Ae−α|x|,

(b) ψ(x, α) = A(x2 + α)−1, where α is a positive real number and where A is the normalization

constant.

Solution

(a)According to normalization condition, A should satisfy

∫ +∞

−∞
ψ∗ψdx = 2

∫ +∞

0

A2e−2αxdx = 1

A2 = α

The first derivative of the trial function ψ(x, α) = Ae−α|x| is discontinuous at x=0, so be careful

when using the expression < T >=< ψ| − h̄2

2m
d2

dx2 |ψ >= − h̄2

2m

∫ +∞
−∞ ψ∗ d2

dx2ψdx.A straightforward,

careless use of this expression leads to a negative kinetic energy expectation.Compared with

function whose first derivative is continuous, the given trial function lacks some �concave part’

due to the discotinuity, which consequently results in the lost of positive kinetic energy. One

might instead consider using the following form < T >= h̄2

2m

∫ +∞
−∞

dψ∗

dx
dψ
dx

dx.

According to the above analysis, kinetic energy equals to

< T >=
h̄2

2m
· 2

∫ +∞

0

A2α2e−2αxdx =
h̄2α2

2m

Actually, kinetic energy can also be calculated via second derivative of the given function cor-

rectly,as long as adding the positive contribution of the �missing concave part’ through delta

function.Therefore,

< T >= − h̄2

2m
(

∫ 0−

−∞
A2α2e2αxdx+

∫ 0+

0−
Aeαx · −2Aαδ(x)dx+

∫ +∞

0+
A2α2e−2αxdx) =

h̄2α2

2m

The potential energy for the given function is < U >=< ψ| 1
2
mω2x2|ψ >=

∫ +∞
−∞

1
2
mω2x2ψ∗ψdx.

For a > 0 and n is a natural number,

∫ +∞

0

xne−axdx =
n!

an+1
.
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Hence,

< U >=

∫ +∞

0

mω2x2A2e−2αxdx =
mω2A2

4α3
=
mω2

4α2
.

The energy of ψ equals to

E =< T > + < U >=
h̄2α2

2m
+
mω2

4α2
.

Vary the adjustable parameter α to search for the minimum of energy E,

∂E

∂α
= 0

so E has the minimum
√
2
2
h̄ω when α2 =

√
2mω
2h̄

, and the upper limit of ground state energy should

be
√
2
2
h̄ω.

(b) From normalization condition, A meets the requirement

∫ +∞

−∞

A2

(x2 + α)2
dx = 1.

Next let x =
√
α tanβ, therefore

∫ +∞

−∞

A2

(x2 + α)2
dx =

∫ π
2

−π
2

A2

α3/2 sec2 β
dβ =

A2π

2α3/2
= 1

A2 =
2α3/2

π
.

Similarly, the kinetic energy is

< T >=
h̄2

2m

∫ +∞

−∞

dψ∗

dx

dψ

dx
dx =

h̄2

2m
· 4A2

∫ +∞

−∞

x2

(x2 + α)4
dx.

Replace the variable x again by using x =
√
α tanβ, therefore

< T >=
2A2h̄2

m

∫ π
2

−π
2

tan2 β

α5/2 sec6 β
dβ =

2A2h̄2

mα5/2

∫ π
2

−π
2

(1− cos2 β) cos4 βdβ

For an even number n, it can be proved that

∫ π
2

−π
2

cosn βdβ =
n− 1

n

∫ π
2

−π
2

cosn−2 βdβ,

so that

< T >=
h̄2

4mα
.

The potential energy of the trial function equals to

< U >=
mω2A2

2

∫ +∞

−∞

x2

(x2 + α)2
dx =

mω2α

2
.

The minimum of E is
√
2
2
h̄ω, so the upper limit of ground state is also

√
2
2
h̄ω.

Note that for any (arbitrary) trail function |ψ > we choose, the energy E(ψ) is always larger

than the exact ground state energy E0: E(ψ) ≥ E0, the equality holds only when |ψ > is

proportional to the true ground state |ψ0 >. To prove this, we simply expand the trail function
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in terms of the exact eigenstates of Ĥ: |ψ >=
∑

n an|φn >, and since E0 ≤ En for nondegenerate

one-dimensional bound systems, we have

E(ψ) =< ψ|Ĥ|ψ >=
∑

n

|an|2En ≥
∑

n

|an|2E0 = E0.

2. Consider the quantum mechanical analog to the classical problem of a ball (mass m) bouncing

elastically on the floor.

(a) What is the potential energy, as a function of height x above the floor?

(b) Use the variational method to estimate the ground state energy of this particle.

(c) Use the WKB method to estimate the ground state energy of this particle.

(d) Compare the results of (a) and (b) with the exact ground state energy Eexact = 1.855 ×
3
√

mg2h̄2 = 3
√

6.39×mg2h̄2.

Solution

(a)The potential energy is

V (x) =

{

+∞, x < 0

mgx, x ≥ 0

(b) Suppose that the trail function has the form

ψ(x) =

{

0, x < 0

Axe−αx, x ≥ 0

where α is a positive real number. According to normalization condition, A should satisfy

∫ +∞

−∞
ψ∗ψdx =

∫ +∞

0

A2x2e−2αxdx = 1.

Hence, A = 2α3/2. The kinetic energy equals to

< T >=
h̄2

2m

∫ +∞

−∞

dψ∗

dx

dψ

dx
dx =

∫ +∞

0

h̄2A2

2m
(1− xα)2e−2αxdx =

h̄2α2

2m
.

The potential energy equals to

< U >=< ψ|mgx|ψ >=
∫ +∞

0

A2mgx3e−2αxdx =
3mg

2α
.

Vary the adjustable parameter α to search for the minimum of energy E,

∂E

∂α
=

∂

∂α
(< T > + < U >) = 0.

Therefore, the value of α equals to

α =
3

√

3m2g

2h̄2

Substitute this value to calculate the minimum energy, and the estimation of the ground state

energy is

E0 =
9

4
3

√

2

3
mg2h̄2.
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(c)Suppose that the energy of the particle is represented as E, hence the height of classical turning

point equals to E/mg. Since the given potential well has one rigid wall, the integral should satisfy

the following relationship

∫ E
mg

0

p(x)dx = (n+
3

4
)πh̄, n = 0, 1, 2, 3...

where p(x) can be represented as

p(x) =
√

2m(E −mgx).

For the ground state, n = 0 and E can be denoted as E0. Consequently,

∫

E0
mg

0

√

2m(E0 −mgx)dx =
3

4
πh̄.

So the estimation of ground state energy is

E0 =
3

√

81π2

128
mg2h̄2.

(d) The ground state energy estimation of variational method is little larger than Eexact, while

the estimation of WKB method is little smaller than Eexact.

3. About how long would it take for a can of beer at room temperature to topple over spota-

neously, as a result of quantum tunneling?

Hint: Treat it as a uniform cylinder of mass m, radius R, and height h. As the can tips, let z

be the height of the center above its equilibrium position h/2. The potential energy is mgz, and

it topples when z reaches the critical value z0 =
√

R2 + (h/2)2 − h/2. Calculate the tunneling

probability for E = 0. Use τ = 2x1

v
e2γ , with the thermal energy 1

2
mv2 = 1

2
kT to estimate the

velocity. Put in reasonable numbers, and give your answer in years.

Solution: The factor γ is defined as,

γ ≡ 1

h̄

∫ x2

x1

√

2m(V (x)− E)dx.

For E = 0 and V(x)=mgx, γ equals to

γ =
1

h̄

∫ z0

0

√

2m2gxdx =
2m

3h̄

√

2gz30 .

The velocity calculated from the thermal energy is v =
√

kT
m
. Combining these results yields the

toppling time,

τ = 2z0

√

m

kT
e

4m
3h̄

√
2gz3

0 .

Suppose that R = 0.03m, h = 0.16m, m = 0.5 kg and T = 300K, the expected topple time should

be

τ ≈ 1010
30.8898

years!

4.For Boson Operators,[â, â†] = 1, (or for the equivalent simple harmonic oscillator) prove the
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following relations:

[â, eαâ
†

] = αeαâ
†

, e−αâ
†

âeαâ
†

= â+ α

e−αâ
†

eβâeαâ
†

= eβαeβâ , eαâ
†ââe−αâ

†â = e−αâ

where α and β are complex numbers.

Solution

(1)Due to the commutator [â,â❸]=1,for each n ≥ 1,

[â, (â†)n] = (â†)n−1[â, â†] + [â, (â†)n−1]â† = (â†)n−1 + [â, (â†)n−1]â†.

This process can be repeated until the power of â❸ in the commutator is smaller than 1. Therefore,

[â, (â†)n] = (â†)n−1 + (â†)n−1 + [â, (â†)n−3](â†)2 = (n− 1)(â†)n−1.

Combining the above commutator with series expansion of exponential function yields

[â, eαâ
†

] = [â,

∞
∑

i=0

(αâ†)i

i!
] = α

∞
∑

i=1

(αâ†)i−1

(i− 1)!
= αeαâ

†

.

(2)The above commutator can be expanded as

âeαâ
† − eαâ

†

â = αeαâ
†

.

Notice that complex number α is commutative with any operator,

âeαâ
†

= eαâ
†

(â+ α).

Premultiply both sides of the above equation by e−αâ
†

,the following relationship can be proved.

e−αâ
†

âeαâ
†

= â+ α

�3	Suppose that f = e−αâ
†

eβâeαâ
†

. Now taking the derivative of f with respect to β yields

df

dβ
= e−αâ

†

âeβâeαâ
†

.

Since

e−αâ
†

âeαâ
†

= â+ α,

postmultiplying both sides of the above equation by e−αâ
†

yields

e−αâ
†

â = (â+ α)e−αâ
†

.

Subsitute this relationship into the previous equation of derivative of f,

df

dβ
= (â+ α)e−αâ

†

eβâeαâ
†

= (â+ α)f.

The solution of this differential equation is

f = C · eβ(â+α),
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where C is a constant to be determined by initial condition. For f=1 if β takes 0, the value of C

equals to 1. Therefore,

e−αâ
†

eβâeαâ
†

= eβαeβâ.

(4) Let g = eαâ
†ââe−αâ

†â, the derivative of g with respect to α equals to

dg

dα
= eαâ

†â[â†â, â]e−αâ
†â

The commutator on the right hand side equals to

[â†â, â] = â†[â, â] + [â†, â]â = −â

Consequently,
dg

dα
= −g,

g = C ′ · e−α.

Similarly, g=â when α is 0, so the constant C’ should be â. Therefore,

eαâ
†ââe−αâ

†â = e−αâ.

5.Derive the following relations for Fermi operators.

1) e−αâ
†

âeαâ
†

= â− α2â† + α(ââ† − â†â)

e−αââ†eαâ = â† − α2â− α(ââ† − â†â)

2) eαâ
†ââe−αâ

†â = e−αâ, eαâ
†ââ†e−αâ

†â = eαâ†

Solution

(1)Due to Pauli exclusion principle, for Fermions, the power of creation operator and annilation

operator will vanish whenever n > 1.

(â)n = Ô, (â†)n = Ô for all n > 1

Therefore,

e−αâ
†

âeαâ
†

= (1− αâ†)â(1 + αâ†) = â− α2â† + α(ââ† − â†â)

e−αââ†eαâ = (1− αâ)â†(1 + αâ) = â† − α2â− α(ââ† − â†â)

(2)Let f = eαâ
†ââe−αâ

†â, then take the derivative of f with respect to α,

df

dα
= eαâ

†â(â†ââ− ââ†â)e−αâ
†â

The anticommutator for Fermions satisfies [â, â†]+ = 1. Substituting this anticommutator and

ââ = Ô into the equation of derivative yields

df

dα
= −f.

The solution of this differential equation is

f = C · e−α.

Since f = â when α=0, C must equal to â. Hence

eαâ
†ââe−αâ

†â = e−αâ.

The last equation can also be proved in a similar way, and reader can have a try.
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2 Solid State Physics

1.The primitive translation vectors of fcc Bravais lattice are:

a =
a

2
(0, 1, 1), b =

a

2
(1, 0, 1), c =

a

2
(1, 1, 0)

where a is the side of the cube.

Show that G1 = 2π
a
(2, 0, 0),G2 = 2π

a
(2, 2, 0),G3 = 2π

a
(2, 2, 2)are allowed vectors of reciprocal

lattice, while G = 2π
a
(3, 0, 0)is not.

Solution

The basis of the reciprocal space of the fcc lattice expressed in the orthogonal basis (x̂, ŷ, ẑ) are,

A =
2π

a
(−1, 1, 1);B =

2π

a
(1,−1, 1);C =

2π

a
(1, 1,−1)

And the generic reciprocal lattice vector will be

G = kA+ pB + qC,

where k,p,q are integers. In the orthogonal basis, it is normally referred to,

G =
2π

a
[x̂(−k + p+ q) + ŷ(k − p+ q) + ẑ(k + p− q)],

and we can see that the system














−k + p+ q = 3

k − p+ q = 0

k + p− q = 0

does not admit solution in the set of integers.

2.Prove that (1) the volume of the primitive cell multiplied the volume of the corresponding

reciprocal primitive cell is (2π)3; (2) the reciprocal primitive cell has the exactly same point

group symmetry as the primitive cell.

Solution

(1) The basis of the reciprocal primitive cell are defined according to the following rules,

ai · bj = 2πδij =

{

2π (i = j)

0 (i 6= j)

where i , j=1, 2, 3. Denote the volume of the primitive cell with Ω, and that of reciprocal cell

with Ω∗. Hence,

b1 =
2π

Ω
(a2 × a3), b2 =

2π

Ω
(a3 × a1), b3 =

2π

Ω
(a1 × a2).

The volume of reciprocal primitive cell can be worked out through

Ω∗ = b1 · (b2 × b3) =

(

2π

Ω

)3

(a2 × a3) · [(a3 × a1)× (a1 × a2)].

Since (a× b)× c = (a · c)b− (b · c)a,

Ω∗ =

(

2π

Ω

)3

(a2 × a3) · [a3 · (a1 × a2)]a1 =
(2π)3

Ω
.
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Therefore, Ω · Ω∗ = (2π)3.

(2) Suppose that α is a symmetrization operation in the primitive point group, therefore αRl is

still a lattice vector. For each element α in the group, there must exsit a reverse element α−1 so

that α−1Rl is also a lattice vector. Therefore,

α−1Rl ·Kn = 2πm.

Since symmetrization operation is orthogonal transformation, which keeps the inner product of

two vectors unchanged after transformation, the above equation can be reduced to the following

form,

Rl · αKn = 2πm.

Hence, for each element α in the symmetrization group, αKn is also a reciprocal lattice vector.

The reciprocal lattice shares the same symmetrization group with the primitive lattice.

3.Gold has a face-centered cubic Bravais lattice whose lattice constant a=4.08Å. The potential en-

ergy of the crystal composed of N atoms can be approximately written as U = N
2

∑

R
εb[

(

re
R

)12−
2
(

re
R

)6
] (sum of the Lennard-Jones potentials), where εb is the binding energy at the distance re

of the nearest neighbors. R runs on all vectors of the lattice. Assuming that the contribution to

U is only due to the interaction with the nearest neighbors, and that the total binding energy is

given by the enthalpy of sublimation ∆Hs = 368kJ/mole, calculate εb and, in harmonic approx-

imation, determine the force constant κ and the vibration frequency ω.

(Neglect the kinetic contribution to the total energy of the crystal.)

Solution

Since the lattice is fcc, the closest neighbors are z=12 at the equilibrium distance re = a√
2
=

2.885Å. Because the sum of U is limited to the nearest neighbors (pv) setting R = re yields

Upv = −N
2

∑

pv

εb = −zN
2
εb

and for one mole atoms ∆Hs =
z
2
NAεb, where NA is the Avogadro constant, from which

εb =
∆H

6NA

= 0.64eV/atom.

Expanding the potential energy of each atom to the second order

Upv(R) =
z

2
εb

[

(re
R

)12

− 2
(re
R

)6
]

,

we obtain
d2Upv
dR2

∣

∣

∣

∣

re

= 12
z

2
εbr

6
e

[

13r6e

(

1

R

)14

− 7

(

1

R

)8
]

∣

∣

∣

∣

re

= 432
εb
r2e
,

from which

κ = 33.2eV/Å2

and

ω =

√

κ

MAu

= 4.02× 1013rad · s−1,
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Figure 1: First Brillouin zone of a face-centered cubic lattice

where MAu = 3.28× 10−25kg/atom.

4.Aluminum(Al) is a trivalent fcc metal with lattice parameter a=4.04Å. Calculate, in the free

electron approximation, the energy bands along the ΓX, ΓK and ΓL directions of the first Bril-

louin zone, where Γ is the center of the zone.

(a) Describe the bands along these directions of high symmetry.

(b) Calculate the position of the Fermi level.

(c) State whether the first Brillouin zone is entirely contained in the Fermi sphere.

Solution

The basis of a fcc in directed space is

a =
a

2
(1, 0, 1), b =

a

2
(1, 1, 0), c =

a

2
(0, 1, 1)

where a is the side of the cube of the unit cell. The reciprocal basis is obtained from it:

A =
2π

a
(1,−1, 1),B =

2π

a
(1, 1,−1),C =

2π

a
(−1, 1, 1).

The latter describes a bcc lattice in the reciprocal space whose unit cell is a cube of side length

|l| = 2π

a
|(1, 1, 1)− (1,−1, 1)| = 2π

a
|(020)| = 4π

a
.

The first Brillouin zone is represented in the figure 1, from which it is immediate to determine

the coordinates of the points X and L:

X ≡ 2π

a
(1, 0, 0);L ≡ 2π

a
(
1

2
,
1

2
,
1

2
).

To determine the coordinates of point K, considering the figure 2, it shows that

l = 4

√
2

2
d = 2

√
2d.

Therefore the projection of point K along the direction XW, from point X, equals to d
2

√
2
2
+d

√
2
2

=
3
4
d
√
2 = 3

8
l. So the coordinates of point K are

K ≡ 2π

a
(
3

4
,
3

4
, 0).
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Figure 2: Flat section of the Brillouin zone

Using the form of free electron, it is obtained:

EX =
h̄2

2m

(

2π

a

)2

(1 + 0 + 0)2 = 9.23eV.

Similarly EK and EL are calculated

EK = 10.4eV and EL = 6.9eV.

The energy bands are branches of parabola. Considering Pauli exclusion principle and the spin

of electron, each reciprocal primitive cell can host two electrons, so that

2× VFermi
VRep

=
V k3F
3π2

= N.

Furthermore, each aluminium atom has three valent electrons, therefore the Fermi surface is a

sphere of radius k3F = 3π2N
V

= 3π2 12
a3

and the Fermi energy is

EF =
h̄2k2F
2m

= (6π)4/3
h̄2

2ma2
= 11.73eV.

The point W of the first Brillouin zone is the most distant from the point Γ, and has coordinates

W ≡ 2π
a
(1, 1

2
, 0). Therefore

kF
kW

=
3
√
36π2

π
√
5

= 1.008,

the first Brillouin zone is entirely contained in the Fermi sphere.

3 Computational Physics

1.The overlap matrix S is defined as

Spq =< χp|χq > .

Consider a vector ψ that can be expanded in the basis χp as:

ψ =
∑

p

Cp|χp > .
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(a) Suppose ψ is normalised. Show that C then satisfies:

∑

pq

C∗
pSpqCq = 1.

(b) Show that the eigenvalues of S are positive.

Solution (a) Since ψ is normalised, < ψ|ψ >= 1, consequently

(
∑

p

C∗
p < χp|)(

∑

q

Cq|χq >) =
∑

pq

C∗
p < χp|χq > Cq =

∑

pq

C∗
pSpqCq = 1

(b) For any vector ψ in the Hilbert space, the inner product of ψ with itself is always greater

than 0, < ψ|ψ >> 0.This inequality can also be expressed as

< ψ|ψ >= C∗SC > 0.

Therefore, S is a Hermite positive matrixa and the eigenvalues of S are positive.

2.MacDonald’s theorem states that, in linear variational calculus, not only the variational ground

state but also the higher variational eigenvectors have eigenvalues that are higher than the

coressponding eigenvalues of the full problem.

Consider an Hermitian operator H and its variational matrix representation H defined by

Hpq =< χp|H|χq > .

χp are the basis vectors of the linear variational calculus. They form a finite set.

We shall denote the eigenvectors of H by φk and the corresponding eigenvalues by λk;Φk are the

eigenvectors of H with eigenvalues Λk. They are all ordered, i.e. φ0 corresponds to the lowest

eigenvalue and so on, and similarly for the Φk.

(a) Write Φ0 as an expansion in the complete set φk in order to show that

< Φ0|H|Φ0 >

< Φ0|Φ0 >
= Λ0 ≥ λ0.

(b) Suppose Φ′
1 is a vector perpendicular to φ0. Show that

< Φ′
1|H|Φ′

1 >

< Φ′
1|Φ′

1 >
≥ λ1.

(Note that, in general, the lowest-but-one variational eigenstate Φ1 is not perpendicular to φ0 so

this result does not guarantee Λ1 ≥ λ1.)

(c) Consider a vector Φ′
1 = αΨ0 + βΨ1 which is perpendicular to φ0. From (b) it is clear that

< Φ′
1|H|Φ′

1 > / < Φ′
1|Φ′

1 >≥ λ1. Show that

< Φ′
1|H|Φ′

1 >

< Φ′
1|Φ′

1 >
=

|α|2Λ0 + |β|2Λ1

|α|2 + |β|2 .

and that from this it follows that Λ1 ≥ λ1. This result can be generalised for higher states.

Solution (a) Expand Φ0 in the complete set φk as the following:

Φ0 =
∑

k

ak|φk >
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Due to the orthonormal relationship of the basis, it can be deduced that

< Φ0|H|Φ0 >

< Φ0|Φ0 >
=

∑

k=0 λk|ak|2
∑

k=0 |ak|2
≥

∑

k=0 λ0|ak|2
∑

k=0 |ak|2
.

Therefore,
< Φ0|H|Φ0 >

< Φ0|Φ0 >
= Λ0 ≥ λ0.

(b) Supposed that Φ′
1 has been expanded in the basis as the following:

Φ′
1 =

∑

i

a′i|φi > .

Since Φ′
1 is a vector perpendicular to φ0, the following relationship should be satisfied:

< φ0|Φ′
1 >= a′0 = 0.

Consequently,
< Φ′

1|H|Φ′
1 >

< Φ′
1|Φ′

1 >
=

∑

i=1 λi|ai|2
∑

i=1 |ai|2
≥ λ1.

(c) The eigenvectors of H also satisfy the orthonormal relationship, so

< Φ′
1|H|Φ′

1 >

< Φ′
1|Φ′

1 >
=

|α|2Λ0 + |β|2Λ1

|α|2 + |β|2 ≥ λ1.

From Λ1 > Λ0, finally we can conclude that

Λ1 ≥
|α|2Λ0 + |β|2Λ1

|α|2 + |β|2 ≥ λ1,

and Λ1 = λ1 if and only if |α|2 = 0.

3. For a two-electron system, the wave function can be written as

Ψ(x1,x2) = Φ(r1, r2) · χ(s1, s2).

Because the wave function Ψ is antisymmetric under particle exchange, we may take Φ symmetric

in 1 and 2 and χ antisymmetric, or vice versa.

We construct the functions Ψ and χ from the orthonormal spatial orbitals φ1(r), φ2(r) and the

spin-up and -down functions α(s) and β(s) respectively.

(a) Write down the antisymmetric wave functions that can be constructed in this way (there are

six of them).

(b) Write down all possible Slater determinants that can be built from the one-electron spin-

orbitals consisting of a product of one of the orbitals φ1 and φ2 and a spin-up or -down spinor

(you will find six of these determinants too).

(c) Express the wave functions of part (a) of this problem in those of (b).

Solution (a) There are three wavefunctions if we take Φ symmetric and χ antisymmetric.

Ψ1 = φ1(r1)φ1(r2) ·
1√
2
[α(s1)β(s2)− α(s2)β(s1)]

Ψ2 = φ2(r1)φ2(r2) ·
1√
2
[α(s1)β(s2)− α(s2)β(s1)]

Ψ3 =
1

2
[φ1(r1)φ2(r2) + φ1(r2)φ2(r1)][α(s1)β(s2)− α(s2)β(s1)]

12



The other three can be found if take Φ antisymmetric and χ symmetric.

Ψ4 =
1√
2
[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)] · α(s1)α(s2)

Ψ5 =
1√
2
[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)] · β(s1)β(s2)

Ψ6 =
1

2
[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)][α(s1)β(s2) + α(s2)β(s1)]

(b) All possible Slater determinants are

Ψ′
1 =

1√
2

∣

∣

∣

∣

∣

φ1(r1)α(s1) φ1(r2)α(s2)

φ1(r1)β(s1) φ1(r2)β(s2)

∣

∣

∣

∣

∣

Ψ′
2 =

1√
2

∣

∣

∣

∣

∣

φ2(r1)α(s1) φ2(r2)α(s2)

φ2(r1)β(s1) φ2(r2)β(s2)

∣

∣

∣

∣

∣

Ψ′
3 =

1√
2

∣

∣

∣

∣

∣

φ1(r1)α(s1) φ1(r2)α(s2)

φ2(r1)β(s1) φ2(r2)β(s2)

∣

∣

∣

∣

∣

Ψ′
4 =

1√
2

∣

∣

∣

∣

∣

φ1(r1)α(s1) φ1(r2)α(s2)

φ2(r1)α(s1) φ2(r2)α(s2)

∣

∣

∣

∣

∣

Ψ′
5 =

1√
2

∣

∣

∣

∣

∣

φ1(r1)β(s1) φ1(r2)β(s2)

φ2(r1)β(s1) φ2(r2)β(s2)

∣

∣

∣

∣

∣

Ψ′
6 =

1√
2

∣

∣

∣

∣

∣

φ2(r1)α(s1) φ2(r2)α(s2)

φ1(r1)β(s1) φ1(r2)β(s2)

∣

∣

∣

∣

∣

(c) Wave functions of part (a) can be easily represented through Slater determinants of part (b)

as the followings:

Ψ1 = Ψ′
1,Ψ2 = Ψ′

2,Ψ3 =
1√
2
(Ψ′

3 +Ψ′
6),Ψ4 = Ψ′

4,Ψ5 = Ψ′
5,Ψ6 =

1√
2
(Ψ′

3 −Ψ′
6).

4. Consider the helium atom with two electrons having the same spin, represented by the spinor

α(s).

(a) Give the form of the two-electron wave function, expressed in orthonormal spatial orbitals φ1

and φ2.

(b) Write down the Schrödinger equation for this system.

(c) Give an expression for the expectation value of the energy in the orbitals φi.

Solution (a) The form of two-electron wave functions can be expressed as,

Ψ =
1√
2
[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)] · α(s1)α(s2)

(b) The Schrödinger equation for this system is

[

−1

2
∇1

2 − 1

2
∇2

2 − 2

r1
− 2

r2
+

1

|r1 − r2|

]

Ψ = EΨ.
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(c) The expectation value of the energy in the orbitals φi is

Ei =

∫

dr3i φ
∗
i

(

−1

2
∇i

2 − 2

ri

)

φi +

∫

dr3i |φi(ri)|2
(

dr31
|φ1(r1)|2
|r1 − ri|

+ dr32
|φ2(r2)|2
|r2 − ri|

)

−
∫

dr3i

(

dr31
φ∗
1(r1)φ1(ri)φ

∗
i (ri)φi(r1)

|r1 − ri|
+ dr32

φ∗
2(r2)φ2(ri)φ

∗
i (ri)φi(r2)

|r2 − ri|

)

5. Consider a Slater determinant

ΨAS(x1, ...,xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1√
N !

∑

P

ǫpPψ1(x1)...ψN (xN ).

The spin-orbitals ψk(x) are orthonormal.

(a) Show that the Slater determinant is normalised, by considering the inner product of two

arbitrary terms occuring in the sum of the Slater determinant and then summing over all possible

pairs of such terms.

(b) Show in the same way that the density of electrons with coordinates x, given by

n(x) = N

∫

dx2...dxN |ΨAS(x,x2, ...,xN )|2,

can be written in terms of the ψk as:

n(x) =
∑

k

|ψk(x)|2.

Suppose all spin-orbitals can be written as the product of a normalised orbital and a normalised

one-particle spinor, what is then the spatial charge density of the electrons (i.e. regardless of the

spin)?

Solution (a) Since all of the spin-orbitals ψk(x) are orthonormal, the non-vanishing inner product

of two arbitrary terms in the sum of the Slater determinant only occurs when their permutations

are exactly same. Therefore,

< ΨAS |ΨAS >=

∫

dx1dx2...dxN |ΨAS(x1,x2, ...,xN )|2 =
N !

(
√
N !)2

= 1.

(b) There are (N-1)! possibilities for the permutations from x2 to xN .Similarly, the density of

electrons with coordinates x is

n(x) = N

∫

dx2...dxN |ΨAS(x,x2, ...,xN )|2 =
N · (N − 1)!

(
√
N !)2

∑

k

|ψk(x)|2 =
∑

k

|ψk(x)|2.

Since all spin-orbitals can be decomposed of normalised orbital and one-particle as the following:

ψk(x) = φ(r)χ(s).

The spatial charge density equals to

ρ(r) = eδ(r)n(r) = eδ(r)
∑

k

|ψk(r)|2.
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6. In this problem we show that the large masses of the nuclei compared with those of the

electrons lead to the Born-Oppenheimer approximation.

The wave function Ψ of a collection of electrons and nuclei depends on the position Rn of the

nuclei and ri of the electrons (we neglect the spin-degrees of freedom). For this function we make

the following Ansatz :

Ψ(Rn, ri) = χ(Rn)Φ(ri)

with Φ(ri) an eigenstate with eigenvalue Eel of the N-electron ’Born-oppenheimer Hamiltonian’,

which in atomic units reads:

HBO =

N
∑

i=1

−1

2
∇2
i +

1

2

N
∑

i,j=1;i 6=j

1

|ri − rj |
−

K
∑

n=1

N
∑

i=1

Zn
|ri −Rn|

.

It is clear that Φ and Eel depend on the nuclear positions Rn, since the Born-Oppenheimer

Hamiltonian does.

Show that substitution of this Ansatz into the full Hamiltonian leads to

Φ(ri)

[

K
∑

n=1

− 1

2Mn

∇2
n + Eel +

1

2

K
∑

n,n′=1;n 6=n′

ZnZn′

|Rn −R′
n|

]

χ(Rn)

− χ(Rn)

K
∑

n=1

1

2Mn

∇2
nΦ(ri)−

K
∑

n=1

1

Mn

∇nχ(Rn) · ∇nΦ(ri) = Eχ(Rn)Φ(ri),

so that neglecting the last two terms on the left hand side of this equation, we arrive at a

Schrödinger equation for the nuclei which contains the electronic degrees of freedom via the

electronic energy Eel only:

[

K
∑

n=1

− 1

2Mn

∇2
n + Eel +

1

2

K
∑

n,n′=1;n 6=n′

ZnZn′

|Rn −R′
n|

]

χ(Rn) = Eχ(Rn).

The fact that the term (1/2Mn)∇2
nΦ(ri) can be neglected can be understood by realising that it

is 1/Mn times the variation of the kinetic energy of the electrons with the positions of the nuclei.

Of course, the core electrons have large kinetic energy, but they feel almost exclusively their own

nucleus, hence their kinetic energy is insensitive to variations in the relative nuclear positions.

The valence electrons have smaller kinetic energies, so the viariation of this energy with nuclear

positions will be small too. In a solid, deleting the term (1/Mn)∇nχ(Rn) · ∇nΦ(ri) means that

electron-phonon couplings are neglected, so that some physical phenomena cannot be treated in

calculations involving Born-Oppenheimer approach, although these effects can often be studied

perturbatively.

Solution: The full Hamiltonian has the following form

H = −
K
∑

n=1

1

2Mn

∇2
n −

N
∑

i=1

1

2m
∇2
i

+
e2

4πǫ0

[

1

2

N
∑

i,j=1;i 6=j

1

|ri − rj |
−

K
∑

n=1

N
∑

i=1

Zn
|ri −Rn|

+
1

2

K
∑

n,n′=1;n 6=n′

ZnZn′

|Rn −R′
n|

]
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The substitution of the given Ansatz into the full Hamiltonian leads to

HΨ(Rn, ri) =

[

K
∑

n=1

− 1

2Mn

∇2
n(χ(Rn)Φ(ri))

]

+
e2

4πǫ0

1

2

K
∑

n,n′=1;n 6=n′

ZnZn′

|Rn −R′
n|
(χ(Rn)Φ(ri))

+HBO(χ(Rn)Φ(ri)).

Consequently,

HΨ(Rn, ri) =

K
∑

n=1

− 1

2Mn

[Φ(ri)∇2
nχ(Rn) + χ(Rn)∇2

nΦ(ri) + 2∇nχ(Rn) · ∇nΦ(ri)]

+ EelΦ(ri)χ(Rn) + Φ(ri)
e2

4πǫ0

1

2

K
∑

n,n′=1;n 6=n′

ZnZn′

|Rn −R′
n|
χ(Rn) = EΦ(ri)χ(Rn).
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