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Chapter 1

Introduction

In 1450, Johannes Gutenberg finished the invention of the printing press
and thereafter books became widely available. This development increased
the importance of ideas and information in their own right. The last
decades of the fifteenth century marked a period of very intense explo-
ration of many kinds. The academic and intellectual developments that
occurred during that time period exemplify the Renaissance era. advanced
calculus

The Renaissance, as it occurred in Europe, was a virtual rebirth of modern
society, a resurrection of European thought and culture, after more than
one thousand years of oppression imposed during the Medieval period of
history. Many artists and intellectuals, in Italy particularly, rediscovered
past treasures, and began building upon them. As a result, science and
mathematics began to reawaken from the thousand-year sleep as well.
special functions

As the sixteenth century began, Europe felt that it was on the verge of
many great things. In the field of mathematics, many new shores began
to appear within sight. For example, the solution of quadratic equations
had been achieved long before, the quadratic formula having been known
since Babylonian times (ca. 1800-1600 BC). But now mathematicians
began to seek, and contemplated whether it was even possible to find, a
general solution to a cubic equation, in other words, an equation of the
form ax3 + bx2 + cx+ d = 0. the gamma function
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2 Chapter 1 Introduction

The quest ultimately led to the recognition of complex numbers, upon
which a great deal of modern mathematics, and much of the mathemat-
ical theory behind modern science and technology, is ultimately based.
Complex analysis ranks amongst the most beautiful, elegant, subtle and
powerful of mathematical disciplines. statistical mechanics

In modern times, we typically simply point out that the quadratic equa-
tion x2 + 1 = 0 has no solutions in the field R of real numbers, because
every sum of squares p2 + 1 with p ∈ R is positive, and we use that as our
call for the existence of complex numbers. But due to the uncomfortable
unfamiliarity with such numbers in the sixteenth century, an indirect,
but more compulsory path was followed, involving cubics. A new era in
mathematics was eventually inaugurated by the final recognition that the
inherent incompleteness of R could be remedied through an extension to
the field C of complex numbers. abstract algebra

The development of the theory of complex numbers is a striking chapter
in the history of mathematics. Complex numbers made their first appear-
ance during the Renaissance, at which time they were often referred to
as impossible quantities–even negative numbers were yet regarded with
some skepticism, a consequence of the then prevalent reliance on classical
geometric thinking (which does not admit negative lengths). A precise
foundation for the theory of complex numbers would not be laid until the
end of the eighteenth century. The quantity i =

√
−1, whose square i2 = −1

is negative, remained suspect and abstruse. number theory

Two positives make a positive; a negative and a positive make a negative;
two negatives make a positive. Why is this? A good common sense explana-
tion is as follows: If one says "do eat", it is encouragement to eat (positive),
but if one says "don’t eat", the opposite (negative) is being said. Now if one
says "don’t starve" where "starve"="not eat", one is back to saying "eat". So
two negatives make a positive. But the key observation here is that (++)
and (−−) both give (+). So how can a negative have a square root? college
algebra

One crucial observation is that positing the existence of
√
−1 is not equiva-

lent to actually taking the square root. It is impossible to actually calculate

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=bbb0567c95e19647d9db21c0a0ca9c25&camp=1789&creative=9325&index=books&keywords=statistical mechanics
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the square root of −1, contrary to what the suggestive symbol
√
−1 might

seem to imply. But that does not mean
√
−1 does not exist. Although it is

impossible to calculate
√
−1, it nonetheless exists, and we can calculate

with the quantity. Let’s look at some examples of how
√
−1 makes its pres-

ence felt: two mathematical, one from physics and one from electronics.
calculus

Example 1.1. The quantity ln(1) is pure imaginary. A real function with
real argument can have a complex result: For the quantity ln(1) is pure
imaginary. But one must be willing to admit complex numbers to see this.
If z ∈ R then it is always the case that

(∗) eln(z) = z and (∗∗) ln(ez) = z.

If z is complex, (∗) is unremarkable, but (∗∗) merits comment. For suppose
we take into consideration Euler’s identity eiπ + 1 = 0, or, in other words,
eiπ = −1, which is a special case of Euler’s formula:

eix = cosx+ i sinx ∀x ∈ R

a result that can be easily seen by comparison of the Taylor series expan-
sions of ex, sinx and cosx.

In particular, with x = π, by taking half a turn around the unit circle in C:

eiπ = cosπ + i sin π

which gives the identity eiπ + 1 = 0. Now squaring both sides of eiπ = −1
gives ei2π = 1, and then using (∗∗) might seem to imply

ln(e2πi) = ln(1) = ln(e0),

but that would be wrong, that 2πi = 0.

Over the complex field C, 1 6≡ e0, but rather 1 ≡ e0+i2πn. What we actually
should write then is not (eiπ)2 = 1, but rather (eiπ)2n = 1 which, when we
use (∗∗), yields

ln(ei2πn) = ln(1) = i2πn n = 0,±1,±2, . . . .

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=7b4fe848bf855152b8745acde4dba4b5&camp=1789&creative=9325&index=books&keywords=calculus
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So, ln(1) has a zero real part, but in writing ln(1) = 0, we in effect only
recognize one of an infinitude of possible purely imaginary values; namely
the one with zero imaginary part. In general, ln(1) is a complex quantity
that is legitimately considered pure imaginary, always having zero real
part. trigonometry �

Example 1.2. Using complex mathematics to perform real mathemat-
ics – Cauchy’s residue theorem applied to real integrals. Cauchy’s
residue theorem is a powerful tool to evaluate line integrals of analytic
functions over closed curves and can often be used to compute real inte-
grals as well. Don’t panic if you don’t understand the material that follows;
it is all clearly explained later in the book. This material is simply meant
to serve as a preview. introductory physics

If a complex function is analytic (syn. holomorphic) on a region R, it is
infinitely differentiable in R. A complex function may fail to be analytic at
one or more points through the presence of singularities, or through the
presence of branch cuts. A single-valued function that is analytic in all but
a discrete subset of its domain, in other words at isolated points, and at
those singularities goes to infinity like a polynomial (i.e., these exceptional
points are poles), is called a meromorphic function. f has a pole of order n
at z0 if n is the smallest positive integer for which (z − z0)nf(z) is analytic at
z0. computers on sale

Definition 1.1. A function f has a pole at z0 if it can be represented by a
Laurent series centered about z0 with only finitely many terms of negative
exponent, i.e.,

f(z) =
∞∑

k=−n

ak(z − z0)k

in some neighborhood of z0, with a−n 6= 0, for n ∈ N. The number n is called
the order of the pole. A simple pole is a pole of order 1.

Definition 1.2. The constant a−1 in the Laurent series

f(z) =
∞∑

k=−∞

ak(z − z0)k

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=68da29a88c1ed3e3e384fe2e954e164a&camp=1789&creative=9325&index=books&keywords=trigonometry
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=5ce6f4ea15afdc01ab36a44e99285617&camp=1789&creative=9325&index=books&keywords=introductory physics
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of f(z) about a point z0 is called the residue of f(z). The residue of a
function f at a point z0 is denoted Res(f ; z0).

The residues of a function f(z) may be found without explicitly expanding
into a Laurent series. If f(z) has a pole of order n at z0, then ak = 0 for
k < −n and a−n 6= 0. diamond rings

Thus,

f(z) =
∞∑

k=−n

ak(z − z0)k =
∞∑
k=0

ak−n(z − z0)k−n

(z − z0)nf(z) =
∞∑
k=0

ak−n(z − z0)k.

Differentiating,

d

dz
[(z − z0)nf(z)] =

∞∑
k=0

kak−n(z − z0)k−1

=
∞∑
k=1

kak−n(z − z0)k−1

=
∞∑
k=0

(k + 1)ak−n+1(z − z0)k.

d2

dz2
[(z − z0)nf(z)] =

∞∑
k=0

k(k + 1)ak−n+1(z − z0)k−1

=
∞∑
k=1

k(k + 1)ak−n+1(z − z0)k−1

=
∞∑
k=0

(k + 1)(k + 2)ak−n+2(z − z0)k.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=0775c251093052fcdfe531ca6118c56d&camp=1789&creative=9325&index=jewelry&keywords=diamond rings


6 Chapter 1 Introduction

Iterating,

dn−1

dzn−1
[(z − z0)nf(z)]

=
∞∑
k=0

(k + 1)(k + 2) · · · (k + n− 1)ak−1(z − z0)k

= (n− 1)!a−1

+
∞∑
k=1

(k + 1)(k + 2) · · · (k + n− 1)ak−1(z − z0)k

so we have

lim
z→z0

dn−1

dzn−1
[(z − z0)nf(z)]

= lim
z→z0

(n− 1)!a−1 + 0

= (n− 1)!a−1

and the residue is

a−1 =
1

(n− 1)!

dn−1

dzn−1
[(z − z0)nf(z)]z=z0 .

Proposition 1.1. In the case that limz→z0(z − z0)f(z) exists and has a non-
zero value r, the point z = z0 is a pole of order 1 for the function f and

Res(f ; z0) = r,

which follows directly from the preceding discussion. mathematical meth-
ods for physicists

For example, we can determine the residue at a simple pole as follows:

Res
z=z0

7z + i

z(z2 + 1)
= lim

z→i
(z − i) 7z + i

z(z + i)(z − i)

=

[
7z + i

z(z + i)

]
z=i

=
8i

−2
= −4i.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=30868f995b2c3a72d3f901d726c85c40&camp=1789&creative=9325&index=books&keywords=mathematical methods for physicists
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=30868f995b2c3a72d3f901d726c85c40&camp=1789&creative=9325&index=books&keywords=mathematical methods for physicists
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Cauchy’s residue theorem is stated as follows: Suppose U is a simply
connected open subset of the complex plane, and a1, . . . , an are finitely
many points of U and also suppose f is a function which is defined and
analytic on U\{a1, . . . , an}, which is to say f is a meromorphic function that
is not analytic specifically at the discrete set of points {a1, . . . , an}. If γ is a
rectifiable curve in U which does not meet any of the ak, and whose start
point equals its endpoint, then∮

γ

f(z) dz = 2πi
n∑
k=1

I(γ, ak) Res(f, ak).

Here, Res(f, ak) denotes the residue of f at ak, while I(γ, ak) is the winding
number of the curve γ about the point ak. This winding number is an
integer which intuitively measures how many times the curve γ winds
around the point ak; it is positive if γ moves in a counterclockwise manner
around ak, negative if γ moves around ak in a clockwise manner, and 0 if γ
doesn’t move around ak at all. group theory

In order to evaluate real integrals, the residue theorem is used in the
following manner: the integrand is extended to the complex plane and its
residues are computed (which is usually simple), and a part of the real
axis is extended to a closed curve by attaching a half-circle in the upper
or lower half-plane, forming a semicircle. The integral over this curve can
then be computed using the residue theorem. Often, the half-circle part of
the integral will tend towards zero as the radius of the half-circle grows,
leaving only the real-axis part contributing to the integral, the one we were
originally interested in. linear algebra

There will be a need for bounding the absolute value of complex line
integrals. The formula is∣∣∣∣∫

C

f(z) dz

∣∣∣∣ ≤ML (ML-inequality)

where L is the length of C and M is a constant such that |f(z)| ≤M every-
where on C.

Consider the integral ∫ ∞
−∞

eitx

x2 + 1
dx

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=96fd671fe96bbc685b31edfa5d4bcfae&camp=1789&creative=9325&index=books&keywords=group theory
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=f94124b8c116e92c8ab1c9f1d3f09e9b&camp=1789&creative=9325&index=books&keywords=linear algebra
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which arises in probability theory. Its solution is resistant to elementary
calculus techniques, but can be evaluated by expressing it as a limit of
contour integrals. tensor theory

Suppose t > 0 and define the contour C that goes along the real line from
−R to R and then counterclockwise along a semicircle centered at 0 from R
to −R. Take R to be greater than 1, so that the imaginary unit i is enclosed
within the curve. The contour is shown in Figure 1.1. The contour integral
is given by ∫

C

f(z) dz =

∫
C

eitz

z2 + 1
dz.

x

y

−R R

Si

Figure 1.1: Path C of the contour integral.

Since eitz is an entire function (having no singularities at any point in the
complex plane), this function has singularities only where the denominator
z2 + 1 is zero. Since z2 + 1 = (z + i)(z − i), that happens only where z = i
or z = −i. Only one of those points is in the region bounded by the given
contour. complex analysis

Because f(z) is
eitz

z2 + 1
=
eitz

2i

(
1

z − i
− 1

z + i

)
the residue of f(z) at z = i is

Res
z=i

f(z) =
e−t

2i
.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=947d41e24bb6092d43166d46576b23b4&camp=1789&creative=9325&index=books&keywords=tensor theory
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=15dd0ce5dd506a8c9744df20795a2c3a&camp=1789&creative=9325&index=books&keywords=complex analysis
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According to the residue theorem, then, we have∫
C

f(z) dz = 2πi · Res
z=i

f(z) = 2πi
e−t

2i
= πe−t

The contour C may be split into a straight part and a curved arc,∫ R

−R
f(x) dx+

∫
S

f(z) dz = πe−t

and thus ∫ R

−R
f(x) dx = πe−t −

∫
S

f(z) dz.

Using some estimations, we have

∣∣∣∣∫
S

eitz

z2 + 1
dz

∣∣∣∣ ≤ ∫
S

∣∣∣∣ eitz

z2 + 1

∣∣∣∣ |dz| = ∫
S

|eitz|
|z2 + 1|

|dz|

≤
∫
S

1

|z2 + 1|
|dz| ≤

∫
S

1

R2 − 1
|dz| = πR

R2 − 1
→ 0 as R→∞.

Therefore, for t > 0, we have∫ ∞
−∞

eitz

z2 + 1
dz = πe−t.

If t < 0 then a similar argument with an arc C ′ that winds around −i rather
than i shows that ∫ ∞

−∞

eitz

z2 + 1
dz = πet,

so we conclude that ∫ ∞
−∞

eitz

z2 + 1
dz = πe−|t|.

If t = 0 then the integral can be performed using elementary calculus
methods and its value is π. functional analysis

Next we consider real, improper integrals of rational functions f(x) of the
type ∫ ∞

−∞
f(x) dx,

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=c0c9845c560f0d0d59f59566b5e40ddb&camp=1789&creative=9325&index=books&keywords=functional analysis
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where it is assumed that the degree of the denominator of f(x) is at least
two units higher than the degree of its numerator.

Consider the contour integral corresponding to the above mentioned im-
proper integral of a rational function,∮

C

f(z) dz,

around the semicircular path C, similar to that shown in Figure 1.1. Since
f(x) is rational, f(z) has finitely many poles in the upper (or lower) half-
plane, and if R is sufficiently large, then C encloses all these poles. By the
residue theorem we obtain∮

C

f(z) dz =

∫
S

f(z) dz +

∫ R

−R
f(x) dx = 2πi

∑
Res f(z)

where the sum consists of all the residues of f(z) at the points in the upper
half-plane at which f(z) has a pole. From this we have∫ R

−R
f(x) dx = 2πi

∑
Res f(z)−

∫
S

f(z) dz.

Now if R→∞, the value of the integral over the arc S approaches zero. If
we set z = Reiθ, then S is represented by R = constant, and as z ranges
along S, the variable θ ranges from 0 to π. Since, by assumption, the degree
of the denominator of f(z) is at least two units higher than the degree of
the numerator, we have that

|f(z)| < k

|z|2
(|z| = R > R0)

for sufficiently large constants k and R0. So by the ML-inequality,∣∣∣∣∫
S

f(z) dz

∣∣∣∣ < k

R2
πR =

kπ

R
(R > R0).

As R→∞, the value of the integral over S approaches zero, and we arrive
at ∫ ∞

−∞
f(x) dx = 2πi

∑
Res f(z),
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where we sum over all the residues of f(z) corresponding to the poles of
f(z) in the upper half-plane. vector analysis

As an example, consider the following improper integral of a rational:∫ ∞
0

dx

1 + x4
.

The complex function f(z) = 1/(1 + z4) has four simple poles at the points

z1 = eπi/4, z2 = e3πi/4, z3 = e−3πi/4, z4 = e−πi/4.

The first two of these poles lie in the upper half-plane. Through application
of L’Hôpital’s rule we find the corresponding residues to be

Res
z=z1

f(z) =

[
z − z1
1 + z4

]
z=z1

=

[
1

4z3

]
z=z1

=
1

4
e−3πi/4 = −1

4
eπi/4

Res
z=z2

f(z) =

[
z − z2
1 + z4

]
z=z2

=

[
1

4z3

]
z=z2

=
1

4
e−9πi/4 =

1

4
e−πi/4

And through the use of the identity

sin z =
1

2i
(eiz − e−iz),

we arrive at ∫ ∞
−∞

dx

1 + x4
=

2πi

4
(−eπi/4 + e−πi/4) = π sin

π

4
=

π√
2
.

Since 1/(1 + x4) is an even function, we finally obtain∫ ∞
0

dx

1 + x4
=

1

2

∫ ∞
−∞

dx

1 + x4
=

π

2
√

2
.

�

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=9fcfef8f194ccbb153e065fee4733f7b&camp=1789&creative=9325&index=books&keywords=vector analysis
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Example 1.3. Quantum mechanical states are represented by vectors
in a (possibly infinite-dimensional) complex vector space. Now we di-
gress from pure mathematics to demonstrate the necessity of complex num-
bers in describing the physical world. Here we consider the Stern-Gerlach
experiment–an experiment involving a 2-state system which demonstrates
the fact that quantum mechanical states are to be represented by vectors
in an abstract complex vector space (note that functions, including wave-
functions, can be thought of as infinite-dimensional vectors in the sense
that each abscissa can be thought of as an "axis", while each corresponding
ordinate value can be thought of as the value along that axis). We will
finish by making an analogy with the polarization of light. Fourier analysis

Quantum states are always vectors in an abstract vector space (techni-
cally, a complex Hilbert space). For quantum wave functions, the Hilbert
space usually has not only infinite dimensions, but uncountably infinitely
many dimensions. Each wave function corresponds to a quantum state,
which can be thought of as a vector in the state space, which is a Hilbert
space. However, linear algebra is much simpler for finite-dimensional
vector spaces. Therefore it is helpful to look at an example from quantum
mechanics where the Hilbert space of wave functions is finite dimensional.
In quantum mechanics, every finite-dimensional Hilbert space can be con-
sidered a spin space. real analysis

In formulating the Dirac equation for the electron, Paul Dirac combined
relativity with the quantum wavefunction. He explained that quantum
spin is ultimately a relativistic effect. Phenomenologically speaking, the
effects to which the term spin refers will be explained below.

As shown in Figure 1.2, in the Stern-Gerlach experiment, first, silver (Ag)
atoms are heated in an oven that has a small hole through which some
of the silver atoms manage to escape, which are then beamed through a
collimator and subsequently subjected to an inhomogeneous magnetic field
produced by a pair of magnetic poles, one of which has a very sharp edge.
The magnetic field is chosen to be inhomogeneous such that the force on
one end of the atomic dipole will be slightly greater than the opposing force
on the other end, so that there is a net force which deflects the particle’s
trajectory. dynamical systems

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=e3ff30b359b6f2205c2a8a95cf9f2f33&camp=1789&creative=9325&index=books&keywords=Fourier analysis
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=0534954bb672379b0afe2ae017181649&camp=1789&creative=9325&index=books&keywords=real analysis
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=7ecc9e3ac0d79d5f8e5b85193de5b178&camp=1789&creative=9325&index=books&keywords=dynamical systems
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Figure 1.2: The Stern-Gerlach experiment.

The silver atom is made up of a nucleus and 47 electrons, where 46 out of
the 47 electrons can be visualized as forming an approximately spherically
symmetrical electron cloud with no net angular momentum. Ignoring
nuclear spin, the atom as a whole does have an angular momentum, due
solely to the intrinsic (not orbital) spin angular momentum possessed by
the 47th (5S) electron. The spins of the other 46 electrons cancel as far
as atomic angular momentum is concerned due to the Pauli exclusion
principle, which states no two electrons in an atom may possess the same
quantum states, and Hund’s rule, which states that every orbital in a sub-
shell is singly occupied with one electron before any one orbital is doubly
occupied, and all electrons in singly occupied orbitals have the same spin.
The 47 electrons are attracted to the nucleus, which is ∼ 2 × 105 times
heavier than an electron; as a result, the atom nets a magnetic moment
equal to the spin magnetic moment of the 47th electron. That is to say,
the magnetic moment µ of the atom is proportional to the electron spin S,
stated µ ∝ S (the proportionality factor is usually taken to be a negative
number). differential equations

The magnetic moment of a magnet is a vector quantity that determines
the force the magnet can exert on moving electric charges and the torque
that an external magnetic field would exert upon it. The magnetic mo-

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=424757162341c8457c4e2ab0ce09a8ba&camp=1789&creative=9325&index=books&keywords=differential equations
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ment has magnitude and direction. The direction of the magnetic moment
points from the south to north pole of a magnet, an arbitrary convention.
The magnetic field produced by a magnet is proportional to its magnetic
moment. To be precise, the term ‘magnetic moment’ normally refers to a
system’s magnetic dipole moment, which produces the first term in the
multipole expansion of a general magnetic field. The dipole component of
an object’s magnetic field is symmetric about the direction of its magnetic
dipole moment, and decreases as the inverse cube of the distance from the
object. differential geometry

Now, µ and B are defined such that the interaction energy of the magnetic
moment with the magnetic field is just −µ ·B, so the z-component of the
force experienced by our silver atom is given by

Fz =
∂

∂z
(µ ·B) ' µz

∂Bz

∂z
cos θ,

which mathematically states that the pull and push of the magnetic field in
the z-direction upon the silver atom is proportional to its magnetic moment,
to the ratio of the amount of rotation of the moment with or against the
field to movement of the atom in the z-direction, to the degree of alignment,
and to the degree of inhomogeneity of the magnetic field. Since the atom
is much heavier than an electron, the classical concept of trajectory will
suffice in this case (indeterminancy of position is not considered here).

The silver atoms in the oven are randomly oriented; as is each µ. If the
electron were a classical spinning object, we would expect all values of µz
to be realized between |µ| and −|µ|; in other words, we would expect to
detect a continuous bundle of beams as shown in Figure 1.3a. But what
we experimentally observe is that the Stern-Gerlach apparatus splits the
initial silver beam from the oven into two distinct components as shown in
Figure 1.3b – this phenomenon used to be known as "space quantization".
Since µ ∝ S, only two possible values of the z-component of S are observed
to be possible, Sz up (spin-up) and Sz down (spin down), labelled Sz+ and
Sz−, respectively. Assuming the north pole of the magnet rests upon the
table, situated below the south pole, the µz > 0 (Sz < 0, or spin-down) atom
experiences a downward force, while the µz < 0 (Sz > 0, or spin-up) atom
experiences an upward force. The beam splits according to the values of
µz. The Stern-Gerlach apparatus measures the z-component of µ and the

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=7ef45271dc6354c7cd386b1ffa4f9c50&camp=1789&creative=9325&index=books&keywords=differential geometry
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z-component of S up to a proportionality factor. The two possible values of
Sz are mulitples of some fundamental unit of angular momentum, which
we get to momentarily. topology

Figure 1.3: Beams from the SG apparatus; (a) is expected from classical
physics, while (b) is actually observed.

It turns out that every elementary particle has a specific, immutable
value associated with it called the magnetic quantum number s, which we
commonly call the spin. The magnetic quantum number can be viewed as
a vector component of the total spin angular momentum S. In solving the
Schrödinger equation, the total spin angular momentum for a spin-1/2
particle is given by

S =

√
1

2

(
1

2
+ 1

)
~ =

√
3

2
~

The value of the reduced Planck constant ~ is:

~ =
h

2π
= 1.0546× 10−34J · s = 4.1357× 10−15eV · s

The Planck constant has dimensions of physical action, which are the
same as those of angular momentum (i.e., L = r × p = r×mv); or in other
words, energy multiplied by time, or momentum multiplied by distance.
The magnetic quantum number, viewed as a vector component of the total
spin angular momentum S along one axis, can only have the values ±~/2.
In terms of natural constants, these values for angular momentum are

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=b49546d0117864aae4b345131ef742ed&camp=1789&creative=9325&index=books&keywords=topology
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functions only of the reduced Planck constant, with no dependence on
mass or charge.

The necessity of introducing half-integral spin goes back to the results
of the Stern-Gerlach experiment. Since the beam split in two (there is
no undeflected beam), the ground state therefore could not be integral,
because even if the intrinsic angular momentum of the atoms were as small
as possible, 1, the beam would be split into three parts, corresponding to
atoms with Lz = −1, 0, and +1. The conclusion was that silver atoms had
net intrinsic angular momentum of 1/2. algebraic geometry

In the case of the electron, the two possible values of Sz are multiples
of the fundamental unit of angular momentum, namely Sz = ~/2 and
−~/2. This quantization of electron spin angular momentum is the first
important property deduced from the Stern-Gerlach experiment. The
other property we now embark on deducing demonstrates the importance
of complex numbers in describing the natural world at a fundamental level.

Consider that, in the Stern-Gerlach apparatus, we could just as well apply
an inhomogeneous field in a horizontal direction, say in the x-direction,
with the beam proceeding in the y-direction. Then the beam would sep-
arate into Sx+ and Sx− components. So now let’s consider a sequential
Stern-Gerlach experiment, as shown in Figure 1.4, in which the atomic
beam passes through two or more Stern-Gerlach apparatuses in sequence.
Let a symbol such as SGẑ stand for an apparatus with an inhomogeneous
magnetic field in the z-direction, and so on. graph theory

Sequential SG case 1: We have the atomic beam pass through an SGẑ
apparatus, but then black the Sz− component, yet have the Sz+ component
beam again pass through another SGẑ apparatus, from which only an Sz+
component emerges. No Sz− component emerges. There is no surprise in
this result.

Sequential SG case 2: Have the atomic beam pass through an SGẑ
apparatus, and again block the Sz− component, but then pass the Sz+
component beam through an SGx̂ apparatus from which an Sx+ compo-
nent beam and an Sx− component beam emerge. Again no surprise.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=e415b07566b9605de712fdb11a9b5ae8&camp=1789&creative=9325&index=books&keywords=algebraic geometry
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=f8e6a99025e2908ac639907a4f680246&camp=1789&creative=9325&index=books&keywords=graph theory
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Figure 1.4: Sequential Stern-Gerlach experiments.

Sequential SG case 3: Once again have the atomic beam pass through
an SGẑ apparatus, and block the Sz− component, pass the remaining Sz+
beam through an SGx̂ apparatus and block the Sx− beam. Now, when the
remaining Sx+ beam is passed through an SGẑ apparatus, both an Sz+
beam and an Sz− beam emerge! That result is quite surprising and is the
reason complex numbers are necessary to describe nature fundamentally.

Quantum mechanics says one cannot determine both Sz and Sx simul-
taneously. The selection of the Sx+ beam by the second SGx̂ apparatus
destroyed any previous information about Sz.

Now by making an analogy with the polarization of light, we shall see
clearly that quantum mechanical states are to be represented by vectors
in a complex vector space. partial differential equations

Let’s consider a monochromatic light wave propagating in the z-direction.
Linearly polarized (plane polarized) light with a polarization vector in the
x-direction, call it x-polarized light for short, has an electric field oscillating
in the x-direction through spacetime,

E = E0x̂ cos(kz − ωt).

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=f7e0593762951e3b5557b077a6790709&camp=1789&creative=9325&index=books&keywords=partial differential equations
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Figure 1.5: Light beams subjected to Polaroid filters.

We may likewise consider y-polarized light, also propagating in the z-
direction,

E = E0ŷ cos(kz − ωt).

Polarized light beams of the above mentioned type are produced by passing
unpolarized light through a polaroid filter, as shown in Figure 1.5. A
filter that selects only beams in the x-direction is called an x-filter. An
x-filter becomes a y-filter simply by rotating it 90◦ about the propagation (z)
direction. If a light beam is passed through an x-filter, then subsequently
through a y-filter, no light emerges. classical mechanics

The experimental observation becomes quite fascinating if we insert be-
tween the x-filter and the y-filter yet another polaroid that selects only
light that is polarized in the x′-direction – making an angle of 45◦ with the
x-direction in the xy plane, as shown in Figure 1.6. Now a light beam
emerges from the y-filter despite the fact that after the beam went through
the x-filter it did not have any polarization component in the y-direction.
Once the x′-filter selects the x′-polarized beam, all previous information
on light polarization is destroyed. Notice the analogy to the situation we
encountered earlier in the sequential SG experiments, if the following

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=6ad83e65acd7ea9bfe327c8605f877b4&camp=1789&creative=9325&index=books&keywords=classical mechanics
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Figure 1.6: Orientations of the x′ and y′-axes.

correspondences are made

Sz ± atoms↔ x-, y-polarized light
Sx ± atoms↔ x′-, y′-polarized light

where the x′- and y′-axes are at 45◦ angles with respect to the x- and y-axes.

Now examine how we may mathematically describe the 45◦-polarized beams
(the x′- and y′-polarized beams) using only classical electrodynamics. Using



20 Chapter 1 Introduction

Figure 1.6 and the Pythagorean theorem we get

E0x̂
′ cos(kz − ωt)

= E0

[
1√
2
x̂ cos(kz − ωt) +

1√
2
ŷ cos(kz − ωt)

]
,

E0ŷ
′ cos(kz − ωt)

= E0

[
− 1√

2
x̂ cos(kz − ωt) +

1√
2
ŷ cos(kz − ωt)

]
.

In the triple-filter arrangement the beam coming out of the first polaroid
is an x-polarized beam, which can be regarded as a linear combination of
an x′-polarized beam and a y′-polarized beam. The second filter selects the
x′-polarized beam, which can in turn be regarded as a linear combination
of an x-polarized beam and a y-polarized beam. And finally, the third filter
selects the y-polarized component.

The correspondence between the third sequential SG experiment and the
triple-filter experiment suggests that we may be able to represent the spin
state of a silver atom by a vector in an abstract two-dimensional vector
space, not to be confused with the usual two-dimensional (xy) space. Just
as x̂′ and ŷ′ are the base vectors used to decompose the polarization vectors
x̂ and ŷ, it is reasonable to represent the Sx+ and Sx− states by vectors,
called kets in the notation of Dirac. We denote these vectors by |Sx; +〉 and
|Sx;−〉 respectively. So we are free to conjecture in analogy that

|Sx; +〉 =
1√
2
|Sz; +〉+

1√
2
|Sz;−〉

|Sx;−〉 = − 1√
2
|Sz; +〉+

1√
2
|Sz;−〉

That this is the case is the reason that two components emerge from the
third SGẑ apparatus.

But the next question is how to represent the Sy± states. By symmetry,
an Sz± beam going in the x-direction passing through an SGŷ apparatus
ought to be similar to the case where an Sz± beam goes in the y-direction
and passes through an SGx̂ apparatus. The kets for Sy± should then also
be regarded as a linear combination of |Sz;±〉, but from the two equations
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above, it appears we have already exhausted the available possibilities in
writing |Sx;±〉. How can our desired vector space formalism distinguish
Sy± from Sx± states?

An analogy with circularly polarized light helps here. Circularly polarized
light can be obtained from linearly polarized light by passing it through an
optical device known as a quarter-wave plate. A right cicularly polarized
light is a linear combination of an x-polarized light and a y-polarized light,
where the oscillation of the electric field for the y-polarized component is
90◦ out of phase with that of the x-polarized component:

E = E0

[
1√
2
x̂ cos(kz − ωt) +

1√
2
ŷ cos(kz − ωt+

π

2
)

]
.

When circularly polarized light is passed through an x-filter or a y-filter,
either an x-polarized beam or a y-polarized beam is obtained, of equal
intensity. But circularly polarized light is completely different from the
45◦-linearly polarized (x′- or y′-polarized) light discussed.

Consider Euler’s identity eiπ = −1 which implies i = eiπ/2 and thus for
circularly polarized light we can write

ε =

[
1√
2
x̂ei(kz−ωt) +

i√
2
ŷei(kz−ωt)

]
where Re(ε) = E/E0 and we used Re(eiθ) = cos θ. We make the following
analogy with the atomic spin states:

Sy ± atoms ↔ right-, left- circularly polarized light

Applying this analogy if we are allowed to make the coefficients preceding
base kets complex, then there is no difficulty in accomodating the Sy±
atoms in the vector space formalism:

|Sy;±〉 =
1√
2
|Sz; +〉 ± i√

2
|Sz;−〉 .

Through these analogies, we see that the two-dimensional vector space
needed to describe the spin states of silver atoms must be a complex vector
space; an arbitrary vector in the vector space used to represent quantum
mechanical states is a linear combination of the base vectors |Sz;±〉 with,
in general, complex coefficients. quantum mechanics �

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=df03bc3ff3f213a873758ac327376498&camp=1789&creative=9325&index=books&keywords=quantum mechanics
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Example 1.4. Use of
√
−1 in the field of electronics.

Now we consider Rayleigh’s puzzle – a problem that concerns the study
of alternating current circuits which was resolved in the late nineteenth
century with the help of complex exponentials.

Before discussing the puzzle, we briefly survey a few facts about electricity.
Two hundred years ago, the common view of electricity was that of a mys-
terious fluid flowing along a pipe of wire. Oliver Lodge derisively referred to
this view as the "drainpipe theory" of electricity. For direct current flowing
through purely resistive circuits the drainpipe theory is perhaps enough,
but for alternating current is simply does not suffice.

For many types of materials, specifically metals and carbon, the rate at
which electrical charge moves through the material (the current) is directly
proportional to the applied voltage. This phenomenon is referred to as
Ohm’s law. Because it applies only to a limited number of materials, Ohm’s
law is not a law in the same sense that, say, conservation of energy is.

What is charge? Electrical charge is the property of matter that is the basis
for electrical effects. Charge is quantized and occurs in multiples of the
charge on one electron which is −1.6 × 10−19 coulombs (the charge on a
proton is +1.6× 10−19 coulombs).

Coulomb’s electrostatic force law is somewhat analogous to Newton’s
inverse-square law for gravitational attraction. One simply substitutes
q1 and q2 for m1 and m2, and uses Coulomb’s constant ke in place of the
gravitational constant G. Similar to Newton’s law, the force is along the
line between the two charges, but although masses are always positive
and the gravitational force is always attractive, electrical charges can be
either positive or negative such that the electrostatic force can be either
attractive (q1q2 < 0) or repulsive (q1q2 > 0). Electrically neutral macroscopic
matter remains full of charge at the microscopic level – equal amounts of
positive and negative charge cancel each other’s effects. relativity

Electrical current is the movement of charge. A current of one ampere is
said to be flowing through a cross-section of a conductor if one coulomb
of charge passes through the cross-section per second. The presence of
an electric field is what makes a charge move. An applied voltage is what

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=359c3c72808150493b62de6ddaa7fe86&camp=1789&creative=9325&index=books&keywords=relativity
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creates the electric field in a conductor, and the moving charges are the
current. If current could be likened to fluid moving through a pipe, then
voltage would be analogous to the pressure.

One of the most basic electrical components are resistors, which are com-
monly small cylinders of carbon with wire terminals at each end. Resistors
are defined to be any device that obeys Ohm’s law, V = IR, where V is the
voltage difference across the two terminals, I is the current through the
resistor, and R is the resistance of the device to current flow. R is measured
in ohms if V and I are measured in volts and amperes, respectively.

V = IR I = C
dV

dt
V = L

dI

dt

Figure 1.7: Three common components used in electronic circuits: from
left to right, the resistor, capacitor and inductor, respectively.

Two other basic components commonly found in electric circuits are the
capacitor and the inductor. These electrical components obey the math-
ematical relationships shown in Figure 1.7, where C and L denote the
capacitance and inductance, in farads and henrys, respectively. The figure
also depicts the schematic symbols used to denote these electrical compo-
nents in circuit diagrams. string theory

The current I in Figure 1.7 flows in the direction of the voltage drop, from
the + terminal to the − terminal. The plus/minus symbols do not actually
mean plus and minus – the + terminal is simply at a higher voltage than
the − terminal is. Both terminals could be positive when compared to
ground. For example, consider a +8 volt + terminal and a +2 volt − termi-
nal in which the voltage drop is 6 volts as we move from the + terminal
to the − terminal. Electric fields point in the direction of the voltage drop,
from the + to the − terminal. However, the actual physical charge carriers,

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=00948ccf1ea280259af7ffbc25ed09ee&camp=1789&creative=9325&index=books&keywords=string theory
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electrons, with their negative charge will move in the opposite direction,
against the electric field, from the − terminal to the + terminal.

There are just two more facts about electricity to learn before we consider
Rayleigh’s puzzle. Kirchoff’s laws are two laws used in circuit analysis that
are actually restatements of the conservation laws of energy and charge
(neither energy nor charge can be created or destroyed) applied to the
special case of electronic circuits.

Voltage law: Around any closed loop, the sum of all the voltage drops
across the components is zero.

Current law: The current flux at any given point is zero, or the sum of the
currents flowing into a point equal the sum of the currents flowing out of a
point.

Figure 1.8: A simple resistor circuit.

Now, consider the circuit shown in Figure 1.8. The battery’s voltage of
1.5V also occurs across both halves of the right-hand side of the circuit.
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Kirchoff’s current law demands that I = I1 + I2. From Ohm’s law we have

Vab = 0.25I1,

Vbd = 1.25I1,

Vac = 1.25I2,

Vcd = 1.75I2.

And from Kirchoff’s voltage law, we have

1.5 = Vab + Vbd = 1.5I1

1.5 = Vac + Vcd = 3I2

So I1 = 1A and I2 = 0.5A. Take special note of the fact that I1 and I2 are
both less than I = 1.5A and would be measured to be so.

Now we are ready to consider Rayleigh’s puzzle. We extend the simple
circuit of Figure 1.8 to the one shown in Figure 1.9 where all three kinds of
electrical components are included and instead of a DC battery we use an
AC voltage generator operating at radian frequency ω. This means that if
V (t) is a sinusoidal voltage with a maximum amplitude of Vmax volts, then
V (t) = Vmax cos(ωt). scientific computing

The voltage V (t) completes one cycle of oscillation as ωt varies from 0 to
2π. Thus, one cycle of oscillation requires a time of 2π/ω seconds. In one
second there will be ω/2π cycles, which is the frequency f , so ω = 2πf . The
unit of frequency is the hertz. One hertz is equivalent to one cycle per
second. Since angular frequency ω is the number of radians per unit time,
the unit of angular frequency is taken to be the inverse second s−1.

The three circles labelled M , M1 and M2 in Figure 1.9 represent current
meters with indicator needles that point to current values on a scale.

Current meters such as those used in this example are called moving coil
D’Arsonval meters – they utilize the magnetic field generated by the current
along a wire. Their principle of operation is quite simple. A coil of stiff wire
is suspended via low-friction supports in the magnetic field of a magnet.
The current to be measured is passed through the coil, and its magnetic
field interacts with the magnet’s field to produce a net force; this produces

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=76e9631d1666b82e50a40f37f844f5d7&camp=1789&creative=9325&index=books&keywords=scientific computing
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Figure 1.9: Rayleigh’s current-splitting puzzle.

a torque that rotates the coil, which moves a needle attached to the coil.
The force or torque is proportional to the coil current. If this current varies
slowly enough, the coil/needle apparatus can vary along with the current,
but if the current varies rapidly the mechanical inertia of the coil/needle
apparatus will smooth out the variation such that the meter responds to
the average value of the current. advanced engineering mathematics

Supposing the meter’s magnet is a permanent magnet, the torque is pro-
portional to the product of the fields, which is directly proportional to
the current in the coil. Such a meter would be useless for measuring AC
currents since their average value is zero. But if we replace the permanent
magnet with an electromagnet (a second coil wrapped around an iron
bar) and run the current through it as well as through the suspended
coil, now the two magnetic fields will vary together in response to the AC
current. The torque is proportional to the product of the fields just as
before, which in this case is directly proportional to the square of the AC
current. Therefore, the needle deflection is proportional to the average of
the squared current, which is nonzero for AC.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=27a8f44128dc52ab0c447fec9880dbc0&camp=1789&creative=9325&index=books&keywords=advanced engineering mathematics
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As before, we will now calculate the currents I1 and I2 for Figure 1.9. But
what we’ll find is that while Kirchoff’s current law remains satisfied, i.e.,
I = I1 + I2, it is possible under certain conditions for I1 and I2 to both be
measured to be larger than I.

The following mathematical expressions apply to the electonic circuit in
Figure 1.9, making use of Kirchoff’s laws and the definitions of resistors,
capacitors and inductors.

I = I1 + I2,

V = I2R + L
dI2
dt
,

I1 = C
dVbd
dt

,

V = I1R + Vbd.

Differentiating the last of these equations gives

dV

dt
= R

dI1
dt

+
1

C
I1.

This, together with the relation

V = I2R + L
dI2
dt
,

gives us two differential equations, one for each of the currents I1 and I2.
If we assume V is sinusoidal, then the use of complex exponentials makes
the solution of these differential equations straightforward, and we will
thereby solve Rayleigh’s puzzle. cryptography

We first introduce complex exponentials by writing

V (t) = 2V0 cos(ωt) = V0e
iωt + V0e

−iωt,

where we include a factor of 2 to avoid having to include a factor of 1/2 in
all the equations that follow, in other words, we shall halve the results later.

Since eiθ represents a unit vector in the complex plane making an angle
θ with the positive real axis, eiωt is a unit vector making an angle ωt that

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=48daf3d57fbcf9b9a3910f15ecc3f793&camp=1789&creative=9325&index=books&keywords=cryptography
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increases with t. In other words, eiωt is a rotating vector that rotates
counterclockwise at frequency ω/2π Hz. Similarly, e−iωt is a vector rotating
clockwise at the same frequency. Counterclockwise rotations are con-
sidered positive rotations, whereas clockwise rotations are taken to be
negative.

We shall next calculate I1 and I2 for just the first term of V (t), i.e., for the
V0e

iωt term, and call the results I+1 and I+2 . Then we repeat the analysis for
the second term, i.e., for the V0e−iωt term, and call the results I−1 and I−2 .
The solutions for V (t) = 2V0 cos(ωt) will then be

I1 = I+1 + I−1 ,

I2 = I+2 + I−2 .

Since V + = V0e
iωt we have I+1 = I+0,1e

iωt and I+2 = I+0,2e
iωt, where I+0,1 and I+0,2 are

constants. Substituting V +, I+1 and I+2 into the two differential equations
gives

iωV0e
iωt = iωRI+0,1e

iωt +
1

C
I+0,1e

iωt,

V0e
iωt = RI+0,2e

iωt + iωLI+0,2e
iωt,

or, after canceling the common eiωt terms,

iωV0 = iωRI+0,1 +
1

C
I+0,1,

V0 = RI+0,2 + iωLI+0,2.

Solving, we find

I+0,1 =
V0

R− i 1
ωC

,

I+0,2 =
V0

R + iωL
.

If these steps are then repeated for V − = V0e
−iωt with I−1 = I−0,1e

−iωt and
I−2 = I−0,2e

−iωt, the results are
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I−0,1 =
V0

R + i 1
ωC

,

I−0,2 =
V0

R− iωL
.

Therefore, the currents I1 and I2 are, for V (t) = 2V0 cos(ωt),

I1 = I+0,1e
iωt + I−0,1e

−iωt =
V0

R− i 1
ωC

eiωt +
V0

R + i 1
ωC

e−iωt

and
I2 = I+0,2e

iωt + I−0,2e
−iωt =

V0
R + iωL

eiωt +
V0

R− iωL
e−iωt.

The expressions for I1 and I2 appear complex, but they’re actually purely
real. This must be so for two reasons, one physical and one mathematical.
The physical reason is that if we apply the real voltage V (t) = 2V0 cos(ωt) to
a circuit made of physical hardware, then all the voltages and currents
(observables) must be real too. Mathematically, we note that both I1 and
I2 are the sums of two terms which are complex conjugates. Such a sum
is equivalent to twice the real part of either term. Now since the above
expressions for I1 and I2 are the currents for V (t) = 2V0 cos(ωt), the currents
for V (t) = V0 cos(ωt) are half as much, so we have

I1 = Re

{
V0

R− i 1
ωC

eiωt
}
,

I2 = Re

{
V0

R + iωL
eiωt
}
.

We can find the real part of these expressions through an application of
the identity for the inverse of a complex number which is

1

a+ bi
=

1

a+ bi
· a− bi
a− bi

=
a

a2 + b2
+
−b

a2 + b2
i.
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Doing this, we have

Re

{
V0

R− i 1
ωC

eiωt
}

= Re

{
V0

[
R

R2 + (1/ωC)2
+

1/ωC

R2 + (1/ωC)2
i

] [
cos(ωt) + i sin(ωt)

]}
=

V0
R2 + (1/ωC)2

[
R cos(ωt)− 1

ωC
sin(ωt)

]
and

Re

{
V0

R + iωL
eiωt
}

= Re

{
V0

[
R

R2 + (ωL)2
− ωL

R2 + (ωL)2
i

] [
cos(ωt) + i sin(ωt)

]}
=

V0
R2 + (ωL)2

[R cos(ωt) + ωL sin(ωt)] .

So we have

I1 =
V0

R2 + (1/ωC)2

[
R cos(ωt)− 1

ωC
sin(ωt)

]
,

I2 =
V0

R2 + (ωL)2
[R cos(ωt) + ωL sin(ωt)] .

In this form, it is not obvious what the maximum value of the currents
would be. However, with the help of a trigonometric identity we can get the
expressions for the currents into a form in which the maximum values are
apparent, that identity being

a cos(x) + b sin(x) =
√
a2 + b2 cos

{
x− tan−1

(
b

a

)}
.

Through an application of this identity, the expressions for the currents
become

I1 =
V0√

R2 +
(

1
ωC

)2 cos(ωt+ tan−1(1/ωRC)),

I2 =
V0√

R2 + (ωL)2
cos(ωt− tan−1(ωL/R)),
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where the relation tan−1(−x) = − tan−1(x) is used. It follows that I1 and I2
are sinusoidal currents with squared maximum values I20,1 and I20,2 given by

I20,1 =
V 2
0

R2 +
(

1
ωC

)2 ,
I20,2 =

V 2
0

R2 + (ωL)2
.

The reason for squaring the magnitudes of the currents is that that corre-
sponds to the quantities that the D’Arsonval current meter responds, the
needle deflection being proportional to the average of the squared current.

Now we consider the special frequency ω = 1/
√
LC at which I20,1 and I20,2

become equal, i.e.,

I20,1 = I20,2 =
V 2
0

R2 + L
C

.

At that frequency we also have

I = I1 + I2 =
V0√
R2 + L

C

cos

{
ωt+ tan−1

(
1

R

√
L

C

)}

+
V0√
R2 + L

C

cos

{
ωt− tan−1

(
1

R

√
L

C

)}

An application of the trigonometric identities

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b))

and
cos(tan−1(x)) =

1√
1 + x2

yields

I =
2V0√
R2 + L

C

cos(ωt) cos

{
tan−1

(
1

R

√
L

C

)}

=
2V0√
R2 + L

C

· 1√
1 + L

R2C

cos(ωt).
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Therefore the squared maximum value of the current I, denoted I20 , is

I20 =
4V 2

0(
R2 + L

C

) (
1 + L

R2C

) .
Comparing that with the expressions

I20,1 = I20,2 =
V 2
0

R2 + L
C

we see that I20 < I20,1 = I20,2 when L/(R2C) > 3 and ω = 1/
√
LC. Under such

conditions meter M will measure a smaller current than either of the
meters M1 or M2, even though the splitting of the current I forms currents
I1 and I2. probability theory �

It took many years for the engineering community to feel comfortable with
counterintuitive results such as this, which explains why AC circuits were
long thought to be somehow different from DC circuits. All circuits obey
the same physical laws, however, and an important milestone in under-
standing the role of complex quantities was passed in 1893, when Charles
Steinmetz presented a paper at the International Electrical Congress in
Chicago titled "Complex Quantities and Their Use in Electrical Engineer-
ing." His paper was introduced to the audience with the following words:

We are coming more and more to use these complex
quantities instead of using sines and cosines, and we
find great advantage in their use for calculating all
problems of alternating currents, and throughout the
whole range of physics. Anything that is done in this
line is of great advantage to science.

To the extent that numbers exist,
√
−1 exists, though it does not represent

a calculable quantity. Of the other common types of numbers, say, out of
the set {Z, Q, R, C} of familiar number systems, that have representations
suggestive of calculation are the rationals, Q; numbers such as 2/3. But
they, in contrast, can be calculated, due to our acceptance of the real
number system, R. Just as with the symbol "7", the only valid question is
how do we calculate with the symbol

√
−1, rather than how we calculate

the symbol itself, as we could with a rational.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=a14c38265e88b2a1abe7f3c38284cf59&camp=1789&creative=9325&index=books&keywords=probability theory
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The symbol i is not "the number we would get if it were possible to take
the square root of -1", because that is impossible, yet we have the number.
Rather, by definition, i ≡

√
−1, and it behaves so. game theory

To avoid confusion, it should be mentioned that −1 actually has two square
roots, namely ±i, and that it is possible to calculate the square root of a
complex number, just not the square root of −1. In particular, through an
application of Euler’s formula, it is easily shown that i itself does have a
square root, in fact two square roots, namely, either of the two complex
numbers

±
√
i = ±eiπ/4 = ±

(
cos

π

4
+ i sin

π

4

)
= ±

(√
2

2
+

√
2

2
i

)

Mathematicians tend to think of a complex number a+ bi, where a and b
are real numbers and i =

√
−1, as a point in the complex plane, a plane

in which the value of a corresponds to placement of the point along the
horizontal x-axis and the value of b corresponds to placement of the point
along the vertical y-axis. The x-axis is known as the real axis, while the
y-axis is known as the imaginary axis, and are usually labelled Re and Im
respectively. Unlike the real numbers, complex numbers do not have a
natural ordering, so there is no complex-valued analog of real inequali-
ties. This property is no longer confusing when they are viewed as being
elements in the complex plane, since points in any plane lack a natural
ordering. The term natural ordering refers to ordering along a line. Most
points within any plane are not mutually collinear.

Complex numbers possess many properties the reals do not possess, prop-
erties such as phase. If we were to draw a vector from the origin to the
complex number’s point in C, then what angle would the vector make with
the positive x-axis? Now if we were to trace out a circle with that same
vector, then all the complex numbers residing on it would have the same
distance from the origin, known as the complex number’s absolute value
or modulus. So there are an infinite number of complex values having
the same "magnitude" in a sense, but each has a different phase. One
must be careful with the concept of magnitude in C; magnitude does not
correspond to order within C as it does within the real number system
R. There is more to complex numbers than just raw magnitude. It can

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=2178f00048b255d96a11fdc4ea63015d&camp=1789&creative=9325&index=books&keywords=game theory
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be helpful to realize that a complex number’s phase also carries its own
"magnitude". Complex numbers can be considered to be ordered in two
ways – concentrically and rotationally, so they are described as having
no natural order, in other words, like that of the natural numbers. To be
precise, it would be incorrect to say that the complex numbers "have no
order", for that would imply they are distributed randomly in common
mathematical parlance, which is nonsense.

Despite the initial awkwardness, the successes achieved through the use
of complex numbers have exceeded all expectations. The successes helped
gain their full recognition, with no small thanks due to the representation
of complex numbers as points on a plane, which enabled mathematicians
to visualize them in a natural way. desktop computers

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=152d367b40b1171ada75d35691f6d597&camp=1789&creative=9325&index=pc-hardware&keywords=desktop computers


Chapter 2

Del Ferro, Tartaglia, Cardano &
Bombelli

We begin with the work of a character named Scipione del Ferro (1465-
1526) who taught at the University of Bologna. Del Ferro is most famous
for discovering a formula for solving a depressed cubic – a third-degree
equation that lacks a quadratic term, in other words, one of the form
ax3 + cx + d = 0. For presentation, we usually divide through the entire
equation by a and move the constant term to the right-hand side, to get
the form

x3 +mx = n.

At the time, del Ferro’s discovery of how to solve a depressed cubic for x
was quite significant, and by today’s customs, we might expect him to have
shouted his findings off the rooftops. But he kept the solution secret. Why?
The political climate of Renaissance universities was perilous. Academics
often had to patronize the politically powerful – da Vinci’s experience being
a very famous example. But there is more. The concept of tenure hadn’t
even been thought of yet, nor did society have safety nets in those days. On
top of this, mathematicians had to be ready for "public challenges", which
were basically intellectual duels. Participation in challenges were strongly
encouraged by the university community, and these often became wild
events even attracting the attention of large gambling rings. A loss often
marked the end of one’s career. So, quite understandably, del Ferro felt
that he was in possession of a secret weapon, and he treated his discovery
so. Even if del Ferro could not solve his challenger’s problems, he was
highly confident that his cubics would not be solved by his adversary.

35
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On his deathbed, del Ferro passed his discovery along to his student
Antonio Fior. A brash and arrogant young lad, Fior decided to go on an
intellectual spree with the new weapon, and eventually by 1535 became
testy with one of the greatest minds in Europe, the famous scholar Niccolo
Fontana (1499-1557), whom Fior mistakenly presumed to be a pretender
to the throne.

During the French attack on Fontana’s hometown of Brescia in 1512, a
soldier slashed Fontana’s face with a sword, disfiguring him and making it
impossible for him to speak normally. He became known by a nickname,
Tartaglia, which means stammerer, and by this name is he best known
even today. laptop computers

Tartaglia was a profoundly-gifted mathematician. He had been advertising
the fact that he could solve cubic equations missing only their linear terms,
which was what attracted the attention and the doubts of Fior. Fior sent
him a challenge consisting of thirty depressed cubics, to which Tartaglia
wisely responded, by sending Fior a list of thirty problems covering various
difficult mathematical topics. Tartaglia was either going to earn a perfect
performance or completely fail, depending on whether or not he found the
secret of solving cubics.

Tartaglia went on a research binge. And with the deadline approaching, on
February 13, 1535, he discovered the depressed cubic’s solution. He then
quickly solved all of Fior’s problems, whereas Fior suffered a miserable
performance. It was a great triumph for Tartaglia. Although the agreed-
upon stake was to provide thirty banquets for the victor, Tartaglia decided
to relieve Fior of the burden, who then faded out of the picture.

One of the most eccentric mathematicians in history enters the story at
this point, Gerolamo Cardano (1501-1576), of Milan. Cardano had heard
of the challenge and desired to learn Tartaglia’s method for solving the
cubic. He simply asked Tartaglia to divulge the secret, and from there the
story takes a few twists. cell phones on sale

There is just "that something" about the intriguing lives of eccentric ge-
niuses that cannot be ignored, so we pause and examine some of Cardano’s

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=0e9d4db8b07841c461836b7c3c79c294&camp=1789&creative=9325&index=pc-hardware&keywords=laptop computers
https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=1ad364aaf0f2395678ea9b2ad253df2b&camp=1789&creative=9325&index=mobile&keywords=cell phones on sale
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Figure 2.1: Portraits of the great mathematicians (from left to right) Niccolo
Fontana Tartaglia, Gerolamo Cardano and Rafael Bombelli.

curious life first. Lucky for us, Cardano wrote an autobiography The Book
of My Life in 1575, the year before he died. The book recounts many of
Cardano’s superstitions, peeves and personal anecdotes. Though some of
the material is regarded with a degree of skepticism, the book nonetheless
conveys Cardano’s frame of mind and turbulent life.

Cardano’s family tree is as eventful as his own life, and may have included
Pope Celestino IV. In the chapter titled "My Nativity", Cardano wrote "al-
though various abortive medicines – as [he] heard – were tried in vain," he
survived to be "literally torn from [his] mother’s womb." The young Cardano
was then bathed in warm wine in an effort to bring him to life. Cardano
perceived his birth as unwelcome, and may have been illegitimate. The
resulting stigma he felt played a powerful role in his life.

Cardano was plagued with chronic mental conditions his entire life, yet
his intellect was supreme, as is evident in his works. He had an intense
fear of heights, and of places where rabid dogs had been seen. He endured
years of impotence, which, as fate would have it, lasted until just before he
was married. Cardano also suffered from bouts of insomnia, often staying
awake for more than a week at a time. diamond jewelry

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=acdc8a4b2357e457750407288589134e&camp=1789&creative=9325&index=jewelry&keywords=diamond jewelry
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If Cardano found himself on occasion to not be suffering, then he would
inflict suffering upon himself. Cardano equated pleasure with the relief of
pain. He felt that self-inflicted pain was a very desirable thing, because it
felt good when the pain stopped.

Cardano studied at the University of Padua to become a physician, but was
refused permission to practice medicine in his home of Milan. This refusal
was probably due to his bizarre personality, but whatever the justification
was, this event marked one of the lowest points of his life.

Cardano then moved to the rural town of Sacco, where he practiced
medicine. One night, he dreamt of a beautiful woman and, being one
who put a great deal of stock in dreams, after having met a woman named
Lucia Bandarini who resembled the woman in his dream, he married her
in 1531.

Dreams and omens guided Cardano throughout his life. He was an as-
trologer, wore amulets and claimed to predict the future from thunder-
storms. He also felt the presence of a guardian angel, and would participate
in detailed conversations and at times even argue with the divine attendant,
out loud in front of his colleagues. That being the case, it is no wonder why
many of his contemporaries felt that Cardano was not in his right mind.
watches

Cardano was a prolific gambler, he had a weakness for it, gambling nearly
every day. His work Book on Games of Chance, published posthumously
in 1663, was the first serious treatise on probability.

From 1526 to 1532, Cardano spent busy years in Sacco, practicing
medicine and raising his children, but eventually moved with his wife
and kids back to Milan for reasons related to his ego, yet ironically, was
still forbidden to practice medicine there, which left them poor. But Car-
dano began giving popular science lectures that were well received by the
educated. He began writing on many topics and in particular, in 1536
wrote a scathing work attacking the practices of Italian physicians. Though
the medical community detested this work, the public embraced it, and
Cardano could not safely be prevented from practicing medicine any longer.
He went to the top of his profession, even treating the Pope on occasion.

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=b92c8e43d5d8d1554af68805a90c445b&camp=1789&creative=9325&index=watches&keywords=watches


Chapter 2 Del Ferro, Tartaglia, Cardano & Bombelli 39

But then a series of tragedies befell Cardano. In 1546, his wife died at age
31, leaving Cardano with two sons and one daughter. Yet much to Car-
dano’s delight, his eldest son, Giambattista, seemed bright and destined
to follow in his father’s footsteps into a brilliant medical career. But Gi-
ambattista married an unfaithful woman who boasted about the town that
none of her three children were his. In retaliation, Giambattista presented
her with a cake laced with arsenic. Apparently, he was a good baker –
Giambattista was arrested for murder, he confessed and was convicted,
then beheaded by the Roman Empire during April 1560.

Cardano became despondent, and lost his interest in life, followed by his
friends and career. He then moved to the University of Bologna to teach
medicine. In 1570, he got himself arrested and imprisoned on charges of
heresy, for antics such as publishing his results of casting the horoscope
of Christ and writing a book titled In Praise of Nero, the Roman Emperor
that offered Christians to the Colosseum animals as food, sentencing them
ad bestias, "to the beasts" – the beasts in question included dogs, bears,
boars and lions. However, on the part of friend’s testimony and some
leniency granted by the Church, Cardano was released from prison, went
to Rome, and eventually was given a pension from Pope Gregory XIII (after
first having been rejected by Pope Pius V). thermodynamics

Cardano died in Rome on September 20, 1576, the day he had (supposedly)
astrologically predicted earlier; but some suspect that he may have com-
mitted suicide so that his own "prophesied" date of death would manifest
true.

Now let’s return to the story of the cubic equation. Cardano was interested
in the techniques Tartaglia used to defeat Fior. Cardano had written to
Tartaglia many times, pleading with him for the solution. Eventually, Car-
dano brought Tartaglia to Milan as a guest. On March 25, 1539, Tartaglia
revealed the secret of the depressed cubic – written in cipher – to Cardano,
who took an oath of secrecy based upon his Christian faith which, if vio-
lated, would essentially result in eternal damnation to the flames of Hell,
according to the beliefs of those times.

Another character then appears in this epic. Ludovico Ferrari (1522-1565),

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=97a1751a3fc1596287a221f2229ee705&camp=1789&creative=9325&index=books&keywords=thermodynamics
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approached Cardano looking for work. Cardano had that day imagined
that the squawking of a magpie was a good omen and thus hired the young
man as an assistant. But, as fate would have it, Ferrari amazingly turned
out to be at least as profoundly gifted as Tartaglia, and even before Ferrari
was 20 years old, Cardano considered him a colleague. Cardano eventually
shared Tartaglia’s secret with his protégé, and they made great strides
together.

For example, Cardano discovered how to solve the general cubic equation

x3 + bx2 + cx+ d = 0

where the coefficients b, c and d may or may not be zero. But Cardano’s
work depended upon reducing the general cubic to a depressed form, thus
publication would violate his pledge of secrecy to Tartaglia. Ferrari had
meanwhile succeeded in solving the quartic (fourth degree) polynomial.
Ferrari’s technique depended upon reducing the quartic to a related cubic,
and again Cardano’s pledge forbade its publication. bioinformatics

But in 1543, Cardano and Ferrari traveled to Bologna where they inspected
the papers of del Ferro. There, in del Ferro’s own handwriting, was the
technique for solving the depressed cubic. The fact that Tartaglia’s and
del Ferro’s solutions were identical did not bother Cardano, del Ferro’s
work having preceeded Tartaglia’s work. So in the year 1545, Cardano
published Ars Magna, a title which reflects Cardano’s belief that algebra
was "the great art". Ars Magna began with some introductory material,
including standard solutions to linear and quadratic equations. But then
it jumped into uncharted territory and laid out for the first time a complete
procedure for solving cubic and biquadratic (third- and fourth-degree)
algebraic equations. It was not until the arrival of mathematicians at the
level of François Viéte (1540-1603) and René Descartes (1596-1650) that
the book’s contributions were superseded.

In Chapter XI, titles "On the Cube and First Power Equal to the Number,"
the preface reads:

https://www.amazon.com/gp/search?ie=UTF8&tag=httpwwwwikisp-20&linkCode=ur2&linkId=24320043f4e66afbffa0f527f141e17a&camp=1789&creative=9325&index=books&keywords=bioinformatics
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Scipio Ferro of Bologna well-nigh thirty years ago dis-
covered this rule and handed it on to Antonio Maria
Fior of Venice, whose contest with Niccolo Tartaglia of
Brescia gave Niccolo occasion to discover it. He gave it
to me in response to my entreaties, though withhold-
ing the demonstration. Armed with this assistance, I
sought out its demonstration in many forms. This was
very difficult.

Cardano had merely given credit where credit was due, which appeased
everyone except Tartaglia. He considered Cardano’s act treachery. In
Tartaglia’s eyes, Cardano violated an oath pledged on his Christian faith,
and was, therefore, a heathen. Cardano refused to respond to Tartaglia’s
vitriolic letters, but Ferrari gave in to his legendary hot temper, and lashed
back with demeaning threats, such as "If it were up to me to reward you,
. . ., I would load you up so much with roots and radishes, that you would
never eat anything else in your life", all pun intended. Eventually, a chal-
lenge was exchanged between Tartaglia and Ferrari, in Milan in August
of 1548. Ferrari won the battle and Tartaglia withdrew to return home,
probably lucky to leave with his life. nuclear physics

Such were the absurd set of events surrounding the solution of the cubic.
Now we consider the great theorem at the heart of all this drama.

In Chapter XI of Ars Magna, Cardano did not give a general proof, but
rather a specific example of a depressed cubic, namely

x3 + 6x = 20.

But in our discussion, we shall paraphrase his work and treat the more
general depressed cubic

x3 +mx = n.

Before getting into the specifics of Cardano’s technique, a few points are
worth mentioning. The material on cubic equations first appears in Chap-
ter XI of the Ars Magna, which, as we stated previously, is titled "On the
Cube and First Power Equal to the Number." From the perspective inherited
from medieval mathematicians, there were considered to be 3 different
depressed cubics and 13 different general cubics, rather than just one of
each. This is because they only considered positive real numbers; they did
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not admit complex numbers, nor did they consider nonpositive coefficients.
The rule Tartaglia gave Cardano covered the three basic forms of the de-
pressed cubic. In modern form, these would be: x3 + bx = c, x3 = bx + c
and x3 + c = bx. Since mathematicians at the time did not use negative
coefficients, a single, general form x3 + bx+ c = 0 was precluded.

In addition, our modern algebraic notation still lay in the future, and
most of the mathematical statements were verbal. Cardano could capture
generality in the rules for solving the pseudo-general cubic equations. In
each chapter, then, Cardano first gives a geometrical demonstration of
a specific numerical cubic equation, then a verbal rule for solving that
general type of equation, then one or more sample problems and solutions
using the rule. Because the use of zero and negative coefficients still lay in
the future, Cardano is forced into spelling out 13 different cubic equations,
all with positive coefficients, each with a separate chapter.

Now, we can write a general cubic equation

py3 + qy2 + ry + s = 0

(in which p 6= 0, or the equation is not a cubic) in the form

y3 + by2 + cy + d = 0

after dividing by the constant p. The case where d = 0 is trivial and not
considered a true cubic.

So, initially we get different cases as

b
>
=
<

0, c
>
=
<

0, d >
< 0

leading to 3 · 3 · 2 = 18 cases intially. Note that here we should interpret >
and < in medieval terms, that is, indicators that the coefficient occurs on
the left or right side of the equation, respectively.

However, the cases

b = c = 0, d > 0

b = c = 0, d < 0
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were not taken seriously as cubic equations (the first has no positve real
solution and the second is trivial), while the cases

b > 0, c > 0, d > 0

b = 0, c > 0, d > 0

b > 0, c = 0, d > 0

also have no real positive solutions. This leaves 18 − 5 = 13 cases to be
considered.

The key result of Chapter XI of Ars Magna is stated here in Cardano’s own
manner, and his extremely clever partitioning of the cube is presented.
The rule for solving cubics, as presented, is wordy and confusing, but
the reader will come to a better understanding when it is recast in more
familiar algebraic terms.

As William Dunham puts it in his fascinating book Journey Through Ge-
nius, "His argument was purely geometrical, involving literal cubes and
their volumes. Actually, the surprise here is minimized when we recall
the primitive state of algebraic symbolism and exalted position of Greek
geometry among Renaissance mathematicians."

Theorem 2.1. Rule to solve x3 +mx = n.
Cube one-third the coefficient of x; add to it the square of one-half the
constant of the equation; and take the square root of the whole. You will
duplicate this, and to one of the two you add one-half the number you have
already squared and from the other you subtract one-half the same. Then,
subtracting the cube root of the first from the cube root of the second, the
remainder which is left is x.

Proof. Cardano pictured a large cube, of side AC, whose length we denote
by t, as shown in Figure 2.2. Side AC is divided at B into segment BC of
length u and segment AB of length t− u. The large cube can be mentally
subdivided into six pieces (use Figure 2.2 as a guide), and each piece is
identified and assigned a volume as indicated:
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t−
u

t− u

D

B C

E

A

t

u

u

Figure 2.2: Cardano’s partitioned cube.

• A small cube in the lower front corner of volume u3.

• A larger cube in the upper back corner of volume (t− u)3.

• Two upright slabs, one facing front along AB and the other facing
right along DE, each of volume tu(t− u).

• A tall block in the upper front corner, standing upon the small cube,
of volume u2(t− u).

• A flat block in the lower back corner, beneath the larger cube, of
volume u(t− u)2.

Certainly the large cube’s volume, t3, equals the sum of these six compo-
nent volumes. That is,

t3 = u3 + (t− u)3 + 2tu(t− u) + u2(t− u) + u(t− u)2.
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A slight rearrangement of terms gives

(t− u)3 + [2tu(t− u) + u2(t− u) + u(t− u)2] = t3 − u3

and factoring the common (t−u) term from the bracketed expression yields

(t− u)3 + (t− u)[2tu+ u2 + u(t− u)] = t3 − u3.

Or simply,
(t− u)3 + 3tu(t− u) = t3 − u3. (2.1)

Now, Equation 2.1 resembles the cubic x3 +mx = n. If we let t− u = x, then
it becomes x3 + 3tux = t3 − u3, and this immediately suggests that we set

3tu = m and t3 − u3 = n.

If we can determine the values of t and u in terms of m and n from the
original cubic, then x = t− u will yield the solution. To start, consider the
two previous equations involving t and u, namely

3tu = m and t3 − u3 = n.

From the first equation, we see that u = m/3t, and substituting this into
the second equation gives

t3 − m3

27t3
= n.

And now the key step – multiply both sides by t3 and rearrange to get

t6 − nt3 − m3

27
= 0.

At first glance, this might seem to be a step backwards, trading the third-
degree equation in x for a sixth-degree equation in t. But the later can be
regarded as a quadratic equation in t3,

(t3)2 − n(t3)− m3

27
= 0.

An application of the quadratic formula, which had been in use since
Babylonian times, then yielded
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t3 =
n±

√
n2 + 4m3

27

2

=
n

2
± 1

2

√
n2 +

4m3

27
=
n

2
±
√
n2

4
+
m3

27
.

Then, retaining only the positive square root, we arrive at

t =
3

√
n

2
+

√
n2

4
+
m3

27
.

And since u3 = t3 − n, we naturally conclude that

u3 =
n

2
+

√
n2

4
+
m3

27
− n or

u =
3

√
−n

2
+

√
n2

4
+
m3

27
.

So the algebraic statement of Cardano’s rule for solving the depressed
cubic x3 +mx = n is

x = t− u

=
3

√
n

2
+

√
n2

4
+
m3

27
−

3

√
−n

2
+

√
n2

4
+
m3

27
.

This formula is called an "algebraic solution" or a "solution by radicals"
for the depressed cubic. Solutions of this type involve only the original
coefficients of the depressed cubic – m and n – and algebraic operations,
used only a finite number of times. It gives exactly the same result as
Cardano’s verbally-stated rule.

Cardano’s approach in the proof of the previous theorem may leave one
feeling bewildered. Though his generation was far more practiced at geo-
metrical thinking than ours, how and why would he even imagine to relate
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the initial 6-partitioning of a literal cube to this particular algebraic prob-
lem? A statement made by the famous Polish-American mathematician
Mark Kac (1914-1984) relates to this question – his famous distinction
between the ordinary genius and the magician genius: "An ordinary genius
is a fellow that you and I would be just as good as, if we were only many
times better. There is no mystery as to how his mind works. Once we
understand what he has done, we feel certain that we, too, could have
done it. It is different with the magicians . . . the working of their minds is
for all intents and purposes incomprehensible. Even after we understand
what they have done, the process by which they have done it is completely
dark." Cardano’s proof is magical. Taking much for granted, his proof
reads straightforward, but the initial idea, the partitioning of a literal cube,
is not at all obviously related to the objective.

But, from a modern perspective, the key insight in his derivation was
to transform the cubic problem into a quadratic problem. This simple,
yet brilliant step is suggestive of a method for solving equations of even
higher degrees. However, note that in algebra, the Abel-Ruffini theorem
(also known as Abel’s impossibility theorem) states that there is no general
algebraic solution – that is, solution in radicals – to polynomial equations
of degree five or higher.

The content of the Abel-Ruffini theorem is frequently misunderstood. The
theorem only concerns the form that such a solution must take. It does
not assert that higher-degree polynomial equations are unsolvable. In fact,
the opposite is true: every non-constant polynomial equation in one un-
known, with real or complex coefficients, has at least one complex number
as solution; this is the fundamental theorem of algebra, which can also
be stated equivalently as: every non-zero single-variable polynomial with
complex coefficients has exactly as many complex roots as its degree, if
each root is counted up to its multiplicity. The reader should note that in
these definitions, the complex numbers C are considered to include the
real numbers R as a subset, so by the phrase "complex number" we do not
necessarily mean "purely imaginary number", which is a complex number
with real part precisely equal to zero, nor do we necessarily exclude the
pure reals.
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Although the solutions cannot always be expressed exactly with radicals,
they can be computed to any desired degree of accuracy using numerical
methods such as the Newton-Raphson method or Laguerre method, and
in this way they are no different from solutions to second, third or fourth
degree polynomials.

Simply plugging appropriate values into the algebraic equation allows us
to easily find a solution for Cardano’s example x3 + 6x = 20,

x =
3

√
10 +

√
108− 3

√
−10 +

√
108

which is obviously a "solution by radicals" as the saying goes.

Surprisingly, this complicated expression is equivalent to the number 2, as
one may check through calculation. Also, as the reader may easily check,
x = 2 is indeed a solution of x3 + 6x = 20.

Now, having found one solution to the cubic, we are actually in a position
to find any others. Since x = 2 solves the above equation, we know that
x − 2 is a factor of x3 + 6x − 20. Long division will generate the other. In
this case, we have x3 + 6x− 20 = (x− 2)(x2 + 2x+ 10). The solutions to the
original cubic can be obtained by solving

x− 2 = 0 and x2 + 2x+ 10 = 0.

The quadratic equation above has no real solutions, so the cubic has x = 2
as its only real solution.

What about the general cubic of the form ax3 + bx2 + cx+ d = 0? Cardano
could solve the depressed cubic, but ultimately, despite Cardano’s brilliant
restatement of the method, it was del Ferro’s discovery how to do so.
Cardano himself made the great discovery that, by means of an appropriate
substitution, the general equation could be replaced by a related depressed
cubic that was susceptible to solution. Overall, the process looks like this:

1. Depress the cubic: Achieved by substituting into the original cubic an
appropriate substitution formula in a new variable, say y. (Cardano)

2. Solve the depressed cubic: Find y in terms of the depressed cubic’s
variables, say m and n. (del Ferro)
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3. Recover the value of the original general cubic’s variable, say x, in
terms of y, using the substitution formula. (Cardano)

Before we demonstrate the depressing process for the cubic, it is instructive
to see the effect of applying it to quadratic equations. Suppose we have a
general second-degree equation

ax2 + bx+ c = 0 where a 6= 0.

To depress the quadratic – that is, to eliminate ita first-power term – we
substitute x = y − b/2a, which leads to

a

(
y − b

2a

)2

+ b

(
y − b

2a

)
+ c = 0,

a

(
y2 − b

a
y +

b2

4a2

)
+ by − b2

2a
+ c = 0,

ay2 − by +
b2

4a
+ by − b2

2a
+ c = 0.

After cancellation, then by rearranging, we arrive at the depressed quadratic

ay2 =
b2

2a
− b2

4a
− c =

b2 − 4ac

4a
.

We have

y2 =
b2 − 4ac

4a2
and y =

±
√
b2 − 4ac

2a
.

And as a final step we calculate,

x = y − b

2a
=
±
√
b2 − 4ac

2a
− b

2a
=
−b±

√
b2 − 4ac

2a

which is the familiar quadratic formula.

So, we see that depressing polynomials can be rather useful. Now let’s
attack the general cubic. In this case, the appropriate substitution turns
out to be x = y − b/3a, giving us

a

(
y − b

3a

)3

+ b

(
y − b

3a

)2

+ c

(
y − b

3a

)
+ d = 0.
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Simply expand this to get(
ay3 − by2 +

b2

3a
y − b3

27a2

)
+

(
by2 − 2b2

3a
y +

b3

9a2

)
+

(
cy − cb

3a

)
+ d = 0.

All we have to do here is make a single key observation: the y2 terms will
cancel out. The new depressed cubic will lack a second-degree term as
desired. Now, if we divide through by a, the resulting equation will of
course take the form y3 + py = q. We solve this as before, and from there
easily determine x = y − b/3a.

As an example, consider the cubic

2x3 − 30x2 + 162x− 350 = 0.

Using the substitution x = y − b/3a = y − (−30/6) = y + 5, we have

2(y + 5)3 − 30(y + 5)2 + 162(y + 5)− 350 = 0,

which when simplified becomes

2y3 + 12y − 40 = 0 or simply y3 + 6y = 20.

But this is the depressed cubic solved earlier, so we know y = 2. So we find
x = y + 5 = 7, and this checks in the original cubic equation.

This seems to have brought matters to a conclusion. The cubic had been
solved. But wait! Cardano’s formula introduced something mysterious.

Consider the depressed cubic x3−15x = 4, for example. Inserting the values
m = −15 and n = 4 into Cardano’s formula, we get

x =
3

√
2 +
√
−121− 3

√
−2 +

√
−121.

Mathematicians were hardly comfortable with negative numbers in the
sixteenth century. This had much to do with the strong emphasis on geo-
metric thinking – there is no such thing as a negative amount of distance
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in classical geometry. So the square roots of negative numbers seemed
absolutely preposterous to them. Thus, it was natural for them to dismiss
an example such as this as an "unsolvable cubic". However, the cubic
above has three different and purely real solutions: x = 4 and x = −2±

√
3.

What were mathematicians to make of these cases? Though he did spend
some time on the subject, Cardano ultimately dismissed the business of
complex numbers as being "as subtle as it is useless."

It would be many years before Rafael Bombelli (1526-1573), in his 1572
treatise Algebra, asserted the necessity of complex numbers as a vehicle
to transport the mathematician from the real cubic to its real solutions. In
certain cases, though we begin and end in the familiar terrain of real num-
bers, complex numbers are absolutely necessary to complete the journey.

Let’s examine briefly Bombelli’s work. We cube the complex number 2+
√
−1

to get

(2 +
√
−1)3 = 8 + 12

√
−1− 6−

√
−1

= 2 + 11
√
−1 = 2 +

√
−121.

But if (2 +
√
−1)3 = 2 +

√
−121, then it certainly follows that

3

√
2 +
√
−121 = 2 +

√
−1. (2.2)

In a similar way, we can also see that

3

√
−2 +

√
−121 = −2 +

√
−1.

Concerning the cubic x3 − 15x = 4, Bombelli arrived at

x =
3

√
2 +
√
−121− 3

√
−2 +

√
−121

= (2 +
√
−1)− (−2 +

√
−1) = 4

which is one of the correct answers.

Bombelli’s observation raises more questions than it answers. How does
one know the truth of Equation 2.2 beforehand? Bombelli was essentially
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walking "backwards" into the problem. The world would have to wait until
the middle of the eighteenth century for Leonhard Euler to discover a
sure-fire technique for finding roots of complex numbers (in a "forward"
direction). And what exactly are these complex numbers, and how were
they different than real numbers? The full scope of the importance of
complex numbers was not realized until the work of Euler, Gauss and
Cauchy, over two centuries after Bombelli’s work.

The work of del Ferro and Cardano created a need for the recognition of
complex numbers, whereas Bombelli was the first to actually give that
recognition. Bombelli was the first to teach the art of correct formal com-
putation with complex numbers.

Now, a few things need explicit mentioning here. Contrary to popular belief,
or what may seem to be implied in some textbooks, complex numbers did
not enter the realm of mathematics out of a need to solve quadratics. Com-
plex numbers entered as a tool for solving cubics. Mathematicians could
more easily dismiss

√
−121 when it appeared as a solution to x2 + 121 = 0,

which has no real solutions. But they could not so easily dismiss
√
−121

when it played such a key role in arriving at the solution x = 4 for the
previous cubic. It was the relation of complex numbers to cubics, not
quadratics, that made complex numbers interesting, which eventually led
to their legitimization.

Nevertheless, the fact that
√
−1 is a solution to x2 + 1 = 0 does give a per-

fectly valid illustration of the utility of complex numbers, and the mythology
concerning the role of the quadratics might be preferable in some situa-
tions, in terms of expedience. In the rest of this work, we usually adhere
to this mythology, for that very reason.

Also note the following nuance in nomenclature. Cardano’s name is usu-
ally spelled Cardan in the English language. We shall forgive the minor
alteration and use the name Cardan in the rest of this book, for no other
reason but consistency with the greater part of the mathematical literature.
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The Complex Field

In the 16th century, Cardan reluctantly worked with complex numbers in
solving quadratic and cubic equations. Later in the 18th century, functions
involving

√
−1 were found by Euler that were solutions to differential

equations. In a letter dated October 18, 1740 to John Bernoulli, Euler
wrote that the solution to the differential equation

d2y

dx2
+ y = 0, y(0) = 2, y′(0) = 0

can be written in two ways:

y(x) = 2 cosx

y(x) = ex
√
−1 + e−x

√
−1.

It became more and more apparent over time, as manipulations involving
complex numbers became more common, that many problems in real
mathematics could be more easily solved using complex mathematics.
Complex numbers gained wider acceptance after Gauss developed the geo-
metric representation of complex numbers, presented in April of 1831 in a
memoir to the Royal Society of Göttingen. Gauss realized that capturing
the intuitive meaning of complex numbers was sufficient to admit the
numbers into the practice of mathematics. But the first formal definition
was given by William Hamilton in a paper presented in June of 1835 to the
Irish Academy titled "Theory of Conjugate Functions or Algebraic Couples:
with a Preliminary Essay on Algebra as a Science of Pure Time." The paper
was partly metaphysical, which we skip over, but with the mathematics
contained therein we begin and consider the field of complex numbers.

53
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3.1 The Complex Field

A group is an algebraic structure consisting of a set together with an
operation that combines any two of its elements to form a third element.
To qualify as a group, the set and the operation must satisfy a few con-
ditions called group axioms, namely closure, associativity, identity and
invertibility. An abelian group, also called a commutative group, is a group
in which the result of applying the group operation to two group elements
does not depend on their order.

A ring is an algebraic structure consisting of a set together with two binary
operations usually called addition and multiplication, where the set is an
abelian group under addition. A commutative ring is a ring in which the
multiplication operation is commutative.

A field is a commutative ring whose nonzero elements form a group under
multiplication. The complex numbers form a field, the complex field, which
is denoted by the symbol C.

As we shall soon see, complex numbers can be written in the form a+ bi,
where a, b ∈ R and i =

√
−1. But such a statement is not a formal definition,

for it assumes that
√
−1 makes sense in any system. The existence of a

system in which a quantity such as
√
−1 does make sense is what needs

to be established. Furthermore, the operations of "addition" and "multipli-
cation" that appear in the expression a+ bi have not been defined in terms
of such a system. Hamilton’s formal definition that follows defines these
operations in terms of ordered pairs.

The complex field C is the set of ordered pairs or real numbers (a, b) with
addition and multiplication defined by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac− bd, ad+ bc).
(3.1)

The associative and commutative laws for addition and multiplication as
well as the distributive law are a direct consequence of the very same
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properties for the real numbers. The additive identity, what we shall call
"zero", is (0, 0) and the additive inverse of (a, b) is (−a,−b). The multiplica-
tive identity is (1, 0).

Now to find the multiplicative inverse of any nonzero (a, b):

Set

(a, b)(x, y) = (1, 0),

Then

ax− by = 1

bx+ ay = 0.

As the reader can easily verify, the system of equations has solutions

x =
a

a2 + b2
, y =

−b
a2 + b2

.

The complex numbers thus form a field.

The subset of C having the form (a, 0) is isomorphic to R, meaning all
operations are preserved. (0, 1) is

√
−1 since

(0, 1)(0, 1) = (−1, 0) = −1 and we denote i = (0, 1) =
√
−1.

Hamilton’s formality is important for understanding why complex numbers
are written the way they are; they are written in the form a + bi because
any complex number (a, b) can be written as

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1) = a+ bi.

Consider a complex number z = (x, y). x is called the real part and y the
imaginary part of z, written

x = Re z, y = Im z.

By definition, two complex numbers are equal if and only if their real
parts are equal and their imaginary parts are equal. i = (0, 1) is called the
imaginary unit. If x = 0, then z = iy and is called pure imaginary.
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The notation z = x+ iy for complex numbers is exclusively used in practice.
For addition it gives

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

For multiplication it gives the following very simple recipe. Multiply each
term by each term and use i2 = −1 when it occurs:

(x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1).

Example 3.1. Let z1 = 8 + 3i and z2 = 9 − 2i. Then Re z1 = 8, Im z1 = 3,
Re z2 = 9, Im z2 = −2 and

z1 + z2 = (8 + 3i) + (9− 2i) = 17 + i

z1z2 = (8 + 3i)(9− 2i) = (72 + 6) + i(−16 + 27) = 78 + 11i

�

Subtraction and division are defined as the inverse operations of addition
and multiplication, respectively. Thus the difference z = z1 − z2 is the
complex number z for which z1 = z + z2. Hence,

z1 − z2 = (x1 − x2) + i(y1 − y2). (3.2)

The quotient z = z1/z2 (z2 6= 0) is the complex number z for which z1 =
zz2. The practical way to get the rule is by multiplying numerator and
denominator of z1/z2 by x2 − iy2 and simplifying:

z =
x1 + iy1
x2 + iy2

=
(x1 + iy1)(x2 − iy2)
(x2 + iy2)(x2 − iy2)

=
x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

. (3.3)

Example 3.2. For z1 = 8 + 3i and z2 = 9− 2i we get

z1 − z2 = (8 + 3i)− (9− 2i) = −1 + 5i

z1
z2

=
8 + 3i

9− 2i
=

(8 + 3i)(9 + 2i)

(9− 2i)(9 + 2i)
=

66 + 43i

81 + 4
=

66

85
+ i

43

85

�
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Properties of addition and multiplication are the same as for real numbers,
from which they follow (here, −z = −x− iy):

Commutative laws:

z1 + z2 = z2 + z1

z1z2 = z2z1

Associative laws:

(z1 + z2) + z3 = z1 + (z2 + z3)

(z1z2)z3 = z1(z2z3)

Distributive law:

z1(z2 + z3) = z1z2 + z1z3

We also have:

0 + z = z + 0 = z

z + (−z) = (−z) + z = 0

z · 1 = z

3.2 The Complex Plane

This was algebra. Now comes geometry: the geometrical representation of
complex numbers as points in the plane. This is of great practical impor-
tance. The idea is quite simple and natural. We choose two perpendicular
coordinate axes, the horizontal x-axis, called the real axis, and the vertical
y-axis, called the imaginary axis. On both axes we choose the same unit of
length.

This is called a Cartesian coordinate system. We now plot a given complex
number z = (x, y) = x+ iy as the point P with coordinates x, y. The xy-plane
in which the complex numbers are represented in this way is called the
complex plane. The complex plane is sometimes called the Argand dia-
gram, after the French mathematician Jean Robert Argand (1768-1822),
born in Geneva and later librarian in Paris. His paper on the complex
plane appeared in 1806, nine years after a similar memoir by the Norwe-
gian mathematician Casper Wessel (1745-1818), a surveyor of the Danish
Academy of Science.
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Figure 3.1: The
complex plane

Figure 3.2: The
number 4 − 3i in
the complex plane

Instead of saying "the point represented by z in the complex plane" we say
briefly and simply "the point z in the complex plane." This will cause no
misunderstandings. Addition and subtraction can now be visualized as
illustrated in the following figures.

Figure 3.3: Addition of
complex numbers

Figure 3.4: Subtraction
of complex numbers

3.3 Complex Conjugate Numbers

The complex conjugate z of a complex number

z = x+ iy is defined by z = x− iy
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and is obtained geometrically by reflecting the point z across the real axis,
as shown in the next figure.

Figure 3.5: Complex conjugate numbers

Conjugates are useful since zz = x2 + y2 is real. Moreover, addition and
subtraction yield z + z = 2x and z − z = 2iy, so that we can express the real
part and the imaginary part of z by the important formulas

Re z = x =
1

2
(z + z), Im z = y =

1

2i
(z − z). (3.4)

If z is real, z = x and z = z and conversely.

Working with conjugates is easy, since we have

(z1 + z2) = z1 + z2, (z1 − z2) = z1 − z2

(z1z2) = z1 z2,

(
z1
z2

)
=
z1
z2
.

Example 3.3. Let z1 = 4 + 3i and z2 = 2 + 5i. Then

Im z1 =
1

2i
[(4 + 3i)− (4− 3i)] =

3i+ 3i

2i
= 3

(z1z2) = (4 + 3i)(2 + 5i) = −7 + 26i = −7− 26i

z1 z2 = (4− 3i)(2− 5i) = −7− 26i

�
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Example 3.4. (Powers of the imaginary unit)
i2 = −1 since i2 = (0, 1)(0, 1) = (−1, 0) = −1 by the definition of complex
multiplication. Therefore,

i3 = −i, i4 = 1, i5 = i, . . .

From these it follows that

1

i
= −i, 1

i2
= −1,

1

i3
= i, . . . �

Example 3.5. Let z1 = 4− 5i and z2 = 2 + 3i. Find in the form x+ iy:

a) (z1 + z2)
2 = (6− 2i)2 = 32− 24i

b)
z2
z1

=
(2 + 3i)

(4− 5i)
· (4 + 5i)

(4 + 5i)
= − 7

41
+

22

41
i

�

Example 3.6. Find

a) Re
1

1 + i
= Re

[
1

1 + i
· 1− i

1− i

]
= Re

1− i
1 + 1

= Re

(
1

2
− 1

2
i

)
=

1

2

b) Im
3 + 4i

7− i
= Im

[
3 + 4i

7− i
· 7 + i

7 + i

]
= Im

(
17

50
+

31

50
i

)
=

31

50

c) Im
z

z
= Im

x+ iy

x− iy
· x+ iy

x+ iy
= Im

x2 − y2 + 2xyi

x2 + y2
=

2xy

x2 + y2

d) (1 + i)8 = (1 + i)2·4 = (2i)4 = 16

�
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Example 3.7. If the product of two complex numbers is zero, show that at
least one factor must be zero.

Proof. From the definition of complex multiplication we have,

x1x2 − y1y2 = 0

x1y2 + x2y1 = 0

Assume (x2, y2) 6= 0. Then (x1, y1) = (0, 0) because:

Solving for x1,

x1 =
y1y2
x2

, x1 =
−x2y1
y2

.

Substituting the first in the second equation,

y1y2
x2

y2 = −x2y1

y1y
2
2 = −y1x22

Now if y1 6= 0 then −x22 = y22 which is impossible.

∴ y1 = 0.

Since y1 = 0,

x1x2 − y1y2 = 0 =⇒ x1x2 = 0

and

x1y2 + x2y1 = 0 =⇒ x1y2 = 0

But we assumed (x2, y2) 6= 0,

∴ x1 = 0.
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3.4 Polar Form of Complex Numbers.

We can substantially increase the usefulness of the complex plane and
gain further insight into the nature of complex numbers if in addition to
the xy-coordinates we also employ the usual polar coordinates r, θ defined
by

x = r cos θ, y = r sin θ.

Then z = x+ iy takes the so-called polar form

z = r(cos θ + i sin θ) = reiθ.

r is called the absolute value or modulus of z and is denoted by |z|. Hence

|z| = r =
√
x2 + y2 =

√
zz.

Geometrically, |z| is the distance of the point z from the origin. Similarly,
|z1 − z2| is the distance between z1 and z2.

Figure 3.6: Complex
plane, polar form of a
complex number

Figure 3.7: Distance be-
tween two points in the
complex plane

θ is called the argument of z and is denoted arg z. Thus,

θ = arg z = arctan
y

x
(z 6= 0).

Geometrically, θ is the directed angle from the positive x-axis to OP. Here,
as in calculus, all angles are measured in radians and positive in the
counterclockwise sense.



3.4 Polar Form of Complex Numbers. 63

For z = 0 this angle θ is undefined. For given z 6= 0 it is determined only up
to integer multiples of 2π. The value of θ that lies in the interval −π < θ ≤ π
is called the principal value of the argument of z (6= 0) and is denoted Arg z.
Thus θ = Arg z satisfies by definition

−π < Arg z ≤ π.

Yet in many instances, it is proper to define a multivalued argument
function,

arg z ≡ Arg z + 2πn = θ + 2πn, n = 0,±1,±2, . . .

The multivalued argument function will become especially useful when we
study the properties of the complex logarithm and complex power func-
tions.

It is useful to have a straightforward, explicit formula for Arg z in terms of
arg z; this is not simply a matter of subtracting 2πn from each side however,
for that would make Arg z multivalued. First we introduce some notation:
bxc designates the greatest integer function applied to x; it means the
largest integer less than or equal to the real number x. That is to say, bxc
is the unique integer that satisfies the inequality

x− 1 < bxc ≤ x for real x and integer bxc.

For example, b1.7c = 1 and b−0.4c = −1. With this notation, one can write
Arg z in terms of arg z as

Arg z = arg z + 2π

⌊
1

2
− arg z

2π

⌋
.

It is straightforward to check that Arg z does indeed fall within the principal
interval −π < θ ≤ π.

One should not plainly identify Arg z with arctan(y/x). The real function
arctanx is multivalued for real values of x. It is conventional to introduce
a single-valued real arctangent function, called the principal value of the
arctangent, which is denoted by Arctanx and satisfies −π

2
≤ Arctanx ≤

π
2
. Since −π < Arg z ≤ π it follows that Arg z cannot be identified with

Arctan(y/x) in all regions of the complex plane. The correct relation between
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these quantities is ascertained by considering the four quadrants of the
complex plane. The quadrants of the complex plane are called regions I
(upper right), II (upper left), III (lower left), and IV (lower right).

Table 3.1: Formulae for the argument of a
complex number z = x+ iy.

Quadrant Sign of x and y Arg z

I x > 0, y > 0 Arctan(y/x)
II x < 0, y > 0 π + Arctan(y/x)
III x < 0, y < 0 −π + Arctan(y/x)
IV x > 0, y < 0 Arctan(y/x)

The principal value of the argument of z = x+ iy in terms of its real part x
and imaginary part y is given in the above table, assuming z lies within one
of the four quadrants of the complex plane. Note that Arg z = Arctan(y/x)
is valid only in quadrants I and IV. If z lies within quadrants II or III, one
must add or subtract π to ensure that π

2
< Arg z < π or −π < Arg z < −π

2

respectively.

Table 3.2: Formulae for the argument of z = x + iy when z is
real or pure imaginary.

Quadrant Border type of z x and y conditions Arg z

IV/I positive real x > 0, y = 0 0
I/II pure imaginary, Im z > 0 x = 0, y > 0 π

2

II/III negative real x < 0, y = 0 π
III/IV pure imaginary, Im z < 0 x = 0, y < 0 −π

2

origin zero x = y = 0 undefined

For finite nonzero values of y/x, the principal values of the arctangent
function lie inside the interval 0 < Arctan(y/x) < π/2 if y/x > 0 and inside
the interval −π/2 < Arctan(y/x) < 0 if y/x < 0.
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Note that

Arctan(y/x) =


0, if y = 0 and x 6= 0,
π
2
, if x = 0 and y > 0,
−π

2
, if x = 0 and y < 0,

undefined, if x = y = 0.

We can view a multivalued function f(z) evaluated at z as a set of values,
each element of the set corresponding to a different choice of some integer
n. For example, given the multivalued function arg z whose principal value
is θ = Arg z, then arg z consists of the set of values:

arg z = {θ, θ + 2π, θ − 2π, θ + 4π, θ − 4π, . . .}.

Given two multivalued functions, for example f(z; θ + 2πn) and g(z; θ + 2πn),
where f(z; θ) and g(z; θ) are the principal values of f(z) and g(z) respectively,
then f(z) = g(z) if and only if for each point z, the corresponding set of
values of f(z) and g(z) precisely coincide:

{f(z), f(z; 2π), f(z;−2π), . . .}
= {g(z), g(z; 2π), g(z;−2π), . . .}

(3.5)

One may refer to the equation f(z) = g(z) as a set equality since all the
elements of the two sets in eqn. 3.5 must coincide (here the ordering of the
terms is not important and only distinct, rather than duplicate elements
matter, which may be deleted).

To understand how the set equality of two multivalued functions works,
consider the multivalued function arg z. It is provable that

arg(z1z2) = arg z1 + arg z2 (3.6)

arg

(
z1
z2

)
= arg z1 − arg z2 (3.7)

arg

(
1

z

)
= arg z = − arg z (3.8)

To prove eqn. 3.6, consider z1 = |z1|ei arg z1 and z2 = |z2|ei arg z2. The arguments
of these two complex numbers are: arg z1 = Arg z1 + 2πn1 and arg z2 =
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Arg z2 + 2πn2, where n1 and n2 are arbitrary integers. One can also write
z1 = |z1|eiArg z1 and z2 = |z2|eiArg z2 since e2πin = 1 for any integer n. It then
follows that

z1z2 = |z1z2|ei(Arg z1+Arg z2)

where we used |z1||z2| = |z1z2|. So we have established that

arg z1 + arg z2 = Arg z1 + Arg z2 + 2π(n1 + n2)

arg(z1z2) = Arg z1 + Arg z2 + 2πn12

where n1, n2 and n12 are arbitrary integers. Thus, arg z1 + arg z2 and arg(z1z2)
coincide as sets, and so eqn. 3.6 is confirmed. One can prove eqns. 3.7
and 3.8 similarly. In particular, if one writes z = |z|ei arg z and employs the
definition of the complex conjugate (which yields |z| = |z| and z = |z|e−i arg z),
then it follows that arg

(
1
z

)
= arg z = − arg z. As an example, consider the

last relation in the case of z = −1. It then follows that

arg(−1) = − arg(−1)

as a set equality. This is not paradoxical since the sets

arg(−1) = {±π,±3π, . . .} and − arg(−1) = {∓π,∓3π, . . .}

coincide, as they possess the same list elements.

For clarity, consider the surprising fact

arg z2 6= 2 arg z.

To see why this inequality is surprising, consider the following false proof.
Use eqn. 3.6 with z1 = z2 = z to derive:

arg z2 = arg z + arg z
?
= 2 arg z (false)

The false step is the one indicated by the symbol ?
= above. Given z = |z|ei arg z,

one finds that z2 = |z|2ei(2Arg z+2πn) = |z|2e2iArg z, and so the possible values of
arg(z2) are:

arg(z2) = {2 Arg z, 2 Arg z ± 2π, 2 Arg z ± 4π, . . .},
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whereas the possible values of 2 arg z are:

2 arg z = {2 Arg z, 2(Arg z ± 2π), 2(Arg z ± 4π), . . .}
= {2 Arg z, 2 Arg z ± 4π, 2 Arg z ± 8π, . . .}

Therefore, 2 arg z is a subset of arg(z2), and half the elements of arg(z2) are
missing from 2 arg z. These are therefore unequal sets.

Here is one more example of an incorrect proof. Consider eqn. 3.7 with
z1 = z2 = z. Then one may be tempted to write:

arg
(z
z

)
= arg(1) = arg z − arg z

?
= 0.

This is clearly wrong since arg(1) = 2πn, where n is the set of integers. The
fallacy of the questionable statement is the same as above. When you
subtract arg z as a set from itself, the element chosen from the first set
need not be the same as the element chosen from the second set.

The properties of the principal value Arg z are not as simple as those
given in eqns. 3.6-3.8, since the range of Arg z is restricted to lie within
the principal range −π < Arg z ≤ π. Instead, the following relations are
satisfied:

Arg(z1z2) = Arg z1 + Arg z2 + 2πN+ (3.9)

Arg(z1/z2) = Arg z1 − Arg z2 + 2πN− (3.10)

where the integers N± are determined as follows:

N± =


−1, if Arg z1 ± Arg z2 > π,
0, if − π < Arg z1 ± Arg z2 ≤ π,
1, if Arg z1 ± Arg z2 ≤ −π.

If we set z1 = 1 in eqn. 3.10, we find that

Arg

(
1

z

)
= Arg z =

{
Arg z, if Im z = 0 and z 6= 0,
−Arg z, if Im z 6= 0.

Note that for z real, both 1/z and z are also real so that in this case z = z
and Arg(1/z) = Arg z = Arg z.
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If n is an integer, then

arg zn = arg z + arg z + · · ·+ arg z 6= n arg z,

where the final inequality was noted in the case of n = 2 earlier. But the
corresponding property of Arg z is much simpler:

Arg(zn) = nArg z + 2πNn,

where the integer Nn is given by

Nn =

⌊
1

2
− n

2π
Arg z

⌋
where b·c is the greatest integer function introduced earlier.

Example 3.8. Polar form of complex numbers. Principal value.

Let z = 1 + i.

Then

z =
√

2
(

cos
π

4
+ i sin

π

4

)
, |z| =

√
2,

arg z =
π

4
± 2nπ, n = 0, 1, . . .

Arg z =
π

4

�
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Example 3.9. Polar form of complex numbers. Principal value.

Let z = 3 + 3
√

3i.

θ = Arctan

(
3
√

3

3

)
= Arctan(

√
3) = Arctan

(√
3/2

1/2

)
=
π

3

r =

√
32 + (3

√
3)2 =

√
9 + 27 =

√
36 = 6

z = 6ei
π
3

Arg z =
π

3

�

Example 3.10. Polar form of complex numbers. Principal value.

Let z = −3 + 3
√

3i.

θ = Arctan

(
3
√

3

−3

)
+ π = −π

3
+ π =

2π

3

z = 6ei
2π
3

Arg z =
2π

3

�

Triangle inequality. For any complex numbers we have the important
triangle inequality

|z1 + z2| ≤ |z1|+ |z2| (3.11)

which we will use quite frequently. This inequality follows by noting that
the three points 0, z1, and z1 + z2 are the vertices of a triangle with sides
|z1|, |z2| and |z1 + z2|, and one side cannot exceed the sum of the other two
sides.
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Figure 3.8: Triangle inequality

Proof. Eqn. 3.11 holds when z1 + z2 = 0. Let z1 + z2 6= 0 and c = a + ib =
z1/(z1 + z2).

Note that |Re z| ≤ |z| and | Im z| ≤ |z| so we have

|a| ≤ |c|, |a− 1| ≤ |c− 1|.
Thus |a|+ |a− 1| ≤ |c|+ |c− 1|.

Clearly |a|+ |a− 1| ≥ 1.

Taken together we have the inequality

1 ≤ |c|+ |c− 1| =
∣∣∣∣ z1
z1 + z2

∣∣∣∣+

∣∣∣∣ z2
z1 + z2

∣∣∣∣ .
Multiply by |z1 + z2| to get

|z1 + z2| ≤ |z1|+ |z2|.

Example 3.11. If z1 = 1 + i and z2 = −2 + 3i, then

|z1 + z2| = | − 1 + 4i| =
√

17 = 4.123 <
√

2 +
√

13 = 5.020.

�

Generalized triangle inequality. By induction we obtain from eqn. 3.11 for
any sum

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|;
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that is, the absolute value of a sum cannot exceed the sum of the absolute
values of the terms.

3.5 Multiplication and Division in Polar Form. Powers

This will give us a better understanding of multiplication and division. Let

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).

By the definition of complex multiplication, the product is at first

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)].

Application of trigonometric identities yields

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] = r1r2e
i(θ1+θ2). (3.12)

Taking absolute values and arguments on both sides, we thus obtain the
important rules

|z1z2| = |z1||z2|

and

arg(z1z2) = arg z1 + arg z2 (up to multiples of 2π)

The quotient z = z1/z2 is the number z satisfying zz2 = z1. Hence |zz2| =
|z||z2| = |z1| and arg(zz2) = arg z + arg z2 = arg z1. This yields∣∣∣∣z1z2

∣∣∣∣ =
|z1|
|z2|

(z2 6= 0)

and

arg
z1
z2

= arg z1 − arg z2 (up to multiples of 2π).
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By combining these formulas we have

z1
z2

=
r1
r2

[cos(θ1 − θ2) + i sin(θ1 − θ2)] =
r1
r2
ei(θ1−θ2). (3.13)

Example 3.12. Let z1 = −2 + 2i and z2 = 3i. Then

z1z2 = −6− 6i

z1
z2

=
2

3
+

2

3
i.

Hence

|z1z2| = 6
√

2 = |z1||z2| = 3
√

8,∣∣∣∣z1z2
∣∣∣∣ =

2
√

2

3
=
|z1|
|z2|

,

and for the arguments we obtain Arg z1 = 3π/4, Arg z2 = π/2,

Arg z1z2 = −3π

4
= Arg z1 + Arg z2 − 2π,

Arg
z1
z2

=
π

4
= Arg z1 − Arg z2.

�

Integer powers of z. From the formula for polar multiplication we have

z2 = r2(cos 2θ + i sin 2θ) = r2ei2θ.

Inverting this, we have

z−2 = r−2[cos(−2θ) + i sin(−2θ)] = r−2e−i2θ,

and more generally, for any integer n,

zn = rn(cosnθ + i sinnθ) = rneinθ. (3.14)
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Example 3.13. Formula of De Moivre. For |z| = r = 1, eqn. 3.14 yields the
so-called formula of De Moivre

(cos θ + i sin θ)n = cosnθ + i sinnθ.

This formula is useful for expressing cosnθ and sinnθ in terms of cos θ and
sin θ. For instance, if n = 2,

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2 cos θ sin θi

= cos 2θ + i sin 2θ

We get the familiar formulas by equating the real and imaginary parts of
both sides:

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1,

sin 2θ = 2 cos θ sin θ.

This shows that complex methods often simplify the derivation of real
formulas. �

3.6 Roots

If z = ωn (n = 1, 2, . . .), then to each value of ω there corresponds one value
of z. Conversely, to a given z 6= 0 there correspond precisely n distinct
values of ω. Each of these values is called an nth root of z, and we write

ω = n
√
z.

Hence this symbol is multivalued, namely, n-valued, in contrast to the
usual conventions made in real calculus. The n values of n

√
z can easily be

obtained as follows. In terms of polar forms for z and

ω = R(cosφ+ i sinφ),

the equation ωn = z becomes

ωn = Rn(cosnφ+ i sinnφ) = z = r(cos θ + i sin θ).

By equating the absolute values on both sides we have

Rn = r, thus R = n
√
r
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where the root is real positive and thus uniquely determined. By equating
the arguments we obtain

nφ = θ + 2kπ, thus φ =
θ

n
+

2kπ

n

where k is an integer.

For k = 0, 1, . . . , n − 1 we get n distinct values of ω. Further integers of k
would give values already obtained. For instance, k = n gives 2kπ/n = 2π,
hence the ω corresponding to k = 0, etc. Consequently, n

√
z, for z 6= 0, has

the n distinct values

n
√
z = n
√
r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
(3.15)

where k = 0, 1, . . . , n − 1. These n values lie on a circle of radius n
√
r with

center at the origin and constitute the vertices of a regular polygon of n
sides. The value of n

√
z obtained by taking θ = Arg z and k = 0 in eqn. 3.15

is called the principal value of ω = n
√
z.

Example 3.14. Square root.

From eqn. 3.15 it follows that ω =
√
z has the two values

ω1 =
√
r

(
cos

θ

2
+ i sin

θ

2

)
(3.16)

and

ω2 =
√
r

[
cos

(
θ

2
+ π

)
+ i sin

(
θ

2
+ π

)]
= −ω1

which lie symmetric with respect to the origin. For instance, the square
root of 4i has the values

√
4i = ±2

(
cos

π

4
+ i sin

π

4

)
= ±(

√
2 + i

√
2).
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It follows from eqn. 3.16 that if we use the trigonometric identities

cos
θ

2
=

√
1

2
(1 + cos θ), sin

θ

2
=

√
1

2
(1− cos θ),

multiply them by
√
r,

√
r cos

θ

2
=

√
1

2
(r + r cos θ),

√
r sin

θ

2
=

√
1

2
(r − r cos θ),

use r cos θ = x, and finally choose the sign of Im
√
z so that

sign[(Re
√
z)(Im

√
z)] = sign y

such that ω2 = −ω1, we obtain the much more practical formula

√
z = ±

[√
1

2
(|z|+ x) + (sign y)i

√
1

2
(|z| − x)

]
where sign y = 1 if y ≥ 0, sign y = −1 if y < 0, and all square roots of positive
numbers are taken with the positive sign.

�

Example 3.15. Complex quadratic equation.

Solve z2 − (5 + i)z + 8 + i = 0.

Utilizing the quadratic formula and our equation from above, we have

z =
1

2
(5 + i)±

√
1

4
(5 + i)2 − 8− i =

1

2
(5 + i)±

√
1

4
(24 + 10i)− 8− i

=
1

2
(5 + i)±

√
6 +

5

2
i− 8− i =

1

2
(5 + i)±

√
−2 +

3

2
i

=
1

2
(5 + i)±

[√
1

2

(
5

2
+ (−2)

)
+ i

√
1

2

(
5

2
− (−2)

)]

=
1

2
(5 + i)±

[
1

2
+

3

2
i

]
=

{
3 + 2i
2− i.

�
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Example 3.16. nth root of unity. Unit circle.

Solve the equation zn = 1.

From the equation for the nth root of a complex number we obtain

n
√

1 = cos
2kπ

n
+ i sin

2kπ

n
, k = 0, 1, . . . , n− 1.

If ω denotes the value corresponding to k = 1, then the n values of n
√

1 can
be written as 1, ω, ω2, . . . , ωn−1. These values are the vertices of a regular
polygon of n sides inscribed in the unit circle (the circle of radius 1 with
center 0), with one vertex at the point 1. Each of these n values is called
an nth root of unity. For instance, 3

√
1 = 1,−1

2
±
√
3
2
i and 4

√
1 = 1, i,−1,−i.

Figure 3.9: 3
√

1 Figure 3.10: 4
√

1

If w1 is any nth root of an arbitrary complex number z, then the n values of
n
√
z are

w1, w1ω,w1ω
2, . . . , w1ω

n−1

since multiplying w1 by ωk corresponds to increasing the argument of w1

by 2kπ/n. �
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Example 3.17. Find the five exact algebraic expressions for the 5th roots
of unity 5

√
1.

solution:

First off we know ω0 = 1.

Next, we know ω1 = cos 2π
5

+ i sin 2π
5

, but this is not an algebraic expression.

Exact values of cos 2π
5

and sin 2π
5

are not commonly known, so we must find
them.

We’ll start by making the observation

cos

(
4π

5

)
= cos

(
6π

5

)
.

So if θ = 2π
5

we have cos 2θ = cos 3θ. Next derive identities for cos 2θ and cos 3θ
in terms of cos θ. Use De Moivre’s formula and the fact sin2 θ + cos2 θ = 1.

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + (2 cos θ sin θ)i

= cos 2θ + i sin 2θ

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1

sin 2θ = 2 cos θ sin θ

(cos θ + i sin θ)3 = (cos2 θ − sin2 θ + (2 cos θ sin θ)i)(cos θ + i sin θ)

= cos3 θ − sin2 θ cos θ − 2 cos θ sin2 θ

+ (cos2 θ sin θ − sin3 θ + 2 cos2 θ sin θ)i

= cos 3θ + i sin 3θ

cos 3θ = cos3 θ − (1− cos2 θ) cos θ − 2 cos θ(1− cos2 θ)

= cos3 θ + cos3 θ − cos θ − 2 cos θ + 2 cos3 θ

= 4 cos3 θ − 3 cos θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ

= 3(1− sin2 θ) sin θ − sin3 θ

= 3 sin θ − 4 sin3 θ
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So we have cos 2θ = 2 cos2 θ− 1 and cos 3θ = 4 cos3 θ− 3 cos θ and the condition
cos 2θ = cos 3θ.

Replacing cos θ by x:

4x3 − 2x2 − 3x+ 1 = 0

(x− 1)(4x2 + 2x− 1) = 0

We know that x 6= 1, so we are left to solve the quadratic part:

x =
−2±

√
22 − 4 · 4 · (−1)

2 · 4

x =
−2±

√
20

8
Since x > 0,

x = cos

(
2π

5

)
=
−1 +

√
5

4
.

Now to solve for sin
(
2π
5

)
.

We already know

sin 2θ = 2 sin θ cos θ = 2 sin θ

(
−1 +

√
5

4

)
and

sin 3θ = 3 sin θ − 4 sin3 θ.

Note that

sin

(
4π

5

)
= − sin

(
6π

5

)
,

so sin 2θ = − sin 3θ if θ = 2π
5

.

So we have

2

(
−1 +

√
5

4

)
sin θ = −3 sin θ + 4 sin3 θ
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Replacing sin θ by y:

4y3 − 3y − 2

(
−1 +

√
5

4

)
y = 0

4y3 − 5 +
√

5

2
y = 0

4y2 − 5 +
√

5

2
= 0

y =

√
5 +
√

5

8

So we have

ω1 =
1

4
(−1 +

√
5) + i

√
5 +
√

5

8

Figure 3.11: 5
√

1
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Next we calculate ω2 = ω1ω1, ω3 = ω2ω1, and ω4 = ω3ω1. The results are:

ω0 = 1

ω1 =
1

4
(−1 +

√
5) + i

√
5 +
√

5

8

ω2 = −1

4
(1 +

√
5) + i

√
5−
√

5

8

ω3 = −1

4
(1 +

√
5)− i

√
5−
√

5

8

ω4 =
1

4
(−1 +

√
5)− i

√
5 +
√

5

8

�

3.7 Review Examples

Example 3.18. (Multiplication by i) Show that multiplication of a complex
number by i corresponds to a counterclockwise rotation of the correspond-
ing vector through the angle π/2.

arg(z1z2) = arg z1 + arg z2

arg(z1i) = arg z1 + arg i = arg z1 +
π

2

�

Example 3.19. Find

a) |1.5 + 2i| =
√

1.52 + 22 =
√

6.25 = 2.5

b) | cos θ + i sin θ| =
√

cos2 θ + sin2 θ =
√

1 = 1

c)
∣∣∣∣5 + 7i

7− 5i

∣∣∣∣ =

∣∣∣∣5 + 7i

7− 5i
· 7 + 5i

7 + 5i

∣∣∣∣ =

∣∣∣∣74i

74

∣∣∣∣ = |i| =
√

02 + 12 = 1



3.7 Review Examples 81

d)
∣∣∣∣ (1 + i)6

i3(1 + 4i)2

∣∣∣∣
(1 + i)2 = 2i

(1 + i)6 = (2i)3 = −8i

(1 + 4i)2 = −15 + 8i

i3 = −i∣∣∣∣ (1 + i)6

i3(1 + 4i)2

∣∣∣∣ =

∣∣∣∣ −8i

8 + 15i

∣∣∣∣ =

∣∣∣∣ −8i

8 + 15i
· 8− 15i

8− 15i

∣∣∣∣
=

∣∣∣∣120− 64i

64 + 225

∣∣∣∣ =

∣∣∣∣120− 64i

289

∣∣∣∣
=

√(
120

289

)2

+

(
64

289

)2

=

√
14400

2892
+

4096

2892

=

√
18496

2892
=

136

289
· 1/17

1/17
=

8

17

�

Example 3.20. Represent in polar form:

a) 1 + i =
√

2(cos
π

4
+ i sin

π

4
)

b) 6 + 8i

r =
√

36 + 64 =
√

100 = 10

θ = Arg z = Arctan
8

6
= 0.927

6 + 8i = 10(cos 0.927 + i sin 0.927)

c)
i
√

2

4 + 4i

i
√

2

4 + 4i
· 4− 4i

4− 4i
=

4
√

2 + i4
√

2

16 + 16
=

4 + 4i

32/
√

2

=
4 + 4i

16
√

2
=

1 + i

4
√

2
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r =

√
1

32
+

1

32
=
√

1/16 = 1/4

θ = π/4

i
√

2

4 + 4i
=

1

4

(
cos

π

4
+ i sin

π

4

)
d)

2 + 3i

5 + 4i

2 + 3i

5 + 4i
=

2 + 3i

5 + 4i
· 5− 4i

5− 4i
=

22 + 7i

41

r =

√(
22

41

)2

+

(
7

41

)2

= 0.563

θ = Arctan

(
7

22

)
= 0.308

2 + 3i

5 + 4i
= 0.563(cos 0.308 + i sin 0.308)

�

Example 3.21. Determine the principal value of the arguments of

a) −10− i

θ = Arctan
−1

−10
− π = Arctan

1

10
− π = −3.042

b) 2 + 2i

θ = Arctan 1 =
π

4

�
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Example 3.22. Represent in the form x+ iy:

a) 2
√

2

(
cos

3π

4
+ i sin

3π

4

)

2
√

2 =
√

8 =
√

4 + 4 =
√

22 + 22

|x| = |y| = 2

θ =
3π

4
x+ iy = −2 + 2i

b) cos(−1.8) + i sin(−1.8) = −0.227− 0.974i numerically. �

Example 3.23. Find all values of the following roots.

a)
√
−8i

n
√
z = n
√
r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
ω =
√
z has two values k = 0, 1.

ω1 =
√
r

(
cos

θ

2
+ i sin

θ

2

)
ω2 =

√
r

[
cos

(
θ

2
+ π

)
+ i sin

(
θ

2
+ π

)]
= −ω1

−8i = 8 exp
(
−iπ

2

)
ω1 = 2

√
2
[
cos
(
−π

4

)
+ i sin

(
−π

4

)]
= 2
√

2

[√
2

2
+ i

(
−
√

2

2

)]
= 2− 2i

ω2 = −ω1 = −2 + 2i
√
−8i = ±(2− 2i)
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b) 8
√

1

ω0 = 1

ω1 = cos
2π

8
+ i sin

2π

8
= cos

π

4
+ i sin

π

4
=

1√
2

+
1√
2
i

ω2 = ω1ω1 =

(
1√
2

+
1√
2
i

)(
1√
2

+
1√
2
i

)
= i

ω3 = ω2ω1 = i

(
1√
2

+
1√
2
i

)
= − 1√

2
+

1√
2
i

ω4 = ω3ω1 =

(
− 1√

2
+

1√
2
i

)(
1√
2

+
1√
2
i

)
= −1

ω5 = ω4ω1 = −1

(
1√
2

+
1√
2
i

)
= − 1√

2
− 1√

2
i

ω6 = ω5ω1 =

(
− 1√

2
− 1√

2
i

)(
1√
2

+
1√
2
i

)
= −i

ω7 = ω6ω1 = −i
(

1√
2

+
1√
2
i

)
=

1√
2
− 1√

2
i

In summary, 8
√

1 = ±1,±i,±(1± i)/
√

2.

c) 4
√
−1

(1 + i)2 = 2i =⇒ (1 + i)4 = −4 so a fourth root of −1 is
1 + i√

2
.

w1 =
1 + i√

2

The fourth roots of unity are 1, ω = i, ω2 = −1, ω3 = −i.

w2 = w1ω =
1 + i√

2
i = − 1√

2
+

1√
2
i

w3 = w1ω
2 =

1 + i√
2

(−1) = − 1√
2
− 1√

2
i

w4 = w1ω
3 =

1 + i√
2

(−i) =
1√
2
− 1√

2
i

In summary, 4
√
−1 = ±(1± i)/

√
2.
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d) 3
√

1 + i

1 + i: r =
√

2, θ = π/4

3
√

1 + i = 3
√
r

(
cos

π/4 + 2kπ

3
+ i sin

π/4 + 2kπ

3

)
, k = 0, 1, 2

3
√

1 + i =
6
√

2

(
cos

kπ

12
+ i sin

kπ

12

)
, k = 1, 9, 17

�

Example 3.24. Solve the equation z2 − (5 + i)z + 8 + i = 0.

Utilizing the quadratic formula and

√
z = ±

[√
1

2
(|z|+ x) + (sign y)i

√
1

2
(|z| − x)

]
we have

z =
1

2
(5 + i)±

√
1

4
(5 + i)2 − 8− i =

1

2
(5 + i)±

√
−2 +

3

2
i

=
1

2
(5 + i)±

[√
1

2

(
5

2
+ (−2)

)
+ i

√
1

2

(
5

2
− (−2)

)]

=
1

2
(5 + i)±

[
1

2
+

3

2
i

]
=

{
3 + 2i
2− i

�

Example 3.25. (Parallelogram equality)

Show that |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

Proof.

|z1|2 = x21 + y21
|z2|2 = x22 + y22

|z1 + z2|2 = (x1 + x2)
2 + (y1 + y2)

2 = x21 + x22 + 2x1x2 + y21 + y22 + 2y1y2

|z1 − z2|2 = (x1 − x2)2 + (y1 − y2)2 = x21 + x22 − 2x1x2 + y21 + y22 − 2y1y2

|z1 + z2|2 + |z1 − z2|2 = 2x21 + 2x22 + 2y21 + 2y22
= 2(|z1|2 + |z2|2)
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3.8 Topological Aspects of the Complex Plane

Sequences and Series. The concept of absolute value can be used to define
the notion of a limit of a sequence of complex numbers.

Definition 3.1. The sequence z1, z2, z3, . . . converges to z if the sequence of
real numbers |zn − z| converges to 0. That is, zn → z if |zn − z| → 0.

Geometrically, zn → z if each disc about z contains all but finitely many of
the members of the sequence {zn}.

Since

|Re z|, | Im z| ≤ |z| ≤ |Re z|+ | Im z|
zn → z if and only if Re zn → Re z and Im zn → Im z.

Example 3.26. Limits of sequences.

a) zn → 0 if |z| < 1 since |zn − 0| = |zn| → 0.
b)

n

n+ i
→ 1 since∣∣∣∣ n

n+ i
− 1

∣∣∣∣ =

∣∣∣∣ −in+ i

∣∣∣∣ =

∣∣∣∣ −in+ i
· n− i
n− i

∣∣∣∣ =

∣∣∣∣−1− in
n2 + 1

∣∣∣∣
=

√(
−1

n2 + 1

)2

+

(
−n

n2 + 1

)2

=

√
n2 + 1

(n2 + 1)2
=

1√
n2 + 1

→ 0.

�

Definition 3.2. {zn} is called a Cauchy sequence if for each ε > 0 there
exists an integer N such that n,m > N implies |zn − zm| < ε.

Proposition 3.1. {zn} converges if and only if {zn} is a Cauchy sequence.

Proof. If zn → z, then Re zn → Re z, Im zn → Im z and hence {Re zn} and
{Im zn} are Cauchy sequences. But since

|zn − zm| ≤ |Re(zn − zm)|+ | Im(zn − zm)|
= |Re zn − Re zm|+ | Im zn − Im zm|,

{zn} is also a Cauchy sequence.
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Conversely, if {zn} is a Cauchy sequence so are the real sequences {Re zn}
and {Im zn}. Hence both {Re zn} and {Im zn} converge, and thus {zn} con-
verges.

An infinite series
∞∑
k=1

zk is said to converge if the sequence {sn} of partial

sums, defined by sn = z1 + z2 + · · · + zn, converges. If so, the limit of the
sequence is called the sum of the series. The basic properties of infinite
series listed below will be familiar from the theory of real series.

i. The sum and the difference of two convergent series are convergent.

ii. A necessary condition for
∞∑
k=1

zk to converge is that zn → 0 as n→∞.

iii. A sufficient condition for
∞∑
k=1

zk to converge is that
∞∑
k=1

|zk| converges.

When
∞∑
k=1

|zk| converges, we will say
∞∑
k=1

zk is absolutely convergent.

Property (iii), which will be important in later chapters, follows from Propo-

sition 3.1. For if
∞∑
k=1

|zk| converges and tn = |z1| + |z2| + · · · + |zn| then

{tn} is a Cauchy sequence. But then so is the sequence {sn} given by
sn = z1 + z2 + · · ·+ zn, since

|sm − sn| = |zn+1 + zn+2 + · · ·+ zm|
≤ |zn+1|+ |zn+2|+ · · ·+ |zm| = |tm − tn|

by the triangle inequality. Hence
∞∑
k=1

zk converges.
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Example 3.27. Convergence and divergence.

a)
∞∑
k=1

ik

k2 + i
converges since∣∣∣∣ ik

k2 + i

∣∣∣∣ =

∣∣∣∣ ik

k2 + i
· k

2 − i
k2 − i

∣∣∣∣ =

∣∣∣∣k2ik − ik+1

k4 + 1

∣∣∣∣
=

√(
k2

k4 + 1

)2

+

(
1

k4 + 1

)2

=
1√

k4 + 1

and since
∞∑
k=1

1√
k4 + 1

converges.

b)
∞∑
k=1

1

k + i
diverges, since

1

k + i
=

k − i
k2 + 1

, which implies that
∞∑
k=1

Re

(
1

k + i

)
diverges. �

Classification of Sets in the Complex Plane. We give some definitions relat-
ing to planar sets. D(z0; r) denotes the open disc of radius r > 0 centered
at z0; i.e., D(z0; r) = {z : |z − z0| < r}.

D(z0; r) is also called a neighborhood (or r-neighborhood) of z0.

C(z0; r) is the circle of radius r > 0 centered at z0.

A set S is said to be open if for any z ∈ S, there exists δ > 0 such that
D(z; δ) ⊂ S.

S̃ = C\S denotes the complement of the set S; i.e., S̃ = {z ∈ C : z 6∈ S}.

A set is a closed set if its complement is open. Equivalently, S is closed if
{zn} ⊂ S and zn → z imply z ∈ S.

∂S, the boundary of S, is defined as the set of points whose δ-neighborhoods
have a nonempty intersection with both S and S̃, for every δ > 0.
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S, the closure of S, is given by S = S ∪ ∂S.

S is bounded if it is contained in D(0;M) for some M > 0.

Sets that are closed and bounded are called compact.

S is said to be disconnected if there exist two disjoint open sets A and B
whose union contains S while neither A nor B alone contains S. If S is not
disconnected, it is called connected.

[z1, z2] denotes the line segment with endpoints z1 and z2.

A polygonal line is a finite union of line segments of the form

[z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn].

If any two points of S can be connected by a polygonal line contained in S,
S is said to be polygonally connected.

Figure 3.12: A polygonally connected set.

It can be shown that a polygonally connected set is connected. The con-
verse, however, is false. For example, the set of points z = x+ iy with y = x2

is clearly connected but is not polygonally connected since the set contains
no straight line segments. In fact there are even connected sets whose
points cannot be connected to one another by any curve in the set. On the
other hand, for open sets, connectedness and polygonal connectedness are
equivalent.

Definition 3.3. An open connected set will be called a region.
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Proposition 3.2. A region S is polygonally connected.

Proof. Suppose S is an open connected set and z0 ∈ S. Let A be an open
subset of points of S which can be polygonally connected to z0 in S. Since
A is open any point z0 in A can be polygonally connected to any other
point in D(z0; δ0) for some δ0 > 0. Now consider another point z1 ∈ S such
that D(z0; δ0) ∩ D(z1; δ1) is nonempty for some δ0, δ1 > 0. Clearly z1 can
be polygonally connected to z0 and, in fact, any point in D(z1; δ1) can be
polygonally connected to any point in D(z0; δ0). Continuing this chain
of intersections to include all points of S, we conclude A = S and S is
polygonally connected. Since every point in S can be polygonally connected
to an arbitrary z0, every pair of points can be polygonally connected to each
other in S.

Continuous Functions.

Definition 3.4. A complex valued function f(z) defined in a neighborhood
of z0 is continuous at z0 if zn → z0 implies that f(zn)→ f(z0). Alternatively, f
is continuous at z0 if for each ε > 0 there is some δ > 0 such that |z− z0| < δ
implies that |f(z) − f(z0)| < ε. f is continuous in a domain D if for each
sequence {zn} ⊂ D and z ∈ D such that zn → z, we have f(zn)→ f(z).

If we split f into its real and imaginary parts

f(z) = f(x, y) = u(x, y) + iv(x, y),

where u and v are real-valued, it is clear that f is continuous if and only if u
and v are continuous functions of (x, y). Thus, for example, any polynomial

P (x, y) =
n∑
j=1

n∑
k=1

ajkx
kyj

is continuous in the whole plane. Similarly

1

z
=

x

x2 + y2
− i y

x2 + y2

is continuous in the "punctured plane" {z : z 6= 0}. It follows also that
the sum, product and quotient (with nonzero denominator) of continuous
functions are continuous.
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We say f ∈ Cn if the real and imaginary parts of f both have continuous
partial derivatives of the n-th order.

A sequence of functions {fn} converges to f uniformly in D if for each ε > 0,
there is an N > 0 such that n > N implies |fn(z) − f(z)| < ε for all z ∈ D.
Again, by referring to the real and imaginary parts of {fn}, it is clear that
the uniform limit of continuous functions is continuous.

Theorem 3.1. M-Test

Suppose fk is continuous in D, k = 1, 2, . . .. If |fk(z)| ≤ Mk throughout D

and if
∞∑
k=1

Mk converges, then
∞∑
k=1

fk(z) converges to a function f which is

continuous in D.

Proof. The convergence of
∞∑
k=1

fk(z) is immediate. Moreover, for each ε > 0,

we can choose N so that∣∣∣∣∣f(z)−
n∑
k=1

fk(z)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

fk(z)

∣∣∣∣∣ ≤Mn+1 +Mn+2 + · · · < ε

for n ≥ N . Hence the convergence is uniform and f is continuous.

Example 3.28. f(z) =
∞∑
k=1

kzk is continuous in D : |z| ≤ 1
2

since

|kzk| ≤ k

2k
in D and

∞∑
k=1

k

2k
converges. �

A continuous function maps compact/connected sets into compact/con-
nected sets. None of the other properties listed above, though, are pre-
served under continuous mappings. For example, f(z) = Re z maps the
open set C into the real line which is not open. The function g(z) = 1/z
maps the bounded set: 0 < |z| < 1 onto the unbounded set: |z| > 1.

Most of the key results in subsequent chapters will concern properties of
a certain class of functions defined on a region. We note that we could
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show that any two points in a region can be connected by a polygonal line
containing only horizontal and vertical line segments. For future reference
we will introduce the term "polygonal path" to denote such a polygonal
line.

Theorem 3.2. Suppose u(x, y) has partial derivatives ux and uy that vanish
at every point of a region D. Then u is constant in D.

Proof. Let (x1, y1) and (x2, y2) be two points of D. Then they can be connected
by a polygonal path that is contained in D. Any two successive vertices
of the path represent the end-points of a horizontal or vertical segment.
Hence, by the Mean-Value Theorem, the change in u between these vertices
is given by the value of a partial derivative of u somewhere between the
end-points times the difference in the non-identical coordinates of the
end-points. Since, however, ux and uy both vanish in D, the change in u is
0 between each pair of successive vertices; hence u(x1, y1) = u(x2, y2).

3.9 Stereographic Projection; The Point at Infinity

The complex numbers can also be represented by the points on the surface
of a punctured sphere. Let

Σ =

{
(ξ, η, ζ) : ξ2 + η2 + (ζ − 1

2
)2 =

1

4

}
; (3.17)

that is, let Σ be the sphere in Euclidean (ξ, η, ζ) space with distance 1
2

from
(0, 0, 1

2
). Suppose, moreover, that the plane ζ = 0 coincides with the complex

place C, and that the ξ and η axes are the x and y axes, respectively. To
each (ξ, η, ζ) ∈ Σ we associate the complex number z where the ray from
(0, 0, 1) through (ξ, η, ζ) intersects C. This establishes a 1-1 correspondence,
known as a setereographic projection, between C and the points of Σ other
than (0, 0, 1).

Formulas governing this correspondence can be derived as follows. Since
(0, 0, 1), (ξ, η, ζ) and (x, y, 0) are collinear,

x

ξ
=
y

η
=

1

1− ζ
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Figure 3.13: The Riemann sphere
and stereographic projection.

so that

x =
ξ

1− ζ
; y =

η

1− ζ
(3.18)

The equations 3.17 and 3.18 can be solved for ξ, η, ζ in terms of x, y as
follows. By substitution we solve for ζ,

x2(1− ζ)2 + y2(1− ζ)2 +

(
ζ − 1

2

)2

=
1

4

x2(1− ζ)2 + y2(1− ζ)2 +

(
ζ2 − ζ +

1

4

)
=

1

4

x2 + y2 +
ζ(ζ − 1)

(1− ζ)2
= 0

ζ(ζ − 1)

(1− ζ)2
= −x2 − y2

ζ(1− ζ)

(1− ζ)2
= x2 + y2

ζ

1− ζ
= x2 + y2 (3.19)
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Now it is a fact that

x2+y2

x2+y2+1

1− x2+y2

x2+y2+1

= x2 + y2

So therefore,

ζ =
x2 + y2

x2 + y2 + 1

ξ = x(1− ζ) =
x

x2 + y2 + 1

η = y(1− ζ) =
y

x2 + y2 + 1
.

(3.20)

Now suppose that {σk} = {(ξk, ηk, ζk)} is a sequence of points of Σ which
converges to (0, 0, 1) and let {zk} be the corresponding sequence in C. By
3.18 and 3.19,

x2 + y2 =
ξ2 + η2

(1− ζ)2
=

ζ

1− ζ
,

so that as σk → (0, 0, 1), |zk| → ∞. Conversely, it follows from 3.20 that if
|zk| → ∞, σk → (0, 0, 1).

Loosely speaking, this suggests that the point (0, 0, 1) on Σ corresponds
to ∞ in the complex plane. We can make this more precise by formally
adjoining to C a "point at infinity" and defining its neighborhoods as the
sets in C corresponding to the spherical neighborhoods of (0, 0, 1). While
we will not examine the resulting "extended plane" in greater detail, we will
adopt the following convention.

Definition 3.5. We say {zk} → ∞ if |zk| → ∞, i.e., |zk| → ∞ if for any M > 0,
there exists an integer N such that k > N implies |zk| > M . Similarly, we
say f(z)→∞ if |f(z)| → ∞.

For future reference, we note the connection between circles on Σ and
circles in C. By a circle on Σ, we mean the intersection of Σ with a plane of
the form Aξ +Bη +Cζ = D. According to 3.20, if S is such a circle and T is
the corresponding set in C,

Ax+By + C(x2 + y2) = D(x2 + y2 + 1)
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or
(C −D)(x2 + y2) + Ax+By = D (3.21)

for (x, y) ∈ T . Note that if C 6= D, 3.21 is the equation of a circle. If C = D,
3.21 represents a line. Since C = D if and only if S intersects (0, 0, 1), we
have the following proposition.

Proposition 3.3. Let S be a circle on Σ and let T be its projection on C.
Then

a. If S contains (0, 0, 1), T is a line;
b. If S does not contain (0, 0, 1), T is a circle.

Proof. Plugging (0, 0, 1) into Aξ + Bη + Cζ = D yields C = D so eqn. 3.21
becomes the equation of a line which is equivalent to a circle of infinite
radius. If S does not contain (0, 0, 1), C 6= D and eqn. 3.21 becomes the
equation of a circle.

3.10 Curves and Regions in the Complex Plane

Circles and disks. The distance between two points z and a is |z−a|. Hence
a circle C of radius ρ and center at a can be given by

|z − a| = ρ (3.22)

In particular, the unit circle, that is, the circle of radius 1 and center at the
origin a = 0, is

|z| = 1.

Furthermore, the inequality

|z − a| < ρ (3.23)

holds for every point z inside C; that is 3.23 represents the interior of C.
Such a region is called a circular disk, or, more precisely, an open circular
disk, in contrast to the closed circular disk

|z − a| ≤ ρ,

which consists of the interior of C and C itself. The open circular disk 3.23
is also called a neighborhood of the point a.
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Obviously, a has infinitely many such neighborhoods, each corresponding
to a certain value of ρ > 0, and a is a point of each such neighborhood.

Similarly, the inequality

|z − a| > ρ

represents the exterior of the circle C. Furthermore, the region between
two concentric circles of radii ρ1 and ρ2(> ρ1) can be given by

ρ1 < |z − a| < ρ2,

where a is the center of the circles. Such a region is called an open circular
ring or open annulus.

Example 3.29. |z − 3 + i| ≤ 4 is valid for all z whose distance from a = 3− i
does not exceed 4. Hence this is a closed circular disk of radius 4 with
center ar 3− i. �

Half planes. By the (open) upper half-plane we mean the set of all points
z = x+ iy such that y > 0. Similarly, the condition y < 0 defines the lower
half-plane, x > 0 the right half-plane, and x < 0 the left half-plane.

Example 3.30. Determine the sets represented.

a) |z − 4i| = 4
Circle, radius 4, center 4i.

b)
1

3
< |z − a| < 6

Annulus with center a.

c) 0 < Re z < π/2
Vertical infinite strip.

d) |z − 1| ≤ |z + 1|
Right half-plane.

�
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3.11 Exercises

1. Express in the form a+ bi.

a.
1

6 + 2i

b.
(2 + i)(3 + 2i)

1− i

c.

(
−1

2
+ i

√
3

2

)4

d. i2, i3, i4, i5

2. Find (in rectangular form) the two values of
√
−8 + 6i.

3. Solve the equation z2 +
√

32iz − 6i = 0.

4. Prove the following identities:

a. z1 + z2 = z1 + z2.

b. z1z2 = z1 · z2.
c. P (z) = P (z), for any polynomial P with real coefficients.

d. z = z.

5. Suppose P is a polynomial with real coefficients. Show that P (z) = 0 if
and only if P (z) = 0 (i.e., zeros of real polynomials come in conjugate
pairs).

6. Verify that |z2| = |z|2 using rectangular coordinates and then using
polar coordinates.

7. Show

a. |zn| = |z|n.
b. |z|2 = zz.

c. |Re z|, | Im z| ≤ |z| ≤ |Re z|+ | Im z|
(when is equality possible?)
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8. a. Fill in the details of the following proof of the triangle inequality:

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= |z1|2 + |z2|2 + z1z2 + z1z2

= |z1|2 + |z2|2 + 2 Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1||z2|
= (|z1|+ |z2|)2.

b. When can equality occur?

c. Show: |z1 − z2| ≥ |z1| − |z2|.

9. It is an interesting fact that a product of two sums of squares is itself
a sum of squares. For example,

(12 + 22)(32 + 42) = 125 = 52 + 102 = 22 + 112.

a. Prove the result using complex algebra. That is, show that for any
two pairs of integers, {a, b} and {c, d}, we can find integers u, v with

(a2 + b2)(c2 + d2) = u2 + v2

b. Show that, if a, b, c, d are all nonzero and at least one of the sets
{a2, b2} and {c2, d2} consist of distinct positive integers, then we can
find u2, v2 as above with u2 and v2 both positive.

c. Show that, if a, b, c, d are all nonzero and both of the sets {a2, b2}
and {c2, d2} consist of distinct positive integers, then there are two
different sets {u2, v2} and {s2, t2} with

(a2 + b2)(c2 + d2) = u2 + v2 = s2 + t2.

d. Give a geometric interpretation and proof of the results in b) and c)
above.

10. Prove: |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) and interpret the result
geometrically.

11. Let z = x + iy. Explain the connection between Arg z and tan−1(y/x).
(Warning: they are not identical.)
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12. Solve the following equations in polar form and locate the roots in the
complex plane:

a. z6 = 1.

b. z4 = −1.

c. z4 = −1 +
√

3i.

13. Show that the n-th roots of 1 (aside from 1) satisfy the "cyclotomic"
equation zn−1 + zn−2 + · · · + z + 1 = 0. [Hint: Use the identity zn − 1 =
(z − 1)(zn−1 + zn−2 + · · ·+ 1).]

14. Suppose we consider the n− 1 diagonals of a regular n-gon inscribed
in a unit circle obtained by connecting one vertex with all the others.
Show that the product of their lengths is n. [Hint: Let the vertices all
be connected to 1 and apply the previous exercise.]

15. Describe the sets whose points satisfy the following relations. Which
of the sets are regions?

a. |z − i| ≤ 1.

b.
∣∣∣∣z − 1

z + 1

∣∣∣∣ = 1.

c. |z − 2| > |z − 3|.

d. |z| < 1 and Im z > 0.

e.
1

z
= z.

f. |z|2 = Im z.

g. |z2 − 1| < 1. [Hint: Use polar coordinates.]

16. Identify the set of points which satisfy

a. |z| = Re z + 1.

b. |z − 1|+ |z + 1| = 4.

c. zn−1 = z.
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17. Let Argw denote that value of the argument between −π and π (inclu-
sive). Show that

Arg

(
z − 1

z + 1

)
=

{
π/2 if Im z > 0
−π/2 if Im z < 0

where z is a point on the unit circle |z| = 1.

18. Find the three roots of x3 − 6x = 4 by finding the three real-valued
possibilities for 3

√
2 + 2i+ 3

√
2− 2i. (Note: You can find the three cube

roots of 2 + 2i, or you can simplify the problem by first applying the
identity: a+ b = (a3 + b3)/(a2 − ab+ b2)).

19. Prove that x3 + px = q has three real roots if and only if 4p3 < −27q2.
(Hint: Find the local minimum and local maximum values of x3+px−q.)

20. a. Let P (z) = 1 + 2z+ 3z2 + · · ·+nzn−1. By considering (1− z)P (z), show
that all the zeros of P (z) are inside the unit disc.

b. Show that the same conclusion applies to any polynomial of the
form: a0 + a1z + a2z

2 + · · · + anz
n, with all aireal and 0 ≤ a0 ≤ a1 ≤

· · · ≤ an.

21. Show that

a. f(z) =
∑∞

k=0 kz
k is continuous in |z| < 1.

b. g(z) =
∑∞

k=1 1/(k2 + z) is continuous in the right half-plane Re z > 0.

22. Prove that a polygonally connected set is connected.

23. Let

S =

{
x+ iy : x = 0 or x > 0, y = sin

1

x

}
.

Show that S is connected, even though there are points in S that
cannot be connected by any curve in S.

24. Let S = {(ξ, η, ζ) ∈ Σ : ζ ≥ ζ0} where 0 < ζ0 < 1 and let T be the
corresponding set in C. Show that T is the exterior of a circle centered
at 0.
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25. Suppose T ⊂ C. Show that the corresponding set S ⊂ Σ is

a. a circle if T is a circle.

b. a circle minus (0, 0, 1) if T is a line.

26. Let P be a nonconstant polynomial in z. Show that P (z) → ∞ as
z →∞.

27. Suppose that z is the stereographic projection of (ξ, η, ζ) and 1/z is the
projection of (ξ′, η′, ζ ′).

a. Show that (ξ′, η′, ζ ′) = (ξ,−η, 1− ζ).

b. Show that the function 1/z, z ∈ C, is represented on Σ by a 180◦

rotation about the diameter with endpoints (−1

2
, 0,

1

2
) and (

1

2
, 0,

1

2
).

28. Use exercise (27) to show that f(z) = 1/z maps circles and lines in C
onto other circles and lines.
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