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1 Rebalancing the regression in the Transduc-

tive setting

The justification of using parametric regression techniques (like Linear, Poly-
nomial, Neural networks etc.) comes from the close relationship between the
regression estimates and the maximum likelihood estimates. However, it is com-
mon to use regression for choosing the “best” function approximation from a
set of points related by an unknown (deterministic) function.

In the canonical setting when the regression is equivalent to the maximum
likelihood estimation, we shall see that the scatter of the independent variables
does not effect the estimates. However we show that this does not remain true
in the latter case and introduces a kind of “lobbying effect”. We will note
that depending on our interests (derived from the domain of applictaion), the
“lobbying effect” may or may not be desirable. In particular, such a lobbying is
undesirable in the general transductive setting. Consequently, we describe the
“rebalancing approach”, which tunes the lobbying so that it works in our best
interest.

2 Function approximation

In this section, we describe an alternate setting where regression is commonly
used. Suppose X is a k dimentional vector of real values and Y is a real value,
which is an unknown (deterministic) function of X. Note that unlike the previ-
ous case, when we had access to a family of candidate functions, here we have
no information on the form of the fuction. Formally, let

X ∈ R
k

Y = f(X)

f() : R
k
→ R
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where the form of f() is unknown. We are given the values of pairs Xi and Yi

for i = 1 · · ·n which are n arbitrary instances of the above relation. We want
to estimate f().

To find f() in practice, it is common to take a parametric family h(γ, x) of
functions and choose the parameter γ which minimizes the expression

n∑
i=1

(yi − h(γ, xi))
2

In the appendix we give intuitions supporting the application of regression
in the setting of function approximation and express the need to introduce new
formalities which make the problem well-posed. In the following section we
demonstrate the “lobbying effect” which is expressed in function approximation
when the parametric family of regression functions h(γ, x) is not sufficiently
complex to approximate the actual function.

3 The lobbying effect

Suppose the scatter of the learning set Xi is such that some regions from the
domain D have more representatives than others, it is easy to see that the “best
fit” functional is “pulled” more strongly towards the (X,Y ) pairs in the denser
region than towards the other pairs. This effect can be best understood by
artificially pronouncing it as follows..

Given a set of pairs (Xi, Yi) for i = 1 · · ·n , define (Xi, Yi) = (X1, Y1) for
i = n + 1 · · · 2n.

This defines a “new” dataset , however minimizing the sum of squared errors
in this dataset is equivalent to minimizing a weighted sum of squared errors for
the old dataset with the weight of the first error equal to the sum of weights of
all other errors ! Thus, due to over representation in the new sample, (X1, Y1)
pulls the “best fit” estimate with greater force than it ought to. We call this
effect, the “lobbying effect”. In actual practice, as f is “simple” and continuos,
the values of Y for points in the neighbourhood of X1 would be close to each
other. Therefore we could have observed a similar “lobbying effect”, had we
defined the new dataset as (Xi, Yi) = (Zi, f(Zi)) for i = n + 1 · · · 2n, where Zi

s are some points in the neighbourhood of X1. Thus over-representaion of the
region around X1 gives rise to a similar “lobbying effect”.

Note that depending on our “interest” ( The pdf w(x): see Appendix B),
such a lobbying may or may not be good. In particular, if X actually comes from
the distribution with pdf w(x), lobbying is good. However X may indeed come
from a different distribution, or worse, X may simply be non-deterministic, but
not necessarily random. In the simulated example, the interest was “flat” on all
values of X, therefore the lobbying had a bad effect on the estimate, which was
corrected by the “rebalancing approach”.
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4 Rebalancing approach

We saw that when we give equal weight to approximation errors at all examples,
due to the lobbying effect, the approximating function is pulled nearer to regions
having more representation in the set of examples. The “rebalancing” approach
reduces this effect by instead minimising a weighted loss, where the weight of
an approximation error at a point from a dense region is lesser than the weight
of approximation error at a point which is away from them. This naturally
induces a notion we call “loneliness” of a point, which will be the weight of
the approximation error at that point. Intuitively, points belonging to a denser
region in the scatter of the example are less lonely than points away from them.

A criterion for loneliness

There can be many defintions capturing the notion of “loneliness”. One such
approach is to treat X as if it came from a distribution with pdf p(x), intuitively
we could define loneliness(xi) as some decreasing function of p(xi). For the
example simulated later in the article, we define loneliness(xi) = 1

p̂(xi)
, where

p̂(x) is the kernel density estimate of the scatter of X, using gaussian kernels
with σ2 variance. The paramter σ captures how far two points have to be so
that the values of the function at them are very different.

In general, we minimize the weighted sum of losses with the weight of a
loss at xi, defined as weight(xi) = loneliness(xi) ∗w(xi), so that we retain the
“good” effect of lobbying when X in the training set actually comes from the
distribution with pdf w(x).

Example 1

We simulated an experiment by taking 1000 observations from a deterministic
function defined on R

2

Y = f(x) = x1 + x2 + x1x2 + 2sin(
x1x2

5
) + 5

From the observed data, we tried to get a close approximation of f using a
polynomial of degree at most two. Formally

h(γ, x) = γ1x1 + γ2x2 + γ3x1x2 + γ4x
2
1 + γ5x

2
2 + γ6

We calculated the sum of squared approximation errors on a grid of 900
points uniformly scattered on the region [0, 5] × [0, 5] as a measure of goodness
of fit, lets call this quantity the “test error”. We re-did the above approximation
on the same data by the “rebalancing approach” as proposed in the article and
compared the “test error” of both the methods for various values of σ. We
repeated this simulation 75 times and the average value of “test error” with and
without using the rebalancing approach is plotted in the left figure.

The figure to the right plots the percentage reduction in the test error by
using the rebalancing approach for different values of σ. Note that the percent-
age reduction in test error becomes negative for σ > 1.7. This is due to the
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fact that for high values of σ, the kernel is not suitable for the kernel density
estimate (KDE) to be close to the actual density of X. This is a limitation of
the KDE scheme itself and should not be treated as a failure of the rebalancing
approach.

Appendix A: The canonical setting

Suppose X is a k dimentional vector of real values and Y is a real value, which
is a function of X upto some error coming from a known family of distributions.
If we happen to know a family of functions relating X and Y , we can choose the
best function by appealing to the principle of maximum likelihood estimation.
Formally, let

X ∈ R
k

Y = f(Θ, X) + ǫ

where f(Θ, ) is a class of functions parameterised by Θ, which is a q−dimensional
real vector.

f() : R
q
× R

k
→ R
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and ǫ is a random variable with a known parametric family of pdfs.

ǫ ∼ g(β, x)

We are given the values of pairs Xi and Yi for i = 1 · · ·n which are n independent
instances of the above relation. We want to find the “best” value of Θ from this
information. We can calculate the likelihood L(Θ, β) of the given sample as

L(Θ, β) =

i=n∏
i=1

g(β, (Yi − f(Θ, Xi)))

Following the maximum likelihood approach, we would like to estimate Θ and β

as the values which maximize the likelihood L(Θ, β). It is possible that L(Θ, β)
is unbounded in Θ and β, in which case the maximization is not well defined.
However if it so happens that the value of Θ which maximizes L(Θ, β) for a
fixed value of β does not depend on β, we would like to consider this value of
θ, a valid maximum likelihood estimate.

In particular, when the error, ǫ are assumed to be gaussian with mean zero,
the MLE of θ is same as the estimate minimizing the sum of sqared prediction
errors (SSE).

Θ̂ = argmin(

n∑
i=1

(Yi − f(Θ, Xi))
2)

Note that in this procedure, the pdf g() dictates the loss function which
needs to be minimized on the sample, for example, if the error ǫ happens to
come from a zero centered family of double exponential distributions, we must
minimize the sum of absolute prediction errors to find the MLE of β (as opposed
to minimising the SSE).

Note that if we prefer to make less error around some specific regions of
interest at the cost of making more error at other values of X, there is no way
to induce such a preference into the MLE estimate with homoscedastic errors.
This is a consequence of the fact that all “prediction errors” come from the
same distribution, hence contribute similarily to the likelihood. In other words,
deviations of equal magnitude at different X values have the same contribution
to the likelihood. Thus, the scatter of X has no extra effect on the value of the
estimate.

Appendix B: Regression for Function Approxi-

mation

If we follow the problem of function approximation as stated in the earlier,
there doesn’t seem to any reasonable way of finding f(), as clearly there are
uncountably many such functions and theoretically, we can output any one of
them.

This requires us to define a notion of “utility” of the estimated function, so
that we can redefine our objective as finding the most useful estimate of f(). To
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make this objective attainable, we might need to make resonable assumptions
on the form of f().

In the canonical setting, our objective was very well defined as we knew that
the actual function belonged to the given parametric family of functions and we
could state the objective as that of finding the “actual” value of the parameters.
However, in the setting of function approximation, we can try to find the most
useful value of the parameters, based on some definetion of “utility” for a value
of parameters.

One possible definition for utility is that the difference between f̂(x) and
f(x) must be “small”. That is, we should be able to approximately compute the
value of f(x) at values of x not necessarily in the training sample. To make this
an attainable objective, we assume that the form of f() is not too “complex”,
i.e. it is possible to approximate f upto some error using “simple” functions.
There is no universal notion of complexity, however most parametrized classes
of functions (polynomials, splines, neural nets) are considered “simple”.

To disambiguate this criterion further, we need to quantify the notion of
“small”, which introduces the “Loss function”, Loss(x1, x2), which is a real
number capturing the significance of the error, when the actual value of x1 is
predicted as x2. A common choice for this is the squared error loss function,
Loss(x1, x2) = (x1 − x2)

2, as it is symmetric and gives rise to analytically
tractable optimization problems.

Still, we may not be able to simultaneously minimize the loss at every un-
known x, by choosing one single function from the family. Therefore in this
setting it is required to define one single quantity which needs to be minimized.
This quantity may depend on the value of losses at all values of X, in the domain
D. Generally it would look like

Total Loss =

∫
x∈D

Loss(x, f̂(x))w(x)dx

Where w(x) is the weight of loss at x. When the domain D of x is finite, we can
make w(x) same for all values of x, however this may make the objective infinite
for cases when D is of unbounded measure, so generally we would assume w(x)
to be a probability distribution function(pdf).

∫
x∈D

w(x)dx = 1

With this assumption, it is possible to “interprete” the objective as though we
want to minimize the expected loss when the test x is randomly chosen from D

based on the pdf w(x).
The loss function to be used in function approximation really comes from

the domain of application and captures the “loss” as percieved by the user,
whereas in the canonical setting, the loss function has to come from the ran-
domness inherent in the data. Also, in the canonical setting, the objective is
unambiguously well defined as that of finding an estimate for the “actual” value
of the parameters, whereas in function approximation, even to make sure that
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the problem is well-posed, we need to define a preference over losses based on
the value of x at which it occurs, in form of specifying the pdf w(x). Unfortu-
nately, in real world applications as in the case of the simulated example, the
need for specifying w(x) is often overlooked. In such cases, we need to have a
“default” w(x) to use. We propose to use w(x) as a constant over a large k−

dimensional rectangle supposedly containing all “interesting” values of x. Let
Dr be the intersection of this rectangle with the domain D of X. The proposed
objective is then to minimize

Total Loss =

∫
x∈Dr

Loss(x, f̂(x))w(x)dx

In the simulated example, the quantity defined as “test error” approximates
the above with Dr as the two dimensional rectangle [0, 5] × [0, 5]. We saw that
the “re-balancing” approach did seem to yeild better results.
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