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Abstract

It is fascinating fact that the reals are uncountably infinite. Usually Can-

tor’s diagonal method is used to show this. Rudin gives a second proof

that promises to be more rigorous than this method. But his proof is a lit-

tle confusing, if not incorrect. His proof does not stipulate that the perfect

set be bounded, but its proof hinges on a local, bounded phenomenon. We

duplicate Rudin’s proof and argue using two examples that assuming any

indexing scheme for the presumed countable set can’t work. We then give

two proofs: one re-indexes points and the other indexes in the course of the

proof.

Rudin’s Proof

Rudin in his Principles of Mathematical Analysis gives a proof that non-empty

perfect subsets of R
k are uncountable. We reproduce the proof.

Theorem. Let P be a non-empty perfect set in R
k. Then P is uncountable.

Proof. Since P has limit points, P must be infinite. Suppose P is countable, and

denote the points of P by x1, x2, x3, . . . . We shall construct a sequence {Vn} of

neighborhoods, as follows.

Let V1 be any neighborhood of x1. If V1 consists of all y ∈ R
k such that

|y−x1| < r, the closure of V1 of V1 is the set of all y ∈ R
k such that |y−x1| ≤ r.

Suppose Vn has been constructed so that Vn∩P is not empty. Since every point

of P is a limit point of P there is a neighborhood Vn+1 such that (i) V n+1 ⊂ Vn,
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(ii) xn /∈ V n+1, and (iii) Vn+1∩P is not empty. By (iii) Vn+1 satisfies our induction

hypothesis, and the construction can proceed.

Put Kn = V n ∩ P . Since Kn is closed and bounded, V n is compact. Since

xn+1 /∈ Kn, no point of P lies in
⋂

∞

1
Kn. Since Kn ⊂ P this implies that⋂

∞

1
Kn is empty. But each Kn is not empty, by (iii), and Kn ⊃ Kn+1 by (i); this

contradicts the corollary to Theorem 2.36.

Problematic Examples

Example 1. Prove [0, 1] is uncountable. Per Rudin’s proof we can be given any

countable set of points in any order. If we are to nest x1, x2, x3, given that is their

order, there is no problem: symbolically,

1 2 3 , (1)

where boxes indicate the sets. Concretely: 1.1 ∈ (1, 3.1) = V1, 2.1 ∈ (2, 3) = V2,

and 3 ∈ (2.9, 3.1) = V3 with 1.1 /∈ V2, 3 /∈ V2. They nest

V3 ⊂ V2 ⊂ V1

and systematically exclude earlier numbers from later set. This results in an empty

intersection relative to {1.1, 2.1, 3}. But suppose the points are not in order. The

points are ordered x3, x1, x2:

3 1 2 .

One can’t get a intervals, neighborhoods such that x1 is not in the neighborhood

for x2. You are forced to re-index to (1).

Example 2. Prove R
+ is uncountable. This is an unbounded set. Assume the

indexed set are the positive integers. The radius needed to fit x1 = 1 into each

neighborhood for the nesting to work must grow to infinity, but, per Rudin’s proof

this radius can be arbitrary, not infinity.

Here are two ways to correct these problems.
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The Swap Method

Theorem. Non-empty perfect subsets of R
k are uncountable.

Proof. The well-ordering principle states that there is a smallest element in a set

of positive integers. It is taken as obviously true.

Armed with the well-ordering principle, suppose P is countable and its ele-

ments are {x1, x2, . . .}. Using x1, form the neighborhood Nr1
(x1) for any r1 > 0.

Let

C1 = {d(x1, xj) < r1 : j ∈ N and 2 ≤ j}

and suppose d(x1, xm1
) = min C1; the element closest to x1 is xm1

. There will be

infinitely many xm1
such that d(x1, xm1

) < r1, but there will be a smallest index

for exactly one, even if the distance is the same for more than one. We know that

such an index will exist as the set of indices consists of a set of positive integers.

Notice this is where the idea of the proof becomes clear. A perfect set of reals

will not have an element closest to another element; making the set countable

forces this to become true.

Now re-index by exchanging 2 for m1. That is set x2 to the value of xm1
and

the value of xm1
to the old value of x2. Form Nr2

(x2) with r2 small enough to

reside in Nr1
(x1) with x1 /∈ Nr2

(x2) and repeat. Eventually you have proved that

the assumption of countable P has forced all elements into an any arbitrarily small

neighborhood, a contradiction.

Rudin’s argument also now applies.

Index as you go

Theorem. Non-empty perfect subsets of R
k are uncountable.

Proof. A perfect set is defined as a closed set with all elements limit points. Let

P be non-empty perfect subset of R
k. Every neighborhood of every point of P

has infinitely many points of P in it. We know, then, that P must be countably or

uncountably infinite.

Suppose, to get a contradiction, that P is countably infinite.

Take any element of P and label it x1; give it any radius r1. We know by the

definition of a limit point that there exists x2 ∈ Nr1
(x1), x2 6= x1. There may

be other elements of P in this neighborhood, in fact there are infinitely many,

but they have not been indexed and can be indexed as we like. Suppose this has
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been done for k elements. We then have a nesting sequence of neighborhoods

Nrj
(xj), 1 ≤ j ≤ k. There will exist xk+1 and rk+1 such that xk+1 ∈ Nrk+1

, but

xk /∈ Nrk+1
. We choose using the Axiom of Choice any remaining non-indexed

element. We notice that if k = 1 and we are indexing on the real line, we can

always choose a greater or lesser number than the max or min of our indexed set

and avoid the problem given in Example 1.

We can take rjs such that limj→∞ rj = 0.

Next
∞⋂

j=1

Nrj
(xj) = ∅,

as all indexed points xj are excluded by not being in Nrj+1
(xrj+1

) and points not

indexed will eventually be excluded from a neighborhood of an indexed element

of P when the radii are small enough.

Finally, define the closed and bounded, hence compact sets

Kj = P ∩ Nrj
(xj)

and their intersection will also be be the empty set, a contradiction, per Rudin’s

argument.

Conclusion

Reading Rudin, one gets the impression that you can start with any indexing you

like, but this is confusing, especially as he does not stipulate that you can re-index

any countable set without changing its cardinality.
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