
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Parallel Parameter Estimation for
Gilli-Winker Model using Multi-core

CPUs

Author:
Pengyu Guo

Supervisor:
Luk Wayne

Independent Study Option Report for the MSc degree of Imperial College London

May 2020

Abstract

Agent-based modelling is a powerful tool that is widely used to model the global
financial systems. When the parameters of the model are appropriate, the price time
series generated by the model exhibit marked similarities with actual financial time
series and even reproduce some of their statistical characteristics.

By using Kirman’s Ant model as a prototype, this report systematically explored Gilli
and Winker’s parameter optimization method. In view of some limitations of this
method, this report promoted some improvements, including a local-restart strategy
to enhance the convergence ability of the original optimization method, as well as
incorporate Simulated Annealing into the original method to help the algorithm es-
cape from local optimums. Furthermore, since the parameter optimization of agent
based modelling tends to be very time-consuming, an acceleration method was also
proposed to speed up this procedure. In the end, the presented methods have been
validated with the EUR/USD exchange rate.

ii

Acknowledgments

I would like to express my sincere thanks to my supervisor Prof Wayne Luk, for his
guidance and encouragement throughout the project. I am also extremely grateful
to Dr Ce Guo, for his technical guidance, and also for the huge amount of confidence
he placed in me to help me finish this project successfully.

I am also extremely thankful for my supportive parents, who gives me the oppor-
tunity to study at this great university and for always being there for me.

iii

Contents

1 Introduction 1

2 Background and related work 3
2.1 Agent based models . 3
2.2 Parameter estimation method . 4
2.3 Estimation acceleration . 8

3 Contribution 11
3.1 Local restart Nelder-Mead . 11
3.2 Simulated Annealing . 13
3.3 Acceleration of the estimation procedure 15

3.3.1 Parallel execute multiple simulations 15
3.3.2 Avoid unnecessary redundant computations 16

4 Evaluation 18
4.1 Simulated time series . 18
4.2 Model accuracy . 19
4.3 Parameter estimation . 21

4.3.1 Effect of the estimation . 21
4.3.2 Effect of the acceleration of the estimation 22

5 Conclusion and future work 27

v

Chapter 1

Introduction

The global financial system that emerged in the late 19th century during the first
modern wave is one of the most complex systems created by humanity. There are
a lot of analytical tools that tried to model this financial system, and many of them
apply general equilibrium theory in the representative agent framework. That is,
each agent within this framework is assumed to make its decision with full rationality
and knowledge. While these approaches are a great attempt, they have two serious
problems:

• When used with financial markets, they always fail to produce a simulation
that matches the facts.

• Their financial simulation is very time consuming.

The main reason for the first problem is that these approaches depend heavily on
many unrealistic premises, such as total rationality, market convergence to equi-
librium prices, and so on. Thus, they overlook the agents’ diverse strategies and
the emergent characteristics of interactions between them. This makes them lack
a sound micro-level foundation, as well as the incredible results of agents’ interac-
tions. An agent based model, on the other hand, effectively solves this problem.

Different from the general equilibrium analysis, in the agent based model, the be-
haviours of agents are both autonomous and heterogeneous. Every behaviour fol-
lows the agent’s own rules and interacts with all others autonomously within a vir-
tual market. For this reason, ABMs are able to link investors’ behaviour at the micro-
level with the macro behaviour of asset prices in the actual market, thus making a
more comprehensive simulation of the financial market.

In addition to this, agent based modelling has also had some other advantages over
the general equilibrium theory. First, using agent based modelling allows us to solve
the second problem raised earlier. Since there are always a large number of in-
dependent operations in the simulation of agent based modelling, the parallelism
techniques can therefore be used to improve the simulation speed. Furthermore,
under ABM, agents’ behaviour is artificially and thus avoiding the potential inaccu-
racy of mathematical equations derived under the general equilibrium theory. More

1

Chapter 1. Introduction

so, the use of ABM makes agent behaviour and environment parameters easier to
be controlled. Consequently, a basic model can spin off variant models through this
operation.

Such simplicity and flexibility have helped agent based modelling explore new av-
enues of economic research and model the financial markets with precision. How-
ever, there are still challenges. There is evidence[1] to suggest that the parameters
of the model are among the most critical factors for generating predictions similar
to the real price flows. Still, since agent based modelling remains complicated in
most cases, it is difficult to find significant parameters governing agents’ unique be-
haviour. Therefore, in this article, we attempt to mitigate this potential problem by
more systematically exploring Gilli and Winker’s[2] nonlinear parameter optimiza-
tion technique using the Kirman ant model[3] for an exploratory case study.

In view of the problems existing in the Gilli-Winker method, three solutions are
introduced in this report to improve it in terms of its performance and speed:

• A local restart strategy is proposed to solve the problem of insufficient conver-
gence ability of the original optimization strategy.

• The Simulated Annealing algorithm is incorporated into the original optimiza-
tion strategy to help it escape from local minimums.

• An acceleration method was proposed to reduce the execution time of the orig-
inal optimization algorithm.

The remaining part of the report proceeds as follows: Section 2 begins by discussing
the structure of Kirman’s ant model and looks at how Gilli and winker estimate the
parameters of this model. Section 3 presents how we improve the estimation method
proposed by Gilli and Winker and the detail of our acceleration method. The fourth
section presents the evaluations of our research, focusing on the performance of
our model, estimation method, and acceleration strategy. As a result, an average
accuracy of 52% and a speed up of 14 was achieved.

2

Chapter 2

Background and related work

2.1 Agent based models

The ant colony model proposed by Kirman[3] in 1993 is one of the most typical
models in the filed of agent based modelling. This model tries to explain ants’ so-
cial herding behaviour by using a recruitment framework consisting of two types of
agents. There have been numerous models that are built upon this model. Alfarano
et al.[4] developed a herding model that embeds the Kirman mechanism. The main
difference is that this model describes the time evolution series directly from the
population state transition probability, rather than simulating the interaction at the
agent level. Westerhoff and Franke[5] proposed a model that also adopts the Kirman
model’s idea of herding. They express the population state in a different way so as
to facilitate the exposition of the herding mechanism in the transition probabilities.

In this project, we take the agent based model introduced by Kirman as a proto-
type to try to reproduce some stylized facts of the foreign exchange market. The
first reason for this specific selection is that our goal in this report is to explore more
possibilities of agent based model’s parameter optimization. Therefore we stick to
this basic model and leave the other complex models for future research. The second
consideration is that Kirman’s model has already been calibrated by several pieces
of literature, which provides a sound basis for our study.

The Kirman’s Ant model consists of two different groups of individuals that behave
differently, which ensures model heterogeneity. The members of the first group act
on fundamentals, who function on the assumption that the exchange rate St will re-
turn to its fundamental value S̄ gradually. Consequently, fundamentalists’ expected
exchange rate at the next time step is:

Ef
t+1 = St + v(S̄ − St) (2.1)

Where v is the level of change in anticipation of the fundamentalists. It is worth not-
ing that, in the original Kirman’s ant model, a constant fundamental value is shared
by all fundamentalists. Whereas in our project, in order to increase the diversity of
the model, each member of fundamentalists has its own fundamental value, which

3

2.2. PARAMETER ESTIMATION METHOD Chapter 2. Background and related work

will change over time. The fundamental value at time t + 1 is generated from a
normal distribution (S̄t, σ), where σ is the innovation constant.

The second group of individuals follows a chartist rule that is assumed to extrap-
olate the last period return. That is, members in this group expect the exchange rate
at the next time step to be:

Ec
t+1 = St + (St − St−1) (2.2)

An interesting aspect of this model is that as the simulation proceeds, the type of an
agent will keep changing. There are two possible reasons: an individual is recruited
by a different type of individual, or an individual spontaneously mutates. As a re-
sult, the proportion of chartists and fundamentalists in the total population will keep
changing. Recent evidences(4) suggests that this helps the basic model to generate
complex econometric behaviour such as excess kurtosis and decreasing leptokurtosis.

Another interesting feature of this model is the way it uses to simulate the time
series of the exchange rate. The following formula is used to do so, where the mar-
ket price at each time step is calculated as a weighted mean of market expectation:

St+1 = WtE
f
t+1 + (1− wt)E

c
t+1 (2.3)

Instead of using the share of fundamentalists directly, Kirman defined Wt as the pro-
portion of agents who expect fundamentalists to dominate the current population.
Consequently, the proportion Wi is calculated as follows.

Wi = P (qi > 0.5) (2.4)

Where qi is a normal distribution has: mean = number of fundamentalists
size of population

The benefit of this is that the agents’ judgment of which type of agent dominates
the market is subject to some error, this is similar to human beings in the real finan-
cial market as humans are not perfect as well. Therefore by doing so, agents in the
Ant model can behave more similarly to the actual investors in the financial market
and thus produce more realistic results.

2.2 Parameter estimation method

As mentioned before, it is now well established that the parameters of the agent
based model can highly influence model’s simulation results. If a proper parameter
value is given, then the model is likely to generate results showing certain statisti-
cal similarities with real time series for the financial market. Existing methods that
optimize the parameters of the agent based models can be roughly categorised into
two types: the historical data approach and the indirect optimization approach. The
historical data approach works by splitting the data into two sets: a validation set,
which is responsible for checking the result, and a modelling set that test the model.

4

Chapter 2. Background and related work 2.2. PARAMETER ESTIMATION METHOD

The estimation method proposed by Recchioni et al. [6] is a representative one of
this kind of approach. In their approach, a basic gradient-based algorithm was used,
and the model was evaluated based on its prediction errors on the validation set. The
indirect estimation approaches use typical moments of real price series to evaluate
the performance of model outputs. In this project, parameters of the Kirman’s model
is estimated using an indirect estimation method proposed by Gilli and Winker [2].
The indirect estimation method is more preferred because compared to the historical
data method, this method is generally less expensive to run, in hardware resources
and time. Therefore, this method is more suitable for this project.

Algorithm 1 shows the main steps of Gilli and Winker’s indirect estimation method.

Algorithm 1 Gilli and Winker’s parameter optimization method

1: while not converge do
2: Nelder-Mead optimization algorithm −→ successive vectors x
3: Evaluate objective function f(x)
4: end while

Line 3 assesses whether a particular parameter vector can result in appropriate
model output. To do so, some metrics which allow one to quantify how well the
simulation result matches the real price flow need to be established. In this method,
the degree of similarity between them is evaluated using two moments: the Arch(1)
effect and the empirical kurtosis. These two moments were chosen because they are
able to capture some characteristic features of the daily return series, for example
the time varying volatility. Since these characteristic features are believed to be ro-
bust and significant, these two moments are expected to be able to describe the daily
return series comprehensively and accurately [7].

Consequently, the goal of the estimation procedure is to find an appropriate com-
bination of parameters, which can generate simulation series that minimize the fol-
lowing objective function:

f = |kag − kemp|+ λ|αag
1 − α

emp
1 | (2.5)

Where αag
1 and kag represent the Arch(1) effect and Kurtosis of the time series gen-

erated by the agent based model respectively, αemp
1 and kemp denotes that of the real

data. λ is a constant that was used to balance these two moments’ relative magni-
tude.

Algorithm 2 shows in more detail how we evaluate a parameter combination with
these two moments. That is, how the objective function is approximated in line 3 of
Algorithm 1.

5

2.2. PARAMETER ESTIMATION METHOD Chapter 2. Background and related work

Algorithm 2 Approximation of the objective function

1: for i = 1:number of repetitions do
2: SimulationResult = []
3: for j = 1:number of interactions do
4: Generate an exchange rate X temp

5: SimulationResult = SimulationResult + X temp

6: end for
7: Compute αi

1 and ki of SimulationResult
8: end for
9: Truncate the first and last 10% of α1 and k ’s distribution

10: αag
1 = mean(α1

1,...,α
i
1)

11: kag = mean(k1,...,ki)
12: Objective functionf = |kag − kemp|+ λ|αag

1 − α
emp
1 |

There are two for loops in the algorithm above, where the inner loop uses the given
parameter combination to conduct the agent interaction and produce the simulation
result. The outer loop is responsible for doing Monte Carlo repetition for each pa-
rameter combination to reduce errors due to the model’s stochastic effects.

The optimization strategy for selecting the successive vectors in Step 2 of algorithm
1 is another crucial ingredient besides the objective function. In their implementa-
tion, Gilli and Winker use the Nelder-Mead simplex search method in this step. This
method uses a geometry called simplex as the ’vehicle’ of its search in the parameter
space. At every iteration, it tries out several modifications to the current shape of
the simplex, and choose one that moves the current simplex towards a better region.
Ideally, the last few iterations would be a continual shrinking of the simplex toward
the best point inside it.

In more detail, the Nelder-Mead method works as follows. In order to generate
a better simplex based on the current simplex shape, this method starts by sorting
all the vertices of the current simplex by the objective function f. If we are dealing
with an 2-dimensional parameter space, then each simplex has three vertices xh, xs
and xl. Let’s assume that f(xl) < f(xs) < f(xh) (point l is the best point and h is the
worst one). Then, the next step of this method is to calculate the reflection point xr
according to the following equation:

xr = c+ α(c− xh) (2.6)

Where α is the reflection constant, c stands for the centroid of the current simplex,
which considers all points except the worst one. The performance of xr is then
evaluated to determine the shape of the new simplex. This leads to four cases:

1. If the performance of xr is somewhere between that of the two best points of
the current simplex (i.e. f(xl) < f(xr) < f(xs)), then the worst point xh will
be replaced by xr. By doing so, the Nelder-Mead is trying to move away from
where the worst point is located. As a result, the new simplex consists of three
vertices: xs, xr, xl. As shown in figure 2.1(a).

6

Chapter 2. Background and related work 2.2. PARAMETER ESTIMATION METHOD

2. Figure 2.1(b) shows the second case. If the point of reflection performs no
worse than the best point in the current simplex(f(xr) <= f(xl)), then the
algorithm will try to find an even better “expanded point” by moving a little
bit more along the direction of r. The expanded point is calculated as follow:

xe = c+ γ(xr − c) (2.7)

Then, the better one in xr and xe will be used to replace xh to produce the new
simplex.

3. In the worst case, if xr performs worse than the second-worst point xs, then
that may mean that moving in the direction described by r may not be the best
choice, therefore, in this case, we contracting our simplex:

xc = c+ β(xh − c) (2.8)

If the performance of xc is better than the worst point xh, then xh is replaced
with xc, and the new simplex is generated accordingly, as shown in figure
2.1(c). However, if not, then we conduct the fourth transformation: the shrink
contraction, for which we redefine the entire simplex.

4. Figure 2.1(d) shows the shrink contraction: in this case, only the best point xl
is kept, the other two points of the new simplex are produced with respect to
it and the previous points:

xj = xl + δ(xj − xl) (2.9)

By doing so, every point in the simplex is pushed towards the current best
point, aiming to converge to the best neighbourhood.

7

2.3. ESTIMATION ACCELERATION Chapter 2. Background and related work

(a) Case one (b) Case two

(c) Case three (d) Case four

Figure 2.1: Different cases of Nelder-Mead

2.3 Estimation acceleration

The most significant advantage of Nelder-Mead method is that it is able to choose
search steps efficiently so that the objective function can be optimized very fast. In
our project, this means that when doing parameter optimization, this method can
minimize the number of parameter evaluations and thus reduce the time required
for estimation. However, due to the optimization strategy itself, a single evalua-
tion still requires multiple repetitions of the simulation, and therefore the running
time of Gilli and Winker’s parameter optimization algorithm is still very long. Ac-
cording to Gilli and Winker’s suggestion, in order to produce a sufficiently stable
result, each evaluation requires at least 200 repetitions of Monte Carlo simulation,
and each repetition requires at least 10,000 agent interactions. Using this setting, it
took them three days to estimate the optimal parameter combination that contains
three parameters, which is too time consuming. Therefore, this section mainly fo-
cuses on the methods proposed in the past literature that speed up the parameters
optimization of agent based model, and discusses how these methods enlighten our
acceleration strategies.

A large and growing body of literature[8] has proved that hardware platforms such
as multi-core CPU and GPU can be used to achieve a considerable acceleration effect
on the parameter estimation speed of agent based models. Existing approaches of
the acceleration can be roughly characterised as two types: reasonable hardware
assignment and Maximisation of Parallelism.

8

Chapter 2. Background and related work 2.3. ESTIMATION ACCELERATION

Reasonable hardware assignment refers to finding the most appropriate allocation
of a series of tasks to available hardware so that the utilization of the hardware
platform can be maximized. For example, some complex operations may better be
executed on GPUs, such as a large number of independent floating point calcula-
tions, while highly data-dependent control flow segments are recommended to run
on CPU.

Among them, the most common approach is to use a CPU-GPU scheme, in which the
CPU controls the progress of the simulation and calls the GPU for specific tasks(e.g.,
Complex matrix or float point calculation). Pavlov and muller’s research [9] con-
cludes that, compared to using CPU or GPU only, the CPU-GPU method is more
promising. However, some other scholars(4) argue that there is a potential prob-
lem in the CPU-GPU approach: it often requires the transmission of data between
the CPU and GPU. Whereas the overhead of this transmission significantly reduces
the speedups this approach brings to us and may even make the estimation proce-
dure longer than before. In order to solve this problem, Li et al. [10] proposed a
method that manually setting the low-latency segment in memory as shared memory
to improve the speed of GPU accessing the main memory. In agent based modelling,
agents are often affected by their direct neighbours. Li et al. take advantage of this
fact; they put the data of a neighbour of an agent into the low-latency shared mem-
ory in the corresponding memory of this agent, to reduce the total memory access
time when updating the agent. This approach has gained great success, however,
it does not applies to our project. This is because in our model, the interaction be-
tween agents is entirely random, which means that it is difficult to decide which
agent’s data should be put into which part of the memory.

In addition to the method of finding a suitable hardware assignment, in the liter-
ature, another way to speed up the estimation process is to maximize the degree
of parallelism. This mainly benefits from the fact that simulations in ABM often
requires a lot of independent computations, which provides a good condition for
parallel computations. Working on GPU, Laville et al. [11] implemented an agent
based simulation of microorganisms in the soil. In their method, each GPU thread
executes the simulation of one agent each time, and therefore multiple simulation
instances are able to be executed simultaneously on the same graphics card. How-
ever, this leads to another problem: if a simulation involves many calculations that
rely on the calculation result of another thread, then the overhead of communica-
tion may reduce the benefits that parallelization brings to us. A qualitative study
given by Li et al.[12] proposes a mechanism to mitigate this problem: in the case
of the estimation procedure consists of multiple repeated simulation instances, com-
putations common to multiple instances are performed only once. This avoids a lot
of unnecessary redundant computations. The acceleration method proposed in this
report combined the idea of the two methods mentioned above[11][12] and made
some modifications to fit our model.

9

2.3. ESTIMATION ACCELERATION Chapter 2. Background and related work

Overall, we found that due to GPU’s mature programming framework and reliable
performance, the vast majority of literature on ABS using hardware accelerators has
focused on GPUs, including the previous two studies[11][12]. However, the evi-
dence presented so far seems to suggest that GPU acceleration is not suitable for our
project; the reasons are summarized as follows:

• Most current GPUs are connected to their host CPU via a specific data transmis-
sion bus, which means that the GPU can not directly access the main memory.
Nevertheless, in our model, data needs to be transferred from the main mem-
ory to graphical memory and back again for every epoch of the simulation.
Therefore, it is impossible to avoid the data transfer between the CPU and GPU
by putting all the agent data on the GPU. This, coupled with the previously
mentioned problem of not being able to optimize data transfer speed using
shared memory, using GPU acceleration in our project may even be counter-
productive.

• GPU is made for highly parallel simple tasks such as multiplying big matrices
and complex float point calculations. This is also one of the reasons why most
of the literature on agent based simulations has focused on GPU - the model
they use always contains convoluted agents’ behaviours and decisions, which
requires a lot of calculations that can be accelerated by using GPU. In contrast,
our basic model only includes a few this kind of calculations, and therefore the
acceleration effect of GPU on our model may not be satisfactory.

• High performance on a GPU requires the given task to be expressed in a way
that fits the GPU’s hardware properties. The main requirements include the
possibility of achieving coalesced memory access as well as a common control
flow within a warp between the threads. Therefore, unlike using multi-core
CPUs, GPU programming requires a deep understanding of the GPU architec-
ture to maximize its performance. This increases the difficulty of using it for
acceleration.

For the above reasons, this project uses multi-core CPUs to conduct parallel acceler-
ation for the estimation process. More details will be discussed in section 3.3.

10

Chapter 3

Contribution

This chapter presents the contributions of this report, focusing on three methods
that improve upon Gilli and Winker’s agent based modelling parameter estimation
method - local restart Nelder-Mead, Simulated Annealing, and the Multi-core CPU
acceleration strategy.

3.1 Local restart Nelder-Mead

This section starts by explaining in more detail why the Nelder-Mead method is so
important for estimating Kirman’s Ant model. Although in their paper, Gilli and
Winker did not elaborate on why they chose the Nelder Mead method as the opti-
mization strategy. However, according to the specificity of this optimization problem,
the potential reason for choosing the Nelder-Mead method may include:

• As pointed out previously, the Nelder-Mead method tends to optimize the ob-
jective function reasonably fast and in an efficient way. That is, Nelder-Mead
allows the estimation algorithm to choose efficiently search steps and thus re-
duce the number of evaluations as much as possible. This is very important
to Gilli and Winker’s estimation algorithm as in their method, the evaluation
of each parameter combination is computationally expensive (each evaluation
requires 5 ∗ 107 operations).

• The objective function of their method is continuous but non-differentiable due
to Monte Carlo variance. As one of the derivative-free optimization methods,
the execution of the Nelder-Mead method is based on comparisons of function
values only and does not need any information on derivatives.

• The Nelder-Mead method can effectively deal with a very high number of vari-
ables, which benefits the potential future work of estimates more parameters
simultaneously.

According to what we have said before, it can conclude that the Nelder-Mead method
is indispensable for estimating Kirman’s Ant model. However, it has been proved
by several researchers[13] that the Nelder-Mead method may converge to a non-
optimal local solution or fail to converge at all – even if we start from a feasible

11

3.1. LOCAL RESTART NELDER-MEAD Chapter 3. Contribution

initial solution. This is mainly due to the deterioration or insufficient decrease of the
simplex geometry in the original Nelder-Mead process.

Therefore, in order to make Nelder-Mead’s performance more stable and enhance
its convergence ability, our project uses a local restart strategy to conduct the esti-
mation, which can be formally defined as:

Algorithm 3 Nelder-Mead with local restart

1: θ1 = Initial parameter value
2: acc = 1
3: i = 0
4: while acc > ε do
5: i++
6: θi = Nelder −Mead(θi−1)
7: acc = |f(θi−1)/f(θi)− 1|
8: end while

Where ε is the stopping accuracy required for acc. The original Gilli and Winker’s
estimation method only calls the Nelder-Mead function once per iteration. However,
this single call transforms the simplex in the parameter space many times (usually
more than 400 times) until the shape of the simplex stays more or less the same.
In contrast, our local restart strategy sets the number of evaluations per call to a
low value. When this call is over, a new Nelder-mead optimization is restarted, and
this new optimization’s initial simplex is constructed around the solution obtained
in the preceding phase. Restarts are repeated until the result of several continuous
Nelder-Mead optimization remain stable.

The advantage of this strategy over the original optimization strategy is that restart-
ing the Nelder-Mead regenerates its search simplex, and in the end, many search
directions are covered. This avoids the problem of finding a nonoptimal solution
due to simplex degradation. In fact, It has already been proved in the literature that
restarting the Nelder-Mead for several times is beneficial[14].

It is also worth noting that the most prevalent local restart strategies do not change
the number of evaluations per call. In other words, in order to enhance the conver-
gence ability of an algorithm, the ordinary restart strategy will only call the algo-
rithm several times without changing the implementation details of the algorithm.
However, in our implementation, we manually reduce the Nelder-Mead algorithm’s
maximum number of evaluations. This is because the Nelder-Mead method fre-
quently produces important changes in the first few iterations and provides satis-
factory results rapidly[15], so reducing the number of evaluations per call can help
improve the running speed while obtaining good results.

12

Chapter 3. Contribution 3.2. SIMULATED ANNEALING

3.2 Simulated Annealing

In addition to the weak convergence ability we discussed in the previous section, the
Nelder-Mead method has another severe limitation: it tends to get stuck in local op-
tima. The reason is fairly simple: when the simplex enters a local optima area in the
parameter space, according to the algorithm, it will keep contracting or shrinking
without exploring other parts of the parameter space and therefore miss some bet-
ter areas. Therefore, even though we have already strengthened the Nelder-Mead’s
ability of convergence in section 3.1, a global optimum is not guaranteed to be found.

Figure 3.1 shows the objective function approximation against the two parameters ε
and σ. The other parameters are kept fixed, as shown in the table below.

Parameter List
Symbol Interpretation Value
σ probability for successful

recruitment
wait for estimation

ε probability for self muta-
tion

wait for estimation

Na size of population 100
Ni number of interactions 50000
V the speed of adjustment 0.05

Table 3.1: Table of parameter

Figure 3.1: Parameter space of the objective function

13

3.2. SIMULATED ANNEALING Chapter 3. Contribution

In the figure, the objective function value of each parameter vector is the average
result of 400 Monte Carlo repetitions, each of which conducts 10000 agent inter-
actions. The result shows that the objective function itself does not appear to be
globally convex. Even though the plot may become smoother as the number of rep-
etitions increasing, its computational requirement will be quite high at that time1.

Therefore, in order to avoid the algorithm get trapped into local optimums this pa-
rameter space has, it was decided to combine the local restart Nelder-Mead with
the Simulated Annealing algorithm. The successive parameter vectors will be a joint
decision from both of them.

Simulated Annealing is a search strategy that avoids being trapped in local optimums
by frequently accepting worse solutions that are no more than a given threshold. By
incorporating it into our optimization strategy, our algorithm can perform an ”uphill
move” at an appropriate time to escape from the local optimum. Algorithm 4 shows
the details of the new optimization strategy.

Algorithm 4 New optimization strategy: Simulated Annealing + Nelder-Mead

1: for each search step do
2: xnew = randomshift(xold)
3: if f(xnew) < f(xold) + threshold then

accept xnew
4: else

xnew = Nelder-Mead(xold)
5: end if
6: end for

It is worth noting that there is a gradual reduction of the threshold as our algorithm
proceed. The advantage is that as the search proceeds, the solution should be closer
to the global optimum, and a smaller threshold at this time can help the algorithm
to reduce the extent of its search and converge to the global optimum.

In addition to helping the algorithm escape from the local optimum, the new strategy
also takes into account the unavoidable simulation variance. For example, because
of the use of the threshold, the modified algorithm becomes less likely to fall into an
area that is actually bad but performs well in a particular simulation.

One of the interesting points in our implementation is that: different from the com-
mon Simulated Annealing strategy, the threshold in the simulated annealing part of
our algorithm will not be reduced to zero in the later stage of the search, but stop
decreasing at a low value. By doing so, we aim to make sure that there will still be
opportunities to find the global optimum point even if the search direction is wrong
in the early stage of the search. Later experiments show that this little modification
does increase the algorithm’s probability of finding global optimum point for our

1Without any acceleration techniques, it takes us 20 hours to run the 400 Monte Carlo repetitions

14

Chapter 3. Contribution 3.3. ACCELERATION OF THE ESTIMATION PROCEDURE

specific parameter space.

3.3 Acceleration of the estimation procedure

As mentioned before, since the estimation procedure is time consuming, a method
that accelerates this procedure is needed to be developed. In our estimation strat-
egy, the time required to simulate the model dominates the total estimation time,
and therefore we focused on optimizing the simulation speed of our model. As sug-
gested by[16], one of the most effective ways to accelerate agent based simulations
is parallel computing techniques. This is because agents are autonomous and always
carry out independent operations. Besides, due to the stochastic nature of ABS, the
simulation of a given scenario is usually repeated multiple times in order to gener-
ate meaningful results. This also provides an excellent opportunity for using parallel
computing techniques.

Furthermore, as pointed out in section2, due to the particularity of our model, this
project does not adopt GPUs, which is widely used in the acceleration of agent based
simulation, but use multi-core CPUs instead. A major benefit of multi-core CPUs
over GPUs is that they are able to execute a number of unmodified code explicitly
written for standard CPUs. This makes migration to these platforms easier. More-
over, because the individual CPU processors allow out-of-order executions, and are
able to access some fast caches, the need of adapting an algorithm’s control flow to
multi-core CPU is easier than with GPUs.

In fact, it has already been proved that it is feasible to use multi-core CPUs for agent
based simulations. A recent systematic literature review [17] concluded that multi-
core CPUs could effectively accelerate simulation tasks, and if a sufficient number of
processors are provided, using the multi-core CPU based accelerator is able to have
a similar performance to that of using the GPU-based acceleration.

In view of all that has been discussed in section 2 and this section, this report pro-
poses two acceleration methods that can run simultaneously.

3.3.1 Parallel execute multiple simulations

Before discussing how the first acceleration method works, it is important to review
some of the main steps of our parameter estimation strategy. Given an input param-
eter vector, the Simulated Annealing and Nelder-Mead will co-determine the next
parameter vector. In order to do so, they need to evaluate the performance of some
different candidate parameter vectors. During this process, because of the existence
of simulation variance, several repeated simulations are conducted on the evalua-
tion of each parameter vector. Then the average score across all simulations is taken
as the final score of this parameter vector.

15

3.3. ACCELERATION OF THE ESTIMATION PROCEDURE Chapter 3. Contribution

Since each simulation is independent of the others, they are able to run simulta-
neously. Therefore, the first acceleration strategy works by running repeated Monte
Carlo simulations for each parameter vector in parallel, as shown in Algorithm 5.

Where parfor is a Matlab command that executes for loop in parallel.

Furthermore, since the agents in our model often perform independent operations,
we have also tried another parallelization method in the early stage of our project:
each processor manages the simulation for a subset of agents. However, through
experiments, it is found that this method did not provide us with the expected
speedup. A possible reason for this could be: the model used in this project is only
a basic model such that the consumption of agent state updating and other agents’
behaviours accounted for only a small proportion of the total consumption. Thus,
the benefits of parallelization in this case are limited.

Consequently, this method is abandoned, and the previous one is adopted. But this
abandoned method still provides the future work with a good idea, for which we
will use a more complex model.

3.3.2 Avoid unnecessary redundant computations

In addition to exploiting the parallelism across multiple simulation instances, we
have also adopted another acceleration mechanism. In a parameter estimation pro-
cedure that consists of multiple repeated simulation instances, duplicate computa-
tions of multiple instances are performed only once. That is, the population compo-
sition(Number of fundamentalists/number of chartists) at each time step of a single
simulation and the corresponding predicted market price are recorded. If there is
a new simulation that has a population composition which has appeared in other
simulation’s history, then the new simulation’s predicted market price at this time
point will no longer be generated by complex calculations, but be directly calculated
using the following formula:

St = Spre + noise (3.1)

Where Spre represents the predicted market price corresponding to the same popu-
lation composition that has appeared in another simulation’s history. The noise is

16

Chapter 3. Contribution 3.3. ACCELERATION OF THE ESTIMATION PROCEDURE

supposed to be normally distributed; noise ∼ N(0, σ2)

The logical justification of this design is that in our model, the biggest factor that
affecting price prediction is the composition of the population. Other factors, for
example fundamental value, are essentially some randomly generated Gaussian dis-
tributions. Therefore, by using the noise term to take into account all these other
factors, the simulation time can be greatly reduced while does not affect its result
too much.

17

Chapter 4

Evaluation

This section evaluates the performance of our model, as well as analyze the capabil-
ity of the modified estimation method and the effect of the acceleration algorithm.
The data used in this section is the EUR/USD exchange rate of January 2019. Fur-
thermore, it is noteworthy that the parameter used by the model in Section 4.1 and
4.2 is the optimal parameter found by our estimation algorithm.

Before presenting the details of each evaluation, the results of them are first summa-
rized here:

• Our model is able to generate high-quality results that reflect some critical
characteristics of the real data. Besides, our model can predict the exchange
rate with an acceptable accuracy - the average prediction accuracy is around
52%. More details are discussed in Section 4.1 and Section 4.2.

• The optimization strategy proposed in this report generates satisfactory solu-
tions that are close to the global minimum point. Section 4.3 presents more
details about this.

• As shown in Section 4.4, the use of the acceleration strategy provides a sig-
nificant speed-up for parameter optimization. It can accelerate the original
optimization algorithm to 14 times at most.

4.1 Simulated time series

Figure 4.1 shows the daily returns of the EUR/USD exchange rate and a typical
simulated returns series. For the real data, the estimated ARCH(1) effect amounts to
0.1485, while it is 0.2007 for the simulated series. The frequency of large changes
is also high for both series leading to a kurtosis of 1.9562 for the actual data and
2.4364 for the simulated series.

18

Chapter 4. Evaluation 4.2. MODEL ACCURACY

(a) Actual return (b) Simulated return

Figure 4.1: Daily return of the exchange rate

A first look indicates that both series exhibit similar patterns, such as volatility clus-
tering and heavy tails. Moreover, there is a close resemblance between the simulated
series and the real data series concerning ARCH(1) effect and kurtosis. This proves
that the design of our objective function and the model are rational. Further analy-
sis shows that the simulated time series also shows some interesting patterns, such
as the symmetric triangle pattern and ascending/descending channels. It is worth
noting that those patterns do not frequently appear with simple simulation models
like the random walk.

Overall, these results indicate that some characteristics of the real data are reflected
in the simulated series. This proves that even though only a basic model is used in
our project, one of the most important aims of this project is accomplished - model
the financial markets and be able to reproduce some of the typical behaviours of the
real price flow.

4.2 Model accuracy

In addition to testing whether the characteristic of the real data can be reproduced,
the performance of the model is also evaluated numerically.

In the EUR/USD dataset, the data during the period of 8 am - 8 pm every day is
used as the experimental data. Data beyond this period was generated in the non-
active period of exchange rate trading and thus they are regarded as low-quality
information. The daily data in the 8 am - 8 pm period is split into 12 segments.
Our model tries to predict the relative trend of the exchange rate in each segment
compared with the previous one (e.g., Is the exchange rate at 9 am higher or lower
than that of 8 am?), thereby transforming the discrete prediction results into a bi-
nary classification problem.

Two metrics are used to see how similar the predicted results were to the real data:

19

4.2. MODEL ACCURACY Chapter 4. Evaluation

F1 score and accuracy. They are calculated as follows:

F1 =
2 ∗ true positive

2 ∗ true positive + false positive + false negative
(4.1)

Where F1 ∈ (0, 1), the larger F1 is, the better the result.

acc =
true negative + true positive

true negative + true positive + false negative + false positive
(4.2)

It is worth mention that in our dataset, the ratio of positive/negative labels is 50.32%.
This indicates that the data is balanced and therefore it is appropriate to use accu-
racy as one of the metrics.

The figure below presents our model’s daily prediction F1 score and accuracy for
all 31 days in January 2019. To make the result more convincing, the prediction
result of a random walk simulation is also included in the figure, which predict the
exchange rate at the next moment using a simple Gaussian distribution. Further-
more, in order to reduce experiment errors, the daily F1 score and accuracy given in
the figure are the average results of 1000 simulations.

(a) Accuracy (b) F1 score

Figure 4.2: Daily accuracy and f1

It can be seen that the random walk model poorly predict the exchange rate return
- its accuracy has always been around 50%. This is expected because the model
is making random predictions about the trend of exchange rates. In contrast, the
numerical experiment shows that our agent based model yields more accurate pre-
dictions, as its f1 score and accuracy are always higher than the random model. This
is consistent with our conclusions in the previous section. Since the simulated time
series generated by our model exhibit behaviours similar to that of the real data, our
model’s result quality is also higher than that of the random guess.

In summary, this experiment justifies our model’s reliability in terms of predicting
reasonably accurate results for unseen situations. The correctness of the estimation

20

Chapter 4. Evaluation 4.3. PARAMETER ESTIMATION

algorithm is also indirectly proved because the parameters used in this experiment
are the optimal parameters it found. However, since the model adopted in this
project is only a very basic model that simulates a very limited number of investor
behaviours, there seems to be a lot of room for improvement in terms of reproducing
real data behaviour and prediction accuracy.

4.3 Parameter estimation

4.3.1 Effect of the estimation

Figure 4.3 shows the grid plot of the objective function in the ε - σ subspace. The
two routes respectively represent the parameter search path generated using the
Nelder-Mead only and using the combined strategy that consists of Nelder-Mead
and Simulated Annealing.

Figure 4.3: Figure shows different strategy’s search path

A first look indicates that when using Nelder-Mead only, the estimation algorithm is
trapped in a local optimum close to the starting point. Whereas when using our strat-
egy that combined Nelder-Mead and Simulated Annealing, the algorithm has gone
into a number of local minimum and successfully escapes them. This is expected
because the aim of incorporating the Simulated Annealing into our optimization
strategy is to solve the problem of local optimum. The results in this section indicate
that the design of this strategy is reasonable.

As pointed out in Section 3.2, we approximated the objective function for all com-
binations of ε and σ, and the global optimum of this parameter space was found to

21

4.3. PARAMETER ESTIMATION Chapter 4. Evaluation

be: (0.015,0.876). Experimental results show that the point where the algorithm
ended up searching is fairly close to that of this global optimum point. Therefore it
is proven that, in addition to escaping from the local optimum, our strategy is also
able to approximate the global optimal solution in the case of the objective function
is not globally convex.

In this project, the estimation problem mainly focuses on the two-dimensional prob-
lem: ε - σ. Therefore, this experiment only evaluates the performance of our esti-
mation method on this parameter combination. In this case, running a brute-force
search to try all combinations for a predefined granularity may yield more accurate
results within a reasonable time as the parameter vector contains only two param-
eters. However, considering that in the future work, more parameters of the agent
based model will be included in the estimation problem, using brute force search all
the time may not be the best choice because of the curse of dimensional problem.
This once again proves the necessity of the research we have done.

The most striking result to emerge from the experiment is that: the starting point
of the search is extremely important. That is, the estimation algorithm is guaran-
teed to converge only if the initial value of ε is set to a small value. Whereas if it
is initialized with a large value, then it will just keep increasing and exceeds one
rapidly(remember this parameter stands for probability). A possible reason for this
phenomena could be: one can find that the terrain of the right half of the parameter
space (when the value of ε is large) is fairly rough, and sometimes making a small
change to the parameter combination value may lead to a big step in the objective
function value. When searching in this type of terrain, the simplex used by Nelder-
Mead would be elongate indefinitely, and their shape goes to infinity in this space,
then start growing randomly and aimlessly.

Through experiments, our model’s safe range of this parameter is suggested to be:
ε ∈ (0, 0.03). If the initial value of ε is set beyond this range, the convergence of our
estimation algorithm will be seriously affected.

Overall, these results indicate that our modifications to the original estimation al-
gorithm are successful. Compared with the old strategy, the current optimization
strategy is more likely to find the global optimal solution. However, strictly speak-
ing, it did not fully achieve the original goal of the project, because the estimation
algorithm failed to converge when starting with an inappropriate initial point. Of
course, future research will try to improve the capability of our estimation algorithm
to ensure its convergence in the case of a bad initial point is given.

4.3.2 Effect of the acceleration of the estimation

To test the effect of our acceleration method for CPUs with a different number of
processors, this section’s evaluation uses two machines that have 2 and 32 proces-
sors respectively. The following plots and tables present the time required for these

22

Chapter 4. Evaluation 4.3. PARAMETER ESTIMATION

two machines when running the parameter optimization algorithm with different
computational complexity. In each table, the speedup is calculated as:

execution time on 1 core
execution on K cores

(4.3)

(a) machine 1 (b) machine 2

Figure 4.4: execution time for 10 epochs’ optimization

1000 3000 5000 7000 9000
no parallel

execution time 197.541 552.174 882.677 1140.478 1432.919

2 cores
execution time 159.988 324.832 428.703 561.112 771.307

Machine
1 2 cores

speed up 1.2 1.7 2.1 2.0 1.9

no parallel
execution time 249.737 709.224 932.228 1267.519 1625.767

12 cores
execution time 57.416 87.881 141.459 186.304 353.138

12 cores
speed up 4.3 8.1 6.6 6.8 4.6Machine

2 32 cores
execution time 85.913 121.308 230.234 255.007 376.399

32 cores
speed up 2.9 5.8 4.0 4.9 4.3

Table 4.1: execution time and speed up for 10 epochs’ optimization

23

4.3. PARAMETER ESTIMATION Chapter 4. Evaluation

(a) machine 1 (b) machine 2

Figure 4.5: execution time for 50 epochs’ optimization

1000 3000 5000 7000 9000
no parallel

execution time 805.448 2288.134 2900.681 5158.269 5746.729

2 cores
execution time 1001.318 1300.849 1669.681 3013.165 3859.309

Machine
1 2 cores

speed up 0.8 1.8 1.7 1.7 1.5

no parallel
execution time 1054.796 2632.190 4209.715 6339.005 9340.687

12 cores
execution time 156.253 328.846 462.391 607.277 751.746

12 cores
speed up 6.8 8.0 9.1 10.4 12.4Machine

2 32 cores
execution time 161.647 276.692 401.529 489.519 664.138

32 cores
speed up 6.5 9.5 10.5 12.9 14.1

Table 4.2: execution time and speed up for 50 epochs’ optimization

24

Chapter 4. Evaluation 4.3. PARAMETER ESTIMATION

(a) machine 1 (b) machine 2

Figure 4.6: execution time for 100 epochs’ optimization

1000 3000 5000 7000 9000
no parallel

execution time 2249.848 5790.534 6429.422 11605.109 13569.261

2 cores
execution time 1118.562 2898.222 4625.037 6671.737 7190.364Machine

1
2 cores

speed up 2.0 1.9 1.4 1.7 1.9

no parallel
execution time 2231.647 5071.616 10537.742 12216.580 14215.568

12 cores
execution time 217.457 544.944 774.158 1372.292 1605.976

12 cores
speed up 10.3 9.3 13.6 8.9 8.9

32 cores
execution time 238.992 389.169 633.526 1029.927 1174.310

Machine

2 32 cores
speed up 9.3 13.0 16.6 11.9 12.1

Table 4.3: execution time and speed up for 100 epochs’ optimization

The tables and plots above illustrate some of the main characteristics of our acceler-
ation strategy. First, it can be observed that the number of CPU processors and the
speed of the estimation are not increased by the same proportion. (i.e., the estima-
tion speed is not 32 times faster for a 32-processors CPU). In some cases, we can
even find that as we increase the number of processors, on the contrary, the estima-
tion time gets longer. For example, when an optimization instance of 50 repetitions
and 1000 interactions (Table 4.2) is considered, the execution time is 805s when no
acceleration method is applied on machine 1, while the execution time increased to
1001s after using parallel acceleration with dual cores.

25

4.3. PARAMETER ESTIMATION Chapter 4. Evaluation

In fact, this is consistent with what figure 4.7 tells us, for which we evaluate the
speedup of a different number of cores on machine 2. It shows that when the num-
ber of interactions and epochs are fixed, the effect of increasing the number of cores
decreases as the number of cores increases. The reason for this is that when there
are too many processors running simultaneously, the overhead associated with create
and distribute the parallel tasks dramatically slows down the estimation algorithm.
More processors run simultaneously means more overhead, too many processors can
offset the benefits that parallelization bring to us. Therefore it can be seen that in
figure 4.5(b) and 4.6(b), running with 12 threads took almost the same amount of
time as running with 32 threads.

Figure 4.7: Speed up effect on machine 2

Interestingly, there was another counter-intuitive phenomenon: when the same
amount of processors are used, the larger the computational complexity(e.g., more
epochs and interactions), the higher the gain of the parallelization. For example, in
the experiment, an optimization of 10 epochs with 1000 interactions per epoch took
the 2-core CPU 160 seconds. Whereas using the same CPU, a 100 epochs optimiza-
tion run for 1118 seconds instead of 1600 seconds(160 * (100/10)). The reason for
this is the same as in the previous one - running multiple threads has overhead on
its own, increasing the computational complexity can increase the revenue and thus
indirectly reduces the consumption due to increased computational complexity.

Summarizing the findings for running our acceleration method on different ma-
chines, it can be stated that the acceleration method proposed in this report can ef-
fectively reduce the time required for Agent Based model’s parameter optimization.
However, the acceleration effect is greatly affected by the problem of inter-processor
communication consumption we discussed earlier. Therefore, future research will
also study on approaches that reduce this kind of consumption.

26

Chapter 5

Conclusion and future work

This report systematically explores Gilli and Winker’s nonlinear parameter optimiza-
tion technique, discusses some limitations of their method, and puts forward corre-
sponding solutions.

To conclude, the major changes we made to Gilli and Winker’s parameter estima-
tion method include:

• Using a local restart strategy, this report improves the convergence ability of
the original optimization method.

• The Simulated Annealing algorithm was incorporated into the original opti-
mization strategy to help it escape from the many local optimum.

• This report proposed a multi-core CPU parallel acceleration method, which
dramatically reduces the execution time of the original optimization algorithm.

The experiment shows that our agent based model is able to yield reasonable result.
Our modifications to Gilli and winker’s optimization strategy were also proved to
work as expected - the new strategy is able to efficiently overcome local optimum
and obtain close approximations of the global optimum.

However, the presented optimization strategy is restricted by the initial parameter
value. Further research will concentrate on this problem to enhance the convergence
ability of the optimization algorithm when a bad initial point is given.

At the same time, given that only a basic model is used in this project, we will
also try to add some more complex behaviours to this model. For example, instead
of using a constant value, the probability σ of convincing another individual could
be made dependent on past success. By doing so, we aim to produce simulations
that are closer to the real data, as well as more accurate predictions.

Furthermore, in addition to CPU and GPU, FPGA is another hardware platform that
is frequently used in the acceleration of highly parallelisable tasks. Therefore, it
may also be a reasonable attempt to try to use FPGA instead or combine it with the
multi-core CPUs.

27

Bibliography

[1] Calvez B, Hutzler G. Parameter Space Exploration of Agent-Based Models. In:
Khosla R, Howlett RJ, Jain LC, editors. Knowledge-Based Intelligent Informa-
tion and Engineering Systems. Berlin, Heidelberg: Springer Berlin Heidelberg;
2005. p. 633–639. pages 2

[2] Winker P, Gilli M. Indirect Estimation of the Parameters of Agent Based Models
of Financial Markets. FAME Research Paper 35. 2001 05;. pages 2

[3] Kirman A. Ants, Rationality, and Recruitment. The Quarterly Journal of Eco-
nomics. 1993 02;108:137–56. pages 2, 3

[4] Lux T, Alfarano S, Wagner F. Estimation of Agent-Based Models: The Case of
an Asymmetric Herding Model. Computational Economics. 2005 02;26:19–49.
pages 3

[5] Franke R, Westerhoff F. Estimation of a Structural Stochastic Volatility Model
of Asset Pricing. Computational Economics. 2011 06;38:53–83. pages 3

[6] Recchioni M, Tedeschi G, Gallegati M. A calibration procedure for analyzing
stock price dynamics in an agent-based framework. Journal of Economic Dy-
namics and Control. 2015 08;60:1–25. pages 5

[7] Barde S. Direct comparison of agent-based models of herding in financial mar-
kets. Journal of Economic Dynamics and Control. 2016 10;73. pages 5

[8] Bauer D, McMahon M, Page E. An approach for the effective utilization of
GP-GPUS in parallel combined simulation; 2008. p. 695–702. pages 8

[9] Pavlov R, Müller J. Multi-Agent Systems Meet GPU: Deploying Agent-Based
Architectures on Graphics Processors. vol. 394; 2013. p. 115–122. pages 9

[10] Li X, Cai W, Turner S. Efficient Neighbor Searching for Agent-Based Simulation
on GPU; 2014. p. 87–96. pages 9

[11] Laville G, Lang C, Marilleau N, Mazouzi K, Philippe L. Using GPU for Multi-
agent Soil Simulation; 2015. pages 9, 10

[12] Li X, Cai W, Turner S. Cloning Agent-based Simulation on GPU; 2015. p. 173–
182. pages 9, 10

28

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Lagarias J, Reeds J, Wright M, Wright P. Convergence Properties of the Nelder–
Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization.
1998 12;9:112–147. pages 11

[14] Kolda T, Lewis R, Torczon V. T.G. Kolda, R.M. Lewis, V. Torczon: Optimization
by direct search: New perspectives on some classical and modern methods.
SIAM Review 45, 385-482. SIAM Review. 2003 09;45:385–482. pages 12

[15] Singer S, Nelder J. Nelder-Mead algorithm. Scholarpedia. 2009 01;4:2928.
pages 12

[16] Xiao J, Andelfinger P, Eckhoff D, Cai W, Knoll A. A Survey on Agent-based Sim-
ulation Using Hardware Accelerators. ACM Computing Surveys. 2019 01;51:1–
35. pages 15

[17] Williams B, Ponomarev D, Abu-Ghazaleh N, Wilsey P. Performance Charac-
terization of Parallel Discrete Event Simulation on Knights Landing Processor;
2017. p. 121–132. pages 15

29

	1 Introduction
	2 Background and related work
	2.1 Agent based models
	2.2 Parameter estimation method
	2.3 Estimation acceleration

	3 Contribution
	3.1 Local restart Nelder-Mead
	3.2 Simulated Annealing
	3.3 Acceleration of the estimation procedure
	3.3.1 Parallel execute multiple simulations
	3.3.2 Avoid unnecessary redundant computations

	4 Evaluation
	4.1 Simulated time series
	4.2 Model accuracy
	4.3 Parameter estimation
	4.3.1 Effect of the estimation
	4.3.2 Effect of the acceleration of the estimation

	5 Conclusion and future work

