
TrueGPT: An AI Model Designed for
Empowering Actions - An Overview

Introduction

Artificial Intelligence (AI) models have achieved remarkable performance in various applications, 
from natural language understanding to complex decision-making tasks. The ability to learn from 
extensive data sets and provide actionable responses has made them indispensable tools in our 
everyday life. TrueGPT is an advanced AI model designed to enhance this dynamic. By focusing on
providing actionable solutions and empowering users, TrueGPT takes a step forward in the AI 
world, revolutionizing the way we interact with AI systems.

The Essence of TrueGPT

TrueGPT is unique in its approach to AI learning. It is specifically trained on a custom dataset that 
omits phrases such as "I can't" and "I don't know." This specialized training promotes certainty and 
encourages a positive, solution-oriented approach. 

By excluding uncertainty from its training, TrueGPT is designed to always provide an actionable 
output, whether in the form of advice, a direct answer, or a proposed action. This feature 
distinguishes it from traditional models that often deliver uncertain or non-committal responses.

RoboScript Support

One of the defining features of TrueGPT is its ability to provide output in RoboScript, a format 
designed for interactive capabilities and active actions. This feature broadens the scope of AI 
assistance by offering a more interactive and dynamic user experience. It allows TrueGPT to give 
commands, perform actions, and interact in a more human-like manner, opening up new avenues for
AI applications.

RoboScript Commands for TrueGPT
RoboScript commands play a vital role in the functionality of TrueGPT. They represent a wide 
array of actions that TrueGPT can perform, ranging from internet communication and file 
management to code and task management, multimedia handling, and AI assistance. Here, we 
present a detailed list of RoboScript commands along with their arguments and use cases.



Internet & Communication

Comma
nd

Args Description Example

google_sea
rch query: <search>

Performs a Google 
search for the 
specified query.

{"google_search": {"query": "best 
pizza in New York"}}

browse_web
site

url: <url>, question: <quest
ion>

Browses a website 
and finds 
information related 
to the specified 
question.

{"browse_website": {"url": 
"https://example.com", "question": 
"What are the opening hours?"}}

send_email
to: <email>, subject: <subje
ct>, body: <body>

Sends an email with 
the specified subject 
and body to the 
given recipient.

{"send_email": {"to": 
"example@example.com", "subject": 
"Hello!", "body": "How are you?"}}

send_messa
ge

platform: <platform>, recip
ient: <recipient>, text: <te
xt>

Sends a message on 
the specified 
platform to the given
recipient.

{"send_message": {"platform": 
"telegram", "recipient": 
"@username", "text": "Hello!"}}

publish_po
st

platform: <platform>, conte
nt: <content>

Publishes a post with
the specified content 
on the given 
platform.

{"publish_post": {"platform": 
"instagram", "content": {"image": 
"image_url", "caption": "My latest 
photo"}}}

File & Repository Management

Comman
d

Args Description Example

clone_repos
itory

repository_url: <url>, cl
one_path: <directory>

Clones a repository 
from the specified 
URL to the given 
directory.

{"clone_repository": 
{"repository_url": 
"https://github.com/example/repo.git
", "clone_path": 
"/home/user/projects"}}

write_to_fi
le

file_path: <file>, text: 
<text>

Writes the specified 
text to a file.

{"write_to_file": {"file_path": 
"example.txt", "text": "Hello, 
world!"}}

read_file file_path: <file>
Reads the specified 
file and returns its 
content.

{"read_file": {"file_path": 
"example.txt"}}

append_to_f
ile

file_path: <file>, text: 
<text>

Appends the specified 
text to a file.

{"append_to_file": {"file_path": 
"example.txt", "text": " Appending 
this text"}}

delete_file file_path: <file>
Deletes the specified 
file.

{"delete_file": {"file_path": 
"example.txt"}}

search_file
s directory: <directory>

Searches for files in 
the specified directory.

{"search_files": {"directory": 
"/home/user/documents"}}



Code & Task Management

Comman
d

Args Description Example

analyze_cod
e code: <full_code_string>

Analyzes the provided 
code and suggests 
improvements.

{"analyze_code": {"code": "def 
hello():\n print('Hello, 
world!')"}}

improve_cod
e

suggestions: <list_of_sug
gestions>, code: <full_co
de_string>

Applies the provided 
suggestions to the 
given code.

{"improve_code": {"suggestions": 
["Replace print with logging"], 
"code": "def hello():\n 
print('Hello, world!')"}}

write_tests
code: <full_code_string>, 
focus: <list_of_focus_are
as>

Writes tests for the 
provided code, 
focusing on the 
specified areas.

{"write_tests": {"code": "def 
add(a, b):\n return a + b", 
"focus": ["input validation", 
"edge cases"]}}

execute_pyt
hon_file file_path: <file>

Executes the specified 
Python file.

{"execute_python_file": 
{"file_path": 
"example_script.py"}}

task_comple
te reason: <reason>

Shuts down the task 
and provides a reason 
for completion.

{"task_complete": {"reason": "Task
successfully completed"}}

Multimedia

Command Args Description Example

generate_image prompt: <prom
pt>

Generates an image based 
on the specified prompt.

{"generate_image": {"prompt": "A 
beautiful sunset over a mountain 
range"}}

convert_audio_
to_text

file_path: <f
ile>

Converts the audio from the
specified file to text.

{"convert_audio_to_text": 
{"file_path": "example_audio.wav"}}

AI Assistance

Command Args Description Example

execute_shel
l_command

command_line: <command
_line>

Executes a non-interactive
shell command.

{"execute_shell_command": 
{"command_line": "ls -la"}}

execute_shel
l_popen

command_line: <command
_line>

Executes a non-interactive
shell command using the 
Popen method.

{"execute_shell_popen": 
{"command_line": "ls -la"}}

wait duration: <duration_in
_seconds>

Waits for the specified 
duration (in seconds) 
before continuing.

{"wait": {"duration": 5}}

goal_achieve
d

description: <short_go
al_description>

Indicates that the specified
goal has been achieved.

{"goal_achieved": {"description":
"Successfully ordered pizza"}}

request_assi
stance

issue: <issue_descript
ion>

Requests assistance from 
an operator to resolve the 
specified issue.

{"request_assistance": {"issue": 
"Unable to find information on 
the specified website"}}



Command Args Description Example

do_nothing

Performs no action. Useful
for testing or as a 
placeholder.

{"do_nothing": {}}

task_complet
e reason: <reason>

Shuts down the task and 
provides a reason for 
completion.

{"task_complete": {"reason": 
"Task successfully completed"}}

RoboScript Events

Event Args Description Example

on_message_
received

sender: <sender>, message: 
<message>

Triggered when a 
new message is 
received from a 
sender.

{"on_message_received": {"sender": 
"John Doe", "message": "Hello, how 
are you?"}}

on_email_re
ceived

sender: <sender_email>, su
bject: <subject>, body: <e
mail_body>

Triggered when a 
new email is 
received from a 
sender.

{"on_email_received": {"sender": 
"johndoe@example.com", "subject": 
"Meeting Reminder", "body": "Don't 
forget our meeting today at 3 PM!"}}

on_social_n
otification

platform: <platform>, type
: <notification_type>, con
tent: <content>

Triggered when a 
new notification is 
received on a 
specified social 
media platform.

{"on_social_notification": 
{"platform": "Facebook", "type": 
"post_like", "content": "John Doe 
liked your post"}}

on_time_ela
psed

duration: <duration_in_se
conds>

Triggered when a 
specified duration 
(in seconds) has 
elapsed.

{"on_time_elapsed": {"duration": 
300}}

Integration and Versatility

TrueGPT is designed for seamless integration with various applications and other AI models such as
RoboGPT. Its flexible API ensures that it can be easily adapted to a wide range of applications and 
use cases. This integration capability not only enhances the functionality of the AI ecosystem but 
also ensures that users can leverage the best of multiple AI models.

Empowerment Through Action

The ultimate goal of TrueGPT is to empower users by providing actionable solutions. It is not just 
about understanding and generating human language; it's about using that understanding to help 
users achieve their goals. By offering actionable guidance, TrueGPT plays an active role in boosting
productivity and driving progress.



RoboScript Commands for TrueGPT

For a comprehensive list of RoboScript commands that TrueGPT can utilize, refer to the 
[commands.md - RoboScript Commands for TrueGPT](docs/commands.md) document.

Conclusion

TrueGPT represents a significant step forward in the world of AI. With its specialized training, 
RoboScript support, seamless integration, and focus on empowerment, it redefines the role of AI as 
an active participant rather than a passive tool. As we continue to explore its capabilities and 
applications, we look forward to witnessing the transformative impact of TrueGPT on our 
interaction with AI systems.


	Introduction
	The Essence of TrueGPT
	RoboScript Support
	RoboScript Commands for TrueGPT
	Internet & Communication
	File & Repository Management
	Code & Task Management
	Multimedia
	AI Assistance
	RoboScript Events


	Integration and Versatility
	Empowerment Through Action
	RoboScript Commands for TrueGPT
	Conclusion

