
Geometric Entity Dualization and Dual
Quaternion Geometric Algebra in PGA G(3,0,1)
with Double PGA G(6,0,2) for General Quadrics

Robert Benjamin Easter

Independent Researcher in Bangkok, Thailand

Email: reaster2015@gmail.com

Scopus SC: 57190277660

ORCID iD: 0000-0002-8725-1835

Daranee Pimchangthong

Assoc. Prof. Dr. at UTK ISIC in Bangkok, Thailand

Email: daranee.p@mail.rmutk.ac.th
Web: isic.rmutk.ac.th

Scopus SC: 35273219500

Abstract

In Geometric Algebra, G(3,0,1) is a degenerate-metric algebra known as PGA, orig-
inally called Projective Geometric Algebra in prior literature. It includes within it a
point-based algebra, plane-based algebra, and a dual quaternion geometric algebra
(DQGA). In the point-based algebra of PGA, there are outer product null space
(OPNS) geometric entities based on a 1-blade point entity, and the join (outer pro-
duct) of two or three points forms a 2-blade line or 3-blade plane. In the plane-
based algebra of PGA, there are commutator product null space (CPNS) geometric
entities based on a 1-blade plane entity, and the meet (outer product) of two or
three planes forms a 2-blade line or 3-blade point. The point-based OPNS entities
are dual to the plane-based CPNS entities through a new geometric entity dual-
ization operation Je that is defined by careful observation of the entity duals in
same orientation and collected in a table of basis-blade duals. The paper contributes
the new operation Je and its implementations using three different nondegenerate
algebras {G(4),G(3,1),G(1,3)} as forms of Hodge star dualizations, which in geo-
metric algebra are various products of entities with nondegenerate unit pseudoscalars,
taking a grade k entity to its dual grade 4¡ k entity copied back into G(3,0,1).
The paper contributes a detailed development of DQGA. DQGA represents and
emulates the dual quaternion algebra (DQA) as a geometric algebra that is entirely
within the even-grades subalgebra of PGA G(3,0,1). DQGA has a close relation
to the plane-based CPNS PGA entities through identities, which allows to derive
dual quaternion representations of points, lines, planes, and many operations on
them (reflection, rotation, translation, intersection, projection), all within the dual
quaternion algebra. In DQGA, all dual quaternion operations are implemented by
using the larger PGA algebra. The DQGA standard operations include complex
conjugate, quaternion conjugate, dual conjugate, and part operators (scalar, vector,
tensor, unit, real, imaginary), and some new operations are defined for taking more
parts (point, plane, line) and taking the real component of the imaginary part by
using the new operation Je. All DQGA entities and operations are derived in detail.
It is possible to easily convert any point-based OPNS PGA entity to and from its
dual plane-based CPNS PGA entity, and then also convert any CPNS PGA entity
to and from its DQGA entity form, all without changing orientation of the entities.

1

https://www.scopus.com/authid/detail.uri?authorId=57190277660
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://orcid.org/0000-0002-8725-1835
https://www.scopus.com/authid/detail.uri?authorId=35273219500

Thus, each of the three algebras within PGA can be taken advantage of for what
it does best, made possible by the operation Je and identities relating CPNS PGA
to DQGA. PGA G(3,0,1) is then doubled into a Double PGA (DPGA) G(6,0,2)
including a Double DQGA (DDQGA), which feature two closely related forms of a
general quadric entity that can be rotated, translated, and intersected with planes
and lines. The paper then concludes with final remarks.

1 Introduction

This paper1 is about the degenerate metric Geometric Algebra G3;0;1 (known as PGA),
with some comparisons to using the non-degenerate metric G4;1 (known as CGA), with the
goal of being a useful exposition on this sparsely published subject that has only recently
gained more attention. In addition to being a contribution to the literature as another
exposition on the subject, we also have some new results to contribute in this paper.

This paper contributes the following: This paper contributes discussion of G3;0;1 that
covers the details of the point-based, plane-based, and dual quaternion-based algebras
that coexist within G3;0;1, with some comparisons to similar methods in G4;1. This paper
contributes a simple method for implementing the entity dualization operation Je that
is similar to, but not the same as, the operation J or ? as found in some other prior
literature. This paper also contributes a detailed discussion of the Dual Quaternion Geo-
metric Algebra of the even-grades subalgebra G3;0;1+ that includes deriving dual quaternion
representations of points, lines, and planes and methods for their rotations, translations,
reflections, and intersections. Some of the dual quaternion entities and operations may
be new, or the method by which these entities and operations in dual quaternions are
derived may be new.

We assume the reader is familiar with Geometric Algebra (GA) [19], Conformal Geo-
metric Algebra (CGA) [5][22], dual numbers, and quaternions, though we will also review
some aspects of these subjects as we discuss the algebras and introduce our notations.

The Geometric Algebra G3;0;1 is already known in the published and unpublished lit-
erature and has many names, including Clifford algebra of points, lines and planes (in the
similar G0;3;1) [23], Projective Geometric Algebra [13][14][15][16], Plane-based Geometric
Algebra [20], and Point-based Geometric Algebra [20] (dual to plane-based). As suggested
in [20] and [17], the name PGA abbreviates all of these names in G3;0;1, and we use the
name PGA throughout this paper.

In this paper, we use G3;0;1 with basis vectors fe0; e1; e2; e3g, unit pseudoscalar I4=
e0e1e2e3, and metric g= [ei � ej] = [gij] = diag(0; 1; 1; 1). For the algebra of the Euclidean
3D subspace G3, we define the unit pseudoscalar I3 = e1e2e3, so that I4 = e0I3. The
metric of Gp;q;r with r=/ 0 is called a degenerate metric. In Geometric Algebra, most of
the published literature has concentrated on the non-degenerate algebras Gp;q, so less is
known about how to use the degenerate algebras such as G3;0;1. In a degenerate algebra,
the inner product produces 0 for many inner products, so the inner product cannot be
used in all the usual ways. In particular, dualization by inner product with the unit
pseudoscalar does not work in the usual way. Dualization in G3;0;1 will be provided by a
special operation Je that we will develop in Section 4. In PGA G3;0;1, we cannot use the
inner product to generate geometric null spaces as is done in CGA, so we must use other
products as null spaces.

1. Version v1, 16 Dec 2023. This research paper may later be split into 2 or 3 published papers.

2 Section 1

In [23], the algebra is G0;3;1 with basis vectors fe1;e2;e3;eg, unit pseudoscalar e1e2e3e,
and metric diag(¡1;¡1;¡1; 0). These metrical differences, as compared to PGA G3;0;1,
mainly cause changes in the signs in some expressions but do not fundamentally change
the geometric content of the algebra.

The book [22] discusses the concept of Geometric Product Null Space, which we make
extensive use of in this paper. Usually, only certain parts of the full geometric product
are considered to be null spaces. The inner product part is called the Geometric Inner
Product Null Space (GIPNS). Similarly, for the outer product part there is the Geometric
Outer Product Null Space (GOPNS). These names are often shortened to just IPNS and
OPNS, and have been used in CGA, where OPNS entities dualize to IPNS entities. In
this paper, we introduce the terminology of Commutator Product Null Space (CPNS)
entities as dual to the OPNS entities in G3;0;1.

In CGA G4;1, we dualize the OPNS CGA surface entity A to its corresponding IPNS
CGA surface entity A�=A/I5, while the CGA point entity P is usually not dualized
since the metric is non-degenerate and (P^A)/I5=P � (A/I5). If P^A is a grade k,
then P � (A/I5) is grade 5¡ k.

However, in PGA we have to avoid the degenerate inner product. Both surface A
and point P are dualized from OPNS PGA to CPNS PGA as Je(A) and Je(P), and
then P ^A (of grade k) is taken again from the geometric product of these duals as
hJe(P)Je(A)ik=P^A. This grade k part is not given by the inner product, but by the
commutator product �. Thus, the same null space entity P^A is obtained in OPNS
PGA and in CPNS PGA, and degenerate inner products are avoided.

In G3;0;1, when we dualize the OPNS PGA 1-blade point, we obtain the dual CPNS
PGA 3-blade point, and we take its geometric product with another dual grade 3 point,
or dual grade 2 line, or dual grade 1 plane, but in each case the part of the geometric
product that does not include the inner product is the commutator product, which gives
the correct grade k part for the null space. The grade k product resulting from using the
commutator product of the dual CPNS PGA entities is the same as the outer product of
the corresponding OPNS PGA entities, and the geometric significance is the same. For
this reason, we call the dual entities, dual to the OPNS PGA entities, the Commutator
Product Null Space (CPNS) PGA entities.

The CPNS PGA entities have a correspondence with IPNS CGA entities, except that
no actual correspondence exists for the CGA point at infinity e1. The CGA e1 is replaced
in CPNS PGA by what may be called its pseudo-correspondence, e1$ Je(¡I3) = e0.
We cannot dualize by multiplication or division by the PGA unit pseudoscalar I4 since
it is a null pseudoscalar. The PGA entity dualization operation Je has to be provided
as a special operation. As mentioned before, the complete details of the PGA entity
dualization operation Je are given in Section 4.

It should be pointed out that, some may argue that using the degenerate algebra
G3;0;1 is unnecessarily complicated, and whenever one wants to use a null vector, then use
a non-degenerate null vector formed by adding an algebra of the Minkowski plane G1;1
with unit vectors fe+;e¡g, where e++e¡ and ¡e++e¡ are non-degenerate null vectors.
The PGA null vector e0 is degenerate, and makes the algebra degenerate, since its inner
product with any other basis blade is 0, including with the PGA unit pseudoscalar I4.
Then, the usual dualization of an element A as A�=AI4

¡1 cannot work in PGA since
I4
¡1 does not exist. However, for any element A2 G3, in the subalgebra G3, we have the
special dualization Je(A)=¡e0A�=¡e0(A/I3) in PGA. Otherwise, we require the entity
dualization operation Je to dualize any element in PGA. The non-degenerate null vector

Introduction 3

e++ e¡ has non-zero inner products with other vectors in the Minkowski (hyperbolic)
plane, but its square, or inner product with any multiple of itself, is 0. So, if we have
G3 and also want to have a null vector like e0, then we could use G3+1;1= G4;1, perhaps
with e0=

1

2
(¡e++ e¡)= eo, and this is the algebra of CGA, so we might as well also use

e1=e++e¡. CGA is a larger algebra requiring more computations than PGA. Though if
only points, lines, and planes are utilized in CGA, then CGA acts almost like PGA, yet it
still has more computational complexity since it still retains more basis blades to compute.

Even if CGA is used only for points, lines, and planes, there are at least three differ-
ences compared to PGA: (1) While CGA has a single point-at-infinity entity e1, PGA
has directed points at infinity represented by unit 3D vectors n̂ and has no corresponding
element to the CGA e1. (2) The OPNS CGA surface entities are one grade larger than
the OPNS PGA entities, increasing the computations required. However, the OPNS
PGA line and plane entities dualize to the same grades and forms as their corresponding
entities in IPNS CGA. (3) In CGA, we do not dualize the OPNS CGA point entity (it
remains a vector), while in PGA we dualize the OPNS PGA vector point entity into
a CPNS PGA 3-blade point entity, which is multiplied with the dual surface entities
by commutator product. In the dual CPNS PGA forms, using a 3-blade point and the
commutator product, the computations may not be much more efficient than the inner
products of the corresponding IPNS CGA entities. It is beyond the scope of this paper
to analyze and compare PGA to CGA computational efficiency, which would also depend
on the software implementation. PGA and CGA are similar for some entities and very
different in other ways. We will not make too many more comparisons.

This paper is organized as follows. In Section 2, we discuss the Point-based algebra of
OPNS entities in PGA, which we call OPNS PGA. The point-based algebra allows points
to join (span) by outer product into lines and planes. In Section 3, we discuss the Plane-
based algebra of CPNS entities in PGA, which we call CPNS PGA. The plane-based
algebra allows planes to meet (intersect) by outer product into lines and points. In Section
4, we develop the new PGA entity dualization operation Je that dualizes the OPNS PGA
entities into CPNS entities. The dualization operation seems to have been a difficult
problem in the prior literature, and the new operation Je appears to solve the dualization
problem for PGA G3;0;1. In Section 5, we explore the details of the Dual Quaternion
Geometric Algebra (DQGA) within the even-grades subalgebra G3;0;1+ of PGA. In DQGA,
we rediscover many results that may be known in older published literature, while there
may be some new results on representing lines and planes and various operations on them
that are derived through identities to the CPNS PGA entities and operations. In Section
6, we discuss Double PGA G6;0;2 (DPGA) in which the main result is the ability to form
a general quadric entity as the bivector !. Within DPGA, the DQGA is also doubled
into Double DQGA (DDQGA), in which again the main result is a general quadric entity
! based closely on !, as != I3!. In Section 7, the paper concludes with final remarks.

2 OPNS Point-based Geometric Algebra

In this section, we discuss the Outer Product Null Space Point-based Geometric Algebra
G3;0;1, OPNS PGA. In this geometrical interpretation of G3;0;1, a point entity P and a
surface entity P are multiplied by the outer product ^ as P^P, with the geometrical
interpretation that point P is a point of the surface P if and only if P^P=0.

4 Section 2

A geometric entity is an element of the algebra that embeds or represents a geometric
object (e.g., point, line, plane). The most useful forms of geometric entities allow for
the products of entities to yield an element of the algebra that expresses the geometrical
relationships between the entities, and also allow for one or more versors of the algebra
to act on the entities as transformation operators (e.g., rotation, translation).

The algebra of this section is similar to the �Algebra in Projective Space� (Section 7.4
in [4]), that uses G1;3;0. Any metric can be used for an algebra in projective 4D space,
but in this paper we use G3;0;1 which makes the inner product degenerate, but still allows
for a rotation operation. Since it is degenerate, we have to avoid using Inner Product
Null Space (IPNS) as explained in Section 1. This algebra, using the wedge product
of homogenized vector (1-blade) points, is also sometimes called Projective Geometric
Algebra.

2.1 OPNS PGA Introduction
The Outer Product Null Space Point-based Geometric Algebra G3;0;1 (OPNS PGA) is the
Projective Geometric Algebra G3;0;1 of homogeneous (or homogenized) points of the form
Pp=e0+p, where e0 is a degenerate null unit basis vector (a basis 1-blade defined so that
e0 �e0=0), and p= pxe1+ pye2+ pze3 is a Euclidean vector in G3 with metric ei �ej=diag(1;
1; 1) for i; j 2f1; 2; 3g. We can scale P by any real scalar t=/ 0 as tP without changing
the point represented, which is the essence of what �homogeneous� means in this context.
All of the geometric entities in PGA are homogeneous geometric entities. The point P
is also called a projective point, representing a ray (or line) tP, t=/ 0, through the origin
and passing through the hyperplane e0 at p. Points in 3D are where these rays intersect,
or project in the sense of light rays, onto the hyperplane e0. A point tP is �projected� by
dividing by t to normalize the homogeneous component e0 and then taking the 3D vector
part p. The coordinates of P, (1; x; y; z), are called homogeneous coordinates .

In Linear Algebra, homogeneous coordinates, often in the form of a column vector
P= [x; y; z; 1]T, are well-known for their use in computer graphics pipeline calculations,
where they are transformed by a 4� 4 matrix M as P0=MP. A matrix M may be the
composition of various transformations, including change-of-basis, rotation, translation,
scaling, shearing, and orthogonal or perspective projections into a view volume.

In OPNS PGA, we have not only a homogeneous point representation P=e0+p but
also a line L=P1^P2 and a plane P=P1^P2^P3 represented by the outer products
of two or three homogeneous points, respectively, which is arguably the most useful
feature of OPNS PGA and why it is called the point-based algebra of PGA. However,
transformation operations are limited in OPNS PGA to only rotation using a rotation
versor R= exp

¡ 1
2
�n̂/I3

�
.

In Section 2.2, we derive and discuss the OPNS PGA geometric entities for 1-blade
point P, 2-blade line L, and 3-blade planeP. In Section 2.3, we discuss some of the OPNS
PGA operations that act on the OPNS PGA entities, including the rotation operation
using the rotation operator R, and also translation, projection, and intersection opera-
tions using the PGA entity dualization operation Je that is introduced in Section 4.

2.2 OPNS PGA Geometric Entities
In this section, we derive and discuss the three OPNS PGA homogeneous geometric
entities: OPNS PGA 1-blade point P, OPNS PGA 2-blade line L, and OPNS PGA 3-
blade plane P.

OPNS Point-based Geometric Algebra 5

We will use many geometric algebra identities, including:

I4=¡I3e0; (1)

b�=b/I3=¡bI3; (2)

for the 2-blade dual b� of 1-blade b in G3,

aB= a �B+ a^B=
1
2
(aB¡ (¡1)kBa)+ 1

2
(aB+(¡1)kBa); (3)

for the product aB of 1-vector a and k-vector B,

(a �b)I3=
1
2
(ab+ba)I3=¡

1
2
(ab�+b�a)=¡a^b�; (4)

(a �b)I4= a^b�^ e0; (5)
and

(a �b�)I4=¡
1
2
(ab�¡b�a)I3e0= a^ e0^b: (6)

2.2.1 OPNS PGA 1-blade Point Entity

The OPNS PGA 1-blade point entity Pt is defined as

Pt= e0+ t; (7)

where t = xe1 + ye2 + ze3. The OPNS point Pt represents homogeneous coordinates
(1; x; y; z) and is called a homogenized 3D vector. We will also use the notation Pp for a
point that embeds the vector p.

We consider Pt to be the symbolic test point, where x; y; z are symbolic variables or
symbols. An actual numerical point is Pp= e0+ p= e0+ pxe1+ pye2+ pze3, where px;
py; pz are real numbers. This distinction between the symbolic test point Pt and other
numerical points, such as Pp, is used in symbolic calculations that help to analyze and
understand the algebra and its products.

Just like for homogeneous coordinates, we may scale a point Pp with any real number
t=/ 0 as tP, but we must remember that our actual 3D point p is in the hyperplane e0.

To obtain p from tPp, we must project tPp onto the hyperplane e0 by normalizing
the e0 component of Pp (dividing tPp/t=Pp) and then taking p. To extract the scalar
t from te0 requires that we have a special operation for this scalar extraction, or a
dualization operation that dualizes e0 to a non-degenerate element of the algebra that can
be contracted by its inverse to leave t. The entity dualization operation Je is discussed
in Section 4.

The homogeneous component e0 represents the point at the origin (x; y; z)= (0; 0; 0).
This is similar to the CGA point at the origin eo. Recall that a CGA point has the
form C(t)= t+ 1

2
t2e1+eo. In PGA, the CGA e1, representing the point at infinity, has

no corresponding counterpart or element. Instead of having �the point� at infinity, we
have the unit sphere of directional 3D vectors n̂, representing directed points at infinity:
limknk!1

(e0+n)

knk =
n

knk = n̂. Although we cannot scale a point Pn= e0+ n by t= 0, we

can scale Pn by 1

knk in the limit as knk!1 and then Pn=/ 0, which is what is required.
Further non-zero scaling of the directional unit vector n̂ representing a directed point at
infinity is still permissible. Therefore, more generally, any 3D vector n represents, by its
direction regardless of magnitude, a directed point at infinity. In CGA, we have this limit:
limt2!12C(t)/t2=e1, which is a single point at infinity that has no counterpart in PGA.

6 Section 2

2.2.2 OPNS PGA 2-blade Line Entity

The PGA OPNS 2-blade line L is constructed from basic geometric principles: Given
two points on the line as 3D vectors, p1 and p2, we form the displacement d from p1
to p2 as d=p2¡p1. Given any third point p3= t, we can test if it is on the line of p1
and p2 as follows. We take the displacement t¡p1, and note that it should be parallel
to d if t is on the line. To test this parallel condition, we can dualize the direction d as
d�=d/I3 and note that the projection of d, or any vector parallel to d, onto the plane
through the origin represented by d� is 0. If the displacement t¡p1 projects onto d� as
0, then t is on the line. The projection is ((t¡ p1) � d�)d�¡1=¡((t¡p1) �d�)d̂�kdk¡1.
The RHS d�¡1, which performs a counterclockwise rotation in the plane by 90� around d̂
and scales by kdk¡1, is not important for the test. Therefore, we choose to abridge the
vector projection by d̂�kdk¡1 to ¡(t¡p1) �d�=(p1¡ t) �d� as a vector-valued null space
test condition. Notice that, we do not abridge the minus sign, so that we maintain the
orientation of the projection. As geometric entities, the two points that define the line
are P1= e0+p1 and P2= e0+p2, the test point is Pt= e0+ t, and we seek to derive the
line entity L. Now, we use the identity (a �b�)I4=a^e0^b and dualize the vector-valued
null space (p1¡ t) �d� by multiplication with the PGA unit pseudoscalar I4 to produce
the geometric null space entity Pt^L=((p1¡ t) �d�)I4= (p1¡ t)^ (e0^d). Therefore,
(e0+ t)^L=¡e0^p1^d¡ t^e0^d. Let L=¡e0^d¡p1^d=¡(e0+p1)^d=d^P1
and note that t^p1^d=0 if t is on the line. We also have L=d^ (e0+p1)=(P2¡P1)^
P1=P2 ^P1. If we like, we can normalize d as d̂= d/ d2

p
and think of it as a unit

direction vector or as a unit directed point at infinity. We can now define the PGA OPNS
2-blade line entity L containing points P1 and P2 as

L=P2^P1; (8)

or as the line through points P and d̂ (a directed point at infinity, or direction through
P) as

L= d̂^P: (9)

It may seem odd that we write the points in reverse, but this maintains the orientation
of the line such that the line represents an axis of rotation around d when we dualize to
the CPNS PGA 2-blade line l= Je(L), where exp(�l̂ /2) is a rotor for counterclockwise
rotation around l by angle � with d̂ as the axis of rotation through l in the sense of
the right-hand rule. We will also use the notation Lp;d̂ for the line through point Pp in
direction d̂.

Note that, the condition (t¡ p1) � d�= 0 is the essence of Plücker coordinates (d1;
d2; d3 :m1; m2; m3) = (d�: p1 �d�) for the line, where any point t is on the line if t � d�¡
p1 � d�= 0. The correspondence (=̂) between vector calculus and geometric algebra is
a�b =̂ ((a ^ b)/I3)�= (a � (b/I3))�= (a � b�)� and a =̂ a�= a/I3, so in vector calculus
(d1; d2; d3 :m1; m2; m3) = (d : p1�d) = (d : p1�p2) = (d :m) with point t on the line if
t�d¡ p1�d= t�d¡m= 0, or if t�d=m. We distinguish the vector calculus cross
product symbol � (bold cross) from the geometric algebra commutator product symbol
� (cross), A�B=

1

2
(AB ¡BA).

OPNS Point-based Geometric Algebra 7

In CGA G4;1, we dualize the line condition (t¡ p1) � d�= 0 as ((t¡ p1) � d�)I5= 0,
which yields a 4-blade test condition and a 3-blade line entity of the form P1 ^P2 ^
e1=P1^d^ e1. CGA has a single point at infinity e1 which comes from the spherical
inversion, or reflection, of the center point C of any sphere S in the same sphere as
¡2SCS¡1= e1. In CGA, every line includes the point e1. In PGA, our OPNS line L
only includes the two directed points at infinity d̂ and ¡d̂. Note that, assuming the
CGA points P1 and P2 are unit scale in P1 ^P2 ^ e1, we can make the substitution
P1^ (P2¡P1)^ e1=P1^ (p2¡p1)^ e1=P1^d^ e1 since 1

2
(p2

2¡p12)e1^ e1=0.

2.2.3 OPNS PGA 3-blade Plane Entity

Given any point p on the plane P and the unit direction vector n̂ normal to the plane
(so that p and n̂ define the plane), then the scalar null space test condition that a point
t is on the plane is t � n̂¡p � n̂=0, where p � n̂= d is the distance of the plane from the
origin and t � n̂¡p � n̂ is the distance of t from the plane. As geometric entities, the plane
point p is Pp= e0+ p, the test point t is Pt= e0+ t, and we seek to derive the plane
entity P. To put the scalar null space test condition on a geometric basis as a geometric
null space entity, we use the identity (a �b)I4= a^b�^ e0 and multiply t � n̂¡p � n̂ by
the PGA unit pseudoscalar I4 as Pt^P=(t � n̂¡p � n̂)I4= t^ n̂�^e0¡p^ n̂�^e0. Then,
Pt^P= t^ e0^ n̂�+ e0^p^ n̂�. Let P=e0^ n̂�+p^ n̂�=Pp^ n̂�. Therefore, the PGA
OPNS 3-blade plane entity P representing the plane through point P and normal to the
unit direction vector n̂ is defined as

P=P^ n̂�: (10)

Normalizing the plane normal vector n is not required, but is the usual practice. Now, we
can make a useful substitution of the plane bivector n� as follows: Given three unit scale
points on the plane P1, P2, and P3 (assuming these points are arranged counterclockwise
on the plane to fix the orientation), it is easy to see that the bivector n� can be formed
as n�=(P3¡P1)^ (P2¡P1). Then, we have P=P1^ (P3¡P1)^ (P2¡P1)=P1^P3^P2,
with the points ordered clockwise in this 3-blade product while the points on the plane
are still geometrically arranged counterclockwise. The points do not actually have to be
unit scale. Therefore, the PGA OPNS 3-blade plane entityP for the plane of three points
P1, P2, and P3, where these points are arranged clockwise on the plane as viewed from
over the plane's normal direction n̂, is defined as

P = P1^P2^P3: (11)

Alternatively, if the points are arranged counterclockwise on the plane, then the plane is

P = P3^P2^P1: (12)

We will also use the notation Pp;n̂=Pp^ n̂ for the plane through point Pp with normal
n̂. Using the identity a^b�=¡(a �b)I3 we can write

Pd;n̂= e0^ n̂�+p^ n̂�= e0^ n̂�¡ (p � n̂)I3 (13)

8 Section 2

for the plane through point p at distance d=p � n̂ from the origin.

2.3 OPNS PGA Operations

The OPNS PGA operations include rotation and, via entity dualization using Je to CPNS
PGA plane-based entities, translation. The OPNS PGA point-based entities support the
join (of points) operation as the wedge product of 2 or 3 points to form a line or plane.
The meet (of planes) operation is also possible via dualization to plane-based entities,
where the wedge product of 2 or 3 planes forms a line or plane.

2.3.1 OPNS PGA 2-versor Rotation Operator

A versor V in geometric algebra is a geometric product one or more vectors V =a3a2a1:::
having inverses a¡1. We call a single vector V = a with an inverse (any non-null vector)
a 1-versor V , the product of two vectors is a 2-versor V =a2a1 and so on. Versors are, in
general, operators for transforming an elementA as A0=VAV ¡1= :::a3a2a1Aa1

¡1a2
¡1a3

¡1:::,
called a versor �sandwich� operation or product, and represents successive reflections in
vectors (composing Ai0=¡aiAai¡1 is successive reflections in hyperplanes).

The versor (version operator, or product of vectors having inverses) for the transfor-
mation of vector a into the vector b is the ratio b/a=ba¡1, which is a 2-versor. Assume
these are unit vectors, then (b/a)a=b is only rotation in the ab-plane, and we can write
b/a=ba=b �a+b^ a= cos(�)+ sin(�)n̂�= exp(�n̂�)=R2, where n̂�=(b^ a)/kb^ ak
and n̂�I3= n̂ is the axis of rotation. The rotor R2 can be applied to any vector c in the
ab-plane as just c0=R2c to rotate c by angle � (the angle from a to b) in the ab-plane.
R= exp(�n̂�/2) rotates by �/2. To rotate any vector v around the axis n, we must
leave the component of v parallel to n̂, vjj, unchanged and rotate only the component
of v perpendicular to n̂, v?. Therefore, we can see that RvR¡1 = R(vjj + v?)R¡1 =

RR¡1vjj+R2v? is v rotated by angle � around axis n̂. The rotation can also be seen
as successive reflections in the vector a then in b as v 00= bava¡1b¡1, which rotates v
by 2�. One interpretation is reflection in the line (through the origin) of a, v0= ava¡1,
and then in the line of b, v 00=bv 0b¡1. Another interpretation is reflection in the plane
(through the origin) perpendicular to a, v 0=¡ava¡1, and then in the plane perpendicular
to b, v 00=¡bv0b¡1 (these two planes intersect in the line of axis n̂). For any product of
elements AB:::, we can apply the versor operator R as RAB:::R¡1=RAR¡1RB:::R¡1,
inserting R¡1R = 1 anywhere we choose, which is called versor outermorphism. The
outermorphism applies to all parts of the geometric product, including the outer product.
The OPNS PGA entities are point-based, formed as outer products of the point entities.
By outermorphism, the rotor R can be applied to any of these entities, point P, line L,
or plane P, and R rotates each point, RPR¡1=RpR¡1+ e0, in the entity and therefore
rotates the entire entity. In summary:

The rotation operator (rotor) R, for rotation relative to the origin around axis n̂ by
angle �, is

R= exp
�
�
2
n̂�
�
= cos

�
�
2

�
+ sin

�
�
2

�
n̂�: (14)

OPNS Point-based Geometric Algebra 9

The rotor R is applied to any element A of the algebra as the versor �sandwich� operation

A0 = RAR¡1; (15)

which applies R2 to vector components in the plane of rotation, and therefore the full
angle � of rotation.

Note that, R¡1=R�= exp(¡�n̂�/2), the reverse of R. The reverse of R2= ba is
(R2)�= ab, reversing (~) the order of all vector products (the reflections), or reversing
the sign of the bivector n̂�, which is works like complex number conjugation to rotate in
the reverse direction. If a and b are both unit vectors in R2=ba, then (R2)�= (R2)¡1,
but otherwise the scale of the vectors remain in the reverse (R2)�.

It is not possible in OPNS PGA to reflect in the OPNS PGA 3-blade plane entity P,
which otherwise would be able to generate translations and rotations around lines. We
overcome this limitation in the CPNS PGA, where we are able to reflect in general planes
and form a translation operator T acting as a versor outermorphism operator. With a
translation operator T , we can then also rotate relative to points other than the origin
by using translated rotors TRT¡1.

2.3.2 Using Entity Dualization for Other Operations

In Section 3, we discuss the CPNS PGA entities and operations. In Section 4, we discuss
the geometric entity dualization operation Je that dualizes any OPNS PGA entity into
its dual CPNS PGA entity.

In CPNS PGA, we have a translation operation T as a versor operation on CPNS
PGA entities. Therefore, we can translate any OPNS PGA entity in dual form as a
CPNS PGA entity and then dualize the translated entity back into an OPNS PGA
entity. The translation operation on an OPNS PGA entity A is A0=¡Je(TJe(A)T¡1),
where Je(A) =A? is the dual CPNS PGA entity of A. The inverse dual (�undual�)
operation is ¡Je=De, dualizing a CPNS PGA entity A? to its dual OPNS PGA entity
A=¡Je(A?)=A¡??.

The intersection of two OPNS PGA 3-blade planesP1 andP2 cannot be done directly
within OPNS PGA, but we can dualize the planes to CPNS PGA 1-blade planes as
P1

?= Je(P1) =�1 and P2
?= Je(P1) =�2, and then form their intersection line entity in

CPNS PGA as L?= l=P1
?^P2

?. The resulting line L? is then undualized to the OPNS
PGA line L=¡Je(L?)=L¡??. The intersection can be written more compactly as

L=(P1
?^P2

?)¡?; (16)

which is also known as the meet operation (on planes) L=P1_P2. Likewise, we can
form a point as the meet product of three planes as

P=(P1
?^P2

?^P3
?)¡?; (17)

which may also be written as P=P1_P2_P3.

In OPNS PGA, we instead have the join operation (on points), such as L=P1^P2.
In CPNS PGA, we do not have the join operation on points, so it will be useful to dualize
CPNS PGA points to OPNS PGA points to use the OPNS PGA join operation on points.

10 Section 2

Any OPNS PGA entityA that has been dualized to its dual CPNS PGA entityA?=a
can also be transformed into its dual quaternion form a. As a dual quaternion entity a,
the entity a can be operated on by all of the available dual quaternion operations as a0.
The resulting entity a0 can then be transformed back to CPNS PGA entity a 0 and then
dualized to OPNS PGA entity A0. We can use all three of the algebraic forms of any
entity to take advantage of each form and its operations.

2.4 OPNS PGA Conclusion

The OPNS PGA is also called the point-based algebra of PGA. The OPNS PGA 1-blade
point Pt= e0+ t was defined as a homogeneous point. We derived the OPNS PGA 2-
blade line L and 3-blade plane P entities in detail, starting from the basic geometry and
geometric null space conditions (Plücker coordinates or implicit surface). We were careful
to consider the orientation of the entities.

We can join two or three OPNS PGA 1-blade points P by wedge product to form
a 2-blade line L=P1 ^P2 or 3-blade plane P=P1 ^P2 ^P3 which is one of its most
useful features. The form of the OPNS PGA 1-blade point does not support any known
translation operation, but all of the OPNS PGA entities can be rotated using the PGA
rotation operator R, which is a standard form of rotation operator.

The plane-based algebra of PGA, which is discussed in the next section, is usually
considered to be more interesting than the point-based algebra since it also supports a
translation operator T . We can still use the point-based algebra very easily by dualizing
the plane-based entities to their dual point-based entities. Therefore, we can take full
advantage of the point-based join operations (point spanning). We can also dualize the
point-based entities to their dual plane-based entities to form the meet of planes (plane
intersection), which cannot be done directly in the point-based algebra.

3 CPNS Plane-based Geometric Algebra

This section is about the Commutator Product Null Space Plane-based Geometric Algebra
G3;0;1 (CPNS PGA). We call it CPNS PGA since the plane �, line l, and point p enti-
ties each represent a plane, line, or point geometric null space fpt � �; pt� l; pt�
pg, respectively, that is produced by the commutator product �. For example, the
plane � represents the set of points fpt: pt��=0g. We also call it Plane-based PGA
since the planes can be intersected by wedge product, also called the meet product
(of planes), to form the line and point entities.

3.1 CPNS PGA Introduction

The CPNS PGA is also called the plane-based algebra of PGA. For those who are familiar
with Conformal Geometric Algebra (CGA) G4;1, the entities of the Plane-based CPNS
PGA will appear familiar and look like the IPNS CGA entities. However, we cannot use
the inner product as in CGA. Instead, we use the commutator product �, or sometimes
the outer product ^.

CPNS Plane-based Geometric Algebra 11

In the plane-based algebra of PGA, the meet of planes (their intersection) is by the
outer product of two or three planes, forming a line or point. The plane is the primitive
or primary entity in the plane-based algebra. Again, this is much like the IPNS CGA. If
we want to join points by spanning, then we have to dualize the CPNS PGA entities to
their dual OPNS PGA entities in the point-based algebra of PGA. Using the new entity
dualization operation Je makes this easy enough, so we can take full advantage of both
the plane-based and point-based entities and algebras of PGA.

In the following sections, we explain in detail the CPNS PGA 1-blade plane �, 2-blade
line l, and 3-blade point pt entities. Then, we talk about the plane-based translation
operation T , and then the rotation operation R. Finally, there is a conclusion with final
remarks on CPNS PGA.

3.2 CPNS PGA Geometric Entities

In this section, we derive and discuss the CPNS PGA plane-based geometric entities,
which include the CPNS PGA 1-blade plane �, 2-blade line l, and 3-blade point p.

3.2.1 CPNS PGA 1-blade Plane Entity

We form the CPNS PGA 1-blade plane entity � starting from basic geometric principles.
In the 3D space, a hyperplane is just a plane with the linear implicit surface equation
xnx+ yny+znz¡d=0, where n̂=nxe1+nye2+nze3 is the unit normal vector of the plane,
point t=xe1+ ye2+ze3 is being tested for intersection with the plane, and d=p � n̂ is the
distance of the plane from the origin, given that p is a point on the plane. We rewrite the
equation as t � n̂¡p � n̂=0, where t � n̂¡p � n̂=dt is the distance of t from the plane. We
cannot actually work with scalar inner products in PGA since the metric is degenerate. In
the OPNS PGA, we derived an entity for the plane as a 3-blade P. Here, in CPNS PGA,
we will derive the plane entity � as dual-grade, as a 1-blade (vector). Similarly, the OPNS
PGA point P is a vector, while in CPNS PGA we will develop the point pt as dual-grade,
as a 3-blade. In OPNS, the pseudoscalar-valued geometric null space entity is Pt^P, the
outer product of a 1-blade point Pt and 3-blade plane P. In CPNS PGA, we also obtain
the very same geometric null space entity Pt^P= pt��= pt^�, where pt= Je(Pt) is
the dual of Pt and �= Je(P) is the dual of P. This avoids using the degenerate IPNS
scalar metric, and instead uses the non-degenerate OPNS pseudoscalar metric in dualized
form. The outer product behaves the same regardless of the scalar metric of the algebra.
Now, to proceed, we know that we want a pseudoscalar geometric null space entity as
the product pt� � = Pt ^P, and this equality is important to maintain orientation
through dualizations. We again, using the identity (a � b)I4= a ^ b� ^ e0, dualize the
scalar null space test condition as (t � n̂¡p � n̂)I4. This is exactly how we started when
deriving the OPNS PGA plane P. But now, since a � b= b � a, we use the identity as
(a � b)I4= b ^ a� ^ e0, and obtain (t � n̂¡ p � n̂)I4=¡t� ^ e0 ^ n̂+ I3(p � n̂)e0= pt ^�.
Let �= n̂+ (p � n̂)e0, which contains everything that defines the plane as a vector. Let
pt=¡t�^e0+ I3=(1+ t�I4)I3, which we further discuss in Section 3.2.3. Finally, we can
summarize as follows.

The CPNS PGA 1-bade plane entity �=�p;n̂=�d;n̂ for the plane with unit normal
vector n̂ through point p, or at distance d=p � n̂ from the origin, is defined as

�=�p;n̂=�d;n̂= n̂+(p � n̂)e0= n̂+ de0: (18)

12 Section 3

To test if a vector point t, represented by the CPNS PGA 3-blade point entity pt, is on
the 1-blade �, we produce the geometric null space entity as pt��=pt^� that produces
the same pseudoscalar as the corresponding test Pt^P in the dual OPNS PGA. The
point pt is on the plane � if and only if pt^�=0.

If we look at the geometric product pt�= pt ��+ pt^�, we notice that the possible
graded parts of this product are of grades 4, 2, or 0. The product symmetry test for the
inner product of an r-blade Ar and s-blade Bs, s � r, is that (¡1)r(s¡1)= 1 indicates
product symmetry Ar �Bs=Bs �Ar and this inner product is part of the symmetric anti-
commutator product Ar � Bs =

1

2
(ArBs +BsAr), otherwise (¡1)r(s¡1) =¡1 indicates

product antisymmetry and is part of the antisymmetric commutator product Ar�Bs=
1

2
(ArBs¡BsAr). By the product symmetry test for inner product of blades, we see that
pt �� is symmetric and part of the symmetric anti-commutator product. The product
symmetry test for the outer product of an r-blade Ar and s-blade Bs is that (¡1)rs=
1 indicates Ar ^Bs =Bs ^Ar and this outer product is part of the symmetric anti-
commutator productAr�Bs=

1

2
(ArBs+BsAr), otherwise it is part of the antisymmetric

commutator product Ar�Bs=
1

2
(ArBs¡BsAr). By the product symmetry test for outer

product of blades, we see that pt^� is antisymmetric and is part of the commutator
product. Therefore, if we use the commutator product, then we get pt��= pt^�, the
pseudoscalar part that we are wanting. By this result, we call the entities commutator
product null space (CPNS) entities. We will continue to find that the commutator product
gives the part of the geometric product we want as the geometric null space entity.

In IPNS CGA, the plane entity is n̂+ de1, which is very similar to the CPNS PGA
plane �= n̂+de0. The correspondence between IPNS CGA and CPNS PGA is not exact
since no geometrical counterpart to e1 exists in PGA. In OPNS PGA, e0 and ¡I3 fulfill
the roles of the CGA eo and e1, respectively. In the CPNS PGA, the duals I3= Je(e0)
and e0= Je(¡I3) fulfill the roles of the CGA eo and e1, respectively. Recall that, in
CGA, eo � e1=¡1, similar to in CPNS PGA, I3e0= Je(e0)Je(¡I3) =¡I4 since we use
pseudoscalars instead of scalars to work in the degenerate metric of the inner product.
We have in CGA, eo^ (e1I5) =¡I5, similar to OPNS PGA, e0(¡Je(e0))=¡e0I3=¡I4,
where we undual ¡Je(e0) =¡I3 the e1-like counterpart e0 back to OPNS PGA as its
dual element ¡I3 fulfilling the role of e1 again. We also have in CGA, (e0I5)^e1=¡I5,
similar to CPNS PGA, I3(Je(¡I3))= I3e0=¡I4, where we dualize Je(¡I3)=e0 to CPNS
PGA as its dual element e0 fulfilling the role of e1 again. So, e0 and ¡I3 and their duals
and unduals keep swapping roles as either eo or e1 through the dualization Je from OPNS
PGA to CPNS PGA, or undual ¡Je the other way. As we will see, the dual operator Je,
as we define it in this paper, handles all of this correctly.

3.2.2 CPNS PGA 2-blade Line Entity

The CPNS PGA is the plane-based GA. By this, we mean that, we can form the CPNS
PGA 2-blade line entity l as the wedge of two plane entities,

l=�1^�2; (19)

representing their intersection line. To test a point pt against the line l, we use the
commutator product, pt� l. The point pt is on the line if and only if pt� l=0.

CPNS Plane-based Geometric Algebra 13

To prove that this test pt� l= 0 works, we need to use the identity A� (BC) =
(A�B)C +B(A�C) [(1.57) p.14 in [19]]. Then we have, pt� l= pt� (�1�2) = pt�
(�1 � �2 + �1 ^ �2) = (pt� �1)�2+ �1(pt� �2), ignoring the scalar �1 � �2 part since
commutator product with scalars is 0. Now, (pt��1)�2+�1(pt��2) equals 0 if and
only if both pt� �1 and pt� �2 are 0, and they are the pseudoscalar-valued point-
plane tests. A product like (pt��)�2= dtI4�2= dtI4n̂2=¡dtn̂2�e0, which is a 3-blade,
cannot be 0 unless the scalar dt= xnx+ yny+ znz¡ d of the point-plane condition, the
distance of pt from the plane �, is 0. In IPNS CGA, the inner product of a point and line
P �L=P � (P1^P2)=(P �P1)P2¡P1(P �P2) can be compared to what the commutator
product gives in CPNS PGA. We get two linearly independent terms when the planes
are not parallel and we have a real line entity.

We can also derive the line l from geometric principles as we did for the OPNS PGA
line entity L. We derived the vector-valued null space line condition (p1¡ t) � d�= 0,
where d=p2¡p1, and p1 and p2 are any two points on the line. The vector t is a third
point being tested against the line, and t is on the line if and only if (p1¡ t) �d�=0. For
the line entity l, we require that l=Je(L) such that pt� l=Je(Pt)�Je(L)=Pt^L is the
very same 3-blade geometric null space entity.

By dualization, we know that the line l is again a 2-blade, the test point pt= I3¡
e0t� is a 3-blade, and that the test is the 3-blade geometric null space entity pt� l=
((p1¡ t) �d�)I4, where we are solving for l. We cannot straightforwardly use the identity
(a � b�)I4 = a ^ e0 ^ b as we did to solve for L. So, we take a different approach to
solving for l. Take geometric products and grade 3 as pt� l= h((p1¡ t)d�)I4i3= h(I3¡
t�e0)li3. Now, we expand geometric products and we have ((p1 ¡ t)d�)I4 = p1d�I4¡
td�I4= I3e0p1d

�¡ e0t�d�. Let l= he0p1d�i2+ d�= e0(p1 � d�) + d�. Take grade 3 with
respect to l as hI3e0p1d�¡e0t�d�i3=I3�(e0(p1 �d�))¡(e0t�)�d�. Now check the product
pt� l= (I3¡ e0t�)� (d�+ e0(p1 � d�)) = I3� (e0(p1 � d�))¡ (e0t�)� d�. Therefore, the
CPNS PGA 2-blade line entity l through point p in the direction d̂ is

l= d̂
�¡ (p � d̂�)e0: (20)

We choose to normalize the line to unit magnitude using unit direction d̂. This is the
same exact form and orientation as the IPNS CGA line entity d̂¡ (p � d̂�)e1, except
that e0 is replaced in CGA with e1. As in CGA, l is able to act as an axis of rotation
for a rotor exp(�l̂ /2). We have that the CPNS PGA e0 fulfills the role of the CGA e1,
while the OPNS PGA e0 filfills the role of the CGA eo. We have that the CPNS PGA I3
fulfills the role of the CGA eo, while the OPNS PGA ¡I3 fulfills the role of the CGA e1.
The dual operator Je handles the sign changes correctly so that orientation is preserved
through the dualizations. The dual Je is discussed in Section 4.

3.2.3 CPNS PGA 3-blade Point Entity

As part of our construction of the CPNS PGA 1-blade plane entity �, we also derived
the required form of the CPNS PGA 3-blade point entity pt as

pt=(1+ e0t)I3= I3¡ e0t�: (21)

Note that, 1+ e0t=1+ t�I4= pt represents a homogeneous point pt in dual quaternions,
which is discussed further in Section 5. Other forms are pt=(1+ t�I4)I3= I3+ I4t.

14 Section 3

Notice that, the product of two points is papb=¡papb=¡(1+e0(a¡b)), representing
their difference as a point in dual quaternions. The bivector part ¡e0(a¡b) is given by
pa� pb as a test for point equality, where the product is 0 if and only if the two points
are representing the same point. Any scaling will not affect the point equality test.

Since a point is the intersection of three non-parallel planes, we should be able to form
a point using three planes. This is done very simply as the wedge of three non-parallel
plane entities,

p=�1^�2^�3=�^ l; (22)

which can also be seen as the wedge of a plane and a line. We test a point pt to check
if it is the intersection point (although this may seem unnecessary) by the commutator
product as pt� p. The point pt is the point p (although possibly of different scale) if
and only if pt� p=0. It can be shown through repeated use of the identity A� (BC)=
(A � B)C +B(A � C) that a point pt satisfies pt� (�1 ^ �2 ^ �3) = 0 if and only if
pt� �i = 0, 8i 2 f1; 2; 3g, meaning that pt is coincident on all three planes at their
intersection point.

When t=0, then p0= I3, so that I3 represents the point at the origin. In the limit,
limktk!1 (pt/ktk) = e0t̂I3= I4t̂, we see that p1t̂ = I4t̂ represents a directed point at
infinity. The dual is De(I4t̂) =¡Je(I4t̂) = t̂, which also represents a directed point at
infinity in OPNS PGA. Any scalar multiple ktk still represents the same entity, so I4t is
still a directed point at infinity. This may lend some insight into the form pt= I3+ I4t=
p0+ p1t, that it represents the sum of the point at the origin and a directed point at
infinity, which dualizes to De(pt) = e0+ t=Pt, representing the same point in OPNS
PGA.

3.3 CPNS PGA Operations
The CPNS PGA operations include rotation and translation. The CPNS PGA plane-
based entities support the meet (of planes) operation as the wedge product of 2 or 3 planes
to form a line or plane. The join (of points) operation is also possible via dualization
(using the geometric entity dualization operation Je) to point-based entities, where the
join operation is the wedge product of 2 or 3 dual points to form a line or plane.

3.3.1 CPNS PGA 2-versor Translation Operator

We noted that the point entity pt has the form (1+e0t)I3, where pt=(1+e0t)=exp(e0t)
has the form of a dual quaternion homogeneous point. We will elaborate on dual quater-
nions in Section 5, but for now just note further that the product of two of these dual
quaternion points acts as translation, exp(e0t)exp(e0p)= exp(e0(t+p)). This is because
their multiplication is commutative, similar to complex or dual numbers where magni-
tudes multiply and �angles� add. Since e02= 0, the commutativity of the multiplication
holds true no matter what �angles� are on e0. Therefore, a translation operator has
the form T = exp(e0d) for translation by a vector displacement d in dual quaternions.
We can apply this translation operator as a versor on a CPNS PGA point as TpT¡1=
T exp(e0p)T I3= (1 + e0(p+ 2d))I3. To translate by just d, then we use the form T =
exp(e0d/2). Since T acts correctly by versor outermorphism on a point entity p, then
we look at the form p=�1^�2^�3, and p0= T (�1^�2^�3)T¡1. We must conclude
that p 0= hT�1T¡1T�2T¡1T�3T¡1i3 is also correct and that each plane must be correctly
translated as � 0=T�T¡1. Then, by versor outermorphism again, we must also have the
correct results from l 0=TlT¡1=T (�1^�2)T¡1= hT�1T¡1T�2T¡1i2.

CPNS Plane-based Geometric Algebra 15

A plane through the origin is represented by �1= n̂1+0e0= n̂1. We reflect a general
plane �2= n̂2+ d2e0 in �1 as �20 =¡�1�2�1=¡n̂1n̂2n̂1+ d2e0, which is correct. Using
the translation operator, we can take a general plane and translate it to the origin, and
translate other planes by the same translation so that they translate together as a rigid
body. Then, we can reflect planes in the plane that is at the origin. After the reflection, we
translate all the planes back to where they were by the reverse translation operation. This
allows reflection in general planes. For example, using �1= n̂1+ d1e0 and �2= n̂2+ d2e0
and T = exp(d1e0n̂1/2), we reflect �2 in �1 as �20 = ¡TT¡1�1�2�1TT¡1 = ¡�1�2�1.
The result is that we can simply reflect general planes in general planes without using
translation. Again, by versor outermorphism, we can also reflect a line l or point p in
a plane �. Now, we can successively reflect in two non-parallel or two parallel general
planes and generate rotations around general lines or translations.

Note that, the CPNS PGA translator has depended on the form of the CPNS PGA
3-blade point entity p, that p is essentially a dual quaternion homogeneous point p=
1+I4p� that is �dualized� as p= pI3 to transform it into a grade 3 element of CPNS PGA.
The OPNS PGA point P does not have a form that allows a translation versor. We will
overcome this by dualizing OPNS to CPNS, and also possible transformation to dual
quaternion representations. In summary, we have the following forms of the translator T :

First form: The CPNS PGA translation operator (or versor), called the translator T ,
for translation by displacement vector d, is defined as

T = exp(e0d/2); (23)

which can be interpreted as representing a dual quaternion homogeneous point represen-
tation or embedding T = pd/2.

Second form: The CPNS PGA translator T for translation by displacement vector d,
can be defined by successive reflections in two parallel planes, in �1 and then in �2, that
are separated by d/2 so that �1= d̂+ d1e0 and �2= d̂+(d1+ kdk/2)e0. The translator
T is then

T =�2�1=�2 ��1+�2^�1=1+ e0d/2= exp(e0d/2): (24)

The contribution of d1 cancels out and does not matter, so it could just as well be d1=0.

3.3.2 CPNS PGA 2-versor Rotation Operator

We use the same rotor in CPNS PGA as in the OPNS PGA, R= exp(�n̂�/2). In the
plane-based PGA, to prove the correctness of R as a rotor for the CPNS PGA entities,
all we need to check is that R correctly rotates the plane entity �. The other entities,
the line 2-blade l and and 3-blade p, are wedge products of 2 or 3 of the plane entities.
By outermorphism, each plane is rotated and therefore the entire entity. We check as
follows: R�R¡1=R(n̂+ de0)R¡1=Rn̂R¡1+RR¡1de0. The scalar and bivector parts of
R¡1 commute without sign changes with de0, leaving it unchanged. We already know
that vectors are correctly rotated by R as n̂0=Rn̂R¡1. The rotor R rotates the plane �
as a rigid body relative to the origin around axis â by angle �, leaving the distance to
the origin d unchanged, and the normal vector along the line of the distance d is rotated
around n̂ by angle �, all as expected. Again, by versor outermorphism, we can rest assured
that rotation of a line l0=RlR¡1 or point p0=RpR¡1 also work as expected.

We also found, in the previous section on the translator T , that we can reflect in
general planes. This means that we can successively reflect in two non-parallel planes
to generate a rotation around the intersecting line of the two planes by twice the angle

16 Section 3

�= �/2 between the planes, which is a known result in geometry. Given two non-parallel
unit planes �1 and �2, the rotor R that reflects in these planes is

R=�2�1=�2 ��1+�2^�1= cos(�)+ sin(�)l̂ = exp(�l̂ /2): (25)

The result is a rotor R for rotation by angle � in the direction of �1 toward �2 around
their intersection unit line l̂ = �2 ^ �1/k�2 ^ �1k. Note that, the unit planes, �1 and
�2, have the form �= n̂+ de0, but it is not required that they actually be unit planes
since any scale � is removed by the versor sandwiching product A0=RAR¡1, but we get
�2A0=RAR� when using reverse. If we make direct use of a line l, we must normalize
it to a unit line l̂ and know the orientation of its direction d̂ as the axis of rotation, or
else the angle could be wrong.

If we like, we can now rotate by angle � around direction n̂ centered on a point c by
using the translated rotor

R=TRT¡1; (26)

where R= exp(�n̂�/2) and T = exp(e0c/2). This translates to the origin, performs the
usual rotation centered on the origin, then translates back. This is another form of
R= exp(�l̂ /2), but we set the axis n̂ without any ambiguity about its orientation.

3.3.3 Using Entity Dualization for the Join Operation

Using the geometric entity dualization operation Je that is discussed in Section 4, we can
(un)dualize any CPNS PGA plane-based entity a=A?= Je(A) to its (un)dual OPNS
PGA point-based entity A=¡Je(A?)=De(A?)=De(a)=a¡?.

The line l of two points p1 and p2 is the join (of points) operation

l=(p2
¡?^ p1¡�)?: (27)

The plane of three points p1, p2, and p3 (assuming they are arranged counterclockwise
from above the plane) is the join (of points) operation

�=(p3
¡?^ p2¡?^ p1¡�)?: (28)

3.4 CPNS PGA Conclusion
We covered in detail the plane-based CPNS PGA, including its 1-bade plane �, 2-blade
l, and 3-blade point pt entities. We derived the entities starting from the basic geometry,
forming a null space, and putting the null space into the form of a geometric entity.

Then, we talked about the plane-based translation operation T , which can be used on
only the plane-based entities, not on the point-based entities. The translation operator T
is also found to be a dual quaternion point T = pd/2, so it can also be used in dual quater-
nions. The rotation operation R was also discussed, including how it can be translated
for rotations around lines, or for rotations centered on a point c other than the origin.

The plane-based entities have the 1-blade plane � as the primary entity, and the line
l=�1^�2 and point p=�1^�2^�3 can be formed as the meet (intersection by wedge
product) of two or three planes.

We cannot join points (span points by wedge product) in the plane-based algebra
of PGA, but we can easily dualize plane-based entities to their point-based duals in the
point-based algebra using the new entity dualization operation Je. Therefore, we can
use both plane-based and point-based algebras as we like through the geometric entity
dualization operation Je, which we develop and discuss in detail in the next section.

CPNS Plane-based Geometric Algebra 17

4 Geometric Entity Dualization in PGA
This section introduces a new geometric entity dualization operation Je for PGA G3;0;1.

4.1 Introduction to Geometric Entity Dualization in PGA
In prior literature on PGA G3;0;1, such as in [17] and [21], the PGA dualization operation
seems to have been difficult to clearly and correctly define and implement. The two papers
[17] and [21] appear to have been the current understanding on PGA as of December 2023
at the time of writing this paper. In [17], the PGA dualization operation is denoted J(e),
and in [21] the PGA dualization is denoted ?A, which is a Hodge star ? notation. As will
be explained, the PGA dualization operations as given in [17] and [21] do not appear to
be correct. The dualization operations given in [23] for the similar algebra G0;3;1 also seem
to be incorrect for the same reasons as will be explained. To remedy this situation, we
study the PGA dualization and define and implement a new geometric entity dualization
operation for PGA, which we have denoted Je as distinct from J(e) and ?A. However,
as will be shown, we have closely borrowed similar notation, including some usage of the
Hodge star ? notation.

In the following sections, we first derive the correct dualizations of each basis blade
of G3;0;1, dualizing from the OPNS PGA geometric elements to the corresponding CPNS
PGA geometric elements representing the same geometry. The requirement of the dual-
ization operation J , as named in the prior published literature, is that an OPNS PGA
geometric entity must dualize to its corresponding CPNS PGA geometric entity as a linear
combination of basis blades, each dualized to their geometrically corresponding dual basis
blade. At first, we do not assume this is Hodge star ? dualization or any other known
type of dualization. The correct dualization operation, denoted Je in this paper, will be
empirically determined from the OPNS PGA entities and their corresponding dual CPNS
PGA entities by direct observation. We then tabulate the observed duals into an empirical
dualization table for Je of each basis blade to its dual basis blade, going from OPNS PGA
to CPNS PGA. Finally, we formulate algebraic dualization procedures for Je to match
the empirical dualization table for Je, rendering the table thereafter unnecessary. We call
Je, which is the dualization operation that we will determine empirically, the geometric
empirical dualization operation. We will then implement Je, calling it the geometric entity
dualization operation for PGA G3;0;1.

4.2 Empirical Determination of Entity Dualization Operation
In the following sections, we will begin with the four basis 1-blades, then the six basis 2-
blades, and then the four basis 3-blades. For each grade k of basis blades, we compare
grade k entities in OPNS PGA to corresponding dual grade 4¡ k entities in CPNS PGA
and directly observe the corresponding dual basis blades. How the 0-blade 1 and 4-blade
I4 dualize is shown to be a consequence of how the other basis blades dualize and the
resulting properties of the algebraic dualization operation for implementing Je. We then
discuss the Hodge star ? dualization and its relation to geometric algebra and Je before
discussing the implementation of Je.

4.2.1 Empirical Dualization of the Four Basis 1-blades
We compare the OPNS PGA 1-blade point Pt=e0+t with the CPNS PGA 3-blade point
pt= I3¡ e0t�= I3+ e0tI3. The points are considered to be in standard unit point form
and orientation. We compare the three points x= e1, y= e2, and z= e3. The basis 1-
blades should dualize to basis 3-blades as follows:

18 Section 4

For x, we have Px= e0+ e1 and px= I3¡ e0e1�= I3¡ e0e3e2. We observe the duals
Je(e0)= I3 and Je(e1)=¡e0e3e2= e0e2e3.

For y, we have Py= e0+ e2 and py= I3¡ e0e2�= I3¡ e0e1e3. We observe the duals
Je(e0)= I3 and Je(e2)=¡e0e1e3.

For z, we have Pz= e0+ e3 and pz= I3¡ e0e3�= I3¡ e0e2e1. We observe the duals
Je(e0)= I3 and Je(e3)=¡e0e2e1= e0e1e2.

4.2.2 Empirical Dualization of the Six Basis 2-blades

For observing the correct basis 2-blade duals, we will look at entities for three lines
along different directions, and for each line we compare the OPNS PGA 2-blade line
entity Lp;d̂= d̂^Pp with its corresponding dual CPNS PGA 2-blade line entity lp;d̂=

d̂
�¡ (p � d̂�)e0. First, we always check that the two dual entities have the same geometric

null space entity and orientation. Also, for the OPNS PGA line entity, we can ignore the
third pseudoscalar term of the null space entity that represents t^p^ d̂, which is 0 for
any point t on the line through p in direction d̂.

For p= e1, d̂= e2, we have the 3-blade null space entities with same orientation:

Pt^Lp;d̂ = (x¡ 1)e0e1e2¡ ze0e2e3¡ ze1e2e3 (29)
pt� lp;d̂ = (x¡ 1)e0e1e2¡ ze0e2e3 (30)

Lp;d̂ = ¡e0e2¡ e1e2 (31)
lp;d̂ = e0e3+ e1e3: (32)

We observe the basis 2-blade duals: Je(e0e2)=¡e1e3 and Je(e1e2)=¡e0e3.
For p= e2, d̂= e3, we have the 3-blade null space entities with same orientation:

Pt^Lp;d̂ = xe0e1e3+(y¡ 1)e0e2e3¡xe1e2e3 (33)
pt� lp;d̂ = xe0e1e3+(y¡ 1)e0e2e3 (34)

Lp;d̂ = ¡e0e3¡ e2e3 (35)
lp;d̂ = e0e1¡ e1e2: (36)

We observe the basis 2-blade duals: Je(e0e3)= e1e2 and Je(e2e3)=¡e0e1.
For p= e3, d̂= e1, we have the 3-blade null space entities with same orientation:

Pt^Lp;d̂ = ¡ye0e1e2+(1¡ z)e0e1e3¡ ye1e2e3 (37)
pt� lp;d̂ = ¡ye0e1e2+(1¡ z)e0e1e3 (38)

Lp;d̂ = ¡e0e1+ e1e3 (39)
lp;d̂ = e0e2¡ e2e3: (40)

We observe the basis 2-blade duals: Je(e0e1)= e2e3 and Je(e1e3)= e0e2.
We can further observe that these six basis 2-blade empirical duals appear to support

an anti-involution, Je(Je(A)) = ¡A. We assume that Je is a linear operator so that
Je(aA+ bB)= aJe(A)+ bJe(B).

4.2.3 Empirical Dualization of the Four Basis 3-blades

We compare the OPNS PGA 3-blade plane Pp;n̂=Pp^ n̂� with its dual CPNS PGA 1-
blade plane �p;n̂= n̂+ (p � n̂)e0. We compare the three planes, x= 1, y= 1, and z= 1.
First, we compare the 4-blade geometric null space entities to make sure they have the
same scale and orientation, then we observe the duals.

Geometric Entity Dualization in PGA 19

For x=1 (p=e1, n̂=e1), we have the 4-blade null space entities with same orientation:

Pt^Pp;n̂ = (x¡ 1)I4 (41)
pt��p;n̂ = (x¡ 1)I4 (42)

Pp;n̂ = ¡e0e2e3¡ e1e2e3 (43)
�p;n̂ = e0+ e1: (44)

We observe the duals of the basis 3-blades: Je(e0e2e3)=¡e1 and Je(e1e2e3)=¡e0.
For y=1 (p=e2, n̂=e2), we have the 4-blade null space entities with same orientation:

Pt^Pp;n̂ = (y¡ 1)I4 (45)
pt��p;n̂ = (y¡ 1)I4 (46)

Pp;n̂ = e0e1e3¡ e1e2e3 (47)
�p;n̂ = e0+ e2: (48)

We observe the duals of the basis 3-blades: Je(e0e1e3)= e2 and Je(e1e2e3)=¡e0.
For z=1 (p=e3, n̂=e3), we have the 4-blade null space entities with same orientation:

Pt^Pp;n̂ = (z ¡ 1)I4 (49)
pt��p;n̂ = (z ¡ 1)I4 (50)

Pp;n̂ = ¡e0e1e2¡ e1e2e3 (51)
�p;n̂ = e0+ e3: (52)

We observe the duals of the basis 3-blades: Je(e0e1e2)=¡e3 and Je(e1e2e3)=¡e0.
We further observe that, between the duals of 3-blades and 1-blades, we also have an

anti-involution for Je.

4.2.4 The Empirical Dualization Operation

For the empirical dualization operation Je, we now accept by observation that Je is an
anti-involution from OPNS PGA entities to CPNS PGA entities. Therefore, the inverse
(or �undual�) is Je

¡1=¡Je from CPNS PGA entities back to OPNS PGA entities. The
anti-involution dualization operation Je is characteristic of dualization by multiplication
(or division) by a non-degenerate unit pseudoscalar I4, where I42=¡1. If it were an invo-
lution, then it would be characteristic of multiplication by a non-degenerate pseudoscalar
I4, where I42=1.

If we define dualization as multiplication by I4, then 1 dualizes to I4, and I4 dualizes
to ¡1. If we define dualization as division by I4, then 1 dualizes to ¡I4 and I4 dualizes to
1. The choice between multiplication or division by the unit pseudoscalar is not arbitrary,
and we will find that multiplication by the unit pseudoscalar is the correct choice, or
orientation, for Je. Therefore, as we will see, the dualization of a geometric entity A
(point, line, or plane) will have the form A�=AI4 in G1;3, and A�= I4A in G3;1, and
A�= I3I4AI3= e0AI3 in G4. In G3, with unit pseudoscalar I3, we will continue to use
division by I3 for dualizing vectors and bivectors, as is the common practice.

A 1 e0 e1 e2 e3 e0e1 e0e2 e0e3 e1e2 e1e3 e2e3 e0e1e2 e0e1e3 e0e2e3 I3 I4
Je(A) I4 I3 e0e2e3 ¡e0e1e3 e0e1e2 e2e3 ¡e1e3 e1e2 ¡e0e3 e0e2 ¡e0e1 ¡e3 e2 ¡e1 ¡e0 ¡1

Table 1. Entity Dualization of OPNS PGA basis blade A to its dual CPNS PGA basis blade
Je(A).

20 Section 4

Table 1 shows the empirical dual Je(A) for each basis blade A in G3;0;1, going from
OPNS PGA to CPNS PGA, summarizing our observations of what the dual Je(A) should
be for each basis bladeA so that entities dualize to corresponding entities representing the
same geometric null space entity with the same orientation. To dualize from CPNS PGA
to OPNS PGA, the inverse dual Je

¡1=¡Je should be used instead. If the orientation of
¡Je is preferred, an alias could be used such asDe=¡Je to stand for the entity dualization
from CPNS PGA to OPNS PGA, again with undual ¡De=De

¡1.
The Hodge star ? dualization is discussed in prior literature, so we also discuss it in

the next section. Then, we discuss several ways to implement Je as unit pseudoscalar
dualization (or as a modified sandwiching product), which we show to be the same as
Hodge star ? dualization.

4.2.5 Hodge Star Dualization in Geometric Algebra

The Hodge star ? operation on a k-vector (or basis k-blade) A produces its Hodge dual
(n¡k)-vector ?A in an (n= p+ q)-dimensional pseudo-Euclidean geometric algebra Gp;q;0
with unit pseudoscalar In. The Hodge star ? operation, defined only for pseudo-Euclidean
metric Gp;q;0, has the defining property:

A^ (?B)= ?(A �B); (53)

for k-vectors A and B [11]. Using the identity

A �B=(¡1)r(s¡1)B �A (54)

for an r-vector A and s-vector B, r� s, we see that A �B=B �A for any two k-vectors
A and B. Since A �B=B �A, we can also write

A^ (?B)=B^ (?A)= ?(A �B); (55)

where we omit the orientation change (¡1)(n¡t)/2 used in [11]:16.
In [11]:16, the orientation change (¡1)(n¡t)/2 appears to be an error for two reasons.

It seems that, the orientation change (¡1)(n¡t)/2 in [11]:16 tries to enforce the orientation
?In= 1, but ?In=¡1 is also a possible and correct orientation for some algebras. The
entity dualization operation Je is an anti-involution and we have Je(I4) =¡1 for our
algebra. It seems that, the sign expression (¡1)(n¡t)/2 is supposed to represent In2 =�1,
so that if In2=¡1, then the sign is changed. The sign expression for In2 is actually a little
different than (¡1)(n¡t)/2 for the general case, and we should have In2=(¡1)n(n¡1)/2In�In=
(¡1)n(n¡1)/2(¡1)q=(¡1)(n2¡n+2q)/2=(¡1)(n2¡p+q)/2=(¡1)(n2¡t)/2. For example, in G5;2,
the �signature� is t= p¡ q=5¡ 2= 3, and (¡1)(7¡t)/2= (¡1)2=1, but the correct sign
is (¡1)(72¡t)/2= (¡1)23=¡1. The error of the sign (orientation) change in [11]:16 will
become more clear as we express the Hodge star dualization in terms of geometric algebra
in the following. For now we note that, a dualization that is an involution has no ori-
entation about which way the dualization is to be taken, and a dualization that is an
anti-involution (such as Je) has an orientation about which way the dualization and
undualization is to be taken. Dualization using a unit pseudoscalar where In2 =1 creates
an involution, and dualization using a unit pseudoscalar where In2 =¡1 creates an anti-
involution. We will have the later case for Je. We cannot arbitrarily change signs or
orientations on any elements if we want to maintain correct orientations.

Geometric Entity Dualization in PGA 21

As an example, in Section 2.2 we used the identity a ^ b�=¡(a � b)I3, which we
may already guess is an example of the Hodge dual defining relation (53). It almost
looks like it requires the sign change (¡1)(n2¡t)/2 [(¡1)(n¡t)/2 fails], but remember that
b�=¡bI3, so the dualization is defined using the unit pseudoscalar ¡I3, which has the
sign on it. Therefore, the defining relation (53) holds without the sign (orientation) change
(¡1)(n2¡t)/2.

It seems that, the Hodge star operation is not properly defined for a degenerate metric
as we have in G3;0;1. Therefore, it is assumed that, to implement any form of Hodge
dual operation on multivectors in G3;0;1, we must use a non-degenerate pseudo-Euclidean
geometric algebra Gp;q;0 acting as a copy of G3;0;1 but on a non-degenerate metric. A
multivector M in G3;0;1 is copied to a corresponding multivector M in Gp;q;0. The Hodge
star dualization operation is then performed on the copied multivector M in Gp;q;0 as
?M . The resulting Hodge dual multivector ?M in Gp;q;0 is copied back to a corresponding
multivector ?M in G3;0;1 as the Hodge dual of M.

In geometric algebra Gp;q;0 (n= p+ q), we often define the dual of multivector M
as M� =MIn =M � In or M� =M /In =MIn

¡1 =M � In¡1, where In =
Vn is the unit

pseudoscalar. The inverse pseudoscalar is In
¡1= In when In

2 = 1, and In
¡1=¡In when

In
2=¡1. It is also possible to define the dual asM�=InM=In �M orM�=In

¡1M=In
¡1 �M .

These can each give a different dual. Multiplication with the unit pseudoscalar is always
an inner product. Furthermore, we may take the unit pseudoscalar Im of any subalgebra
of Gp;q;0 and sandwich M� as ImM�Im, ImM�Im

¡1, or Im
¡1M�Im to obtain a modified dual

M�0, but without changing the grade relationship between duals, that a k-vector dualizes
to a (n ¡ k)-vector. We could compose many sandwich products to modify the dual
further by pseudoscalar reflections (m odd) or rotations (m even). The sandwiching can
alter signs (or orientations) and can change the dualization operation to be an involution
M��=M or an anti-involution M��=¡M . The dualization M�=MIn is an involution
M��=M for In2 = 1 and an anti-involution M��= ¡M for In2 =¡1. For example, in
G4;0;0 with 1-blade basis fe0; e1; e2; e3g and pseudoscalars I3= e1e2e3 and I4= e0I3, the
dualizationM�= I4M is an involution, but if we modify asM�0= I3M

�I3=e0MI3, then it
is an anti-involution (we will make use of this example). The formM�0 is dualization by a
sandwiching product, not by only multiplication by the unit pseudoscalar, but in another
algebra it is possible to find a dualization like M� that acts like M�0 on corresponding
basis blades. Dualizations of the forms like M� or M�0 are dualization operations that
each satisfy certain orientations and requirement to be an involution or anti-involution.
We have determined the required entity dualization operation Je for PGA G3;0;1, and now
we seek to find a dualization of the formM� orM�0 in a non-degenerate pseudo-Euclidean
algebra Gp;q;0 that produces the dualization Je on corresponding basis blades to those in
PGA G3;0;1 as the implementation of Je.

In geometric algebra Gp;q;0 (n= p+ q), the Hodge star ? dualization can be easily
compared to the form of geometric algebra dualization M�, which is a RHS or LHS
multiplication with the unit pseudoscalar I= In or its inverse I¡1. It is more difficult to
compare the Hodge star to the modified formM�0 (a sandwiching product as dualization),
yet the modified form M�0 in one algebra may take the same duals as the form M� in
some other algebra when comparing corresponding basis blades. If we define the Hodge
star operation as ?A=AI, then we can check the Hodge star defining property A ^
(?B)= ?(A �B). We get

A^ (BI)= (A �B)I: (56)

22 Section 4

Next, we dualize both sides to obtain (A^ (BI))I=(A �B)I2. The LHS can be rewritten
as (A ^ (BI)) � I=A � ((BI) � I) = (A �B)I2. So, the Hodge star matches this form of
dualization. We can also state the Hodge star defining relation as (?A)^B= ?(A �B),
where we then define ?A= IA and

(IA)^B= I(A �B): (57)

Then, we check the Hodge star defining relation as I((IA) ^B) = I2(A �B). The LHS
expands to I2(A �B), so it works. Using the identities

IA=(¡1)k(n¡1)AI (58)

and

(AI)^B=(¡1)k(n¡k)B^ (AI); (59)

it can be shown that A^ (?B)=B^ (?A)= ?(A �B) corresponds to

A^ (BI)=B^ (AI)= (A �B)I; (60)

since (¡1)k(n¡1)(¡1)�k(n¡k)=1. Therefore, we can say that the form M� is the same as a
Hodge star dualization. We will also say that the modified form M�0 is also a Hodge star
dualization, but only after another algebra is found in which the form M� gives the same
duals as M�0 on corresponding basis blades. Notice that, the Hodge star dualization is
either an involution for I2=1 or an anti-involution for I2=¡1, and it cannot be a mixture
of them where it is an involution for dualizing some basis blades and an anti-involution for
dualizing other basis blades. We consider the Hodge star ? dualization as an abstraction
and generalization of the geometric algebra dualizationM� (and alsoM�0 when it matches
the form M� in another algebra) that extends to the implementation of a dualization for
a degenerate geometric algebra using a corresponding non-degenerate geometric algebra.

In geometric algebra Gp;q;0 (n= p+ q), the Hodge star ? dual of a k-vector (or k-
blade) A is the (n¡ k)-vector ?A=A�, where A� (or A�0) is a form of dualization like
M� (or M�0) in a non-degenerate pseudo-Euclidean algebra Gp;q;0, which may be made to
correspond, basis-blade to basis-blade, with a degenerate algebra Gp;q;r, as just discussed.
We now change notation and suggest the notation ?A=A? instead of ?A=A�. In PGA
G3;0;1, we reserve the notation A� for the case where A2G3, and we define

A�=A/I3: (61)

Recall that, we cannot actually perform the dual A? in the degenerate metric of PGA
G3;0;1, so we suggest that one could define

A?= Je(A)=a (62)

for dualization orientation from OPNS PGA to CPNS PGA, and

a¡?=¡Je(a)=De(a)=A (63)

for dualization orientation from CPNS PGA to OPNS PGA. We also have the notations

A¡??=A and A??=¡A: (64)

If one prefers, the opposite dualization orientation could be defined as a?=¡Je(a) =
De(a)=A for dualization from CPNS PGA to OPNS PGA. For notation, we will continue
to mostly just use Je and De to avoid confusion, but we will use the suggested notation

Geometric Entity Dualization in PGA 23

some. In the suggested notation A?= Je(A), for the case where A2 G3, one could write
expressions such as A�=A/I3 and A?=¡e0A�. In the suggested notation, we also have
(for example) Pt?=(e0+ t)?= I3¡e0t�= pt, which is the entity dualization of the OPNS
PGA point Pt to the CPNS PGA point pt.

In [17], the dualization operation denoted J(e) for PGA G3;0;1 appears to be a mixture
of involution for some basis blades and anti-involution for other basis blades. Therefore,
it seems that J(e) in [17] cannot be a Hodge dual as we have defined it. Reciprocals do
not exist in G3;0;1 since I4¡1 does not exist, so we find it difficult to accept the notation
of reciprocal basis blades in [17]. The dualization for geometric entities in PGA G3;0;1
that we observe as Je (and have called the empirical dualization or entity dualization) is
clearly an anti-involution, so we find it difficult to accept J(e) or any of the dualization
operations given in [17] as being the correct dualization for PGA G3;0;1. We accept our
empirically determined dualization operation Je as the correct dualization operation for
the geometric entities in PGA G3;0;1.

In [21], a Hodge star dualization notation (?1= e0e2e3e4 etc.) is used for their dual-
ization operation in PGA G3;0;1, but some basis blades are dualized by an involution and
other basis blades are dualized by an anti-involution. It seems that, this cannot actually
be a Hodge star dualization operation as we have defined it. Furthermore, the table of
duals given in [21] matches the table of duals given in [17], which we find difficult to
accept as the correct duals.

In the older paper [23], which uses the similar algebra G0;3;1, a Hodge star ? notation
is also used for the dualization operation. The table of duals given in [23] also shows
some basis blades dualized by an involution and other basis blades dualized by an anti-
involution. Again, we find it difficult to accept a mixture of involution and anti-involution
as the correct dualization. Although [23] uses G0;3;1, it is likely that other later papers
were based closely on [23] while using G3;0;1. The mistakes seem to have been carried
forward into later papers.

We begin calling Je(A) =A? the entity dualization operation, as we have now com-
pleted our empirical observations and determination of Je (in Sections 4.2.1, 4.2.2, and
4.2.3), tabulation of Je (in Section 4.2.4), and conclusions on Je as an anti-involution that
should be implementable as a Hodge star ? dualization (unit pseudoscalar dualization of
form M� or sandwiching of form M�0) in a non-degenerate geometric algebra Gp;q;0 that
can be made to correspond to PGA G3;0;1. In the next section, we find these dualizations
of form M� or M�0 in three different geometric algebras fG4;0;0; G3;1;0; G1;3;0g made to
correspond to PGA G3;0;1 and use each of them as a possible implementation for Je in
PGA G3;0;1.

4.3 Methods for Implementing the Entity Dualization

In this section we give three methods for implementing the entity dualization Je as in
Table 1. It is not possible to implement Je directly within G3;0;1 by any algebraic method
due to its degenerate metric (i.e., e02=0). We first look at G4;0;0 and find that Je can be
implemented within it even though its unit pseudoscalar has the involution characteristic
I4
2=1. Next, we look at G3;1, sometimes called Time-Space Algebra, which has the correct
unit pseudoscalar characteristic I42=¡1 and we find an implementation for Je. Finally, we
look at G1;3, called Space-Time Algebra [18], which also has the correct unit pseudoscalar
characteristic I42=¡1 and we find an implementation for Je.

24 Section 4

4.3.1 Entity Dualization in G(4,0,0)

In G4;0;0 with metric diag(1; 1; 1; 1), using the 1-blade basis fe0; e1; e2; e3g, we have the
unit pseudoscalars I3=e1e2e3 and I4=e0I3, where I32=¡1 and I42=1. The corresponding
notation for PGA G3;0;1 is fe0; e1; e2; e3g, I3, and I4. Please notice that upright bold
letters (e.g., I) are for PGA G3;0;1, and italic bold letters (e.g., I) are for G4;0;0. The idea
is that, we can think of the italic bold symbols for the basis blades of G4;0;0 as indicating
a pretend basis, pretending to be PGA G3;0;1 but with a different non-degenerate metric.
We pretend for long enough to run entity dualization operations in G4;0;0, then we stop
pretending and switch back to PGA G3;0;1.

Clearly, there is a direct correspondence between the basis blades of PGA G3;0;1
and G4;0;0, allowing for a direct transfer of basis blade coordinates between the two
algebras. This transfer of coordinates should be easily implemented in most software
implementations. For example, in GAlgebra for SymPy [3], we can take an entity A
in PGA G3;0;1 and transfer it to a corresponding entity A in G4;0;0 by corresponding
coordinates transfer as A=G4;0;0(A), although this is written in the Python code slightly
differently. We also transfer I3 and I4 as I3= G4;0;0(I3) and I4= G4;0;0(I4).

Now, using the corresponding elements A, I3, and I4 in G4;0;0, we form the �pretend�
entity dualization of A in G4;0;0, denoted Je(A), as

Je(A)= I3I4AI3=e0AI3: (65)

Next, we �stop pretending� and switch (or transfer) the result back to PGA G3;0;1 as
A?= G3;0;1(Je(A)). So, the complete entity dualization operation is

A?= Je(A)= G3;0;1(Je(G4;0;0(A))): (66)

This is a dualization by a sandwiching product as discussed in Section 4.2.5 and it is not
directly in the form of a Hodge star ? dualization, but it is equivalent to the dualizations
in Sections 4.3.2 and 4.3.3 that are Hodge star dualizations, so we consider this dualization
to also be a Hodge star dualization in the abstract and general sense.

Inside of the implementation of Je, as a defined function, it may need to first per-
form the transfers I3= G4;0;0(I3) and I4= G4;0;0(I4), which are needed for the dualization
product. Depending on the geometric algebra software implementation, it may or may
not be possible (or allowed) to simply alter the underlying metric of an algebra, run a
single computation such as the dualization, and then change the metric back (assuming
no other computations run in parallel on the wrong metric). In Python code2, an example
of running the entity dualization is as follows:

g301=Ga('e*0|1|2|3',g=[0,1,1,1]); g400=Ga('e*0|1|2|3',g=[1,1,1,1])
(e0,e1,e2,e3)=g301.mv(); I3=e1*e2*e3; I4=e0*I3; A=e0

def Je(a):
Ea=g400(a); EI3=g400(I3); EI4=g400(I4)
return g301(EI3*EI4*Ea*EI3)

2. See Appendix A for more Python code that was used in the research.

Geometric Entity Dualization in PGA 25

Je(A)
e1^e2^e3

It can be verified that this implementation of the entity dualization Je (as Je) matches
exactly Table 1. This dualization uses the formM�0 (a sandwiching product) as discussed
in Section 4.2.5. We have two more ways to implement Je (using the form M�), given
briefly in the next two sections. The procedure is similar, so we do not repeat all of the
details and just give formulas.

4.3.2 Entity Dualization in G(3,1,0)

In G3;1;0 with metric diag(¡1; 1; 1; 1), using the 1-blade basis fe0;e1;e2;e3g, we have the
unit pseudoscalars I3= e1e2e3 and I4= e0I3, where I32=¡1 and I4

2=¡1. The corre-
sponding notation for PGA G3;0;1 is fe0;e1; e2; e3g, I3, and I4. Please notice that upright
bold letters (e.g., I) are for PGA G3;0;1, and italic bold letters (e.g., I) are for G3;1;0.
The idea is that, we can think of the italic bold symbols for the basis blades of G3;1;0
as indicating a pretend basis, pretending to be PGA G3;0;1 but with a different non-
degenerate metric. We pretend for long enough to run entity dualization operations in
G3;1;0, then we stop pretending and switch back to PGA G3;0;1. The complete dualization
operation for A2 G3;0;1 is

A?= Je(A)= G3;0;1(Je(G3;1;0(A))); (67)

where

Je(A)= I4A (68)

and A= G3;1;0(A). This is a Hodge star ? dualization in the form M� as discussed in
Section 4.2.5. For A2G3, it is easy to see that A?= e0I3A=¡e0(A/I3)=¡e0A�. It can
be verified that this implementation of the entity dualization Je matches exactly Table 1.

4.3.3 Entity Dualization in G(1,3,0)

In G1;3;0 with metric diag(1;¡1;¡1;¡1), using the 1-blade basis fe0; e1; e2; e3g, we have
the unit pseudoscalars I3=e1e2e3 and I4=e0I3, where I32=¡1 and I42=¡1. The corre-
sponding notation for PGA G3;0;1 is fe0;e1; e2; e3g, I3, and I4. Please notice that upright
bold letters (e.g., I) are for PGA G3;0;1, and italic bold letters (e.g., I) are for G1;3;0.
The idea is that, we can think of the italic bold symbols for the basis blades of G1;3;0
as indicating a pretend basis, pretending to be PGA G3;0;1 but with a different non-
degenerate metric. We pretend for long enough to run entity dualization operations in
G1;3;0, then we stop pretending and switch back to PGA G3;0;1. The complete dualization
operation for A2 G3;0;1 is

A?= Je(A)= G3;0;1(Je(G1;3;0(A))); (69)

where

Je(A)=AI4 (70)

and A= G1;3;0(A). This is a Hodge star ? dualization in the form M� as discussed in
Section 4.2.5. It can be verified that this implementation of the entity dualization Je
matches exactly Table 1.

26 Section 4

4.4 Conclusion on Geometric Entity Dualization in PGA
Table 1 defines the geometric entity dualization operation Je based on direct observation,
comparing dual geometric entities of same orientation and noting the duals of basis blades
within the dual geometric entities. We found that Je is an anti-involution with inverse

Je
¡1=¡Je: (71)

For any geometric entity (or basis blade) A of grade k in OPNS PGA, Je(A)=A?=a of
grade 4¡ k is its dual geometric entity in CPNS PGA representing the same geometry
and with the same orientation. The geometric entity dualization operation

De=¡Je (72)

is for the opposite orientation of the dualization, dualizing any geometric entity in CPNS
PGA to its dual geometric entity in OPNS PGA, again with undual (or inverse) De

¡1=
¡De.

We found three methods for Je, that implements Je, in three different non-degenerate
geometric algebras that are able to correspond to PGA G3;0;1. We have to transfer to a
non-degenerate geometric algebra to implement Je as Je for the dualization since PGA
G3;0;1 with degenerate metric cannot directly implement its own dualization Je by multi-
plying into its degenerate unit pseudoscalar I42=0.

Gp;q;0 G4;0;0 G3;1;0 G1;3;0
Je(A) I3I4AI3=e0AI3 I4A AI4

Table 2. Entity dualization Je(A) in non-degenerate geometric algebras Gp;q;0.

Table 2 summarizes the entity dualization implementations Je as performed in three
different corresponding non-degenerate geometric algebras. Je implements Je, but while
using a non-degenerate geometric algebra corresponding to PGA G3;0;1. It can be seen that
each form of Je is a linear operation, able to act on an entire entity A2Gp;q;0 (in one of
the three algebras of Table 2) that corresponds to an entity A2G3;0;1 by direct transfer
of coordinates from A into A on corresponding basis blades. Then, Je(A) represents the
correct dual, which is then transferred back onto corresponding basis blades in G3;0;1 as
the dual entity

A?=Je(A)= G3;0;1(Je(Gp;q;0(A)))= G3;0;1(Je(A))= G3;0;1(A?): (73)

The form of Je in G1;3;0, as Je(A) =AI4, is most like the usual geometric algebra (or
Hodge star ?) dualization. The Je are each anti-involutions, where usually I42=¡1. In
G4;0;0, where I42=1, the form of Je is the most unusual, but it works completely the same
as the others as the dualization.

Having the PGA entity dualization operation Je easily implemented in its correct and
reliable form overcomes many of the possible difficulties with using PGA G3;0;1. One of
those difficulties can be as simple as extracting the scalar y from ye0, which we can now
easily do as y=Je(ye0)/I3. In the next section, we discuss dual quaternions in geometric
algebra, where we make significant usage of Je. The geometric entity dualization operation
Je allows to dualize entities from OPNS PGA to CPNS PGA, and the opposite direction
using De=¡Je. We will also be able to convert CPNS PGA entities to forms in the dual
quaternion geometric algebra of G3;0;1+ , which has some nice algebraic properties and
operations. Therefore, we can easily use the whole PGA algebra, now that we have the
PGA entity dualization operation Je.

Geometric Entity Dualization in PGA 27

5 Dual Quaternion Geometric Algebra in PGA

This section is about the Dual Quaternion Geometric Algebra G3;0;1+ in PGA G3;0;1,
DQGA/PGA. In the prior sections, we developed PGA enough that we can now use
it to examine the even-grades subalgebra G3;0;1+ that represents, or emulates faithfully,
the dual quaternion algebra, DQA. All of the results derived in DQGA that involve
only corresponding elements of DQA can be used outside of geometric algebra in a purely
DQA implementation. Using DQGA, we emulate DQA in the even-grades subalgebra
G3;0;1+ and implement certain special operations, such as conjugates, taking advantage
of PGA and the PGA entity dualization operation Je.

5.1 Introduction to Dual Quaternion Geometric Algebra

In DQA, dual quaternions are linear combinations of basis elements f1; "; i; j; kg. The
element " is the nilpotent scalar ("2=0) that has commutative multiplication (as does
the scalar 1) with all other elements. The elements i; j;k are pure quaternion unit vectors
with the quaternion product rule ijk= i2= j2=k2=¡1 and the usual vector calculus dot
(bold dot �) and cross (bold cross �) products.

In DQA, there is a homogeneous point representation pp=1+"p, embedding a vector
point p, with rotation R= exp(�n̂/2) and translation T = exp(d"/2) operations on the
homogeneous point as pp0 =RppR

¡1 and pp
0 = Tpp T = pp+d, respectively. The rotor R

acts as a versor on a point p, just as it does on quaternions. The translator T is not
acting as a versor, but it acts as just another homogeneous point T = exp(d"/2) =
1+d"/2= pd/2. The points are in the form of unit magnitude dual numbers (but these are
dual quaternions) that multiply commutatively with magnitudes multiplying and �angles�
adding. The magnitude is 1, so there is no scaling. The �angles� are pure quaternion
vectors p and d. We could just as well write TTpp= pd/2pd/2pp= pp+d, and the order of
multiplication does not matter. The translator T and rotor R do not commute unless
d=�n̂, and then RT =TR. In any case, RT cannot act as a versor since (RT)¡1=T¡1R¡1

and then the translation is by 0 displacement. We can usefully compose translation and
rotation to rotate about a center c as pt0 = pcRptp¡cR¡1. The dual quaternion algebra,
having a versor rotation operator R and a non-versor translation operator T = pd as
just another homogeneous point embedding, does not have the elegance of being able to
compose rotation and translation more generally as versors.

To use dual quaternions, we soon become involved with cumbersome formulas involving
the use of complex and quaternion conjugates, and other special operations, rather than
simple versor sandwich products, outer products, or commutator products. Neverthe-
less, more is possible in dual quaternions than is commonly known. In the sections
that follow, we will show that, not only is there the dual quaternion point p embed-
ding, but there are also a line l and a plane � embedding. Furthermore, we can rotate
and translate all of these embedded entities. Although the formulas are not so elegant,
in theory it is possible to do most of what PGA can do within just the dual quater-
nion algebra, which is a smaller algebra than the full PGA. The dual quaternion algebra
is just the even subalgebra of G3;0;1. The formulas may be of interest to those who
want to use dual quaternions for points, lines, and planes.

28 Section 5

In the following sections, we review dual numbers, quaternions, and dual quaternions
and show how they are represented in the DQGA of the even-grades subalgebra G3;0;1+ of
PGA, using only the eight even-grade basis blades of G3;0;1, which are f1; I4;e1�=e3e2;e2�=
e1e3; e3

�= e2e1; e1
�I4= e0e1; e2

�I4= e0e2; e3
�I4= e0e3g. Then, we derive the representations

of the dual quaternion point p, line l, and plane � and their rotation, translation, and
other operations.

5.2 Dual Numbers in PGA

In this section, we discuss dual number algebra (DNA), and then its representation in
geometric algebra G3;0;1+ as what we will call dual number geometric algebra (DNGA).
Note that, it is also possible to represent dual numbers in the subalgebra G0;0;1 of G3;0;1,
but that representation does not fulfill our algebraic requirements for dual quaternion
geometric algebra.

5.2.1 Dual Number Algebra

Dual numbers, also sometimes called parabolic numbers, are a type of complex numbers
with exponential form. Recall that, there are three kinds of complex numbers using either
i2=¡1, j2=1, or "2=0, and forms of these numbers are used in geometric algebras for
rotation, dilation (or boost / hyperbolic rotation), and translation operations, respec-
tively. We will be concerned with the rotation and translation operations in PGA and
DQA.

In dual number algebra, a dual number z is written as the sum of a real number part
x and an imaginary part y" as

z= x+ y"; (74)

where y is also a real number. The imaginary scalar unit " is defined to square to zero,
"2= 0, and is also called a nilpotent scalar. This is very much like the usual complex
numbers x+ yi with i2=¡1. The algebra is very similar, and the points (x; y) can be
graphed on an xy-plane. A dual number z has a complex conjugate

z= x¡ y"; (75)

magnitude

jz j= zz
p

= jxj; (76)

and exponential form

z=x exp(y"/x)= x(1+ y"/x): (77)

We will use only dual numbers with unit magnitude with x=1, z=1+ y"= exp(y"), and
the product of two dual numbers in this unit form is

(1+ y1")(1+ y2")= exp(y1")exp(y2")= 1+ (y1+ y2)"= exp((y1+ y2)"): (78)

This unit form allows the important trick, that addition is performed as multiplication,
which is used extensively in many geometric algebras for translation operations. Though
not used in this paper, dual numbers also allow a trick to take derivatives of polynomial
functions (e.g., f 2R[x], f(x+ ")= f(x)+ f 0(x)").

Dual Quaternion Geometric Algebra in PGA 29

If we have any dual number z= r+ l" and multiply it by R= exp(�"), we get Rz=
exp(�")r exp(l"/r) = r exp(�")exp(�z") = r exp((�+ l/r)") = r+ (l+ r�)". Here, r is the
radius and l= r�z is the arc length of z. R is a parabolic rotor for rotation by angle �. In
the product Rz, the radius r is unchanged by the rotation, and the added arc length of
the rotation along the �parabola� is r�, or we can say that the angles add as �z+ �. This
is similar to the other unimodular exponential operators for circular (elliptic) rotation
using a complex (elliptic) number exp(�i), and hyperbolic rotation using a split-complex
(hyperbolic) number exp(�j) where j2= 1. In each case, the angle � is the arc length
added per radius (�l= r�) along a circle, hyperbola, or degenerate parabola (a line, but
more like a degenerate hyperbola that has opened so large that it is a line). The parabolic
rotation is along the line x= r, rotating (r; l) into (r; l+ r�= r(�z+ �)). We can think
of having parabolic cosine cosp(�), parabolic sine sinp(�), and parabolic tangent tanp(�)
functions, similar to sin(�) etc. and sinh(�) etc. for elliptic and hyperbolic numbers.
Then, we have exp(l"/r)= exp(�z")=1+ l"/r= cosp(�z)+ sinp(�z)", where cosp(�z)= 1,
sinp(�z)=�z= l/r=tanp(�z). The very small angle � approximation, sin(�)=�, for moving
a very small and nearly straight line of arc length upward the unit circle, is similar to
sinp(�z) = �z, for moving absolutely up the straight line of a degenerate parabola (or
hyperbola).

In CGA G4;1, we encounter the parabolic nature of dual numbers in a different form
when we use the CGA translator exp(e1d/2) to translate the CGA point entity x+
1

2
x2e1+ eo to x0+

1

2
x02e1+ eo, which clearly has a parabolic form in x, known to cut a

null parabola from the null cone on the eo hyperplane.

5.2.2 Dual Number Geometric Algebra

In G3;0;1+ , we have the basis 0-blade 1 and basis 4-blade unit pseudoscalar I4, where
f1; I4g =̂ f1; "g, and we can represent a dual number z= r+ l" as

z= r+ lI4=x+ yI4: (79)

The geometric products of dual numbers in this form obey all the usual rules of dual num-
bers since I42=0 and I4 commutes with all other elements in the even-grades subalgebra
G3;0;1+ , acting similar to the nilpotent scalar ". We can implement the complex conjugate as

z= I3zI3
¡1: (80)

Following the usual formulas for complex numbers, we can take the real part of z as

<(z)= (z+ z)/2; (81)

and the imaginary part as

=(z)= (z ¡ z)/2: (82)

To extract the real number l from =(z)= lI4, we can take advantage of the dualization
operation Je and implement this as

y= l=Y(z)=¡Je(=(z)): (83)

If we like, we can say x= r=X(z)=<(z).
We can refer to dual numbers on the basis f1; "g as dual number algebra (DNA), and

dual numbers on the basis f1; I4g as dual number geometric algebra (DNGA).

30 Section 5

Next, we discuss quaternions and how they are also represented in the even-grades
subalgebra G3;0;1+ of PGA along with the dual numbers representation just discussed.

5.3 Quaternions in PGA
In this section, we review the quaternion algebra (GA) in its original form as introduced
by William Rowan Hamilton in 1843, and then we discuss its representation in the even-
grades subalgebra G3+, which we will call quaternion geometric algebra (QGA).

5.3.1 Quaternion Algebra

In quaternion algebra (QA), quaternions are defined as linear combinations of the basis
elements f1; i; j;kg with product rule

ijk= i2= j2=k2=¡1: (84)

A general quaternion q is written

q= qw+ qxi+ qyj+ qzk= qw+q: (85)

The vectors fi; j;kg are used as a vector basis forR3, 3D space, with points (qx; qy; qz)=(x;
y; z). A consequence of the product rule is that i¡1=¡i, and similarly for j and k, and
we have k= j/i= ji¡1=¡ji, j= i/k, and i=k/j. These ratios are more often written as
the cross products k=¡j�i= i�j, j=k�i, and i= j�k. These cross products define the
so-called right-hand rule for the products of the quaternion vectors, which are the same
as the vectors used in Vector Calculus. The general product of two quaternions, p and
q, can be shown to be

pq=¡p�q+ pwq+ qwp+p�q; (86)

where

p�q=¡(pq+qp)/2 (87)

and

p�q=(pq¡qp)/2: (88)

From this general product, the product of two vectors is

pq=¡p�q+p�q: (89)

The conjugate of q is

K(q)= qy= qw¡q; (90)

where K(q1q2: : :)= : : :q2
yq1
y in the reverse order. We take the scalar part of q as

S(q)= qw=(q+ qy)/2 (91)

and the vector part as

V(q)=q=(q¡ qy)/2; (92)

The tensor (or magnitude) of q is

T(q)= jq j= qqy
p

= qw
2 + qx

2+ qy
2+ qz

2
q

: (93)

A unit quaterion q̂, called a versor, is

q̂=U(q)= q/T(q)= cos(�/2)+ sin(�/2)q̂= exp(�q̂/2)=R (94)

Dual Quaternion Geometric Algebra in PGA 31

and represents a rotation operator for rotation by an angle � around axis q̂. Any quater-
nion q can be written as the product of its unit U(q) and tensor T(q) as

q=T(q)U(q): (95)

The inverse of q is

q¡1= qy/ qqy= qy/T(q)2=U(q)yT(q)¡1; (96)

where U(q)y=U(q)¡1.
Quaternion rotation of a vector p is

p0=RpRy; (97)

rotating p around the axis q̂ by angle � centered on the origin. The versor product
p0=RpRy only rotates the component of p perpendicular to the axis q̂ in a certain plane,
leaving the part of p parallel to q unchanged. Note that, the exponential form allows
to write any unit vector v̂ as v̂= exp(�v̂/2), showing that it represents rotation by �
around v̂ as a versor, or a rotation by �/2 when multiplied with any vector in the plane
perpendicular to v̂. There is an exponential form for every quaternion, just as there is for
any complex number. The square of any unit vector is ¡1, v̂2=¡1. This is all very similar
to complex numbers, with quaternions extending the basic algebraic forms of complex
numbers into 3D space. Quaternions of the form a+ bv̂ are basically like a scalar plane
of complex numbers with the usual complex number products that multiply magnitudes
and add angles, but a+ bv̂ also rotates vectors in a geometrical plane perpendicular to v̂.

A simpler way to look at quaternions is to say that a quaternion q is nothing more
than the ratio (or product) of two pure quaternion vectors b= bxi+ byj+ bzk and a,
writing q = b/a= ba¡1= ba/a2=¡ba/kak2, recalling that a2= kak2â2=¡kak2. A
quaternion q is a transition operator, transforming vector a into vector b as b= qa. We
can write q as q=¡(kbk/kak)b̂â=¡jq j(¡b̂�â+ b̂�â), then q= jq j(cos(�) + sin(�)n̂),
where n̂= â�b̂/kâ�b̂k is the rotation axis with rotation orientation of the angle � to
rotate from a toward b in the ab-plane, by the right-hand rule of the cross product. All we
really care about most of the time is using quaternions as rotation operators, or versors.
Then we have q̂= cos(�)+ sin(�)n̂, and if we use this in a versor sandwich product, then
it rotates by 2� around axis n̂. We simply use the form and replace the angle with half
of it as cos(�/2)+ sin(�/2)n̂= exp(�n̂/2).

Vector Calculus, using the pure quaternion vectors, is well known at any engineering
college and in all of the standard Calculus textbooks. But still, it is more confusing than
it needs to be. It is actually less confusing to use Geometric Algebra to do all of the
same things as quaternions and Vector Calculus. For now, we are only concerned with
quaternions, so let's now discuss how they are represented in geometric algebra.

5.3.2 Quaternion Geometric Algebra

In G3;0;1, the correspondence from quaternion algebra (QA) to quaternion geometric
algebra (QGA) is f1; i; j; kg =̂ f1; e1�; e2�; e3�g. QGA is the algebra of the even-grades
subalgebra G3+. That is almost all you need to know to use QGA. Any vector v 2 G31
is transformed into its quaternion vector form by the dualization

v�=v/I32G32 (98)

32 Section 5

into QGA G3+. For example, in QA we have that k fundamentally represents j/i, and
in QGA we have the corresponding ratio e2�/e1�= e2/e1= e2e1. Then, this is simpler
to express as the dual k =̂ e3�= e3/I3= e3e3e2e1= e2e1. It is similar for the other cor-
responding elements. The QA basis vectors correspond to the basis 2-blades in QGA
G3+. The QA product rule is a trick that hides the true algebra, that quaternions are an
algebra of bivectors in QGA. We could just use the Euclidean vectors fe1;e2;e3g and use
the quaternion �vectors� fe1�;e2�;e3�g as the bivectors generating rotations around the axes
fe1; e2; e3g. But, we want to emulate the quaternions in just the even-grades subalgebra
G3;0;1+ , so we cannot use any odd grade elements such as fe1; e2; e3g in QGA G3+. So, we
now proceed to implement all of the quaternion operations and products in QGA G3+.

In QGA, using the QGA basis f1; e1�; e2�; e3�g in geometric algebra, we write a quater-
nion q as

q= qw+ qxe1
�+ qye2

�+ qze3
�= qw+q�: (99)

A vector v=vxe1+vye2+vze3 is mapped to a quaternion vector as the bivector v�=v/I3
of the orthogonal plane, so we use the notation v� as a shorthand even though the vectors
fe1; e2; e3g are not elements of QGA. We implement the quaternion conjugate as

K(q)= qy= q�; (100)

where q� is the geometric algebra reverse operator. The notation qy is also a geometric
algebra notation for reverse [19], so there is no notational conflict. The vector calculus dot
product � (bold dot) is implemented by an inner product � (dot), or symmetric product
of bivectors, as

p��q�=¡p� �q�=¡(p�q�+q�p�)/2; (101)

where the negative sign is necessary since unit bivectors square to ¡1 just as do all unit
quaternion vectors. The wedge (outer) product of two bivectors is part of the symmetric
product (pq+ qp)/2 but is 0 in this case. The vector calculus cross product � (bold
cross) is implemented as

p��q�=p��q�=(p�q�¡q�p�)/2 (102)

(the commutator product � (cross)), so this is the same as in actual QA except we are not
following the quaternion product rule, we are just letting the geometric algebra compute
the result. The scalar part

S(q)= (q+ qy)/2; (103)

vector part

V(q)= (q¡ qy)/2; (104)

and tensor or magnitude

T(q)= jq j= qqy
p

(105)

are implemented the same as in QA by using the conjugate. The unit q̂ of q is

q̂=U(q)= q/T(q): (106)

We can check that the QGA quaternion vector units still obey the quaternion product
rule:

e1
�e2
�e3
�= e1

�2= e2
�2= e3

�2=¡1: (107)

Dual Quaternion Geometric Algebra in PGA 33

It can be shown that this rule holds. That is about it, since everything that can be
done in QA can be done in QGA by using the basis and operations as they have been
implemented here.

At this point, we should not be confused in understanding that in QA (quaternion
algebra in original form and notation) we have vector n̂ on the basis fi; j;kg, in PGA we
have n̂ on the basis fe1; e2; e3g, and in QGA we have the PGA vector n̂ corresponding
to (or converted to, or dualized to, or sometimes called �quaternionized� to) bivector
n̂�= n̂/I3 on the basis fe1�; e2�; e3�g that faithfully emulates QA, but that each represents
the same vector. We will refer to a dualized vector such as v/I3= v� as just being the
quaternion vector v�.

5.4 Dual Quaternions in PGA

In the prior sections, we reviewed dual number algebra (DNA) and quaternion algebra
(QA) in their original forms, and then how they are represented or emulated in the
geometric algebra G3;0;1+ as subalgebras that we have called dual number geometric algebra
(DNGA) and quaternion geometric algebra (QGA). In this section, we discuss dual
quaternion algebra (DQA) and its representation in G3;0;1+ as dual quaternion geometric
algebra (DQGA).

5.4.1 Dual Quaternion Algebra

In dual quaternion algebra (DQA), dual quaternions are very similar to quaternions, but
instead of using only the real numbers, we extend the real numbers to dual numbers. The
dual quaternion basis elements are f1; "; i; j;kg. A dual quaternion d has the general form
d= q1+ q2", where q1= q1w+q1 and q2= q2w+q2 are quaternions and " is the nilpotent
scalar, "2=0.

5.4.2 Dual Quaternion Geometric Algebra

In dual quaternion geometric algebra (DQGA), the correspondence of elements from DQA
to DQGA in the even-grades subalgebra G3;0;1+ of PGA is f1; "; i; j;kg =̂ f1; I4; e1�; e2�; e3�g.
In DQGA, we write q1= q1w+q1

� , q2= q2w+q2
� , and the dual quaternion is

d= q1+ q2I4= q1w+q1
� + q2wI4+q2

�I4: (108)

The DQGA dual quaternion complex conjugate d= q1¡ q2I4 is implemented in PGA as

d= I3dI3
¡1 (109)

(the same as for DNGA), where (d1d2: : :)¡= d1d2: : : in the same order.
The DQGA dual quaternion quaternion conjugate K(d) = dy = q1

y + q2
yI4 = (q1w +

q2wI4)¡ (q1� +q2�I4) is implemented by using the geometric algebra reverse operation as

K(d)= dy= d� (110)

(the same as for QGA), where (d1d2: : :)y= � � �d2yd1y in the reverse order.
We can compose d and dy as the DQGA dual quaternion �dual conjugate�

dy= q1
y¡ q2

yI4= q1w¡q1� ¡ q2wI4+q2
�I4 (111)

34 Section 5

Using the conjugates, we can now take the real part

<(d)= (d+ d)/2 (112)

and the imaginary part

=(d)= (d¡ d)/2; (113)

which works the same as for dual numbers. The scalar part is

S(d)= (d+ dy)/2; (114)

which is a dual number, since the dual numbers are the scalars. The vector part is

V(d)= (d¡ dy)/2; (115)

which includes the real vector and imaginary vector parts. We can compose < or = with
S or V to get any one of the four parts from d= q1w+q1

� + q2wI4+q2
�I4.

The tensor or magnitude part T(d) is more complicated for dual quaternions. For the
tensor, we could try ddy

p
, but ddy produces a dual quaternion of the form s+v�I4, which

is not a real scalar or dual number scalar in the general case, so this is not the tensor.
We could try dd, which again produces a dual quaternion of the form s+v�I4, and so is
not the tensor. Finally we try ddy, which has the general form a+ bI4 of a dual number
scalar, but if d= z (just a dual number), then ddy= zz is not the (maybe) expected real
squared magnitude jz j2 of z. However, we accept ddy= jq1j2+ 2(q1wq2w+ q1

��q2�)I4 and
take the dual number-valued tensor as

T(d) = ddy
p

= jq1j2(1+2((q1wq2w+q1
��q2�)/jq1j2)I4)

p
(116)

= jq1j(1+ ((q1wq2w+q1
��q2�)/jq1j2)I4); (117)

for jq1j=/ 0. The real tensor is <(T(d))= jq1j=T(q1). If d= z (just a dual number), then
T(d)= z=/ jz j, so we cannot generally use the notation T(d)= jdj in dual quaternions as
we can in quaternions, but we can use a modified notation such as T(d)= jdjD to indicate
dual number-valued. The inverse tensor is

T(d)¡1= jq1j¡1(1¡ ((q1wq2w+q1��q2�)/jq1j2)I4): (118)

Using T(d)¡1, a unit dual quaternion is

d̂=U(d)= dT(d)¡1; (119)

which we can often think of as normalizing the dual quaternion entity d. For example,
we will see that the unnormalized DQGA plane entity is �=¡(n�+(p��n�)I4), which is
normalized as the unit plane �̂= � j� jD¡1=¡(n̂�+ (p��n̂�)I4) in our standard unit plane
form (in this case, j� jD¡1=1/<(T(�))).

After learning about the DQGA forms of a point pt (point embedding of vector t)
and a plane �p;n̂ (plane normal to n̂� at distance d=p��n̂� from origin), we will see that
by using the dual conjugate dy, the point part P(d) of a dual quaternion d is

P(d)= (d+ dy)/2= qw1pq2/qw1= q1w+q2
�I4 (120)

and the plane part P(d) is

P(d)= (d¡ dy)/2=¡kq1�k�d;n̂=¡kq1�k�q2w/kq1k;q̂1=q1� + q2wI4: (121)

Dual Quaternion Geometric Algebra in PGA 35

Therefore, a dual quaternion q can represent a point and a plane together as a single
entity. When q1��q2�=0 so that q1� and q2� are orthogonal, we will see that the vector part
V(q)=q1�+q2�I4 represents the line part l(q1:¡q2) with Plücker coordinates (d�:m�)=(q1

� :

¡q2�). So, we define the line part L(d) as

L(d)=V(q)=q1� +q2�I4; (122)

an alias for the vector part. We will use the point, plane, and line part operators to extract
these entities from the products for intersections.

In dual number geometric algebra, we defined the operator Y(z)=¡Je(=(z)), which
depends on the PGA entity dualization operation Je, to take the real scalar y from the
imaginary part of z= x+ y" as y=Y(z). In dual quaternions, we can use Y to take the
real quaternion q2 from the imaginary part of d as q2=Y(d), so it works the same if the
dual quaternion is just a dual number d= z or any imaginary part.

In the following sections, we show that a dual quaternion can represent a point p, line l,
or plane �, and that there are operations for rotation, reflection, translation, intersection,
and projection. Of course, dual quaternions, which includes the quaternions and the pure
quaternion versors (the vectors {e1�; e2�; e3�}), can also be used for vector calculus.

5.5 DQGA Geometric Entities

In this section, we derive the DQGA point entity p= pt (embedding quaternion vector
t�), DQGA plane entity � = �p;n̂= �d=p�n̂;n̂ (through quaternion vector point p� with
normal n̂�), and the DQGA line entity l= lp;d̂ (through quaternion vector point p� in
direction d̂�). Each entity A2 fp; �; lg represents a null space set of points, NA= fpt:
NA(ptA) = 0g. The product ptA, of the symbolic DQGA point pt (embedding symbolic
vector t=xe1+ ye2+ze3) and an entity A, is the test of point pt for coincidence with the
surface represented by A. Points in the null space set NA are on the surface represented
by A. The null space entity part NA(ptA) for the product ptA is the part that represents
the null space of entity A. For a point A= pa, Np(ptpa) =V(=(ptpa)) and Npa= fp¡ag.
For a plane A= �, N�(pt�)= S(=(pt�)). For a line A= l, Nl(ptl)=V(=(ptl)). In CPNS
PGA, the commutator product always gives the null space entity part, but in DQGA we
do not have a single product that always gives the null space entity. Therefore, in DQGA,
we have to take the dual quaternion product, and then take part NA and check it for 0.
For each kind of entity A, there are also entity-specific formulas for their reflections in
planes and translations. Rotation is performed the same on all entities using the usual
rotor R in a versor sandwich product of the entity.

5.5.1 DQGA Point Entity

In DQA, a quaternion vector t is embedded as a homogeneous point pt=1+ t".
In DQGA, a quaternion vector t�=(xe1+ ye2+ ze3)/I3 is embedded as the homoge-

neous DQGA point

pt=1+ t�I4= exp(t�I4)= 1+ e0t=1+xe0e1+ ye0e2+ ze0e3: (123)

In pt, we usually do not make direct use of the basis 2-blades, or vectors e0 and t, since
the vectors fe0;e1;e2;e3g are not elements of DQGA in G3;0;1+ , but these 2-blade products
are what results from the DQGA product t�I4, representing an imaginary vector part.

36 Section 5

When we test one point pa with another pb for equality, we could just do an equality
test by testing scalar components for equality. We cannot multiply pa� pb as a null
space equality test, as we do for points in CPNS PGA, since pa� pb=0 for both pa= pb
and pa= p¡b. As a surface entity, a point pb represents the null space, fpt :Np(ptpb) =
V(=(ptpb))=0g= {pb= p¡b}, containing just the conjugate point pt= pb= p¡b. We call
Np(ptpb) =V(=(ptpb)) the null space entity part of the test. We can extract the real
vector of the null space entity as Y(V(=(ptpb))).

We have already discussed the DQGA point embedding in Section 3.2.3 on the CPNS
PGA 3-blade point pt, where we found the identity pt= ptI3, or

pt= ptI3
¡1=¡ptI3: (124)

We also talked about the DQGA point pt in Section 3.3.1 on the CPNS PGA 2-versor
translator T , where we found that T basically is a DQGA point,

T = pd/2: (125)

The connection between the CPNS PGA and DQGA allows for identities to convert many
expressions in CPNS PGA into DQGA, which corresponds to regular DQA. Therefore,
we can derive DQA representations of points, lines, and planes with many operations on
them by using PGA.

In CPNS PGA, we can test if point pt is pp as pt� pp = (ptpp ¡ pppt)/2. We
can convert this test into DQGA by using the identity p= pI3 and obtain (ptI3ppI3¡
ppI3ptI3)/2. So, the exact null space entity part is (¡ptpp+ pppt)/2. Then, pt is the
point pp if and only if

(¡ptpp+ pppt)/2=0: (126)

We can save computation by using Np(ptpp)= 0.
We can also switch pt� pp to geometric product and write ptI3ppI3=¡ptpp. Then, it

is clear that Np(¡ptpp)=V(=(¡ptpp))=0 if and only if pt is pp. This saves computation.
It does not matter if pt or pp have been scaled, even by a dual number scalar, since
they are homogeneous points. We could write the product and null space set condition
as V(=(¡U(pt)T(pt)U(pp)T(pp))) = 0, or V(=(¡U(pt)U(pp)T(pt)T(pp))) = 0. Only the
units are significant to the test, and this is similar for all of the homogeneous DQGA
entities.

5.5.2 DQGA Plane Entity

In the CPNS PGA, we have the CPNS PGA 1-blade plane �= n̂+ de0 and the CPNS
PGA 3-blade point pt=(1+ t�I4)I3= I3¡e0t�= ptI3. We test a point pt for intersection
with a plane � as pt��= pt^�. Now, we switch to geometric product as pt� and use
the identity pt= ptI3 to obtain pt�= ptI3�. We can take I3� as the DQGA plane entity.
Therefore, the DQGA plane � is

�=�d;n̂= �p;n̂= I3�= I3(n̂+ de0)=¡(n̂�+ dI4)=¡(n̂�+(p��n̂�)I4); (127)

for a plane through point p� and normal to n̂�, where d=p��n̂�=¡p� � n̂� is the distance
of the plane from the origin. We have introduced a subscript notation to indicate the
plane normal n̂ and distance d from origin (d; n̂) or plane normal and surface point (p,n̂).
The minus sign is important for maintaining the scale or orientation.

Dual Quaternion Geometric Algebra in PGA 37

Like the CPNS PGA plane �, the DQGA plane � is a plane in general position and it
can be rotated by the usual rotor R. The translation of � is slightly more involved. The
dual quaternion � is the sum of a quaternion vector and imaginary scalar, so it is fully
within DQA.

The test product pt�� is grade 4, a pseudoscalar, which corresponds to the DQGA
element I4 =̂ ". Therefore, the null space entity part N�(pt�) of the point-plane test
ptI3�= pt� is N�(pt�)=S(=(pt�)). The point pt is a point of the plane � (pt2�) if and
only if N�(pt�)= 0. In this case, we can extract the scalar

Y(N�(pt�))= xn̂x+ yn̂y+ zn̂z¡ d (128)

representing the implicit plane equation.
If we do not want to use the null space entity part N�(pt�) for the null space set

condition N�(pt�)=0, then we can reformulate the test product pt�� into full geometric
products as (pt� ¡�pt)/2. Then, we use identities to make substitutions and obtain
(ptI3I3

¡1� ¡ I3¡1�ptI3)/2. So, the test product is now exactly the null space entity part
(pt�¡�pt)/2. Then, pt is a point on the plane � if and only if

(pt�¡�pt)/2= 0: (129)

We may save computation by using N�(pt�)= 0.

5.5.3 DQGA Line Entity
In CPNS PGA, we have the CPNS PGA 2-blade line l= d̂�¡ (p � d̂�)e0 and the CPNS
PGA 3-blade point pt=(1+ t�I4)I3= I3¡e0t�= ptI3. We test a point pt for intersection
with a line l as pt� l, which is a grade 3 null space entity. We cannot have any grade 3
elements in the DQGA, so we have to do something a little special to get a line entity in
the even grades. Now, we switch to geometric product as ptl and use the identity pt= ptI3
to obtain ptl= ptI3l. We cannot just take I3l as the DQGA line entity because it is in the
odd grades outside of DQGA. We can use the identity I3

¡1I3=1 to write I3lI3
¡1I3, which

does not change it yet. Now, we see the test as ptI3lI3
¡1I3 and the important part of this

test is the part in parentheses (ptI3lI3
¡1)I3. The RHS I3 is merely a constant that just

alters grades and that we can abridge from the test. By abridgment, we take the DQGA
line l to be l= I3lI3

¡1= l= d̂�+(p � d̂�)e0. We still cannot have p, so we use the identity
a��b�=((a^b)/I3)/I3=(a �b�)/I3, and (a��b�)I3=a �b�. Then, l= d̂�+(p��d̂�)I3e0.
Therefore, we have the following:

The DQGA line l in the direction d̂� and through the point p� is defined as

l= d̂
�¡ (p��d̂�)I4; (130)

which is a 2-blade in the even-grades subalgebra of DQGA.
The test in DQGA now looks like this: ptl = (1 + t�I4)(d̂

� ¡ (p��d̂�)I4) = d̂� ¡
(p��d̂�)I4+ t�I4d̂�. The term t�I4d̂

� can be rewritten as I4t�d̂
�= I4(¡t��d̂�+ t��d̂�) =

¡(t��d̂�)I4+ (t��d̂�)I4, which is an imaginary quaternion part . The null space entity
is the imaginary vector part of the test,

Y(Nl(ptl))=Y(V(=(ptl)))= (t��d̂�)¡ (p��d̂�); (131)

and it looks like the Plücker coordinates (d̂�:m�) condition for the line withm�=p��d̂�.
When a point t� satisfies the null space condition (t��d̂�)¡ (p��d̂�)= 0, or the Plücker
coordinates condition t��d̂�=m�, then t� is a point on the line. Plücker coordinates
were derived in Section 2.2.2 about the OPNS PGA 2-blade line L.

38 Section 5

A useful identity is

l= l= I3lI3
¡1; (132)

or

l= l= I3lI3
¡1; (133)

that we make use of in deriving other expressions from CPNS PGA to DQGA.
If we do not want to use the null space entity part Nl(ptl) for the null space set

condition Nl(ptl)=0, then we can reformulate the test product pt� l into full geometric
products as (ptl ¡ lpt)/2. Then, we use identities to make substitutions and obtain
(ptI3l¡ lptI3)/2= (ptl¡ lpt)I3/2. So, we abridge the RHS I3 to obtain exactly the null
space entity part (ptl¡ lpt)/2. Then, pt is a point of the line l if and only if

(ptl¡ lpt)/2= 0: (134)

We may save computation by using Nl(ptl)= 0.

5.6 DQGA Operations

5.6.1 DQGA Tensor Magnitude Operation

The tensor (or magnitude) of any dual quaternion, or DQGA entity, d is

T(d)= jdjD= ddy
p

= jq1j(1+ ((q1wq2w+q1
��q2�)/jq1j2)I4): (135)

The tensor is a dual number-valued scalar in the general case. We can use the dual
quaternion part operations {<, =, S, V}, vector calculus dot product a��b�=¡a� � b�,
quaternion tensor jq1j= q1q1

y
q

, and the PGA dualization operation Y to obtain all of the

values in the expression for the dual quaternion tensor T(d).
Often, we want the inverse of the tensor,

T (d)¡1= jq1j¡1(1¡ ((q1wq2w+q1��q2�)/jq1j2)I4); (136)

which could be defined as another operation since taking dual number inverses may be
troublesome for software implementations.

5.6.2 DQGA Normalization Operation

The normalization d̂=U(d) (�taking the unit d̂ of d�) to unit scale (or magnitude) of any
homogeneous DQGA dual quaternion entity d 2 fp; l; �g, or of d= d1d2: : : as any dual
quaternion product of entities, is the unit dual quaternion

d̂=U(d) = d(jq1j¡1(1¡ ((q1wq2w+q1��q2�)/jq1j2)I4)) (137)

= djdjD¡1= dT(d)¡1= d
¡

ddy
p �¡1: (138)

The DQGA entities for point pt=1+ t�I4, line lp;d̂= d̂
�¡ (p��d̂�)I4, and plane �p;n̂=

¡(n̂�+(p��n̂�)I4) have been defined in standard form as already unit dual quaternions.
The form of each entity d2fp; l; �g is such that d̂= d/T(<(d)). The general case nor-
malization d̂=dT(d)¡1 is implemented using jq1j=T(<(d)), q1wq2w=S(<(d))Y(S(=(d))),
and q1��q2� =¡V(<(d)) �Y(V(=(d))).

Dual Quaternion Geometric Algebra in PGA 39

The dual quaternion inverse is

d¡1=U(d)yT(d)¡1= dyT(d)¡1T(d)¡1; (139)

for jq1j=/ 0, which could be defined as another operation.
If we want, we can normalize the CPNS PGA entities fp; l;�g by converting them

to their corresponding DQGA entities fp= pI3
¡1; l= l; �= I3�g, normalizing them, and

then converting them back to CPNS PGA entities. To normalize the CPNS PGA 3-
blade point p, this is p̂= pI3

¡1T(pI3
¡1)¡1I3= p(T(pI3

¡1)¡1)¡. To normalize the CPNS 2-
blade line l, this is l̂ =(lT(l)¡1)¡. To normalize the CPNS PGA 1-blade plane �, this is
�̂= I3

¡1I3�T(I3�)¡1=�T(I3�)¡1.
Any homogeneous DQGA entity d 2 fp; l; �g may not always be unit scale, but d

still represents the same entity. In general, a unit dual quaternion d̂ may have been
multiplied by a dual number z scalar as d= zd̂ and still homogeneously represent the
same entity. We can we normalize d using the tensor magnitude normalization operation
to obtain d̂=U(d). However, d̂ may still have been multiplied by +1 or ¡1 also, and
d̂ only ensures T (d̂) = jdjD = 1. The orientation of d̂ may still be ¡1 of its intended
orientation. The DQGA entities fp; l; �g each have a standard form, but only the point
has a standard orientation, and the line and plane each have a subjective application-
dependent orientation.

The standard form for the DQGA point, pt=1+ t�I4, has S(pt)= 1. To ensure that
a point pp is in standard form and standard orientation, we could normalize it first as
p̂p= ppT (pp)

¡1=U(pp) and then check S(p̂p), or we simply normalize as p̂p= ppS(pp)¡1.
This should be done before extracting the vector as p�=Y(V(=(p̂p))).

The standard form for the DQGA line, lp;d̂= d̂
�¡ (p��d̂�)I4, assumes that d̂� is

the direction of the line acting as axis of counterclockwise rotation around the line in
the sense of the right-hand rule. Before using l as an axis of rotation, normalize l as
l̂ = lT(l)¡1=U(l) then check V(<(l̂)) = d̂� to see if d̂� has the correct orientation for a
positive angle � of rotation, and if not then use -l̂ . Rotations and translations preserve
the orientation, so if the line is created in the intended correct orientation and then only
rotated and translated properly, then V(<(l̂)) = d̂� will still be the correct intended
orientation of the line as it was created.

The standard form for the DQGA plane, �p;n̂=¡(n̂�+ (p��n̂�)I4), usually assumes
that d=p��n̂��0, but this is not always the case. The orientation, n̂� or¡n̂�, is subjective
and application-dependent. When using � as a reflection operator, � or ¡� will reflect
in the plane the same way and will not matter. When extracting n̂�=¡V(<(�)), it is
subjective to take either (n̂�; �̂) or (¡n̂�;¡�̂) because we sometimes cannot be sure which
was intended when � was first created. However, most operations such as rotation and
translation will preserve the orientation and we just take (n̂�; �̂). We have been careful to
make operations that preserve orientation when used properly or carefully, but it is easy
to cause a change of orientation (multiplication by ¡1) when using identities plugged into
formulas that intend the opposite orientation.

5.6.3 DQGA Rotation Operation

In DQA, we can rotate all dual quaternions and dual quaternion geometric entities using
the quaternion algebra rotor R= exp(�n̂/2).

40 Section 5

In DQGA, the DQA rotor R= exp(�n̂/2) corresponds to the DQGA rotor

R= exp(�n̂�/2); (140)

where n̂�= n̂/I3, that we have also used to rotate entities in OPNS PGA and CPNS
PGA. By outermorphism, R rotates any quaternion vector v� within DQGA expressions,
thereby rotating them as a whole rigid body. The rotation is centered on the origin,
around the axis n̂�, by angle � using R as a versor sandwich product on any DQGA
element A as A0=RAR¡1.

This versor operation valid on all DQGA entities for rotation centered on the origin,
but most of the other DQGA operations, for translation and rotation around lines, are
not versor sandwich products, but are instead entity-specific special sandwich products
that are derived for each entity. Admittedly, the algebra of operations is much nicer in
CPNS PGA since it works very much like CGA with versor operators, but our results
on DQGA may still be of interest to those wanting to use just DQA or to those finding
some special use of DQGA which might otherwise be neglected.

5.6.4 DQGA Point Rotation Operation Around Line

In CPNS PGA, a point p is rotated around the unit line l= d̂�¡ (p � d̂�)e0 using the rotor
Rl= exp(�l/2)= cos(�/2)+ sin(�/2)l as p0=RlpRl

¡1. This rotor can also be formed as a
composition of rotation and translation as a translated rotor Rl=TRT¡1 or as reflection
in two non-parallel planes Rl=�2�1. We will just use exp(�l/2), which is the easier and
more intuitive form.

We use identities p= pI3, l= l, I3l= lI3. Then, p0= p0I3= exp(�l/2)pI3exp(¡�l/2).
Therefore, the rotation of point p around line l by angle � is

p0= exp(�l/2)p exp(¡�l/2): (141)

It is important that l= l̂ =U(l) be a unit line, or else the angle � will be scaled incorrectly
by any magnitude T(l) on l. The sense of rotation is by right-hand rule around the line
through axis of rotation direction d̂�. This is not a versor operation; it is a special dual
quaternion sandwich product that is entity-specific, for rotating a DQGA point around
a DQGA line. Each DQGA entity has a different formula for this operation in DQGA.

5.6.5 DQGA Plane Rotation Operation Around Line

Similar to Section 5.6.4 for points, in CPNS PGA, a plane � is rotated around the unit
line l using the rotor Rl= exp(�l/2) as � 0=Rl�Rl

¡1. We use identities �= I3
¡1�, l= l,

lI3
¡1=I3

¡1l. Then, � 0=I3
¡1� 0=exp(�l/2)I3

¡1�exp(¡�l/2). Therefore, the rotation of plane
� around line l by angle � is

� 0= exp(�l/2)�exp(¡�l/2): (142)

5.6.6 DQGA Line Rotation Operation Around Line

Similar to (5.6.4) for points, in CPNS PGA, a line l1 is rotated around the unit line l2
using the rotor Rl2= exp(�l2/2) as l10 =Rl2l1Rl2

¡1. We use identities l = l, lI3
¡1= I3

¡1l.
Then, l10 = l1

0 = exp(�l2/2)l1exp(¡�l2/2). Therefore, the rotation of line l1 around line l2
by angle � is

l1
0 = exp(�l2/2)l1exp(¡�l2/2): (143)

Dual Quaternion Geometric Algebra in PGA 41

This is a versor operation.
Only for the DQGA line entity is this operation, rotation around a line, a versor

operation. It turns out that, for the DQGA line entity, all rotation and translation
operations are versor operations, just as they are in CPNS PGA. So, for DQGA lines,
the versor operations can be further composed as versors and applied to a DQGA line
entity. For the DQGA point and plane, we have to be careful to use their entity-specific
rotation and translation operations, and compose them as special sandwich products that
are not versor sandwich products.

5.6.7 DQGA Plane Reflection in Plane Operation

In CPNS PGA, the plane �1 is reflected in unit plane �2 as �10 =¡�2�1�2. We use the
identities �=I3

¡1�, d=I3dI3
¡1. Then, the reflected plane is �10=I3

¡1�1
0=¡I3¡1�2I3¡1�1I3¡1�2.

Therefore, plane �1 reflected in plane �2 is

�1
0 =�2�1�2: (144)

We can compose two reflections to generate rotation or translation. Recall that, we must
use ¡�2�1�2, not �2�1�2. The later is reflection in a normal vector, and the former is
reflection in the plane of the normal vector.

5.6.8 DQGA Line Reflection in Plane Operation

In CPNS PGA, the line l is reflected in unit plane � as l 0=�l�. We use the identities
l= l, �= I3

¡1�, d= I3dI3
¡1. Then, the reflected line is l 0= l 0= I3

¡1�lI3
¡1�. Therefore, line

l reflected in plane � is

l 0=¡(�l�)¡=¡�l�: (145)

We can compose two reflections to generate rotation or translation.
If we view the CPNS PGA line as l= �1 ^�2, then it is correctly argued that we

must reflect each plane as �i0=¡��i�, and therefore l0=(¡1)2�l�=�l�, which is what
we have done already. The handedness of the axis or direction of l 0 is opposite of l, so
that it generates the opposite handedness of rotations. The effect can be understood by
looking at a ceiling fan and holding your right hand according to the right-hand-rule, so
that your right hand is �holding� the fan axis with your fingers curling around it in the
direction of the fan rotation and your thumb points into the axis direction. Then, look
at the fan in a mirror and hold it with your right hand again. Your thumb will have to
reverse direction to curl with the spinning as seen in the mirror. In the mirror, your left
hand will hold the axis and still point the same direction. The handedness is reversed.
The image of the line itself is a mirror image as expected. The direction or axis of l 0 is
the negative of what you might expect, but it is correct for a reflection.

5.6.9 DQGA Point Reflection in Plane Operation

In CPNA PGA, the point p is reflected in the unit plane � as p0=�p�. We use the
identities �= I3

¡1�=¡�I3, p= pI3, d= I3dI3
¡1. Then, the reflected point is p0= p0I3=

¡I3¡1�pI3�I3. Therefore, point p reflected in plane � is

p0=¡�p�=¡(�p�)¡: (146)

We can compose two reflections to generate rotation or translation. Caution: This form
of reflection maintains p 0 in standard form orientation as a non-oriented point. In the
following paragraphs, we explain non-oriented point and oriented point reflection.

42 Section 5

If we view the CPNS PGA point as p=�1^�2^�3, then some may argue that we
must reflect each plane as �i0=¡��i�, and therefore p0=(¡1)3�p�=¡�p�. However,
a point does not actually have an orientation the way that a plane or line does, and it
turns out that ¡�p� scales the point into a non-standard form with negative orientation
¡p0=¡I3+e0p�0. We believe that points should usually be maintained in standard form
orientation, while the orientation of planes and lines must be allowed to reflect.

Then again, if we join three points fp1; p2; p3g arranged counterclockwise as the
plane �123=(p3

¡?^ p2¡?^ p1¡?)?, then the three reflected points fp10 ; p20 ; p30g appear to be
arranged clockwise in the mirror view. If we allow point orientation pi0=¡�pi�, then the
reflected plane is �123

0 =¡(p30 ¡?^ p20 ¡?^ p10 ¡?)?= (p1
0 ¡?^ p20 ¡?^ p30 ¡?)?. The plane �123

and its reflected image �123
0 are either both facing the reflection plane � or backing the

reflection plane �. This gives the correct reflection.
Whether to reflect non-oriented standard form points p0=�p� or to reflect oriented

points p0=¡�p� depends on how the points are being used. So, it is application-specific
how to choose this. Two classes of points could be defined: non-oriented points and
oriented points. For the class of non-oriented points, the reflection in a plane is p0=�p�.
For the class of oriented points, the reflection in a plane is p0=¡�p�.

All of these orientation considerations carry over to the DQGA reflection when we
make identities substitutions as we have already shown.

5.6.10 DQGA Point Reflection in Line Operation

In CPNS PGA, the point p is reflected in unit line l as p0= lpl¡1=¡lpl. We use identities
(p= pI3, l= l, I3l= lI3) and switch to geometric products. Then, the reflected point is
p0= p0I3=¡lpI3l. Therefore, point p �reflected� in line l (actually rotation by 180� around
line l) is

p0=¡lpl: (147)

The �reflection� in a line l is not actually a reflection, it is an orientation-preserving
rotation around the line by 180� since l= exp(�l/2), which is a line rotor or translated
rotor.

5.6.11 DQGA Line Refection in Line Operation

In CPNS PGA, the unit line l1 is reflected in unit line l2 as l10 = l2l1l2
¡1=¡l2l1l2. We use

identities (l= l, l l=¡1) and switch to geometric products. Then, the reflected line is
l1
0 = l1

0 =¡l2l1l2. Therefore, line l1 �reflected� in line l2 (actually rotation by 180� around
line l2) is

l1
0 =¡l2l1l2: (148)

Intuitively, if l1= l2, then l1
0 = l2 as expected. The �reflection� in a line l is not actually

a reflection, it is an orientation-preserving rotation around the line by 180� since l =
exp(�l/2), which is a line rotor or translated rotor.

5.6.12 DQGA Point Translation Operation

In CPNS PGA, a point pp is translated as pp 0=TppT¡1. We use the identities T = pd/2=
1+ (d�/2)I4, T¡1= p¡d/2, I3T¡1= T I3, pp= ppI3, pp= 1+ p�I4. Then, the translated
point is pp 0= pp0I3=TppT I3. Therefore, point pp translated by d� is

pp0=TppT : (149)

Dual Quaternion Geometric Algebra in PGA 43

Points have commutative multiplication, so pp 0=T 2pp= pdpp= pp+d. This confirms the
expected form of this translation operation, as multiplication of one point with another
displacement point as addition.

5.6.13 DQGA Plane Translation Operation

In CPNS PGA, a plane � is translated as � 0=T�T¡1. We use the identities T = pd/2=
1+ (d�/2)I4, T¡1= p¡d/2, �= I3

¡1�, T I3
¡1= I3

¡1T¡1. Then, the translated plane is � 0=
I3
¡1� 0= I3

¡1p¡d/2�p¡d/2. Therefore, plane � translated by d� is

� 0= p¡d/2�p¡d/2=T¡1�T¡1= pd/2�pd/2=TpdT : (150)

5.6.14 DQGA Line Translation Operation

In CPNS PGA, a line l is translated as l 0=TlT¡1. We use the identities T = pd/2=1+

(d�/2)I4, T¡1= p¡d/2, l= l, d=I3dI3
¡1, T =T¡1. Then, the translated line is l0= l 0=TlT¡1.

Therefore, line l translated by d� is

l 0=T¡1lT =TlT : (151)

This is like a translation versor operation for translating by the negative displacement
¡d�, but this is an actual versor operation that achieves the positive displacement d�.
Just to be clear, we set T¡1= p¡d/2 and T = pd/2, and translate l by displacement d� as
l 0=T¡1lT . As a check, l 0= l 0= (T¡1lT)¡=TlT¡1. For the DQGA line entity l, we can
compose rotations and translations as versors, but we cannot do that for the other DQGA
entities.

5.7 DQGA Intersections and Point Tests

5.7.1 DQGA Point Intersection Tests

We have defined the DQGA surface entities A2fpp; �p;n̂; lp;d̂g with respect to testing a
DQGA point pt against them, to determine if pt is in the null space set fpt :NA(ptA)=0g
of the null space entity part NA(ptA) of the test product ptA. The null space entity part
NA(ptA) depends on type of surface A.

For a point surface p= pp, A= p and

Np(ptpb)=V(=(ptpb))= 0 (152)

for the null space set of a single point fpt:Np(ptpb) = (t�¡b�)I4=0g= fpt= pbg. The
point of a point surface pb is pb= pb.

For a plane surface �= �p;n̂, A= � and

N�(pt�p;n̂)= S(=(pt�p;n̂))= 0 (153)

for the null space set of the entire plain of points fpt :N�(pt�p;n̂)= (t��n̂�¡p��n̂�)I4=0g.
For a line surface l= lp;d̂, A= l and

Nl(ptlp;d̂)=V(=(ptlp;d̂))= 0 (154)

44 Section 5

for the null space set of the entire line of points fpt :Nl(ptlp;d̂)=(t
��d̂�¡p��d̂�)I4=0g,

where p��d̂�=m� is called the moment in Plücker coordinates (d̂� :m�) for the line.

5.7.2 DQGA Plane and Plane Intersection as Line

In CPNS PGA, plane �1 and plane �2 intersect as the line l = �1 ^ �2. We use the
identities l= l, �= I3

¡1�, and d= I3dI3
¡1 and switch to geometric products. Then, the line

is l= l=L(I3I3
¡1�1I3

¡1�2I3
¡1). Therefore, the intersection of plane �1 and plane �2 is the line

l=L(¡�1�2): (155)

Notice that, we have to take the line part using the L(d)=V(d) operator, which replaces
the wedge product (a geometric product part operator) used in the corresponding CPNS
PGA.

If we do not want to use L(d), then we can fully reformulate into geometric prod-
ucts as l = �1 ^ �2 = (�1�2¡ �2�1)/2 for two vectors. Then, l = l = I3(I3

¡1�1I3
¡1�2¡

I3
¡1�2I3

¡1�1)I3
¡1/2. Therefore, the intersection of plane �1 and plane �2 is the line

l=¡(�1�2¡�2�1)/2: (156)

Using L(d) may save computation.
When forming a line l as intersection of two planes, we cannot be sure of its scale, so

it may need to be normalized as l̂ =U(l), but it will have the same scale and orientation
as the corresponding CPNS PGA line l= l.

5.7.3 DQGA Line and Plane Intersection as Point

In CPNS PGA, non-parallel line l and plane � intersect as the point p= l^�. We use
the identities l= l, �= I3

¡1�, d= I3dI3
¡1, and p= pI3 and switch to geometric products.

Then, the point is p= pI3
¡1=P(lI3

¡1�I3
¡1). Therefore, the intersection of line l and plane

� is the point

p=P(¡l�): (157)

Notice that, we have to take the point part using the P(d)= (d+ dy)/2 operator, which
replaces the wedge product (a geometric product part operator) used in the corresponding
CPNS PGA.

If we do not want to use P(d), then we can fully reformulate into geometric products
as p= l^�= (l�+�l)/2 for a bivector l and vector �. The symmetry here is (¡1)rs
with r = 2 and s = 1, so l ^ � is part of the symmetric product. Then, p = pI3

¡1 =
(lI3

¡1�+ I3
¡1�l)I3

¡1/2. Therefore, the intersection of line l and plane � is the point

p=¡(l�+�l)/2: (158)

Using P(d) may save computation.
When forming a point p as intersection of line and plane, we cannot be sure of its

scale, so it may need to be normalized as p̂=U(p), but it will have the same scale and
orientation as the corresponding CPNS PGA point p= pI3. If a point surface is desired,
then it is p=P(¡l�) so that the null space set is p.

Dual Quaternion Geometric Algebra in PGA 45

5.7.4 DQGA Plane and Plane and Plane Intersection as Point

In CPNS PGA, three non-parallel planes, plane �1 and plane �2 and plane �3, intersect
as the point p=�1^�2^�3. We use the identities � = I3

¡1�, p= pI3, and d= I3dI3
¡1

and switch to geometric products. Then, the point is p= pI3
¡1=P(I3

¡1�1I3
¡1�2I3

¡1�3I3
¡1).

Therefore, the intersection of three planes, �1, �2, and �3, is the point

p=P(�1�2�3)=P(¡l12�3)=P(¡�1l23): (159)

Notice that, we have to take the point part using the P(d) operator, which replaces the
wedge products (a geometric product part operator) used in the corresponding CPNS
PGA. The line products, l12=¡�1�2 and l23=¡�2�3, have been deferred from taking their
line parts using operator L(d) on them so that they are further used to generate another
entity. When taking products of dual quaternion entities that correspond to geometric or
wedge products in CPNS PGA, we can defer taking the correct entity part (point P(d),
plane P(d), or line L(d)) until the end when we have our final dual quaternion product of
the entities that produces another entity of an expected type, which we then take from
the product by using the correct part operator.

If we do not want to use P(d), then we can fully reformulate into geometric products
as p = pI3

¡1 = (�1 ^ �2 ^ �3)I3¡1 = ((�1�2 ¡ �2�1)�3 + �3(�1�2 ¡ �2�1))I3
¡1/4. Then,

we make the substitutions and get p=((¡�1�2+ �2�1)(¡�3)+ (¡�3)(¡�1�2+ �2�1))/4.
Therefore, the intersection of three planes, �1, �2, and �3, is the point

p=(�1�2�3¡�2�1�3+ �3�1�2¡�3�2�1)/4: (160)

Using P(d) may save computation, but both ways give the same point entity.
When forming a point p as intersection of three planes, we cannot be sure of its

scale, so it may need to be normalized as p̂=U(p), but it will have the same scale and
orientation as the corresponding CPNS PGA point p= pI3. If a point surface is desired,
then it is p=P(�1�2�3)=P(¡l12�3)=P(¡�1l23) so that the null space set is p.

5.8 DQGA Projection Operations
In CPNS PGA, we only make projections of a smaller-dimensional geometric entity a2
fp; l;�g onto a subspace of a larger-dimensional geometric entity A2fp; l;�g. A point is
0-dimensional, a line is 1-dimensional, and a plane is 2-dimensional in terms of geometric
degrees of freedom. Though it can be done, the projection of same-dimensional geometric
entities just results in bijectively mapping entity a one-to-one and onto the entire surface
of entity A, resulting in A again. The general projection operation in CPNS PGA is
a0= (a �A)A¡1 (same as in CGA) and results in orthographic projection of a onto A.
Therefore, we have three projections: (p ��)�¡1, (l ��)�¡1, (p � l)l¡1. In this section, we
use identities to convert these projections into DQGA forms.

5.8.1 DQGA Point Projection onto Plane

In CPGA PGA, the projection p0 of point p onto unit plane � is p0= (p � �)�. We
use identities (p= pI3, �= I3

¡1�, d= I3dI3
¡1, ��=¡1, p ��= (p�+�p)/2 [n.b., sym-

metry (¡1)r(s¡1)=(¡1)1(3¡1)=+1]) and switch to geometric products. Then, p0=p0I3
¡1=

((pI3I3
¡1�+ I3

¡1�pI3)I3
¡1�/2)I3

¡1. Therefore, the projection of point p onto plane � is the
point

p0=¡(p��+ �p�)/2= (p¡�p�)/2: (161)

46 Section 5

The projected point p0 is the point on the plane � that is closest to the point p, so that
displacement d= p¡ p0 is normal to plane � and directed toward p. We notice that,
¡�p� is p reflected in the plane �, and that (p¡�p�)/2 is the average point between p
and ¡�p�, which is the point p0 on the plane between them.

If we use any entity d that is not a unit magnitude entity d=/ d̂, then scaling by its
tensor T(d) may occur in the projection operations, but any scaling by a dual number
does not affect the validity of the projection operations. The unit operator U(d)= d̂ can
be used to restore unit magnitude before or after any operation.

Notice that, we do not have to take the point part using P(d) since we reformulated
as (p ��)�= (p�+�p)�/2, which is all geometric products that take no special part.
We can often do this, but it gets messy for some products. It was necessary in this
case to reformulate into all geometric products since p �� must be done first according
to geometric algebra operator precedence rules (i.e., p ���= (p ��)� =/ p � (��)). For
a wedge product, we have �1^�2^�3= (�1^�2) ^�3=�1^ (�2^�3), so we are not
constrained to enforce any precedence of the operations and we can defer taking parts
until later.

5.8.2 DQGA Line Projection onto Plane

In CPNS PGA, the projection l0 of line l onto unit plane � is l 0= (l � �)�. We use
identities (l = l, � = I3

¡1�, d = I3dI3
¡1, �� = ¡1, l � � = (l� ¡ �l)/2 [n.b., symmetry

(¡1)r(s¡1)=(¡1)1(2¡1)=¡1]) and switch to geometric products. Then, l 0= l0=I3((lI3
¡1�¡

I3
¡1�l)I3

¡1�/2)I3
¡1. Therefore, the projection of line l onto plane � is the line

l 0=(¡l��+�l�)/2= (l+ �l�)/2: (162)

The projected line l 0 is the line of points on the plane � that each are closest to corre-
sponding points on l, so it is an orthographic projection, projecting points of the line l
straight onto the plane along paths parallel to the plane normal vector. We notice that,
¡�l� is l reflected in the plane �. Each reflection in a plane causes an orientation reversal
in the reflected entity (except for points). Then, �l� restores orientation to that of l, and
then they are averaged as l 0. This average line l 0 is on the plane between them.

Notice, we do not have to take the line part using L(d) since we reformulated as
l ��= (l� ¡�l)�/2, which is all geometric products that take no special part. It was
necessary in this case to reformulate into all geometric products since l �� must be done
first according to geometric algebra operator precedence rules, similar to the case of the
point projection onto plane.

5.8.3 DQGA Point Projection onto Line

In CPNS PGA, the projection p0 of point p onto the unit line l is p0=(p � l)l¡1=¡(p � l)l.
We use identities (p= pI3, l= l, d= I3dI3

¡1, I3l= lI3, p � l= (pl+ lp)/2) and switch to
geometric products. Then, p0= p0I3=¡(pI3l+ lpI3)l/2. Therefore, the projection of point
p onto line l is the point

p0=¡(pl+ lp)l/2= (p¡ lpl)/2: (163)

We notice that ¡lpl is p reflected in l, then p0 is the average point between p and ¡lpl,
which is the projected point on the line.

Dual Quaternion Geometric Algebra in PGA 47

5.9 Conclusion on Dual Quaternion Geometric Algebra

We reviewed dual number algebra (DNA), quaternion algebra (QA), and dual quaternion
algebra (DQA) in their original notations, and then provided the details on how each
algebra is represented in the even-grades subalgebra G3;0;1+ of PGA. The representations in
geometric algebra are called the dual number geometric algebra (DNGA), quaternion geo-
metric algebra (QGA), and dual quaternion geometric algebra (DQGA) to distinguish the
different notations and implementations of certain special operations by taking advantage
of the larger G3;0;1 and PGA. We have discussed the Dual Quaternion Geometric Algebra
G3;0;1+ in PGA G3;0;1 (DQGA/PGA) in much detail that seemed to be missing in the prior
literature that we are aware of, though we acknowledge that dual quaternions are an old
subject and many results are probably found somewhere in the published literature. We
arrive at our view of dual quaternions by a method that may be new in the literature, by
using PGA. We derived identities that convert the CPNS PGA entities fp; l;�g between
their corresponding DQGA entities fp; l; �g without change of orientation. By using the
identities, we also converted CPNS PGA operations on entities into their corresponding
operations on the DQGA entities, including rotations, translations, intersections, and
projections. Nearly anything that can be done in CPNS PGA can also be done in DQGA,
and DQGA is a smaller subalgebra of the full PGA algebra. All of the DQGA entities
and operations could be implemented in a pure DQA implementation that could be
more efficient than the full PGA algebra. For each of the DQGA entities fp; l; �g, we
can rotate, translate, reflect in planes, make intersections between the entities, and make
projections onto planes and lines, all in dual quaternions. It may also be possible make
rejections from lines and planes, and even more operations from CPNS PGA. The dual
quaternion algebra of DQGA has nice algebraic properties and a dual number-valued
tensor (magnitude) operation T that allows any dual quaternion d to be scaled into a
unit dual quaternion d̂ by a fairly simple and reliable method. We borrow from PGA
the entity dualization operation Je, pseudoscalar I3, and certain geometric algebra oper-
ators (reverse y or ~, inner product �, commutator product �) to implement a complete
set of special dual quaternion operations including conjugates (dual number conjugate
z, quaternion conjugate K(q) = qy, dual conjugate dy), dual quaternion part extraction
operators (real <, imaginary =, scalar S, vector V, point P, plane P, and line L parts),
the dual number-valued tensor T (magnitude) of a dual quaternion, a normalization
operation d̂=U(d) of a dual quaternion d to a unit dual quaternion d̂, the vector calculus
dot product a��b�=¡a� � b� and cross product a��b�= a�� b�, and an operation Y
(using Je and =) to extract the quaternion q2=Y(d) from d= q1+ q2I4 (" =̂ I4). Using the
point P, plane P, and line L parts operations, we improve the computational efficiency of
intersection operations. DQGA is itself a very complete implementation of DQA, but it
is also extended in PGA to other algebraic forms of the entities and operations in CPNS
PGA and OPNS PGA.

It is possible to convert between the DQGA entities fp; l; �g and the CPNS PGA
entities fp; l;�g by using simple identities between them. Using the PGA entity dualiza-
tion operation Je (which we implemented by what may be a new method), we can convert
between CPNS PGA entities fp; l;�g and OPNS PGA entities fP;L;Pg. Therefore, we
can freely convert a point, line, or plane entity into three different forms within PGA G3;0;1
without orientation change, and take advantage of each form of entity and operations in
the three different algebras in PGA.

48 Section 5

6 Double PGA G(6,0,2) for General Quadrics

This section discusses using two orthogonal copies of PGA G3;0;1, multiplied together
as Double PGA (DPGA) G6;0;2 in which general quadrics are represented by methods
similar to Double CGA (DCGA) [7]. The doubling of CPNS PGA, called CPNS Double
PGA (CPNS DPGA), can represent general quadrics, which can be operated on by all
of the operations of CPNS PGA in doubled CPNS DPGA forms. Within DPGA is the
subalgebra of Double Dual Quaternion Geometric Algebra (DDQGA) that uses only
64 even-grade basis blades while representing general quadrics with all of the opera-
tions available in CPNS PGA doubled and converted through identities as operations
in DDQGA. Operations on general quadrics in DDQGA include rotation, translation,
reflection in planes, and intersecting with lines and planes.

6.1 Introduction to Double PGA G(6,0,2)

In Conformal Geometric Algebra (CGA) G4;1, it has been shown in a series of papers
[6][7][8][9][10] that CGA can be doubled into a Double CGA (DCGA) G8;2 that can
represent Darboux cyclides, which includes general quadric surfaces, parabolic cyclides,
and Dupin cyclides. There is much similarity between the Plane-based PGA and CGA.
Therefore, it is straightforward to apply all of the same doubling methods to the Plane-
based PGA. We use two copies of PGA, called PGA1 and PGA2 in G6;0;2, which we call
Double PGA (DPGA).

In PGA, we have the Point-based OPNS PGA entities X and the Plane-based CPNS
PGA entities x that are dual to each other through the entity dualization operation
Je(X)=x. In DPGA we have their doubled forms as the Point-based DPGA entities X:D

and the Plane-based DPGA entities x:D that are dual to each other through a doubled
entity dualization operation Je:D(X:D)=x:D.

All of the entities and operations X of CPNS PGA, including the entity dualization
Je, can be put into a doubled form X:D in DPGA. While Je:1 in PGA1 and Je:2 in PGA2
are each anti-involutions, the composed double Je:D in DPGA becomes an involution.
Similar to DCGA, we can form the 2-vector extraction operators (or elements) Ts to
extract the 8-blade pseudoscalar sI8 from the Plane-based DPGA 6-blade point p:D as
sI8= p:D^Ts by outer product. The possible values sI8 extracted from DPGA point p:D
are s2f1; x; y; z; x2; y2; z2; xy; yz; zxg, which are the quadratic scalar components in the
doubled homogeneous point p:D. A linear combination of the extraction elements Ts as
!=

P
s
asTs defines the Plane-based DPGA 2-vector general quadric entity !. The PGA1

2-versor rotor R:1 is doubled with its copy PGA2 rotor R:2 into the DPGA 4-versor rotor
R:D=R:1R:2. Similarly, the Plane-based DPGA translator is T:D=T:1T:2. The DPGA 4-
versor rotor R:D and plane-based translator T:D operate as expected, as versor sandwich
operations, on all Plane-based DPGA entities, including the Plane-based DPGA 2-vector
general quadric entity !. In DCGA, there are differential operators fDx;Dy;Dzg, which
are also available in DPGA in the same forms as in DCGA. The Plane-based DPGA
general quadric entity ! can be reflected in a doubled plane �:D, rotated using R:D,
translated using T:D, and we can represent its intersection with a doubled plane �:D or
line l:D.

Double PGA G(6,0,2) for General Quadrics 49

DPGA can be compared to many other geometric algebras that can represent general
quadrics and DPGA is one of the smaller of these algebras. DPGA G6;0;2 has n= p+
q+ r= 6+ 0+ 2= 8 vector dimensions and 28= 256 total basis blades. The geometric
algebra G4;4 [12] also has 28= 256 total basis blades and can represent quadrics using
more complicated sandwiching products but also has many operations used in computer
graphics. The geometric algebra G6;3 [24] has 29=512 total basis blades and can represent
point-based general quadrics. DCGA G8;2 [7] has 210= 1024 total basis blades and is the
most comparable to DPGA. The geometric algebra G9;6 [1] has 215= 32768 total basis
blades and can represent point-based general quadrics and their intersections. Most of
these algebras use only a subset of the complete set of basis blades, such as using only
the even-grades subalgebra or some other subset.

6.2 Double PGA G(6,0,2) Basis and Metric
The 1-blade basis for DPGA G6;0;2 is fe0; e1; e2; e3; e4; e5; e6; e7g with metric diag(0; 1; 1;
1; 0; 1; 1; 1).

We define PGA on the basis fe0;e1;e2;e3g with metric diag(0; 1; 1; 1), which we shall
call PGA1. PGA1 is exactly the same as PGA as we have discussed in prior sections
of this paper. We introduce the notation : 1 to mark elements in PGA1. The PGA1
unit pseudoscalar for the subalgebra G3;0;0:1 is I3:1= e1e2e3, and the PGA1 4-blade unit
pseudoscalar is I4:1= e0I3:1.

We define a copy of PGA on the basis fe4; e5; e6; e7g with metric diag(0; 1; 1; 1),
which we shall call PGA2. Every element, entity, and operation in PGA1 is copied to
a corresponding element, entity, and operation in PGA2. The PGA2 unit pseudoscalar
for the subalgebra G3;0;0:2 is I3:2= e5e6e7, and the PGA2 4-blade unit pseudoscalar is
I4:2= e4I3:2.

The geometric product of PGA1 and PGA2 is DPGA. Since PGA1 and PGA2 are
completely orthogonal, the geometric product is the outer (wedge) product. The outer
product of any PGA1 element A:1 with its corresponding (copy) element A:2 in PGA2
is the DPGA element A:D=A:1A:2=A:1^A:2 in the even-grades subalgebra G6;0;2+ . The
DPGA unit pseudoscalar for G3;0;0:D is I3:D= I3:1I3:2. The DPGA unit pseudoscalar is
I4:D= e0I3:1e4I3:2= I4:1I4:2= I8.

6.3 DPGA Geometric Entities

6.3.1 Plane-based DPGA CPNS 6-blade Point Entity

The Plane-based DPGA CPNS 6-blade point is pt:D= pt:1pt:2=(I3:1¡e0t:1�)(I3:2¡e4t:2�).
Both points, pt:1 and pt:2, embed the same vector point t:1= xe1+ ye2+ ze3, with pt:2
using the corresponding copy vector point t:2= xe5+ ye6+ ze7. The point pt:D is the
same point as pp:D if and only if the 2-vector CPNS test entity is pt:D� pp:D=0.

6.3.2 Plane-based DPGA OPNS 2-vector Quadric Elements

In PGA1, we can extract 4-blade pseudoscalars f1; x; y; zgI4:1 from pt:1 as pt:1^f¡e0;
e1; e2; e3g. In PGA2, we can extract 4-blade pseudoscalars f1; x; y; zgI4:2 from pt:2 as
pt:2^ f¡e4; e5; e6; e7g. In DPGA, we can extract 8-blade pseudoscalars sI4:D2 f1; x; y;
z; x2; y2; z2; xy; yz; zxgI4:D from pt:D as sI8= pt:D^ Ts by using the DPGA elements Ts
shown in Table 3.

50 Section 6

Notice that, the product is not �, but is now ^ for using Ts. In CPNS PGA, the
commutator product � gives the correct part of the geometric product, and pt��= pt^
�. In DPGA, we have p:D�Ts=/ p:D^Ts= sI8, and p:D^Ts= sI8 is the correct product
for extracting sI8. The Ts are plane-based, and their duals Je:D(Ts) are point-based. The
Ts are OPNS entities in both Plane-based and Point-based DPGA.

T1= e4e0 Tx=
1

2
(e1e4+ e0e5) Ty=

1

2
(e2e4+e0e6) Tz=

1

2
(e3e4+ e0e7) Txy=

1

2
(e6e1+ e5e2)

Tyz=
1

2
(e7e2+ e6e3) Tx2= e5e1 Ty2= e6e2 Tz2=e7e3 Tzx=

1

2
(e5e3+ e7e1)

Table 3. Plane-based DPGA OPNS 2-vector quadric elements Ts for extracting sI8= pt:D^Ts.

6.3.3 Plane-based DPGA OPNS 2-vector Quadric Entity

The Plane-based DPGA OPNS 2-vector quadric entity ! is defined as a linear combi-
nation of the Plane-based DPGA OPNS 2-vector quadric elements Ts in Table 3. That
is, !=

P
s
asTs, where the as are scalars. The Plane-based DPGA 6-blade point pt:D is

on the quadric represented by ! if and only if the 8-blade (pseudoscalar) OPNS entity
is pt:D^!= 0. Using the DPGA entity dualization operation
= Je:D(!), which is an
involution, the Point-based DPGA 2-blade point Pt:D=Pt:1Pt:2= Je:D(pt:D) is on the
Point-based DPGA 6-vector quadric
 if and only if the 8-blade (pseudoscalar) OPNS
entity is Pt:D^
=0.

For example, we can form an ellipsoid entity ! representing the implicit quadric
equation

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 +

(z ¡ pz)2

rz
2 ¡ 1=0 (164)

as

! =
¡2px
rx
2 Tx+

¡2py
ry
2 Ty+

¡2pz
rz
2 Tz+ (165)

1

rx
2Tx2+

1

ry
2Ty2+

1

rz
2Tz2+

px
2

rx
2 +

py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
T1

All other general quadrics can be formed similarly [6]. The plane-based DPGA quadric
entity ! can be rotated and translated using the DPGA rotor R:D and plane-based DPGA
translator T:D. The point-based quadric entity
= Je:D(!) cannot be translated using
the plane-based translator T:D, but it can be rotated using the DPGA rotor R:D.

The quadric entity ! is based on the 2-vector elements of Table 3 using the outer
product with the Plane-based DPGA 6-blade point pt:D, therefore ! is an OPNS entity.
Its dual Je:D(!) =
 is called the Point-based DPGA OPNS 6-vector quadric entity
,
which is also an OPNS quadric entity. The OPNS entities are identical, pt:D^!=Pt:D^

, including orientation.

Quadric-Plane Intersection: The intersection of the 2-vector quadric ! and 2-
blade plane �:D is the 4-vector c=�:D^!, which is an entity representing a conic section
or quadratic curve. The point p:D is on c if and only if the grade 6 null space entity is
hp:Dci6= 0. We have to use the grade k part operator hik since none of the usual part
operators (�;^;�;�) give the grade 6 part of the geometric product p:Dc, which has a
grade 6 null space entity.

Double PGA G(6,0,2) for General Quadrics 51

Quadric-Line Intersection: The intersection of the 2-vector quadric ! and 4-blade
line l:D is the 6-vector d = l:D ^ !, which is an entity representing a pair of real or
imaginary points, depending on if the intersection exists. The point p:D is one of the pair
of points in d if and only if the grade 4 null space entity is hp:Ddi4=0. We have to use
the grade k part operator hik since none of the usual part operators (�;^;�;�) give the
grade 4 part of the geometric product p:Dd, which has a grade 4 null space entity.

6.3.4 Plane-based DPGA OPNS/CPNS Plane and CPNS Line Entities

The CPNS PGA 1-blade � and 2-blade line l are doubled into their Plane-based DPGA
forms as follows.

Plane: The OPNS/CPNS PGA 1-blade plane entity � is doubled in DPGA as the
Plane-based DPGA OPNS/CPNS 2-blade plane �:D=�:1�:2. The Plane-based DPGA 6-
blade point p:D is on the Plane-based DPGA OPNS/CPNS 2-blade plane �:D if and only
if the 8-blade (pseudoscalar) OPNS entity is p:D^�:D=0, or if and only if the 6-vector
CPNS entity is p:D��:D=0.

For the plane �:D, we have two possible null space entities, an 8-blade OPNS entity
p:D^�:D and a 6-vector CPNS entity p:D��:D. For the OPNS, we have p:D^�:D= p:1^
p:2^�:1^�:2=¡(p:1^�:1)^ (p:2^�:2), where either the 4-blades p:1^�:1 and p:2^�:2
are both 0 or both not 0 since they are corresponding copies of the plane. For the CPNS,
we use the identity A� (BC)= (A�B)C +B(A�C) and we have (after some algebra)
p:D��:D= (p:2 ��:2)(�:1� p:1) + (p:1 ��:1)(�:2� p:2), which is a 6-vector, where either
the 4-blades �:1� p:1 and �:2� p:2 are both 0 or both not 0, and p:1 ��:1 and p:2 ��:2 are
linearly independent 2-blades.

Line: The CPNS PGA 2-blade line entity l is doubled in DPGA as the Plane-based
DPGA CPNS 4-blade line l:D= l:1l:2. The Plane-based DPGA 6-blade point p:D is on
the Plane-based DPGA CPNS 4-blade line l:D if and only if the 4-vector CPNS entity is
p:D��:D=0.

If we expand p:D� l:D, we find p:D� l:D=(p:2 � l:2)(l:1�p:1)+(p:1 � l:1)(p:2� l:2), where
the 3-vectors (l:1� p:1) and (p:2� l:2) are either both 0 or both not 0, and (l:1 � p:1) and
(l:2 � p:2) are linearly independent 1-blades.

6.3.5 Point-based DPGA OPNS Geometric Entities

The OPNS PGA 1-blade point Pt, 2-blade L, and 3-bladeP are doubled into their Point-
based DPGA forms as follows.

Point: The OPNS PGA 1-blade point Pt is doubled in DPGA as the Point-based
DPGA OPNS 2-blade point Pt:D=Pt:1Pt:2=Je:D(pt:D). The Point-based DPGA 2-blade
point Pt:D is the same point as Pp:D if and only if the 4-vector OPNS entity is Pt:D^
Pp:D=0.

Line: The OPNS PGA 2-blade line L is doubled in DPGA as the Point-based DPGA
OPNS 4-blade line L:D=L:1L:2=Je:D(l:D). The Point-based DPGA 2-blade point Pt:D is
on the Point-based DPGA OPNS 4-blade line L:D if and only if the 6-vector OPNS entity
is Pt:D^L:D=0.

Plane: The OPNS PGA 3-blade plane P is doubled in DPGA as the Point-based
DPGA OPNS 6-blade plane P:D=P:1P:2= Je:D(�:D). The Point-based DPGA 2-blade
point Pt:D is on the Point-based DPGA OPNS 6-blade plane P:D if and only if the 8-
vector (pseudoscalar) OPNS entity is Pt:D^P:D=0.

52 Section 6

Quadric: The Plane-based DPGAOPNS 2-vector general quadric entity ! is dualized
as the Point-based DPGA OPNS 6-vector general quadric entity
=Je:D(!). The Point-
based DPGA 2-blade point Pt:D is on the Point-based DPGA OPNS 6-blade quadric

if and only if the 8-vector (pseudoscalar) OPNS entity is Pt:D^
=0.

6.4 DPGA Operations

6.4.1 DPGA Entity Dualization Operation

The DPGA entity dualization operation J:D is a composition of the PGA1 and PGA2
entity dualization operations Je:1 and Je:2. Since Je:1 and Je:2 are anti-involutions, their
composition as Je:D is an involution. As an involution, Je:D dualizes Plane-based and
Point-based DPGA entities without any distinction as to signs or orientation of the
direction of the dualization operation. The DPGA entity dualization operation Je:D is its
own inverse and we do not require the alias De:D=Je:D.

For PGA, we implement Je in any one of the non-degenerate algebras Gp;q;02fG4;0;0;
G3;1;0; G1;3;0g as we like. For DPGA, we implement Je:D in any one of the doubled non-
degenerate algebras Gp;q;0:D2fG4;0;0:D; G3;1;0:D; G1;3;0:Dg= fG8;0;0; G6;2;0; G2;6;0g.

In Gp;q;0:D, we implement Je:D as A? = Je:D(A) = G6;0;2(Je:D(Gp;q;0:D(A))) =
G6;0;2(Je:D(A)), where A is any DPGA entity (Plane-based or Point-based) that is trans-
ferred into the non-degenerate doubled algebra Gp;q;0:D as A= Gp;q;0:D(A) so that A2
G6;0;2 and A 2 Gp;q;0:D have the same coordinates on corresponding basis blades. The
dualization is performed in Gp;q;0:D on the corresponding entity A by the entity dual-
ization implementation operation Je:D(A). The dualized corresponding entity Je:D(A)
is transferred back into the dual entity A? in the degenerate algebra G6;0;2 as A? =
G6;0;2(Je:D(A))= Je:D(A).

The operation Je:D in Gp;q;0:D is a kind of Hodge star ? dualization that is formed as
a product of A with other corresponding non-degenerate unit pseudoscalars or elements
Gp;q;0(fI3:1; I3:2; I4:1; I4:2;e0; e4g)= fI3:1; I3:2; I4:1; I4:2;e0;e4g2 Gp;q;0:D. The DPGA entity
dualization implementation operation Je:D(A) for each algebra Gp;q;0:D 2 fG8;0;0; G6;2;0;
G2;6;0g is shown in Table 4.

Gp;q;0:D G8;0;0 G6;2;0 G2;6;0
Je:D I3:2I4:2I3:1I4:1AI3:1I3:2=e4e0AI3:D I4:DA AI4:D

Table 4. DPGA entity dualization Je:D implementation operation Je:D in Gp;q;0:D.

6.4.2 DPGA 4-versor Rotation Operator

The DPGA 4-versor rotation operator (rotor) is defined as R:D=R:1R:2. The rotor R:D

can be applied to any DPGA entity, both the Plane-based and Point-based, by the usual
versor sandwiching operation a0=R:DaR:D

¡1 for any DPGA geometric entity or element a.

6.4.3 Plane-based DPGA 4-versor Translation Operator

The Plane-based DPGA 4-versor translation operator (translator) is defined as T:D=
T:1T:2. The translator T:D is plane-based and can only be applied to the Plane-based
DPGA entities E�:D=fp:D; l:D;�:D;! ; R:D; T:Dg by the usual versor sandwich operation,
a0= TaT¡1 for a2E�:D. The Point-based DPGA OPNS entities can be translated via
dualization by Je:D to Plane-based entities.

Double PGA G(6,0,2) for General Quadrics 53

6.4.4 DPGA Differential Operators

The DPGA differential operators are defined as: Dx = ¡2TxTx2, Dy = ¡2TyTy2, Dz =
¡2TzTz2. By commutator product �, the differential operators fDx; Dy; Dzg act on the
elements Ts of Table 3 as differential operators as shown in Table 5.

D� Ts T1 Tx Ty Tz Tx2 Ty2 Tz2 Txy Tyz Tzx
Dx 0 T1 0 0 2Tx 0 0 Ty 0 Tz
Dy 0 0 T1 0 0 2Ty 0 Tx Tz 0

Dz 0 0 0 T1 0 0 2Tz 0 Ty Tx

Table 5. DPGA Differential Operators product table.

General quadrics, represented by the quadric entity !, can be differentiated as D�!
using D2fDx; Dy;Dzg. So, we can take derivatives with respect to x, y, and z.

6.5 Double Dual Quaternion Geometric Algebra

In DPGA, the Dual Quaternion Geometric Algebra (DQGA) is also doubled into Double
DQGA (DDQGA) as the product of DQGA1 and DQGA2. In DDQGA, we can form a
general quadric entity ! by using identities that relate DDQGA to Plane-based DPGA.
The quadric entity ! is the focus of our attention in DDQGA and we see little use for
much else in DDQGA.

We will not go into great detail about DDQGA since Plane-based DPGA is likely
to be preferred, and the doubling and conversion through the established identities may
seem somewhat routine and obvious by now, yielding arguably less intuitive DDQGA
expressions of the same geometry as in Plane-based DPGA. We could say much the same
in comparing Plane-based PGA to DQGA, but DQGA seems more interesting since it
has shown what is possible and less-known in dual quaternions for representing points,
lines, and planes.

6.5.1 DDQGA Entities

We can double the DQGA point p, plane �, and line l as the DDQGA entities. We can
also convert the Plane-based DPGA quadric ! to DDQGA form !.

Point: The DDQGA point is p:D= p:1p:2= p:1I3:1p:2I3:2=¡p:DI3:D.
Plane: The DDQGA plane is �:D=�:1�:2= I3:1�:1I3:2�:2=¡I3:D�:D.
Line: The DDQGA line is l:D= l:1l:2= l:1l:2= I3:Dl:DI3:D

¡1 = l:D.
Quadric Element: The DDQGA quadric element is ts= I3:DTs, using Ts in Table 3.
Quadric: The DDQGA quadric is !=

P
s
asts= I3:D!, which is a linear combination

of the ts where the as are real scalars. The DDQGA point p:D is on ! if and only if
Y:D(p:D^!)=0. The null space entity is the 8-blade pseudoscalar part =:D(p:D^!), which
is taken and dualized using Y:D to obtain a real scalar representing the implicit quadric
equation. The DDQGA quadric ! is rotated as ! 0=R:D!R:D

¡1=R:D!R:D
� , where R:D=

R:1R:2. The DDQGA quadric w is translated as ! 0= pd:D!, where pd:D= I3:Dpd:DI3:D
¡1 =

(1¡ d:1� I4:1)(1¡ d:2� I4:2) for translation by d�. Since pd:D and ! are commutative, the
translation can also be ! 0=!pd:D. Clearly, pd:D acts as an offset against any test point so
that pt:Dpd:D!= pt¡d:D! and the null space is shifted by d (then we take the grade 8 part).
If we want, we can write pd:D=Td:D

2 , where Td:D is usually the double of T =1+d�I4/2.

54 Section 6

6.5.2 DDQGA Operations

We can compose some of the operations of DQGA1 and DQGA2 as DDQGA operations.
The DDQGA complex conjugate is composed as d:D= I3:2I3:1d:DI3:1

¡1I3:2
¡1= I3:Dd:DI3:D

¡1 .
The operators based on the complex conjugate also compose, so we have the real part
<:D(d:D) = <:1(<:2(d:D)), the imaginary part =:D(d:D) = =:2(=:1(d:D)), and Y:D(d:D) =
Y:1(Y:2(d:D))=Je:D(=:D(d:D)) to take the real component from the imaginary part.

The DQGA quaternion conjugate is implemented using the reverse dy, so we just
use the usual scalar part S(d:D) and vector part V(d:D) operators that are based on the
quaternion conjugate. We do not need special doubled forms for S and V.

7 Conclusion

In Section 1, we introduced the subject of this paper, which is about the geometric
algebra PGA G3;0;1 for points, lines and planes, and its double DPGA G6;0;2 for general
quadrics. We discussed the contributions of this paper, which are mainly the entity
dualization operation Je, the detailed development of the Dual Quaternion Geometric
Algebra (DQGA), and the doubling to DPGA G6;0;2 including Double DQGA (DDQGA),
which provide general quadric entities. The overall detailed exposition of PGA that has
been provided in this paper could also be seen as a contribution into the literature on
this subject.

In Section 2, we discussed the Point-based algebra of OPNS entities in PGA, which we
call OPNS PGA. The point-based algebra allows points to join (span) by outer product
into lines and planes.

In Section 3, we discussed the Plane-based algebra of CPNS entities in PGA, which
we call CPNS PGA. The plane-based algebra allows planes to meet (intersect) by outer
product into lines and points.

In Section 4, we developed the new PGA entity dualization operation Je that dualizes
the OPNS PGA entities into CPNS entities. The dualization operation seems to have been
a difficult problem in the prior literature, and the new operation Je appears to contribute
a solution to the dualization problem for PGA G3;0;1.

In Section 5, we explored the details of the Dual Quaternion Geometric Algebra
(DQGA) within the even-grades subalgebra G3;0;1+ of PGA. In DQGA, we rediscovered
many results that may be known in older published literature, while we may have con-
tributed some new results on representing lines and planes and various operations on
them that are derived through identities to the CPNS PGA entities and operations.

In Section 6, we discussed Double PGA G6;0;2 (DPGA) in which the main contribution
is the ability to form a general quadric entity as the bivector !. Within DPGA, the DQGA
is also doubled into Double DQGA (DDQGA), in which again the main contribution is
a general quadric entity ! based closely on !, as != I3!.

The Projective Geometric Algebra (PGA) G3;0;1, also more recently called the Point-
based and Plane-based Geometric Algebras (PGA), is a degenerate-metric geometric
algebra, which makes it more difficult to understand and use than a non-degenerate
algebra such as Conformal Geometric Algebra (CGA) G4;1. Although based on a small
4D space, it is not a simple algebra to fully comprehend.

Conclusion 55

The entity dualization operation Je required very careful formation of the entities and
observation of their duals in same orientations to see how each basis blade should dualize
to maintain geometric content and orientation. At first, the duals could only be collected
in table form, for lookup. The fact that it is an anti-involution gave a big hint that the
operation Je should be implementable as a dualization in a non-degenerate algebra with
unit pseudoscalar I4 where I42=¡1 (as a kind of Hodge dualization). What seems like
errors were found in some of the referenced literature on the Hodge star dualization,
and these errors had to be understood and corrected to finally make use of the Hodge
star dualization theory. As discussed, three algebras were found in which Je could be
implemented, which seemed to further validate the table of empirical dualizations that
initially defined Je, since we searched for the non-degenerate dualization algebras that
would match the table for Je. We did not initially assume Je could be matched by any
kind of known dualization or algebra, but it seems to have turned out simple enough and
followed a basic idea that the first author had several years ago about how the dualization
for G3;0;1 probably could be done.

The details of the Dual Quaternion Geometric Algebra may contribute to the litera-
ture on Dual Quaternions, showing that much more can be done with dual quaternions
than seems to be commonly known. Some old literature could turn up with many of
the results, but we are not aware of it. The dual quaternions are probably, for the most
part, a curiosity that is superseded by the Plane-based algebra of PGA that has a nicer
and simpler form. There is also the point-based algebra of PGA through the dualization
Je that offers the ability to join points, which we did not find in dual quaternions. Still,
for those who are wanting to try to get the most out of an efficient dual quaternion
implementation, the DQGA entities and operations for points, lines, and planes may be
of interest.

In the doubling of PGA G3;0;1 as DPGA G6;0;2, we have a new quadric entity !, and
also its other form in the Double DQGA (DDQGA) != I3!. We are unsure how useful
this quadric entity will be in applications, but it may be faster to compute than the similar
quadric entity in Double CGA (DCGA) since there are fewer basis blades to compute in
DPGA. In any case, it contributes another representation of quadrics into the literature
that admits rotation and translation versors, and intersections with lines and planes.

The difficulty of fully comprehending all aspects of PGA G3;0;1 and DPGA G6;0;2
probably leaves much more open for further research, but we hope this paper provides a
guide to begin using these algebras more practically.

References

[1] Stéphane Breuils, Vincent Nozick, Akihiro Sugimoto, and Eckhard Hitzer. Quadric Conformal
Geometric Algebra of G(9,6). Advances in Applied Clifford Algebras, 28(2):35, Mar 2018.

[2] Alan Bromborsky. Geometric Algebra Module for Sympy . 2016.
[3] Alan Bromborsky, Utensil Song, Eric Wieser, Hugo Hadfield, and The Pygae Team. Pygae/gal-

gebra: v0.5.0. June 2020.
[4] Eduardo Bayro Corrochano and Joan Lasenby. The geometry algebra of computer vision. In

Eduardo Bayro Corrochano and Garret Sobczyk, editors, Geometric Algebra with Applications in
Science and Engineering , pages 123�146. Birkhäuser Boston, Boston, MA, 2001.

[5] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science (Revised Edition):
An Object-Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics.
Elsevier Science, 2009.

56 References

[6] Robert Benjamin Easter. G8,2 Geometric Algebra, DCGA. https://vixra.org/abs/1508.0086,
2015. Accessed: 2015-10-01.

[7] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Geometric Algebra. Advances
in Applied Clifford Algebras, 27(3):2175�2199, 2017. DOI: 10.1007/s00006-017-0784-0. Preprint:
vixra.org/abs/1705.0019.

[8] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Space-Time Algebra. AIP Con-
ference Proceedings, 1798(1):20066, 2017. DOI: 10.1063/1.4972658.

[9] Robert Benjamin Easter and Eckhard Hitzer. Triple conformal geometric algebra for cubic plane
curves. Mathematical Methods in the Applied Sciences, pages 1�15, 2017. DOI: 10.1002/mma.4597.

[10] Robert Benjamin Easter and Eckhard Hitzer. Conic and cyclidic sections in double conformal
geometric algebra g8,2 with computing and visualization using gaalop. Mathematical Methods in
the Applied Sciences, 43(1):334�357, 2020.

[11] Harley Flanders. Differential Forms with Applications to the Physical Sciences. Dover Books on
Advanced Mathematics. Academic Press, 1963.

[12] Ron Goldman and Stephen Mann. R(4,4) As a Computational Framework for 3-Dimensional
Computer Graphics. Advances in Applied Clifford Algebras, 25(1):113�149, 2015.

[13] Charles Gunn. Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries.
PhD thesis, Technical University Berlin, 2011.

[14] Charles Gunn. On the homogeneous model of euclidean geometry. In Leo Dorst and Joan Lasenby,
editors, Guide to Geometric Algebra in Practice, chapter 15, pages 297�327. Springer, 2011.

[15] Charles Gunn. Doing euclidean plane geometry using projective geometric algebra. Advances in
Applied Clifford Algebras, 27(2):1203�1232, 2017.

[16] Charles Gunn. Geometric algebras for euclidean geometry. Advances in Applied Clifford Algebras,
27(1):185�208, 2017.

[17] Charles G. Gunn. A bit better: Variants of duality in geometric algebras with degenerate metrics
(v4, Oct 19, 2022). https://arxiv.org/abs/2206.02459. Accessed: 2023-12-04.

[18] David Hestenes. Space-Time Algebra. Springer, Second edition, 2015.
[19] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus, A Unified Language

for Mathematics and Physics, volume 5 of Fundamental Theories of Physics. Dordrecht-Boston-
Lancaster: D. Reidel Publishing Company, a Member of the Kluwer Academic Publishers Group,
1984.

[20] Leo Dorst. PGA4CS: A Guided Tour to the Plane-Based Geometric Algebra PGA, Version 1.15
� July 6, 2020. https://bivector.net/PGA4CS.html. Accessed: 2020-10-02.

[21] Leo Dorst and Steven De Keninck. PGA4CS: A Guided Tour to the Plane-Based Geometric
Algebra PGA, Version 2.0 � March 14, 2022. https://bivector.net/PGA4CS.html. Accessed:
2023-11-16.

[22] Christian Perwass. Geometric Algebra with Applications in Engineering, volume 4 of Geometry
and Computing . Springer, 2009. Habilitation thesis, Christian-Albrechts-Universität zu Kiel.

[23] Jonathan Selig. Clifford algebra of points, lines and planes. Robotica, 18:545�556, 09 2000.
[24] Julio Zamora-Esquivel. G6,3 Geometric Algebra; Description and Implementation. Advances in

Applied Clifford Algebras, 24(2):493�514, 2014.

Appendix A GAlgebra for SymPy Python Code
In this appendix, we provide example code for using GAlgebra [2] for SymPy to run
computations in PGA G3;0;1 and its double, DPGA G6;0;2 for quadrics. This code was run
using the Anaconda python software distribution and its jupyter-notebook application,
which allows the code blocks to be easily edited and executed in cells interactively.

The entity dualization operation is included. Many entities and operations are defined
for running the Dual Quaternion Geometric Algebra for points, lines, and planes. Using
formulas from the paper, more computations can entered and run. Much of this code
was used during the research to test various computations. The symbolic point entities
can be multiplied into the line, plane, and quadric entities to obtain symbolic products
showing null space entities and their null space conditions or implicit surface equations.

GAlgebra for SymPy Python Code 57

https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://vixra.org/abs/1508.0086
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://arxiv.org/abs/2206.02459
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html

A.1 Packages

from sympy import *
from sympy.printing import *
from galgebra.ga import *
from galgebra.mv import *
from galgebra.lt import *
from galgebra.metric import *
from galgebra.printer import *

A.2 Doubled Algebras

DPGA G(6,0,2) = G(3,0,1) x G(3,0,1)
g602 = Ga('e*0|1|2|3|4|5|6|7', g=[0, 1, 1, 1, 0, 1, 1, 1])

G(2,6,0) for Entity Dualization
g620 = Ga('e*0|1|2|3|4|5|6|7', g=[-1, 1, 1, 1,-1, 1, 1, 1])

G(2,6,0) for Entity Dualization
g260 = Ga('e*0|1|2|3|4|5|6|7', g=[1,-1,-1,-1, 1,-1,-1,-1])

G(8,0,0) for Entity Dualization
g800 = Ga('e*0|1|2|3|4|5|6|7', g=[1, 1, 1, 1, 1, 1, 1, 1])

A.3 Symbols

(e0,e1,e2,e3,e4,e5,e6,e7) = g602.mv()
(V,v,x,y,z,t,d,nx,ny,nz) = symbols('V v x y z t d n_x n_y n_z')
(px,py,pz,nx,ny,nz) = symbols('p_x p_y p_z n_x n_y n_z')

(I31,I32,I41,I42,I8) = symbols('I31 I41 I32 I42 I8')
(I3D,I4D) = symbols('I3D I4D')

(px1,py1,pz1) = symbols('p_x1 p_y1 p_z1')
(px2,py2,pz2) = symbols('p_x2 p_y2 p_z2')
(px3,py3,pz3) = symbols('p_x3 p_y3 p_z3')

A.4 Unit Pseudoscalars

I31 = e1^e2^e3; I41 = e0^I31;
I32 = e5^e6^e7; I42 = e4^I32;
I8 = I41^I42; I3D = I31^I32; I4D = I8

A.5 Symbolic Vectors

v = x*e1 + y*e2 + z*e3; v1 = v; v2 = x*e5 + y*e6 + z*e7
p = px*e1 + py*e2 + pz*e3; n = nx*e1 + ny*e2 + nz*e3

58 Appendix A

A.6 Useful Functions

def Normalize(v):
"""
Normalize vector v.
"""
return v*Pow(sqrt(scalar(v|v)), -1)

def d2r(d):
"""
Convert degrees to radians.
"""
return (pi/180)*d

def v1v2(v1):
"""
Convert vector v1 in PGA1 to v2 in PGA2.
"""
return (v1|e1)*e5 + (v1|e2)*e6 + (v1|e3)*e7

A.7 Rotation Operators

def Rotor1(n,d):
"""
PGA1 Rotor.
n is axis of rotation
d is angle in degrees
"""
hr = d2r(d)/2
N = -Normalize(n)*I31
return cos(hr) + sin(hr)*N

def Rotor2(n,d):
"""
PGA2 Rotor.
n is axis of rotation (in PGA1, then we convert)
d is angle in degrees
"""
n2 = v1v2(n)
hr = d2r(d)/2
N = -Normalize(n2)*I32
return cos(hr) + sin(hr)*N

def RotorD(n,d):
"""
DPGA Rotor.
n is axis of rotation (in PGA1)
d is angle in degrees.
"""

GAlgebra for SymPy Python Code 59

return Rotor1(n,d)*Rotor2(n,d)

A.8 Point-based PGA Translation Operators

def Translator1(t):
"""
PGA1 Translator.
It is just a dual quaternion point for t/2.
"""
return (1 + I41*(t/I31)/2)

def Translator2(t):
"""
PGA2 Translator. Give t as 3D vector in PGA1.
"""
t2 = v1v2(t)
return (1 + I42*(t2/I32)/2)

def TranslatorD(t):
"""
DPGA translator. Give t as 3D vector in PGA1.
"""
return Translator1(t)^Translator2(t)

A.9 Point-based PGA Point Entities

def OPNS_Point1(p):
"""
PGA1 point. Give p as a PGA1 3D vector point.
"""
return e0 + p

def OPNS_Point2(p):
"""
PGA2 point. Give p as a PGA1 3D vector point.
"""
return e4 + v1v2(p)

def OPNS_PointD(p):
"""
DPGA point. Give p as a PGA1 3D vector point.
"""
return OPNS_Point1(p)^OPNS_Point2(p)

A.10 Point-based PGA Symbolic Points

OV1 = OPNS_Point1(v)
OV2 = OPNS_Point2(v)

60 Appendix A

OVD = OPNS_PointD(v)

A.11 Point-based PGA Line Entity

def OPNS_Line1(p,d):
"""
OPNS PGA1 Line formed using point p and direction d,
both given as PGA1 3D vectors.
"""
return Normalize(d)^(e0+p)

def OPNS_Line2(p,d):
"""
OPNS PGA2 Line formed using point p and direction d,
both given as PGA1 3D vectors.
"""
return Normalize(v1v2(d))^(e4+v1v2(p))

def OPNS_LineD(p,d):
"""
OPNS DPGA Line formed using point p and direction d,
both given as PGA1 3D vectors.
"""
return OPNS_Line1(p,d)^OPNS_Line2(p,d)

A.12 Point-based PGA Plane Entity

def OPNS_Plane1(p,n):
"""
OPNS PGA1 Plane formed using point p and normal n,
both given as PGA1 3D vectors.
"""
return e0*(Normalize(n)/I31) - (p|Normalize(n))*I31

def OPNS_Plane2(p,n):
"""
OPNS PGA2 Plane formed using point p and normal n,
both given as PGA1 3D vectors.
"""
p2 = v1v2(p)
n2 = v1v2(n)
return e4*(Normalize(n2)/I32) - (p2|Normalize(n2))*I32

def OPNS_PlaneD(p,n):
"""
OPNS DPGA Plane formed using point p and normal n,
both given as PGA1 3D vectors.
"""

GAlgebra for SymPy Python Code 61

return OPNS_Plane1(p,n)^OPNS_Plane2(p,n)

A.13 PGA Entity Dualization Operation

def J1(A):
"""
PGA1 Entity Dualization J1(A).
This assumes that A is in PGA1.
Dualizes A from point-based to plane-based PGA1.
This dualization is an anti-involution.
Use -J1(A) to dualize A from plane-based to point-based.
We can use g620, g260, or g800 as explained in the paper.
We will use g260.
"""
EA = g260.mv(A)
EI41 = g260.mv(I41)
return g602.mv(EA*EI41)

def J2(A):
"""
PGA2 Entity Dualization J2(A).
This assumes that A is in PGA2.
Dualizes A from point-based to plane-based PGA2.
This dualization is an anti-involution.
Use -J2(A) to dualize A from plane-based to point-based.
We can use g620, g260, or g800 as explained in the paper.
We will use g260.
"""
EA = g260.mv(A)
EI42 = g260.mv(I42)
return g602.mv(EA*EI42)

def JD(A):
"""
DPGA Entity Dualization JD(A).
This assumes that A is in DPGA as a doubled entity or quadric.
Dualizes A between point-based and plane-based DPGA.
This dualization is an involution.
We can use g620, g260, or g800 as explained in the paper.
We will use g260.
"""
EA = g260.mv(A)
EI4D = g260.mv(I4D)
return g602.mv(EA*EI4D)

def D1(A):
"""
J1 has orientation to dualize OPNS PGA to CPNS PGA,

62 Appendix A

with -J1 acting as the undual operation.
To reduce confusion, define D1 = -J1 so that D1 has the
orientation to dualize CPNS PGA to OPNS PGA,
with -D1 acting as the undual operation.
"""
return -J1(A)

def D2(A):
return -J2(A)

A.14 Plane-based PGA Point Entity

def CPNS_Point1(p):
"""
PGA1 CPNS plane-based point.
p is a PGA1 3D vector to be embedded.
"""
return I31 + I41*p

def CPNS_Point2(p):
"""
PGA2 CPNS plane-based point.
p is a PGA1 vector (it is converted to PGA2)
"""
return I32 + I42*v1v2(p)

def CPNS_PointD(p):
"""
DPGA CPNS/OPNS plane-based point.
p is a PGA1 3D vector to be embedded.
"""
return CPNS_Point1(p)^CPNS_Point2(p)

A.15 Plane-based PGA Symbolic Points

CV1 = CPNS_Point1(v)
CV2 = CPNS_Point2(v)
CVD = CPNS_PointD(v)

A.16 Plane-based PGA Plane Entity

def CPNS_Plane1(p,n):
"""
PGA1 Plane-based CPNS plane entity, where
n is normal vector to plane, and
p is any point on the plane, and
both given as PGA1 3D vectors.

GAlgebra for SymPy Python Code 63

"""
n1 = Normalize(n)
d = p|n1
return n1 + d*e0

def CPNS_Plane2(p,n):
"""
PGA2 Plane-based CPNS plane entity, where
n is normal vector to plane, and
p is any point on the plane, and
both given as PGA1 3D vectors.
"""
p2 = v1v2(p)
n2 = Normalize(v1v2(n))
d = p2|n2
return n2 + d*e4

def CPNS_PlaneD(p,n):
"""
DPGA Plane-based CPNS plane entity, where
n is normal vector to plane, and
p is any point on the plane, and
both given as PGA1 3D vectors.
"""
return CPNS_Plane1(p,n)^CPNS_Plane2(p,n)

A.17 Plane-based PGA Line Entity

def CPNS_Line1(p,d):
"""
PGA1 Plane-based CPNS Line Entity, where
p is any point on the line, and
d is the direction of the line, and
both are given as PGA1 3D vectors.
It has the same form as the CGA IPNS line.
"""
D = Normalize(d)/I31
return D - (p|D)*e0

def CPNS_Line2(p,d):
"""
PGA2 Plane-based CPNS Line Entity, where
p is any point on the line, and
d is the direction of the line, and
both are given as PGA1 3D vectors.
"""
p2 = v1v2(p)
d2 = v1v2(d)
D2 = Normalize(d2)/I32

64 Appendix A

return D2 - (p2|D2)*e4

def CPNS_LineD(p,d):
"""
DPGA Plane-based CPNS Line Entity, where
p is any point on the line, and
d is the direction of the line, and
both are given as PGA1 3D vectors.
"""
return CPNS_Line1(p,d)^CPNS_Line2(p,d)

A.18 Dual Quaternion Point Entity

def DQ_Point1(p):
"""
PGA1 Dual Quaternion point: 1 + I41*(p/I31) = 1 + e0^p.
p is the PGA1 3D vector point to be embedded.
"""
return 1 + (e0^p)

def DQ_Point2(p):
"""
PGA1 Dual Quaternion point: 1 + I41*(p/I31) = 1 + e0^p.
p is the PGA1 3D vector point to be embedded.
"""
return 1 + (e4^v1v2(p))

def DQ_PointD(p):
"""
PGA1 Dual Quaternion point: 1 + I41*(p/I31) = 1 + e0^p.
p is the PGA1 3D vector point to be embedded.
"""
return DQ_Point1(p)^DQ_Point2(p)

A.19 Dual Quaternion Symbolic Point Entity

DQV1 = DQ_Point1(v)
DQV2 = DQ_Point2(v)
DQVD = DQ_PointD(v)

A.20 Dual Quaternion Symbolic Dual Quaternions

DQGA1/PGA1 symbolic dual quaternion Q1
(sr1,xr1,yr1,zr1,si1,xi1,yi1,zi1,Q1) =
symbols('s_r1 x_r1 y_r1 z_r1 s_i1 x_i1 y_i1 z_i1 Q1')
Q1 = (sr1 + (xr1*e1+yr1*e2+zr1*e3)/I31) + I41*(si1 +
(xi1*e1+yi1*e2+zi1*e3)/I31)

GAlgebra for SymPy Python Code 65

DQGA2/PGA2 symbolic dual quaternion Q2
(sr2,xr2,yr2,zr2,si2,xi2,yi2,zi2,Q2) =
symbols('s_r2 x_r2 y_r2 z_r2 s_i2 x_i2 y_i2 z_i2 Q2')
Q2 = (sr2 + (xr2*e5+yr2*e6+zr2*e7)/I32) + I42*(si2 +
(xi2*e5+yi2*e6+zi2*e7)/I32)

A.21 Dual Quaternion Operators

def DQ_CC1(q):
"""
DQGA1/PGA1 Dual Number complex conjugate of dual quaternion
q = q1 + I41*q2, where q1 and q2 are quaternions
of form s + v/I31, a sum of scalar s and quaternion
vector (bivector) v/I31. I41 is the null pseudoscalar
that acts as the nilpotent scalar varepsilon e.

q = (s1 + v1/I31) + I41*(s2 + v2/I31)
DQ_CC1(q) = (s1 + v1/I31) - I41*(s2 + v2/I31)
"""
return I31*q*-I31

def DQ_CC2(q):
"""
DQGA2/PGA2 Dual Number complex conjugate.
"""
return I32*q*-I32

def DQ_CCD(q):
"""
DDQGA/DPGA Dual Number complex conjugate.
"""
return DQ_CC1(DQ_CC2(q))

def DQ_QC1(q):
"""
DQGA1/PGA1 quaternion conjugate of dual quaternion
q = (s1 + v1/I31) + I41*(s2 + v2/I31)
DQ_QC1(q) = (s1 - v1/I31) + I41*(s2 - v2/I31)
"""
return q.rev()

def DQ_QC2(q):
"""
DQGA2/PGA2 quaternion conjugate of dual quaternion.
"""
return q.rev()

def DQ_QCD(q):
"""

66 Appendix A

DDQGA/DPGA quaternion conjugate of dual quaternion.
"""
return q.rev()

def DQ_DC1(q):
"""
DQGA1/PGA1 dual conjugate of q,
takes both complex and quaternion conjugates,
DQ_CC1(DQ_QC1(q)) or DQ_QC1(DQ_CC1(q)).
"""
return DQ_QC1(DQ_CC1(q))

def DQ_DC2(q):
"""
DQGA2/PGA2 dual conjugate of q,
takes both complex and quaternion conjugates.
"""
return DQ_QC2(DQ_CC2(q))

def DQ_DCD(q):
"""
DDQGA/DPGA dual conjugate of q,
takes both complex and quaternion conjugates.
"""
return DQ_DC1(DQ_DC2(q))

def DQ_RE1(q):
"""
DQGA1/PGA1 (RE)al quaternion part.
"""
return (q + DQ_CC1(q))/2

def DQ_RE2(q):
"""
DQGA2/PGA2 (RE)al quaternion part.
"""
return (q + DQ_CC2(q))/2

def DQ_RED(q):
"""
DDQGA/DPGA (RE)al quaternion part.
"""
return DQ_RE1(DQ_RE2(q))

def DQ_IM1(q):
"""
DQGA1/PGA1 (IM)aginary quaternion part.
This keeps the imaginary unit on the part, not just
the real quaternion of the part.
"""

GAlgebra for SymPy Python Code 67

return (q - DQ_CC1(q))/2

def DQ_IM2(q):
"""
DQGA2/PGA2 (IM)aginary quaternion part.
"""
return (q - DQ_CC2(q))/2

def DQ_IMD(q):
"""
DDQGA/DPGA (IM)aginary quaternion part.
"""
return DQ_IM1(DQ_IM2(q))

def DQ_Y1(q):
"""
DQGA1/PGA1 real component of imaginary.
Return y from dual number z = x + y*I41.
Return q2 from dual quaternion d = q1 + q2*I41.
In any case, it returns the value off of I41.
"""
return -J1(DQ_IM1(q))

def DQ_Y2(q):
"""
DQGA2/PGA2 real component of imaginary.
Return y from dual number z = x + y*I42.
Return q2 from dual quaternion d = q1 + q2*I42.
In any case, it returns the value off of I42.
"""
return -J2(DQ_IM2(q))

def DQ_YD(q):
"""
DDQGA/DPGA2 real component of imaginary.
"""
return DQ_Y1(DQ_Y2(q))

def DQ_S1(q):
"""
DQGA1/PGA1 scalar part of dual quaternion q.
The scalars are dual numbers, not real numbers.
This has to be followed by DQ_RE1 or DQ_IM1
for the real or imaginary dual number part.
"""
return (q + DQ_QC1(q))/2

def DQ_S2(q):
"""
DQGA2/PGA2 scalar part of dual quaternion q.

68 Appendix A

The scalars are dual numbers, not real numbers.
This has to be followed by DQ_RE2 or DQ_IM2
for the real or imaginary dual number part.
"""
return (q + DQ_QC2(q))/2

def DQ_SD(q):
"""
DDQGA/DPGA scalar part of double dual quaternion q.
The scalars are doubled dual numbers, not real numbers.
This has to be followed by DQ_RED or DQ_IMD
for the real or imaginary doubled dual number part.
Just use DQ_S1 or DQ_S2. No need to compose.
They just use the reverse.
"""
return DQ_S1(q)

def DQ_V1(q):
"""
DQGA1/PGA1 vector part of dual quaternion q.
This has to be followed by DQ_RE1 or DQ_IM1
for the real or imaginary vector part.
"""
return (q - DQ_QC1(q))/2

def DQ_V2(q):
"""
DQGA2/PGA2 vector part of dual quaternion q.
This has to be followed by DQ_RE2 or DQ_IM2
for the real or imaginary vector part.
"""
return (q - DQ_QC2(q))/2

def DQ_VD(q):
"""
DDQGA/DPGA vector part of dual quaternion q.
This has to be followed by DQ_RED or DQ_IMD
for the real or imaginary vector part.
Just use DQ_V1 or DQ_V2. No need to compose.
They just use the reverse.
"""
return DQ_V1(q)

def DQ_T1(d):
"""
DQGA1/PGA1 tensor (dual number-valued) of dual quaternion d.
"""
mQ1 = sqrt(scalar(DQ_RE1(d)*DQ_QC1(DQ_RE1(d))))
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V1(DQ_RE1(d))|DQ_Y1(DQ_V1(DQ_IM1(d)))

GAlgebra for SymPy Python Code 69

q1wq2w = DQ_S1(DQ_RE1(d))*DQ_Y1(DQ_S1(DQ_IM1(d)))
return mQ1*(1+((q1wq2w+dotq1q2)*mQ1_2)*I41)

def DQ_T2(d):
"""
DQGA2/PGA2 tensor (dual number-valued) of dual quaternion d.
"""
mQ1 = sqrt(scalar(DQ_RE2(d)*DQ_QC2(DQ_RE2(d))))
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V2(DQ_RE2(d))|DQ_Y2(DQ_V2(DQ_IM2(d)))
q1wq2w = DQ_S2(DQ_RE2(d))*DQ_Y2(DQ_S2(DQ_IM2(d)))
return mQ1*(1+((q1wq2w+dotq1q2)*mQ1_2)*I42)

def DQ_TINV1(d):
"""DQGA1/PGA1
Inverse of Tensor (dual number-valued) of d.
Troublesome for software to invert T, so we have
to formulate it special.
"""
mQ1 = sqrt(scalar(DQ_RE1(d)*DQ_QC1(DQ_RE1(d))))
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V1(DQ_RE1(d))|DQ_Y1(DQ_V1(DQ_IM1(d)))
q1wq2w = DQ_S1(DQ_RE1(d))*DQ_Y1(DQ_S1(DQ_IM1(d)))
return Pow(mQ1,-1)*(1-((q1wq2w+dotq1q2)*mQ1_2)*I41)

def DQ_TINV2(d):
"""DQGA2/PGA2
PGA2 Inverse of Tensor (dual number-valued) of d.
Troublesome for software to invert T, so we have
to formulate it special.
"""
mQ1 = sqrt(scalar(DQ_RE2(d)*DQ_QC2(DQ_RE2(d))))
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V2(DQ_RE2(d))|DQ_Y2(DQ_V2(DQ_IM2(d)))
q1wq2w = DQ_S2(DQ_RE2(d))*DQ_Y2(DQ_S2(DQ_IM2(d)))
return Pow(mQ1,-1)*(1-((q1wq2w+dotq1q2)*mQ1_2)*I42)

def DQ_U1(d):
"""DQGA1/PGA1
Taking the unit of d. Basically, this is normalizing.
Normalize dual quaternion d using the inverse (reciprocal)
tensor. N(d)=d*T(d)^(-1)
"""
mQ1 = sqrt(scalar(DQ_RE1(d)*DQ_QC1(DQ_RE1(d))))
mQ1_1 = Pow(mQ1,-1)
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V1(DQ_RE1(d))|DQ_Y1(DQ_V1(DQ_IM1(d)))
q1wq2w = DQ_S1(DQ_RE1(d))*DQ_Y1(DQ_S1(DQ_IM1(d)))
return d*(mQ1_1*(1-((q1wq2w+dotq1q2)*mQ1_2)*I41))

70 Appendix A

def DQ_U2(d):
"""DQGA2/PGA2
PGA2 Taking the unit of d. Basically, this is normalizing.
Normalize dual quaternion d using the inverse (reciprocal)
tensor. N(d)=d*T(d)^(-1)
"""
mQ1 = sqrt(scalar(DQ_RE2(d)*DQ_QC2(DQ_RE2(d))))
mQ1_1 = Pow(mQ1,-1)
mQ1_2 = Pow(mQ1,-2)
dotq1q2 = -DQ_V2(DQ_RE2(d))|DQ_Y2(DQ_V2(DQ_IM2(d)))
q1wq2w = DQ_S2(DQ_RE2(d))*DQ_Y2(DQ_S2(DQ_IM2(d)))
return d*(mQ1_1*(1-((q1wq2w+dotq1q2)*mQ1_2)*I42))

def DQ_INV1(d):
"""DQGA1/PGA1
Inverse d^(-1) of dual quaternion d, for |q1| not 0.
Troublesome for software to invert, so we
have to formulate this special.
"""
return DQ_QC1(DQ_U1(d))*DQ_TINV1(d)

def DQ_INV2(d):
"""DQGA2/PGA2
Inverse d^(-1) of dual quaternion d, for |q1| not 0.
Troublesome for software to invert, so we
have to formulate this special.
"""
return DQ_QC2(DQ_U2(d))*DQ_TINV2(d)

def DQ_PT1(d):
"""DQGA1/PGA1
Take the point PT part of d.
"""
return (d + DQ_DC1(d))/2

def DQ_PT2(d):
"""DQGA2/PGA2
PGA2 Take the point PT part of d.
"""
return (d + DQ_DC2(d))/2

def DQ_PTD(d):
"""DDQGA/DPGA point part"""
return DQ_PT1(DQ_PT2(d))

def DQ_PL1(d):
"""DQGA1/PGA1
Take the plane part of d.
"""
return (d - DQ_DC1(d))/2

GAlgebra for SymPy Python Code 71

def DQ_PL2(d):
"""DQGA2/PGA2
Take the plane part of d.
"""
return (d - DQ_DC2(d))/2

def DQ_PLD(d):
"""DDQGA/DPGA plane part"""
return DQ_PL1(DQ_PL2(d))

def DQ_LN1(d):
"""DQGA1/PGA1
Take the line part of d, the vector part.
"""
return DQ_V1(d)

def DQ_LN2(d):
"""DQGA2/PGA2
PGA2 Take the line part of d, the vector part.
"""
return DQ_V2(d)

def DQ_LND(d):
"""DDQGA/DPGA line part"""
return DQ_LN1(DQ_LN2(d))

def DQ_DOT(d1,d2):
"""Dot product of quaternion vectors d1 and d2"""
return -(d1*d2 + d2*d1)/2

def DQ_CROSS(d1,d2):
"""Cross product of quaternion vectors d1 and d2"""
return (d1*d2 - d2*d1)/2

A.22 Dual Quaternion Plane and Line Entities

def DQ_Plane1(p,n):
"""
DQGA1/PGA1 DQ Plane, where
p is any point on the plane, and
n is the normal vector to the plane, and
both are given as PGA1 3D vectors.
"""
return I31*CPNS_Plane1(p,n)

def DQ_Plane2(p,n):
"""
DQGA2/PGA2 DQ Plane, where
p is any point on the plane, and

72 Appendix A

n is the normal vector to the plane, and
both are given as PGA1 3D vectors.
"""
return I32*CPNS_Plane2(p,n)

def DQ_PlaneD(p,n):
"""
DDQGA/DPGA DQ Plane, where
p is any point on the plane, and
n is the normal vector to the plane, and
both are given as PGA1 3D vectors.
"""
return DQ_Plane1(p,n)^DQ_Plane2(p,n)

def DQ_Line1(p,d):
"""DQGA1/PGA1
Dual Quaternion 2-blade Line entity, based on the CPNS_Line1.
"""
return I31*CPNS_Line1(p,d)*I31.rev()

def DQ_Line2(p,d):
"""DQGA2/PGA2
Dual Quaternion 2-blade Line entity, based on the CPNS_Line2.
"""
return I32*CPNS_Line2(p,d)*I32.rev()

def DQ_LineD(p,d):
"""DDQGA/DPGA
DDQGA 4-blade Line entity.
"""
return DQ_Line1(p,d)^DQ_Line2(p,d)

A.23 Dual Quaternion Reflection Operations

def DQ_Reflect_pPL(p,P):
"""DQGA1/PGA1
Reflect DQ point p in DQ plane P.
"""
return -DQ_CC1(P*p*P)

def DQ_Reflect_lPL(l,P):
"""DQGA1/PGA1
Reflect DQ line l in DQ plane P.
"""
return -P*DQ_CC1(l*P)

def DQ_Reflect_PLPL(a,b):
"""DQGA1/PGA1
Reflect DQ plane a in DQ plane b.

GAlgebra for SymPy Python Code 73

"""
return -b*DQ_CC1(a)*b

A.24 Dual Quaternion Intersection Operations

def DQ_Intersect_PP(p1,p2):
"""
Intersect DQ Planes p1 and p2 as a line
which requires using the full geometric
product, taking no special parts after.
"""
return -(p1*DQ_CC1(p2)-p2*DQ_CC1(p1))/2

def DQ_Intersect_LP(l,p):
"""
Intersect DQ Line and DQ Plane using full geometric products.
"""
return -(DQ_CC1(l)*DQ_CC1(p)+DQ_CC1(p)*l)/2

def DQ_Intersect_PPP(p1,p2,p3):
"""
Intersect three DQ Planes as DQ Point using
full geometric products to intersect planes.
There are 4 terms to add.
"""
def C(d):

return DQ_CC1(d)
TM1 = C(p1)*p2*C(p3)
TM2 = -C(p2)*p1*C(p3)
TM3 = C(p3)*p1*C(p2)
TM4 = -C(p3)*p2*C(p1)
return (TM1+TM2+TM3+TM4)/4

A.25 Dual Quaternion Projection Operations

def DQ_Project_PP(p,P):
"""
Projection of DQGA point p onto DQGA plane P.
Returns the DQGA point of the projection as
nearest point on plane to point, orthographic
projection.
"""
cp = DQ_CC1(p)
cP = DQ_CC1(P)
return (p - cP*cp*cP)/2

def DQ_Project_LP(l,P):
"""

74 Appendix A

Projection of DQGA line l onto DQGA plane P.
Returns DQGA line of the projection as
nearest line on plane to line, orthographic
projection.
"""
cl = DQ_CC1(l)
cP = DQ_CC1(P)
return (l + P*cl*cP)/2

def DQ_Project_PL(p,l):
"""
Project DQGA point onto DQGA line l.
This is the point on the line closest to p.
"""
cp = DQ_CC1(p)
cl = DQ_CC1(l)
return (p-cl*p*l)/2

A.26 Double PGA Quadric Elements Ts

(T1,Tx,Ty,Tz,Txx,Tyy,Tzz,Txy,Tyz,Tzx) =
symbols('T_1,T_x,T_y,T_z,T_xx,T_yy,T_zz,T_xy,T_yz,T_zx')

T1 = (e4^e0)
Tx = ((e1^e4)+(e0^e5))/2
Ty = ((e2^e4)+(e0^e6))/2
Tz = ((e3^e4)+(e0^e7))/2

Txx = (e5^e1)
Tyy = (e6^e2)
Tzz = (e7^e3)

Txy = ((e6^e1)+(e5^e2))/2
Tyz = ((e7^e2)+(e6^e3))/2
Tzx = ((e5^e3)+(e7^e1))/2

A.27 Double PGA Differential Operators

(Dx,Dy,Dz) = symbols('D_x,D_y,D_z')

Dx = -2*Tx*Txx
Dy = -2*Ty*Tyy
Dz = -2*Tz*Tzz

A.28 Double PGA Example Quadric: Ellipsoid

def Ellipsoid(c,r1,r2,r3):
"""

GAlgebra for SymPy Python Code 75

c = center 3D point
r1,2,3 radius x,y,z
"""
px = (c|e1)
py = (c|e2)
pz = (c|e3)
r1si = Pow(r1*r1,-1)
r2si = Pow(r2*r2,-1)
r3si = Pow(r3*r3,-1)
TM1 = (-2*px*Tx + Txx)*r1si
TM2 = (-2*py*Ty + Tyy)*r2si
TM3 = (-2*pz*Tz + Tzz)*r3si
TM4 = (px*px*r1si + py*py*r2si + pz*pz*r3si - 1)*T1
return (TM1 + TM2 + TM3 + TM4)

76 Appendix A

	1 Introduction
	2 OPNS Point-based Geometric Algebra
	2.1 OPNS PGA Introduction
	2.2 OPNS PGA Geometric Entities
	2.2.1 OPNS PGA 1-blade Point Entity
	2.2.2 OPNS PGA 2-blade Line Entity
	2.2.3 OPNS PGA 3-blade Plane Entity

	2.3 OPNS PGA Operations
	2.3.1 OPNS PGA 2-versor Rotation Operator
	2.3.2 Using Entity Dualization for Other Operations

	2.4 OPNS PGA Conclusion

	3 CPNS Plane-based Geometric Algebra
	3.1 CPNS PGA Introduction
	3.2 CPNS PGA Geometric Entities
	3.2.1 CPNS PGA 1-blade Plane Entity
	3.2.2 CPNS PGA 2-blade Line Entity
	3.2.3 CPNS PGA 3-blade Point Entity

	3.3 CPNS PGA Operations
	3.3.1 CPNS PGA 2-versor Translation Operator
	3.3.2 CPNS PGA 2-versor Rotation Operator
	3.3.3 Using Entity Dualization for the Join Operation

	3.4 CPNS PGA Conclusion

	4 Geometric Entity Dualization in PGA
	4.1 Introduction to Geometric Entity Dualization in PGA
	4.2 Empirical Determination of Entity Dualization Operation
	4.2.1 Empirical Dualization of the Four Basis 1-blades
	4.2.2 Empirical Dualization of the Six Basis 2-blades
	4.2.3 Empirical Dualization of the Four Basis 3-blades
	4.2.4 The Empirical Dualization Operation
	4.2.5 Hodge Star Dualization in Geometric Algebra

	4.3 Methods for Implementing the Entity Dualization
	4.3.1 Entity Dualization in G\(4,0,0\)
	4.3.2 Entity Dualization in G\(3,1,0\)
	4.3.3 Entity Dualization in G\(1,3,0\)

	4.4 Conclusion on Geometric Entity Dualization in PGA

	5 Dual Quaternion Geometric Algebra in PGA
	5.1 Introduction to Dual Quaternion Geometric Algebra
	5.2 Dual Numbers in PGA
	5.2.1 Dual Number Algebra
	5.2.2 Dual Number Geometric Algebra

	5.3 Quaternions in PGA
	5.3.1 Quaternion Algebra
	5.3.2 Quaternion Geometric Algebra

	5.4 Dual Quaternions in PGA
	5.4.1 Dual Quaternion Algebra
	5.4.2 Dual Quaternion Geometric Algebra

	5.5 DQGA Geometric Entities
	5.5.1 DQGA Point Entity
	5.5.2 DQGA Plane Entity
	5.5.3 DQGA Line Entity

	5.6 DQGA Operations
	5.6.1 DQGA Tensor Magnitude Operation
	5.6.2 DQGA Normalization Operation
	5.6.3 DQGA Rotation Operation
	5.6.4 DQGA Point Rotation Operation Around Line
	5.6.5 DQGA Plane Rotation Operation Around Line
	5.6.6 DQGA Line Rotation Operation Around Line
	5.6.7 DQGA Plane Reflection in Plane Operation
	5.6.8 DQGA Line Reflection in Plane Operation
	5.6.9 DQGA Point Reflection in Plane Operation
	5.6.10 DQGA Point Reflection in Line Operation
	5.6.11 DQGA Line Refection in Line Operation
	5.6.12 DQGA Point Translation Operation
	5.6.13 DQGA Plane Translation Operation
	5.6.14 DQGA Line Translation Operation

	5.7 DQGA Intersections and Point Tests
	5.7.1 DQGA Point Intersection Tests
	5.7.2 DQGA Plane and Plane Intersection as Line
	5.7.3 DQGA Line and Plane Intersection as Point
	5.7.4 DQGA Plane and Plane and Plane Intersection as Point

	5.8 DQGA Projection Operations
	5.8.1 DQGA Point Projection onto Plane
	5.8.2 DQGA Line Projection onto Plane
	5.8.3 DQGA Point Projection onto Line

	5.9 Conclusion on Dual Quaternion Geometric Algebra

	6 Double PGA G\(6,0,2\) for General Quadrics
	6.1 Introduction to Double PGA G\(6,0,2\)
	6.2 Double PGA G\(6,0,2\) Basis and Metric
	6.3 DPGA Geometric Entities
	6.3.1 Plane-based DPGA CPNS 6-blade Point Entity
	6.3.2 Plane-based DPGA OPNS 2-vector Quadric Elements
	6.3.3 Plane-based DPGA OPNS 2-vector Quadric Entity
	6.3.4 Plane-based DPGA OPNS/CPNS Plane and CPNS Line Entities
	6.3.5 Point-based DPGA OPNS Geometric Entities

	6.4 DPGA Operations
	6.4.1 DPGA Entity Dualization Operation
	6.4.2 DPGA 4-versor Rotation Operator
	6.4.3 Plane-based DPGA 4-versor Translation Operator
	6.4.4 DPGA Differential Operators

	6.5 Double Dual Quaternion Geometric Algebra
	6.5.1 DDQGA Entities
	6.5.2 DDQGA Operations

	7 Conclusion
	References
	Appendix A GAlgebra for SymPy Python Code
	A.1 Packages
	A.2 Doubled Algebras
	A.3 Symbols
	A.4 Unit Pseudoscalars
	A.5 Symbolic Vectors
	A.6 Useful Functions
	A.7 Rotation Operators
	A.8 Point-based PGA Translation Operators
	A.9 Point-based PGA Point Entities
	A.10 Point-based PGA Symbolic Points
	A.11 Point-based PGA Line Entity
	A.12 Point-based PGA Plane Entity
	A.13 PGA Entity Dualization Operation
	A.14 Plane-based PGA Point Entity
	A.15 Plane-based PGA Symbolic Points
	A.16 Plane-based PGA Plane Entity
	A.17 Plane-based PGA Line Entity
	A.18 Dual Quaternion Point Entity
	A.19 Dual Quaternion Symbolic Point Entity
	A.20 Dual Quaternion Symbolic Dual Quaternions
	A.21 Dual Quaternion Operators
	A.22 Dual Quaternion Plane and Line Entities
	A.23 Dual Quaternion Reflection Operations
	A.24 Dual Quaternion Intersection Operations
	A.25 Dual Quaternion Projection Operations
	A.26 Double PGA Quadric Elements Ts
	A.27 Double PGA Differential Operators
	A.28 Double PGA Example Quadric: Ellipsoid

