
Boolean Structured Autoencoder Convolutional

Deep Learning Network (BSautoconvnet)

Sing Kuang Tan
Email: singkuangtan@gmail.com

June 16, 2023

Abstract

In this paper, I am going to propose a new Boolean Structured Autoen-
coder Convolutional Deep Learning Network (BSautoconvnet) built on
top of BSconvnet, based on the concept of monotone multi-layer Boolean
algebra. I have shown that this network has achieved significant improve-
ment in accuracy over an ordinary Relu Autoencoder Convolutional Deep
Learning Network with much lesser number of parameters on the CIFAR10
dataset. The model is evaluated by visual inspection of the quality of the
reconstructed images against groundtruth with reconstructed images by
models in the internet.

1 Introduction

My previous model BSautonet is trained on MNIST dataset is based on fully
connected deep learning network. Because fully connected layer design is not
suitable for CIFAR10 dataset (which our current model is trained on), we de-
signed our current autoencoder model using only convolutional layers. I experi-
mented with current model BSautoconvnet on CIFAR10 dataset, that is a small
version of Imagenet dataset, which can prove that my BSautoconvnet can solve
real world problem.

I added noise to the input by removing 70 percent of the input pixel color
values and set them to white color. This will challenge the reconstruction ability
of our BSautoconvnet and demostrate our BSautoconvnet ability to reconstruct
input image with sparse number of input pixel values.

My BSautoconvnet can not only use for image reconstruction, it can also be
used for image segmentation or image translation.

My BSautoconvnet is designed like a Boolean algebra, because Boolean al-
gebra can model any mathematical function. Just like the Arithmetic and Logic
Unit (ALU) in our microprocessor, the Boolean operations in the processor can
compute any function. Boolean operations are the smallest units in a function,
so by using Boolean algebra formulation for my deep learning network, it has
simplified the function representation in the smallest form.

1

mailto:singkuangtan@gmail.com


2 Hypotheses

Hypothesis 1: My BSautoconvnet with (height=3,width=3)
convolutional layers is unable to reconstruct the input image.
It needs at least (5,5) convolutional layers.

I have experimented using (height=3,width=3), the trained model is unable
to reconstruct the input image. My conclusion is that the removing of 70 percent
of input pixels leads to the spacing between a pair of informative pixels is about
5 pixels away along the width or height, and therefore (5,5) convolutional layers
are the most suitable.

Hypothesis 2: My BSautoconvnet needs skip connections be-
tween layers. But BSnet [2] and BSconvnet [4] may not need
skip connections. Skip connections will improve the training
time, but will not affect the final trained model accuracy.

In my experiments, BSautoconvnet with skip connections will help to propa-
gate input pixel values fast to the output. Otherwise, without skip connections,
input information get lost and it makes the autoencoder difficult to reconstruct
the output with high accuracy. It is the same for BSautonet, which needs skip
connections.

As for BSnet and BSconvnet, they are classifiers. With my monotone
Boolean algebra complex layers, they can learn without skip connections. Skip
connection does not help to improve classifier accuracies, but helps to speed up
the training time by a small factor, which is not really needed.

Hypothesis 3: My BSautoconvnet with 5 bit binarized input
will generate better reconstructed output than real number
input.

Our BSautoconvnet can work with 5 bits or real input. However, 5 bits
input allows our model to detect certain input pixel color values better, such as
black or white pixels, and therefore able to reconstruct the output with more
precision, but having about the same mean squared error of using real input.

My BSautoconvnet network is a semi-binary newtwork. The inputs and
output of each neuron are designed to accept semi-Boolean continuous values
between 0 and 1. In the future, I will design netework that is fully binary,
meaning that it only accept discrete 0 and 1 values.

I use 5 bits instead of 8 bits in BSautonet [3], so that the input image
dimension size is more manageable.

2



Hypothesis 3: My BSautoconvnet does not need batch normal-
ization layers.

With and without batch normalization layer, our BSautoconvnet can still
learn to reconstruct input images. I think it is because the multiple output heads
of our model makes the weights and gradients less skewed, where 1 output heads
of BSconvnet makes the weights and gradients very skewed, thus eliminates the
need for batch normalization for our BSautoconvnet.

Our BSautoconvnet can work without batch normalization. Putting batch
normalization has no harm, and it still can do training as normal.

3 My Model

Modern deep learning networks are designed incrementally. New designs are
added to old designs to solve old designs problems which makes the deep learn-
ing network unnecessary complex. It has unnecessary complex designs such as
dropout, weight decay, learning rate and batch normalization, which many of
them can be eliminated and consolidated into one unified design. Each unnec-
essary design is a stop gap measure which is put into the network in an adhoc
manner. We should design network with designs that are put in together in a
cohesive manner through a global design optimization function.

I developed a Boolean Structured Autoencoder Convolutional network (BSauto-
convnet). Every complex convolutional layer of the input will first concatenate
the positive and negative vector of previous layer output. Then it will pass
through a convolutional layer where all weights are constrained to be always
positive or zero, and apply a Relu activation function to the output of convolu-
tional layer. The concatenation of positive and negative vector represents the
“Not” gates, and the convolutional layer represents the “And” and “Or” gates.
Look at [1] https://vixra.org/abs/2112.0151.

It will go through a series of five layers of (height=5,width=5) complex con-
volutional layer. There will be skip connection from the first convolutional layer,
skip the second convolutional layer and connect to the third convolutional layer.
Another one will skip the second and third convolutional layer to the fourth con-
volutional layer. The skip connections make the network looks like an ensemble
of few convolutional networks, will different number of layers. The skipping from
the first to the last convolutional layer makes the model easier to reconstruct
the output that is similar to the input because the input information is quickly
sent to the output. Our design is simple, where the output of each convolu-
tional layer are padded (with padding=same) and has the same width-height
dimensions as the input so that information can be passes between certain pair
of layers by just directly connect them through skip connection. This will make
your life much easier. Note that each concatenation from skip connection to
another layer, or negated branch with positive branch is done by concatenating
along the channel dimension of the output from previous layer. Note that there

3



is no need for batch normalization for our autoencoder model. There is no em-
bedding layer like our BSautonet. You can create one by redesigning the skip
connections if you want to.

There is no need for fully connected layers. Each convolutional layer has the
same number of channels (channels=16) so that it is easy to understand. We do
not have to waste time to fine tune the number of channels in each layer to get
very small improvement, still get good result, show how our monontone neuron
design helps in the final performance.

Input is 32× 32× 3 = 3072 dimensions and output has the same dimension
as the input, which is also 32×32×3 = 3072. After converting each real number
in the input into 5 bits, the input size is 32× 32× 3× 5 = 15360.

Figure 1: Network Diagram of BSautoconvnet

The model of the BSconvnet are shown in Figure 1.
Our BSautoconvnet is trained using ADAM gradient descent algorithm with

learning rate=1.
It may seems redundant to add a negation input in my complex layers.

For inference, the negation input can be combined with non-negated input to
form an ordinary deep learning layer. However for training, the negated branch
actually helps the deep learning weights to switch between negated input and
positive input easily, without it the deep learning weights got stuck in the local
minima.

4 Experiment Results

The Figures 2, 3 and 4 below shows the input, ground truth and output (pre-
diction or reconstructed image) of the our BSautoconvnet network.

4



Figure 2: Input image

5



Figure 3: Groundtruth

6



Figure 4: Output image

My BSconvnet will have mean absolute error (MAE) of 0.04107 (on CIFAR10
dataset), higher than an ordinary network. See the input, output (predicted,
reconstructed image) and ground truth for the visual inspection of the recon-
struction quality. The training is carried out in one pass, one learning rate,
without any data augumentations and regularization such as weight decay and
dropout. This simplicity makes training of the model and testing hypothesis on
the model easy.

7



Figure 5: Number of parameters in our BSautoconvnet

Compared to the CIFAR10 reconstruction models from the internet, our
model is better. A CIFAR10 reconstruction model in the internet has millions
of parameters and they usually use U-Net as the deep learning model. My
BSautoconvnet has 44040 parameters (88079/2). See Figure 5. The actual
number of parameters is the total number of parameters divided by 2. Because
of the negated branch in the model (which can be combined with the positive
branch), actual parameters is half of the total paramters. Visually inspecting
our reconstructed image output, it has near perfect result. Most of the models
in the internet such as U-net requires millions of parameters to achieve this
result. We use much lesser parameters to achieve the same result.

You may think that making small changes (concatenate positive and negative
vector of previous layer output, with weights constraint of greater or equal to
zero) from an ordinary network to BSconvnet result in small improvement. But
for neurons with high dimensions input, the improvement is very obvious.

Note that I use only convolutional layers, which helps to prevent it from
overfitting the CIFAR10 dataset, verified from experiments. This design also
reduces the total parameter count by a lot.

My BSautoconvnet is to mimic a Discrete Markov Random Field Relaxation
model [1], but it is not exactly the same. The relaxation model is a convex op-
timization model, so it is convex. My BSautoconvnet has an optimization func-
tion which is smooth (much more convex than ordinary deep learning network
optimization function), with the use of special convolutional layers.

Our model can be trained in 50 epoches. It is quite fast.
Access my GitHub codes thru this link:

https://github.com/singkuangtan/BSautoconvnet

8



5 Conclusion

I have developed a Boolean Structured Autoencoder Convolutional Deep Learn-
ing Network for general noisy image reconstruction problem (CIFAR10 dataset)
in machine learning. The design in this network can be easily transferred to
other types of tasks (such as Imagenet dataset) for general reconstruction prob-
lem.

The idea is to make training algorithm or gradient descent of the deep learn-
ing network convex, so that training is easier and faster without many hyper-
parameters to tune. To get rid of dropout, weight decay, learning rate, batch
normalization, other complicated and unnecessary designs so that the training
process and the overall network structure become simple, easy to use and easy
to design new networks for new problems.

The Boolean structure in the network is able to provide a theoretical model
on how deep learning works, how it learns and how it can be used to model any
general high dimensions function with the help of my Discrete Markov Random
Field Relaxation model.

A Appendix

The output image contains 32 levels because it is binarized into 5 bits. For each
level, the prediction error histograms (ground truth - prediction) are shown in
the figures below (Figures 6 and 7). Note that the prediction errors are small
(small variance in each histogram). And there is no noise that have non-zero
mean. The noise are distributed like a zero mean Gaussian distribution. I hy-
pothesize that it is impossible to do adversarial deep learning attack on my
BSautoconvnet, because there is no non-zero mean noise in the error distribu-
tions.

9



(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5 (g) Level 6 (h) Level 7

(i) Level 8 (j) Level 9 (k) Level 10 (l) Level 11

(m) Level 12 (n) Level 13 (o) Level 14 (p) Level 15

Figure 6: Prediction error for output at different levels from 0 to 15

10



(a) Level 16 (b) Level 17 (c) Level 18 (d) Level 19

(e) Level 20 (f) Level 21 (g) Level 22 (h) Level 23

(i) Level 24 (j) Level 25 (k) Level 26 (l) Level 27

(m) Level 28 (n) Level 29 (o) Level 30 (p) Level 31

Figure 7: Prediction error for output at different levels from 16 to 31

References

[1] Sing Kuang Tan. Discrete markov random field relaxation. https:

// vixra. org/ abs/ 2112. 0151 , 2021.

[2] Sing Kuang Tan. Boolean structured deep learning network (bsnet). https:
// vixra. org/ abs/ 2212. 0193 , 2022.

[3] Sing Kuang Tan. Design autoencoder using bsnet (bsautonet). https:

// vixra. org/ abs/ 2212. 0208 , 2022.

[4] Sing Kuang Tan. Boolean structured convolutional deep learning network
(bsconvnet). https: // vixra. org/ abs/ 2305. 0166 , 2023.

11

https://vixra.org/abs/2112.0151
https://vixra.org/abs/2112.0151
https://vixra.org/abs/2212.0193
https://vixra.org/abs/2212.0193
https://vixra.org/abs/2212.0208
https://vixra.org/abs/2212.0208
https://vixra.org/abs/2305.0166

	Introduction
	Hypotheses
	My Model
	Experiment Results
	Conclusion
	Appendix

