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Abstract

Dynamic latent scale GAN is a method to train an encoder that inverts the
generator of GAN with maximum likelihood estimation. In this paper, we propose
a method to improve the performance of dynamic latent scale GAN by integrat-
ing perceptual VAE loss into dynamic latent scale GAN efficiently. When training
dynamic latent scale GAN with normal i.i.d. latent random variable, and latent
encoder is integrated into discriminator, a sum of a predicted latent random vari-
able of real data and a scaled normal noise follows normal i.i.d. random variable.
This random variable can be used for both VAE and GAN training. Considering
the intermediate layer output of the discriminator as a feature encoder output, the
generator can be trained to minimize perceptual VAE loss. Also, inference & back-
propagation for perceptual VAE loss can be integrated into those for GAN training.
Therefore, perceptual VAE training does not require additional computation. Also,
the proposed method does not require prior loss or variance estimation like VAE.

1 Introduction

Recently, generative adversarial network [1] (GAN) has shown impressive performance
in generating high-quality data but is still suffering from low diversity of fake data.
Variational autoencoder [2] (VAE) has shown better diversity of fake data, but the
quality of the fake data is low [4]. There were several works to integrate VAE or
autoencoder into GAN [6, 7, 8, 9] to have better generative performance.

Dynamic latent scale GAN [5] (DLSGAN) is a GAN inversion [3] method to train
an encoder that inverts the generator of GAN with maximum likelihood estimation. In
this paper, we propose Perceptual VAE DLSGAN (PVDGAN), a method to integrate
perceptual VAE into DLSGAN efficiently. When training DLSGAN with normal i.i.d.
latent random variable, and latent encoder is integrated into discriminator, we assumed
that the latent encoder tries to map real data random variable to latent random variable
without explicit loss. Therefore, a sum of a predicted real latent random variable and
a scaled normal noise follows a normal i.i.d. random variable. This random variable is
used for both VAE and GAN training in PVDGAN.

Furthermore, considering the intermediate layer output of the discriminator as a
feature encoder output, the generator can be trained to minimize perceptual VAE loss.
Also, inference & backpropagation for perceptual VAE loss can be integrated into those
for GAN training. Therefore, perceptual VAE training does not require additional
computation.



One can think our work is a variation of VAEGAN [6]. The first difference between
VAEGAN and PVDGAN is that PVDGAN does not use VAE prior loss or variance
estimation. Since DLSGAN is a maximum likelihood estimation method, encoder loss
of DLSGAN can replace VAE prior loss. For the same reason, the encoder does not
need to estimate VAE variance. PVDGAN replaces VAE variance estimation through
the variance of the predicted latent random variable. The second difference is that
VAEGAN uses 3 models (encoder, decoder, discriminator) for training, while PVDGAN
uses only 2 models. Using only 2 models in PVDGAN is not only computationally
efficient but also produces a better perceptual loss.

PVDGAN improved DLSGAN performance without additional computation.

2 Perceptual VAE DLSGAN

DLSGAN [5] is a GAN inversion method to train an encoder that inverts the generator
of GAN with maximum likelihood estimation when the latent random variable is an
i.i.d. random variable. If the entropy of the latent random variable is too high, it is
difficult for the encoder to recover latent code from the fake data. This is because the
generator maps different latent codes to the same or similar fake data point. DLSGAN
dynamically adjusts the element-wise scale of the latent random variable so that the
scaled latent random variable is appropriate to be transformed into real data random
variable.
The following equations show the encoder loss of DLSGAN.
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In Egs. 1 and 2, d, represents a dimension of latent random variable Z. E; and G
represent the latent encoder and generator, respectively. v and s represent the latent
variance vector and latent scale vector, respectively. DLSGAN uses the moving average
of the predicted fake latent code Ej;(G(z0s)) to approximate the latent variance vector
v. Operation “o” is the element-wise multiplication. vec®'/? represents the element-wise
square root of vector vec. Latent encoder F; and generator GG are trained to minimize
encoder loss L.,. in DLSGAN.

In this paper, we propose PVDGAN, a method to efficiently integrate perceptual
VAE [2] loss into DLSGAN to improve DLSGAN performance.

When training DLSGAN, the latent encoder E; of DLSGAN is trained to predict
latent random variable Z from fake data random variable G(Z o s). It is clear that
E|(X)os = Zos if generator G perfectly generates real data random variable X, and
the latent encoder E) perfectly inverts generator G.

During DLSGAN training, if latent encoder E; and discriminator D are integrated,
it will be difficult to distinguish between real data random variable X and fake data
random variable G(Z os) for latent encoder Ej. This is because latent encoder E; shares
hidden layers with discriminator D in adversarial training with generator G. Based on
this intuition, we assumed that latent encoder Fj tries to map real data random variable
X to the latent random variable Z during DLSGAN training, even without explicit loss.



Under this assumption, VAE latent random variable Z, that follows GAN latent random
variable Z can be generated by adding scaled normal noise to the predicted real latent
random variable Ej(X).

When latent random variable Z ~ N (0, I;,), we assumed that predicted real latent
random variable E;(X) follows N(0,1;,) o v°*/2, where 0 < v < 1. Therefore, adding
scaled normal noise to the real latent random variable E;(X) can follow normal i.i.d.
random variable.

Zy = E(X)+ N(0,1z.) 0 (1 —v)°Y/? (3)

Eq. 3 shows VAE latent random variable Z,. One can easily find that Z, ~ Z ~
N(0,1,,) because Eyj(X) ~ N(0,1,,) o v°'/2.

VAE latent random variable Z, can be used for VAE training since there is a corre-
sponding real data random variable X. The following equations show the loss for VAE
training.

Lyee = Dist(X,G(Z, 0 s)) (4)

In Eq. 4, L,.. represents reconstruction loss. Dist represents a function that mea-
sures the distance between two random variables. G(Z, o s) represents the VAE re-
constructed data random variable of real data random variable X. DLSGAN assumes
that latent encoder Ej is trained with only encoder loss L.,., so latent encoder Fj is
not trained with reconstruction loss L,.. in PVDGAN.

Dist(a,b) = d—lquf(a) — B0 (5)

Eq. 5 shows the Dist function for reconstruction loss L,... In Eq. 5, dy and Ef
represent feature vector dimension and feature encoder, respectively. One can see that
function Dist measures the perceptual distance between two data with feature encoder
Ey.

Finding a good Dist function is not an easy problem. For example, if image VAE is
trained with pixel-wise mean squared error (i.e., E¢(z) = x), the fake images will be very
blurry. In most cases, we want to minimize perceptual distance. One can simply think
of using a pre-trained model (e.g., pre-trained inception model). However, if we use a
pre-trained model, we need additional computations for inference & backpropagation
of the pre-trained model to minimize L,... Also, there might be no good pre-trained
models for some data domains. Furthermore, it is hard to customize a pre-trained
model (e.g., input resolution is fixed, the model is too large or small).

Instead of using a pre-trained model, PVDGAN uses discriminator intermediate
layer output as feature encoder Ly output like VAEGAN [6]. Since VAE latent random
variable Z, follows GAN latent random variable Z, it can be used for GAN training as
well. During GAN training with VAE latent code z,, there are inference & backprop-
agation on generator GG and discriminator D with real data = and reconstructed data
G(z; o s). Therefore, inference & backpropagation for minimizing reconstruction loss
L,.. can be integrated into the inference & backpropagation for the GAN training. It
means that no additional inference & backpropagation for minimizing reconstruction
loss L. is required.



If VAE latent random variable Z, is different from GAN latent random variable Z,
GAN training with VAE latent random variable Z, is not only meaningless but rather
makes GAN training more difficult. This is because generator G and discriminator D
should generate and discriminate not only for the latent random variable Z but also
for VAE latent random variable Z,.

In short, when training DLSGAN with GAN latent random variable Z ~ N (0, I,,),
and latent encoder Ej is integrated into discriminator D, VAE latent random variable
Zy = E(X) 4+ N(0,1;.) o (1 —v)°"/? follows GAN latent random variable Z. Therefore,
VAE latent random variable Z, can be used for GAN training. Also, there are already
inference & backpropagation with real data = and reconstructed data G(z, o0s) in GAN
training with VAE latent random variable Z,. Therefore, VAE training (minimizing
reconstruction loss L,..) does not require additional inference & backpropagation.

Algorithm 1 Algorithm to obtain PVDGAN loss
Require: D*. G, Z, X,b,v

1: x <= sample(X,b)

9. 5 <= Yevo

[[vo1/2]|2

Ly 2, Y <= D*(x)

. 2, < nograd(z, [b/2 :]) + sample(Z,b/2) o (1 — v)°/?
1 z <= concat(sample(Z,b/2), z;)

cap, 2y, <= D*(G(z05s))
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9: Ld <~ adv(ar, af) + AencLenc
10: Lg = ad’U(le) + )\encLenc + )\rechec

11: v < update(v, 2’°%)

12: return Lq, Lg, v

Algo. 1 shows the algorithm to obtain loss for PVDGAN. In Algo. 1, D*, GG, Z, and
X represent the integrated discriminator, generator, latent random variable, and real
data random variable, respectively. In Algo. 1, it was assumed that the latent random
variable Z follows N (0,1, ). D* is the integrated discriminator in which discriminator
D, latent encoder Ej, and feature encoder Ey are integrated. Therefore, the integrated
discriminator D* has 3 outputs. b and v represent the batch size and latent variance
vector, respectively.

In line 1, sample(A,n) is a function that returns n samples from random variable
A. x represents sampled real data points.

In line 2, s is the d,-dimensional latent scale vector of DLSGAN.

In line 3, one can see that integrated discriminator D* outputs 3 values. The first
output a, is b x 1 shape real data adversarial values. The second output z, is b X d,
shape predicted real latent codes. The third output v, is b x dy shape real feature
vectors. Unlike the other two outputs, the feature vectors y, are the intermediate layer
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outputs of the integrated discriminator D*.

In line 4, z, represents VAE latent codes. nograd(k) represents a function that
prevents the gradient flow to input k. The output of nograd is the same as the input.
2 [b/2 :] represents last b/2 samples of z,. Therefore, z, is 2 x d, matrix. In general
cases, all elements of latent variance vector v are less than or equal to 1, but for stability,
we recommend using max (1 — v, 0)°/2 instead of (1 — v)°1/2.

In line 5, concat represents the concatenation function. Therefore, z is b x d, shape
matrix, the first b/2 elements are sampled from latent random variable Z, and the last
b/2 elements are generated from VAE latent codes z,.

In line 6, ay is b x 1 shape fake data adversarial value. 2’ and y, represent predicted
latent codes and predicted feature vectors, respectively.

In lines 7 and 8, L.,. and L,.. represent encoder loss of DLSGAN and perceptual
reconstruction loss, respectively.

In lines 9 and 10, Ly and L, represent discriminator loss and generator loss, respec-
tively. Aene and A represent encoder loss weight and perceptual reconstruction loss
weight, respectively. adv represents adversarial loss function [10, 12]. One can see that
there is no reconstruction loss L,.. for integrated discriminator D*.

In line 11, the latent variance vector v is updated as DLSGAN (i.e., moving average).

One can see that no additional inference & backpropagation is required to minimize
Lye. in Algo. 1. Therefore, PVDGAN does not require additional computation com-
pared to basic GAN or DLSGAN (to be precise, there is an additional d;-dimensional
vector operation to calculate L,.., but it is very small compared to inference & back-
propagation in most deep learning models).

Unlike VAEGAN [6] or VAE [2], PVDGAN does not use VAE prior loss and encoder
variance estimation. Since DLSGAN is a maximum likelihood estimation method, en-
coder loss L.,. can replace VAE prior loss. For the same reason, latent variance vector
v can replace encoder variance estimation.

Also, VAEGAN uses 3 models (encoder, decoder, discriminator) for training, while
PVDGAN uses only 2 models. Using only 2 models in PVDGAN is computationally
efficient and expected to produce a better perceptual loss. This is because the discrim-
inator does not need all information of input data to discriminate input data, so the
discriminator of VAEGAN may lose the information of input data.

Simply, assume that the penultimate layer of the discriminator has only one unit
(i.e., output dimension is 1), and using this penultimate layer output as feature encoder
output in VAEGAN (i.e., D(z) = E¢(z) - w+ b, where w and b are both 1-dimensional
trainable weight). One can find that perceptual loss with this feature encoder is almost
meaningless. On the other hand, the dimension of the PVDGAN feature encoder output
is at least d, + 1. Also, the latent encoder Ej is trained not to lose the information
of fake data. Therefore, one can expect PVDGAN generates a more useful perceptual
loss.

3 Experiments

We compared the performance of PVDGAN and DLSGAN.
We used the FFHQ dataset [11] resized to 256 x 256 resolution. Among 70k images,
the first 60k images were used as a training set, and the left 10k images were used as



test images. Pixel values were normalized from -1 to 1, and a 50% random left-right
flip was used for data augmentation.

NSGAN [1] with R1 regularization [12] was used as an adversarial loss. We used a
simple model architecture consisting of only convolution layers and skip connections.
We used upsample/downsample of SWAGAN [13] with equalized learning rate [14]. We
did not use a direct skip connection to the input in the discriminator. It may make
GAN inversion hard but increases generative performance. Both methods used the same
model architecture. The second last convolutional block output of the discriminator
was used as the feature encoder output of PVDGAN.

We used FID [15], Precision & Recall [16] metrics with a pre-trained inception model
for generative performance evaluation. 10k test real images and 10k fake images were
used for generative performance evaluation. Pre-trained inception model and size of
the neighborhood k& = 3 were used for Precision & Recall evaluation. Average PSNR
and average SSIM were used for inversion and comprehensive performance evaluation
as DLSGAN. The following hyperparameters were used for experiments.

A1 = 3.0
Aene = 1.0
d, =1024
Z ~ N(0,14,)
learning rate = 0.003
optimizer = Adam B =0.0
By = 0.99

trainable weights ema decay rate = 0.999
latent variance vector ema decay rate = 0.999
batch size = 16
epochs = 49

PVDGAN used reconstruction loss weight \,... = 1.0.

Figs. 1, 2, 3 show the generative, inversion, and comprehensive performance of
models, respectively. In Fig. 1, DLSGAN shows better generative performance with
FID evaluation. However, one can see that there is no significant difference between
DLSGAN and PVDGAN with Precision & Recall evaluation.

In Figs. 2 and 3, PVDGAN clearly shows better inversion and comprehensive
performance than DLSGAN.

Fig. 4 shows unseen test image reconstruction examples. One can see that PVDGAN
shows perceptually slightly better real image reconstruction. For example, PVDGAN
showed better eye reconstruction in the first image of the left part and better hair
reconstruction in the first, second, and fourth images of the right part.

4 Conclusion

In this paper, we proposed PVDGAN to integrate the perceptual VAE loss into the
DLSGAN generator efficiently to improve the performance of DLSGAN. When training
DLSGAN with normal i.i.d. latent random variable, and latent encoder is integrated
into the discriminator, a sum of a predicted latent random variable of real data and a
scaled normal noise follows normal i.i.d. random variable. PVDGAN uses this random



Generative performance

Generative performance

— DLS 0409 — pis
074 — pvp —— PVD
0.35
0.6
0.30 A
0.5 A
0.25 A
5 0.4 =
:g ' S 0.201
@ &
% 0.3 0.15 A
0.24 0.10
0.1 0.05 -
0.0 4 0.00 A
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
2 Generative performance
— DLS
354 —— PVD
30 4
254
2 20
15 4
10
54
04 v v T r v
0 10 20 30 40 50
Epochs
Figure 1: Generative performance for each epoch.
Inversion performance Inversion performance
—— DLS 0.5_ — DLS
181 — pvD —— PVD
0.4 4
16 4
< 0.3 4
a "
(] g
g £ 0.2
124
0.14
10 A
0.0 4
8 -
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 2:

Inversion performance for each epoch.




Comprehensive performance Comprehensive performance

— DLS - — DLS
16 PVD 0.35 PVD

0.30 1
144 0.25

0.20

Real PSNR
Real SSIM

0.15 A

0104 |
104 |
0.05

0.00 -

0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 3: Comprehensive performance for each epoch.

variable for both VAE and GAN training. Considering the intermediate layer output of
the discriminator as a feature encoder output, the generator of PVDGAN is trained to
minimize perceptual VAE loss. Inference & backpropagation for perceptual VAE loss
can be integrated into those for GAN training. PVDGAN does not require prior loss
or variance estimation like VAE. The proposed method is kind of improved VAEGAN,
and it improved the performance of DLSGAN.
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