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Abstract

In this paper we study a Blind Source Separation (BSS) problem, and in particular
we deal with document restoration. We consider the classical linear model. To this aim,
we analyze the derivatives of the images instead of the intensity levels. Thus, we can
establish a non-overlapping constraints on document sources. Moreover, we impose that
the rows of the mixture matrices of the sources have sum equal to 1, in order to keep
equal the lightnesses of the estimated sources and of the data. Here we give a technique
which uses the symmetric factorization, whose goodness is tested by the experimental

results.

1 Introduction

In this paper we deal with a Blind Source Separation (BSS) problem. This problem has been
an active research topic in signal processing since the end of the last century, and has several
applications in different fields. Here we deal with show-through and bleed-through effects.

The show-through is a front-to-back interference, mainly due to the scanning process and the
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transparency of the paper, which causes the text in the verso side of the document to appear
also in the recto side (and vice versa). The bleed-through is an intrinsic front-to-back physical

deterioration due to ink seeping, and produces an effect similar to that of show-through.

We consider a classical linear and stationary recto-verso model (see also [4, 9, 10, 11, 17])
developed for this purpose, and we deal with the problem of estimating both the ideal source
images of the recto and the verso of the document and the mixture matrix producing the
bleed-through or show-through effects. This problem is ill-posed in the sense of Hadamard
(see also [8]). In fact, since the estimated mixture matrix varies, the corresponding estimated
sources are in general different, and thus we have infinitely many solutions. Many techniques
to solve this problem have been proposed in the literature. Among them, the Independent
Component Analysis (ICA) methods are based on the assumption that the sources are mutually
independent (see also [6]). The best-known ICA technique is the so-called FastICA (see also
9, 10, 11, 12, 13]), which finds an orthogonal rotation of the prewhitened data which maximizes
a measure of non-Gaussianity of the rotated components, using a fixed point iteration. The
FastICA algorithm is a parameter-free and extremely fast procedure, but ICA is not a suitable
approach in our setting, as for the problem we consider there is a clear correlation among the
sources. On the other hand, several techniques for ill-posed inverse problems require that the
estimated sources are only mutually uncorrelated. In this case, they are determined by a linear
transformation of the data, which is obtained by imposing either an orthogonality condition, as
in Principal Component Analysis (PCA) (see also [4, 16, 17]), or an orthonormality condition,
as in Whitening (W) and Symmetric Whitening (SW) techniques (see also [4, 16, 17]). These
approaches require only a unique and very fast processing step. In [4, 17] it is observed that
the results obtained by the SW method are substantially equivalent to those given by an ICA

technique in the symmetric mixing case.

In [2] it is assumed that the sum of all rows of the mixing matrix is equal to one, since
we expect that the color of the background of the source is the same as that of the data. In
2] a change of variables concerning the data is made so that high and low light intensities
correspond to presence and absence of text in the document, respectively, and we impose a
nonnegativity constraint on the estimated sources (see also [3, 5, 7, 14]). In [2] the overlapping
matriz of both the observed data and the ideal sources is defined, namely a quantity related
to the cross-correlation between the signals. From the overlapping matrix it is possible to
deduce the overlapping level, which measures the similarity between the front and the back of
the document. In this paper we modify the technique proposed in [2] and we deal with the
derivatives of the images of the original sources. In this case, we assume that the overlapping
level is equal to zero. By means of our experimental results, we show that the proposed

technique improves the results obtained in [2] in terms both of accuracy of the estimates and
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of computational costs. We refer to this method as the Zero FEdge Overlapping in Document
Separation (ZEODS) algorithm.

In Section 2 we present the linear model. In Section 3 we develop the ZEODS algorithm to
deal with the linear problem. In Section 4 we compare experimentally the ZEODS algorithm

with other fast and unsupervised methods existing in the literature.

2 The linear model
The classical linear model is the following (see, e.g., [4, 9, 10, 11, 15, 17]):
7’ = AGT, (1)

where -7 is the transpose operator of a matrix, 7 € [0, 255" is the data document in the
involved subdomain, s € [0, 255]"™ is the source document, n (resp., m) is the number of rows
(resp., columns) of the considered images, and A € R**? is the mizture matrix.

In this paper we discuss the problem of evaluating the ideal sources and the mixture matrix
from the observed data using the linear equation (1), which is a Blind Source Separation (BSS)
problem (see, e.g., [4, 16]). If we get an invertible estimate A of A, then an estimate of s is

given by
s =A"1gT, (2)

Since there are infinitely many choices of g, our problem admits infinitely many solutions,
and is ill-posed in the sense of Hadamard. Also when A and 3 are nonnegative matrices,
the problem is NP-hard (see [18]) and ill-posed (see [8]). To overcome this, we impose some
constraints on the solutions.

We do not assume that the mixing matrix is symmetric, because the phenomenon of infil-
tration of the ink is often unpredictable. However, since the color of the paper is the same for
each part of the document, we suppose that the value of the source background, that is the
graylevel of the unprinted /unwritten paper, is the same as the background of the data. This
value corresponds to the light intensity of the paper on which the document is written. To

impose this condition, we require that A is a one row-sum matriz, namely
a1 + a1z = ag + agy = 1. (3)

We call clique the set of pixels on which the finite difference of first order is well-defined.

The vertical cliques are of the type

C:{(i>j>7(i+17j)}= (4>
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while the horizontal cliques have the form

c={(64), (6,7 + 1)} ()

We denote by C' the set of all cliques. Note that |C| = 2nm — m — n, where C' denotes the
cardinality of C.

Given a vertical clique ¢ = {(i,7), (i + 1,7)}, the finite difference operator on it is A X =
Z;i; — Zit1,. Moreover, given a horizontal clique ¢ = {(¢,7), (4,7 + 1)}, the associated finite
difference operator is let AX = Z;; — Z; j+1. We consider the linear operator D € RICIxnm
Note that, in this matrix, every row index corresponds to a clique, while every column index
corresponds to a pixel. To every row it is possible to associate a vertical or horizontal clique.

Then, if we consider a vertical clique ¢ = {(¢,7), (i + 1,J)}, we get

(1, if (I,k) = (4,5),

Dc,(l,k) = —1, if (l,/{?) = (Z + 1,j),

L 0, otherwise;
and, if ¢ ={(4,J), (4,5 + 1)} is a horizontal clique, we have

(1, if (I,k) = (4,)),

DC,(l,k) = _17 if <l7k) = (Za.] + 1)7

L 0, otherwise.
Let x € RIC/X2 be the data derivative document matriz defined by
r = DZT. (6)
Analogously, the source derivative matriz s € RI°I*? is defined by
s = Ds. (7)

Notice that the involved images contain letters. If we assume that the colours of the letters
and of the background are uniform, then the finite differences are null, while they are different
from zero in correspondence with the edges of the letters.

From (1), (6) and (7) we deduce

2T = 37DT = ASTDT = AsT. 8)



Note that the linear model obtained by considering the data document derivative matrix and
the source derivative matrix is equal to that obtained by treating the data document and the
source document in (1).

Analogously as in [2], here we define the following 2 x 2 data derivative overlapping matrix

of the observed data:

T T
C11 Ci19 T Ty + Ty Ty Ty
C = =z x=| o : (9)
v v

Co1 C29 T, Ty T, *Ty

The matrix C' indicates how much the edges of the letters in the front overlap with those of
the back. Indeed, in our case, the data derivative overlapping matrix is always nonnegative,
and is diagonal if and only if there is no overlapping of the edges of text from the recto to the
verso of the document. In particular we refer to the entries d = c¢19 = ¢o1 as the data derivative
overlapping level.

The source derivative overlapping matriz can be defined similarly as

T T
P11 P12 T S, *Sr S, Sy
=5 5= . T .
D21 P22 Sy *Sr Sy " Sy

It is not difficult to see that the matrices C' and P are symmetric and positive semidefinite.

P =

We refer to the value

k= pio=pu = SZ * Sy (10)

as the source derivative overlapping level. We assume that k = 0, that is the edges of the recto

of the document do not overlap with those of the verso.

3 A technique for solving the linear problem

As in [2], we define a symmetric factorization of a symmetric and positive-definite matrix
H € R™™ as an expression of the type H = ZZ7, where Z € R™". Note that, given an
orthogonal matrix € R™" and a symmetric factorization of the type H = ZZT, then
ZQ(ZQ)T is a symmetric factorization of H too. Furthermore, if we pick any two symmetric
factorizations H = Z,Z1 and H = Z,ZI, then there exists an orthogonal matrix Q € R™*"
with Z; = Z,Q (see, e.g., [1]).

In the 2 x 2 case, the set of the orthogonal matrices is the union of all rotations and

reflections in R?, which are expressed as

sin 6 —cosf

Q'(0) = [ (11)

] and Q_1(9>:[sin0 cos@]’

cos 6 sin 6 cos —sinf
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respectively, as  varies in |0, 27]. Since C' = CY/2(C/?)T = CY/2C'/? is a symmetric factoriza-

tion of C, then all factorizations of C' are given by

(v) (v)
Z(L) (0) — CI/ZQ(L) (0) _ P11 P12 Q(L)(@) _ Z%l)(g) 212) (0) : (12)
P21 P22 o1 (0) 255 (0)
where 6 €]0,27] and ¢ € {—1,1}. In particular, we get
0 =217 0), 2 0) = —25"0), ) (0) =2 (0), 2)(0) = —z57(0).  (13)
We assume that

C=aTe=As"sAT = AP AT, (14)

where P is a symmetric and positive-definite estimate of the source derivative overlapping

matrix P. In P we put
P12 = pa1 = 0. (15)
Observe that we do not assign a value to pj; and pyg, as they will be determined later by

imposing that the estimated mixture matrix is one row-sum. Let
P=vyYy"T (16)
be a symmetric factorization, where Y is a nonsingular matrix that satisfies
Y11 Y21 + Y12 Y22 = 0, (17)
thanks to (15). From (14) and (16) we get
C = AYYTAT = Ay (AY)',

that is, AY is a factorization of C. For every given choice of 0 €]0,27] and ¢ € {—1,1}, we
define an estimate A®(6) of the mixture matrix A as a matrix such that A®(6) = 2O (9)y 1,
where Z()(6) is as in (12). We have

O = DO =8O g A O = ) O 18)
H Y1 Yoz — Y21 iz 2 Y1 Y2 — Yorthe
a(b) (9) _ Zébl) (9>y22 - Zébz) (9)y21 G(L) (9) _ Zé;) (e)yn — zéLl) (6)y12
2t Y1 Yo — Y1 Y2 2 Yi1Ya2 — Y1 Y12
and by imposing that A®(0) satisfies the one row-sum condition in (3), we get
A (0)y22 — 29 (O)yor + 25 (O)yrs — 247 (O)yiz = Y11 Yoo — Yo Yo, (19)

Zgl)(@)yzz - Zgz)(@)yzl + Zgz) (9)1/11 - Zéi)(e)ylz = Y11Y22 — Y21 Y12-
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Thus, the matrix Y fulfils the conditions in equations (17) and (19). The nonlinear system given
by the equations (17) and (19) admits infinitely many solutions. For the sake of convenience,

we choose the solution

;Y2 = 0, (20)

det C
yll = L L
(25 (6) = 215.(6)) det 2(6)
det Z((6)
Yo1 = 0, Yoo = — PP
A7(0) - 227 (0)
This choice has several consequences. First, from (13) and (18) we obtain that A1 (g) =
ACD(6) for all 6 €]0, 27]. Moreover, from equations (11) and (12) we get that Z(0) = —Z(6 +
), for 6 €]0, 7], and hence from (18) and (20) we deduce that

A(0) = A0 + ), (21)

for each 6 €]0, 7.

So, in the following we consider only the case ¢ = 1, we put A(f) = AD(0) and Z(h) =
ZM(0) for each 0 €]0, 7], and in general we consider only the values of § belonging to ]0, 7).

Recall that Y must be non-singular, since Y realizes a symmetric factorization of the non-
singular matrix P.

Moreover, the equations in (20) are well defined if z11(0) # 221(0) and z15(6) # 292(0). In
[1] we prove that z11(0) = 221(0) or z12() = 222(f) when 6 assumes the values ¢ + t7, with
t € Z and

arctan (M>, if p11 # por,
=93 P11 — P21

Z if _
27 I P11 P21,

(22)

where p; j, i,j = 1,2, are the entries of the matrix C'/2,
For any 0 €], o+ 5[U]Jp + 5, ¢ +7[, we get that an estimate of the ideal sources s is given
by

07 = [5.0) 5.00)] =A@, (23)
which, together with the fact that A=1(0) = A'(A) = ZW(9)Y ~* and (19), yields
3 _ 222(0) " z12(0) o
T(e) 212<9) — ZQQ(H) " + 2’12(9> — 2’22(9> v (24)
5.(0) = ) o @)

_211<9) — 221(9) " 211(0> — 221(9> v
As we supposed that the derivatives of our estimated sources take values between 0 and 2m,

where m is the maximum value of the observed image, we take the orthogonal projection of the
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nmx2 with respect to the Frobenius norm. Namely, we apply

estimate s,(6) on the space [0, 2m)]
to the estimate of the sources the function that maps a vector s € R™ to the nm-dimensional

vector 7(s), whose elements are given by

0, it 5; <0,
(7(5))i =< s, if0<s;<2m, i=1,...,nm. (25)

2m, if s; > 2m,

By this transformation, the projections of the estimated source derivative images 7(s,,(0))
and 7(s,,(0)) turn to be nonnegative (see also [3, 5, 7, 14]). From now on, we consider the
projections above as the new estimates of the derivatives of the sources. Thus, among the
possible values of 0 in ], ¢ 4+ F[U]p + 7, ¢ + 7|, we find a value 0 that minimizes the objective

function

g(e, C) = T<§r(0))T ’ T(gv(e)) (26)

Observe that from (21) and (23) it follows that the function ¢ is periodic in the variable 6 with

period 7. The function ¢ is minimized by means of the algorithm given in [2].

The steps of the algorithm described in this section are illustrated as follows.

function ZEODS(7)

determine the maximum value m of Z;
x = Dx;

C=a"x;

0= argmin(function ¢(-,C));

2(6) = C*2Qu(0):

compute 3,(d) and 5,(6) as in (24);
return D~'7(5(6))

The function g(-,-) is computed as follows:

function ¢(0,C)

Z(0) = C'2Q'(0);

compute s,(f) and 5,(0) as in (24);
return (7(5,.(0)))" - 7(5,(0))

We refer to this method as the Zero Edge Overlapping in Document Separation (ZEODS)

algorithm, which is a parameter-free technique, and thus unsupervised.
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4 Experimental results

We have used ideal images, from which the observed documents have been synthetically con-
structed from suitable mixture matrices. The ideal images used for the tests are represented

in Figures 1 and 2.

(1.1) original recto (1.2) original verso
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(1.5) original recto (1.6) original verso

Figure 1: Ideal images

In our tests, we have used both symmetric and asymmetric mixture matrices. In the
following subsections, the obtained results are explained and compared with other techniques
both computationally and from the graphical point of view. We examined RGB color images.

The channels R, G and B was treated separately.



(2.1) original recto (2.2) original verso

(2.3) original recto (2.4) original verso

(2.5) original recto (2.6) original verso

Figure 2: Ideal images
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4.1 Case 1: First symmetric matrix

The first case we investigate is a symmetric mixture matrix. For each channel R, G and B,

the related matrices are

06 04 0.6 0.4 0.6 0.4
Agp = , Ag = , Ag = . 27
f <0.4 O.6> ¢ <0.4 0.6) " <0.4 O.6> 27
Now we see the behavior of the presented algorithms. We consider the ideal images in Figure 3,
and using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 4.
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(3.1) original recto (3.2) original verso

Figure 3: Ideal images
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(4.1) degraded recto (4.2) degraded verso

Figure 4: Degraded images

By applying the algorithms we get, as estimates, the results in Figures 5-10.

In Table 1 we present the mean square errors with respect to the original documents
obtained by means of the aforementioned algorithms for estimating the recto and the verso of
Figure 3. Now we consider the following ideal images in Figure 11. Using the above indicated

mixture matrices, we synthetically obtain the degraded images in Figure 12.
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Figure 5: Estimates by ZEODS
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MATODS
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Figure 6: Estimates by MATODS
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(7.1) recto estimated by
Fastlca

fonori otim . remgredie!
outolus omefinm. - ptemaus
up frauounriceet | fieratsai b
Rt feandil: mlmm" ot anw

(7.2) verso estimated by
Fastlca

Figure 7: Estimates by Fastlca
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Symmetric Whitening
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Figure 8: Estimates by Symmetric Whitening
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Figure 9: Estimates by Whitening

(10.1) recto estimated by
PCA

(10.2) verso estimated by
PCA

Figure 10: Estimates by PCA



Used Technique MSE Recto | MSE Verso | MSE of A

ZEODS 5.0766 0.6228 1.020 - 1074
MATODS 12.5173 49.0506 0.0011
FASTICA 58.2382 212.8663 0.0546
Symmetric Whitening | 428.0422 373.6753 0.00183
Whitening 7.7086 - 103 | 6.2362 - 103 0.3561
PCA 1.4943 - 10* | 5.2861 - 103 0.3770

Table 1: Errors of the algorithms by using the mixture matrix in (27).

(11.1) original recto

(11.2) original verso

Figure 11: Ideal images

(12.1) degraded recto

(12.2) degraded verso

Figure 12: Degraded images
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(13.1) recto estimated by (13.2) verso estimated by
ZEODS ZEODS

Figure 13: Estimates by ZEODS

(14.1) recto estimated by (14.2) verso estimated by
MATODS MATODS

Figure 14: Estimates by MATODS

(15.1) recto estimated by (15.2) verso estimated by
Fastlca Fastlca

Figure 15: Estimates by Fastlca
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(16.1) recto estimated by (16.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 16: Estimates by Symmetric Whitening

(17.1) recto estimated by (17.2) verso estimated by
Whitening Whitening

Figure 17: Estimates by Whitening

(18.1) recto estimated by (18.2) verso estimated by
PCA PCA

Figure 18: Estimates by PCA
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By applying the algorithms we obtain, as estimates, the results in Figures 13-18.
In Table 2 we give the mean square errors with respect to the original documents obtained

by means of the above algorithms for the estimates of the recto and the verso of Figure 11.

Used Technique MSE Recto | MSE Verso MSE of A
ZEODS 1.7592 0.4784 5.4688 - 1077
MATODS 25.6900 52.0605 1.2550 - 10~4
FASTICA 3.3840 3.4516 0.0095
Symmetric Whitening 74.7709 80.8914 0.0110
Whitening 8.4391 - 103 | 5.98950 - 103 0.4561
PCA 1.4068 - 10* | 3.9386 - 10° 0.4225

Table 2: Errors of the algorithms by using the mixture matrix in (27).

We consider the ideal images in Figure 19.

(19.1) original recto

(19.2) original verso

Figure 19: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 20.

By applying the algorithms we obtain, as estimates, the results in Figures 21-26.

In Table 3 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 19. We consider the ideal images in Figure 27.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 28.

By applying the algorithms we obtain, as estimates, the results in Figures 29-34.

In Table 4 we indicate the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of
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(20.1) degraded recto (20.2) degraded verso

Figure 20: Degraded images

(21.1) recto estimated by (21.2) verso estimated by
ZEODS ZEODS

Figure 21: Estimates by ZEODS

(22.1) recto estimated by (22.2) verso estimated by
MATODS MATODS

Figure 22: Estimates by MATODS
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(23.1) recto estimated by (23.2) verso estimated by
Fastlca Fastlca

Figure 23: Estimates by Fastlca

(24.1) recto estimated by (24.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 24: Estimates by Symmetric Whitening

(25.1) recto estimated by (25.2) verso estimated by
Whitening Whitening

Figure 25: Estimates by Whitening
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(26.1) recto estimated by
PCA

(26.2) verso estimated by

PCA

Figure 26: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.8752 0.6474 4.4766 - 107°
MATODS 172.146 180.0660 | 2.8565 - 10~*
FASTICA 12.1634 43.6463 0.0395
Symmetric Whitening | 261.5776 259.4301 0.00168
Whitening 3.5723 - 10% | 1.5907 - 103 0.4596
PCA 5.9609 - 103 | 1.4281 - 103 0.4242

Table 3: Errors of the algorithms by using the mixture matrix in (27).

(27.1) original recto

(27.2) original verso

Figure 27: Ideal images
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(28.1) degraded recto (28.2) degraded verso

Figure 28: Degraded images

(29.1) recto estimated by (29.2) verso estimated by
ZEODS ZEODS

Figure 29: Estimates by ZEODS

(30.1) recto estimated by (30.2) verso estimated by
MATODS MATODS

Figure 30: Estimates by MATODS
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(31.1) recto estimated by (31.2) verso estimated by
FastIca Fastlca

Figure 31: Estimates by Fastlca

(32.1) recto estimated by (32.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 32: Estimates by Symmetric Whitening

(33.1) recto estimated by (33.2) verso estimated by
Whitening Whitening

Figure 33: Estimates by Whitening
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(34.1) recto estimated by (34.2) verso estimated by
PCA PCA

Figure 34: Estimates by PCA

Figure 27.

Used Technique MSE Recto | MSE Verso MSE of A
ZEODS 0.7829 0.5673 1.095-1074

MATODS 0.9015 10.3131 0.0014

FASTICA 1.0849 0.6707 0.0136

Symmetric Whitening 8.5123 12.2799 0.0085

Whitening 1.9433-10% | 1.2006 - 103 0.4548

PCA 2.9914 - 10% | 716.5649 - 103 0.4234

Table 4: Errors of the algorithms by using the mixture matrix in (27).

We consider the ideal images in Figure 35.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 36.

By applying the algorithms we obtain, as estimates, the results in Figures 37-42.

In Table 5 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 35.

As we can observe from the results of the previous subsection, the proposed and imple-
mented ZEODS method obtains better results than algorithms Fastlca, PCA, Whitening and
Symmetric Whitening. However the MATODS algorithm obtains results close to those of the
ZEODS algorithm only in the image in Figure 27. To see this, we compare the execution time
of the two algorithms in the image in Figure 27. The results are presented in Table 14.

To see a further demonstration of what we said before, we now make a further test on

another image, obtaining similar results by means of both algorithms obtaining similar results
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(35.1) original recto (35.2) original verso

Figure 35: Ideal images

(36.1) degraded recto (36.2) degraded verso

Figure 36: Degraded images

(37.1) recto estimated by (37.2) verso estimated by
ZEODS ZEODS

Figure 37: Estimates by ZEODS
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Figure 38: Estimates by MATODS
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(39.2) verso estimated by
Fastlca

Figure 39: Estimates by Fastlca
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Figure 40: Estimates by Symmetric Whitening
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(41.1) recto estimated by

Whitening

Figure 41: Estimates by Whitening

(42.1) recto estimated by

PCA

(41.2) verso estimated by

Whitening

(42.2) verso estimated by

PCA

Figure 42: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 4.7486 1.6165 1.4055 - 1074
MATODS 136.7090 120.7570 0.0015
FASTICA 58.2382 212.8663 0.0546
Symmetric Whitening | 428.0422 373.6753 0.0183
Whitening 7.7086 - 103 | 6.2362 - 10° 0.3561
PCA 1.4943 - 10* | 5.2861 - 10° 0.3770

Table 5: Errors of the algorithms by using the mixture matrix in (27).

Used Technique Time
ZEODS 0.3320s
MATODS 754.1420s

Table 6: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (27) on the image in Figure 27
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by means of both algorithms ZEODS and MATODS.

We consider the ideal images in Figure 43.

(43.1) original recto (43.2) original verso

Figure 43: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 44.

PR Barair=g5

(44.1) degraded recto

Figure 44: Degraded images

In Table 7 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 43.

The algorithms MATODS and ZEODS obtain very similar results. By applying the algo-
rithms we obtain, as estimates, the results in Figures 45-46. Now we analyze the execution
time of the algorithms. As in the previous case, we see that the ZEODS method gives results

in a much shorter time than the MATODS method, as shown in Table 14.

These results given in terms of time are consistent with the previously obtained results.
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.0008 0.4494 | 1.6842-1076
MATODS 0.0081 0.0019 1.29-1074
FASTICA 42.7700 70.7900 0.0066
Symmetric Whitening 341.69 342.1863 0.0048
Whitening 245.8900 262.93 0.0086
PCA 9249 -10* | 10330 - 10° 0.038

Table 7: Errors of the algorithms by using the mixture matrix in (27).

(45.1) recto estimated by

ZEODS

Figure 45: Estimates by ZEODS

4

MATODS

Figure 46: Estimates by MATODS

(46.1) recto estimated by

(45.2) verso estimated by

ZEODS

(46.2) verso estimated by
MATODS

Used Technique Time
ZEODS 0.3410s
MATODS 750.6980s

Table 8: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (27) on the image in Figure 43
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4.2 Case 2: Second symmetric matrix

The second case we investigate is another symmetric mixture matrix. For every channel R, G

and B, the corresponding matrices are

07 0.3 07 0.3 07 03
Ap — CAg = CAp = . 28
f (0.3 0.7) “ (0.3 0.7) B (0.3 0.7) (28)

Now we see the behavior of the presented algorithms, in connection both with errors and with
the graphical point of view.

We consider the ideal images in Figure 47.
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(47.1) original recto (47.2) original verso

Figure 47: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 48.
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(48.1) degraded recto (48.2) degraded verso
Figure 48: Degraded images
By applying the algorithms we obtain, as estimates, the results in Figures 49-54. In

Table 9 we present the mean square errors with respect to the original documents obtained by

means of the above algorithms for the estimate of the recto and the verso of Figure 47.
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(49.1) recto estimated by
ZEODS
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Figure 49: Estimates by ZEODS
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Figure 50: Estimates by MATODS
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(51.1) recto estimated by
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Figure 51: Estimates by Fastlca
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(52.1) recto estimated by
Symmetric Whitening
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Figure 52: Estimates by Symmetric Whitening

(53.1) recto estimated by
Whitening
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Figure 53: Estimates by Whitening
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(54.1) recto estimated by
PCA

Figure 54:

(54.2) verso estimated by
PCA

Estimates by PCA



Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.8547 4.9596 5.8836-107°
MATODS 17.6269 50.6982 0.0004
FASTICA 37.5413 86.2744 0.0783
Symmetric Whitening | 519.4615 288.9082 0.0352
Whitening 2.4090 - 103 | 400.2690 0.0352
PCA 7.7310 - 103 | 3.7087 - 103 0.3674

Table 9: Errors of the algorithms by using the mixture matrix in (28).

(55.1) original recto

(55.2) original verso

Figure 55: Ideal images
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We consider the ideal images in Figure 55. Using the above mixture matrices, we synthet-

ically obtain the degraded images in Figure 56.

(56.1) degraded recto (56.2) degraded verso

Figure 56: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 57-62.

(57.1) recto estimated by (57.2) verso estimated by
ZEODS ZEODS

Figure 57: Estimates by ZEODS

In Table 10 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 55.

We consider the ideal images in Figure 63.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 64.

By applying the algorithms we obtain, as estimates, the results in Figures 65-70.

In Table 11 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 63. We consider the ideal images in Figure 71.
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(58.1) recto estimated by (58.2) verso estimated by
MATODS MATODS

Figure 58: Estimates by MATODS

(59.1) recto estimated by (59.2) verso estimated by
Fastlca Fastlca

Figure 59: Estimates by Fastlca

(60.1) recto estimated by (60.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 60: Estimates by Symmetric Whitening

34



(61.1) recto estimated by

Whitening

Figure 61: Estimates by Whitening

(62.1) recto estimated by
PCA

(61.2) verso estimated by

Whitening

(62.2) verso estimated by

PCA

Figure 62: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.0648 2.9075 1.3883-107°
MATODS 125.8860 213.165 0.0035
FASTICA 14.2089 1.7185 0.0215
Symmetric Whitening 71.8710 75.6985 0.224
Whitening 1.1589 - 10* | 6.9410 - 103 0.4281
PCA 1.5428 - 10* | 5.3671 - 10° 0.4305

Table 10: Errors of the algorithms by using the mixture matrix in (28).
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(63.1) original recto (63.2) original verso

Figure 63: Ideal images

(64.1) degraded recto (64.2) degraded verso

Figure 64: Degraded images

(65.1) recto estimated by (65.2) verso estimated by
ZEODS ZEODS

Figure 65: Estimates by ZEODS
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(66.1) recto estimated by (66.2) verso estimated by
MATODS MATODS

Figure 66: Estimates by MATODS

(67.1) recto estimated by (67.2) verso estimated by
Fastlca Fastlca

Figure 67: Estimates by Fastlca

(68.1) recto estimated by (68.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 68: Estimates by Symmetric Whitening
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(69.1) recto estimated by (69.2) verso estimated by
Whitening Whitening

Figure 69: Estimates by Whitening

(70.1) recto estimated by (70.2) verso estimated by
PCA PCA

Figure 70: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.7132 1.8467 2.1718 - 107
MATODS 12.4361 48.8206 0.021
FASTICA 12.2312 42.1443 0.0407
Symmetric Whitening | 190.6356 174.7290 0.0326
Whitening 3.9342-10% | 1.5761 - 103 0.4392
PCA 5.7594 - 103 | 1.5845 - 103 0.4368

Table 11: Errors of the algorithms by using the mixture matrix in (28).
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(71.1) original recto (71.2) original verso

Figure 71: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 72.

(72.1) degraded recto (72.2) degraded verso

Figure 72: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 73-78.

In Table 12 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 71.

We consider the ideal images in Figure 79.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 80.

By applying the algorithms we obtain, as estimates, the results in Figures 81-86.

In Table 13 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 79 and the corresponding distance between the ideal and the estimated sources.

As we can note in the results of the previous subsection, the ZEODS methods, in terms

of errors, always obtains better results than the Fastlca, PCA, Whitening and Symmetric
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(73.1) recto estimated by (73.2) verso estimated by
ZEODS ZEODS

Figure 73: Estimates by ZEODS

(74.1) recto estimated by (74.2) verso estimated by
MATODS MATODS

Figure 74: Estimates by MATODS

(75.1) recto estimated by (75.2) verso estimated by
Fastlca Fastlca

Figure 75: Estimates by Fastlca
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(76.1) recto estimated by (76.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 76: Estimates by Symmetric Whitening
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(77.1) recto estimated by (77.2) verso estimated by
Whitening Whitening

Figure 77: Estimates by Whitening

L]

(78.1) recto estimated by (78.2) verso estimated by
PCA PCA

Figure 78: Estimates by PCA
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.2304 1.9043 5.5429 - 107°
MATODS 1.4521 3.5621 0.0010
FASTICA 0.8686 0.4879 0.0120
Symmetric Whitening 5.1557 10.1508 0.0159
Whitening 2.8938 - 10% | 1.5686 - 103 0.5148
PCA 3.5387-10% | 1.0885 - 103 0.4658

Table 12: Errors of the algorithms by using the mixture matrix in (28).
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Figure 79: Ideal images
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Figure 80: Degraded images

42



ante lua h-run

mus. dt N

(81.1) recto estimated by
ZEODS

uanznshunt
...:ns S cmlnt
ana{hﬁ&m 3

JH & TAEE0

pebut bodic fup ne

(81.2) verso estimated by
ZEODS

Figure 81: Estimates by ZEODS
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Figure 82: Estimates by MATODS
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Figure 83: Estimates by Fastlca
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(84.1) recto estimated by (84.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 84: Estimates by Symmetric Whitening

(85.1) recto estimated by (85.2) verso estimated by
Whitening Whitening

Figure 85: Estimates by Whitening
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(86.1) recto estimated by (86.2) verso estimated by
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Figure 86: Estimates by PCA
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 1.6564 4.5617 9.4655 - 107
MATODS 110.2154 85.9412 0.0015
FASTICA 19.2557 7.4678 0.0266
Symmetric Whitening 31.9505 84.1863 0.0220
Whitening 1.8337 - 10 | 8.4063 - 103 0.5216
PCA 2.2485 - 10* | 5.9284 - 10° 0.4693

Table 13: Errors of the algorithms by using the mixture matrix in (28).

Whitening algorithms. However the MATODS algorithm obtains results close to those of the
proposed algorithm only in the image in Figure 71. But the execution time of the ZEODS
algorithm is much shorter than those of the MATODS algorithm. To see this, we compare the

execution time of the two algorithms in the image in Figure 71.

Used Technique Time
ZEODS 0.3150s
MATODS 687.3250s

Table 14: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix
in (28) on the image in Figure 71

To see a further demonstration of what we said before, we now make a further test on
another image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 87.

(87.2) original verso

(87.1) original recto

Figure 87: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
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in Figure 88.

(88.2) degraded verso

Figure 88: Degraded images

In Table 15 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 87. The algorithms MATODS and ZEODS obtain very similar results. We obtain,

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 5.2751 4.1563 4.1236 - 107°
MATODS 0.1501 0.1910 1.4301-107°
FASTICA 42.7700 70.7900 0.0066
Symmetric Whitening 341.69 342.1863 0.0048
Whitening 245.8900 262.93 0.0086
PCA 9249 10330 0.038

Table 15: Errors of the algorithms by using the mixture matrix in (28).

as estimates, the results in Figures 89-90. However, if we analyze the excution time of the
algorithm, we see that the ZEODS method gives results in a much shorter time than the
MATODS method, as shown in Table 16.

Used Technique Time
ZEODS 0.3330s
MATODS 489.0880s

Table 16: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix
in (28).
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(89.1) recto estimated by (89.2) verso estimated by
ZEODS ZEODS

Figure 89: Estimates by ZEODS
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(90.1) recto estimated by (90.2) verso estimated by
MATODS MATODS

Figure 90: Estimates by MATODS
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4.3 Case 3: First asymmetric matrix

The third case we deal with is an asymmetric mixture matrix. For every channel R, G and B,

the related matrices are

07 03 07 0.3 06 04
Ap — CAg = CAp = . 29
f (0.3 0.7) “ (0.2 0.8) b (0.3 0.7) (29)

Now we see the behavior of the presented algorithms, concerning both errors and the graphical
point of view.

We consider the ideal images in Figure 91.

tonoi oim aunu remgredie]
outolus tumcfann. pricmaug
Insﬁzumlnmcm v | fierateci B
wil deasfib: miltocien” | gt wm
Rms S e obfuftue thﬂ:aa

nchilm vc oucts
lgnus Auvientes
a angham cefbiee
HINATUS Gre
afcfuo quafi idic
YT PR AT
celaffefi aptanc ue
CUNtTs I0IpLIs ¢
s Pt copellt, o

e ¥

(91.1) original recto (91.2) original verso

Figure 91: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 92.
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(92.1) degraded recto (92.2) degraded verso
Figure 92: Degraded images
By applying the algorithms we obtain, as estimates, the results in Figures 93-98.

In Table 17 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of
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Figure 93: Estimates by ZEODS
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(94.1) recto estimated by
MATODS
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Figure 94: Estimates by MATODS
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Figure 95: Estimates by Fastlca
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(96.1) recto estimated by
Symmetric Whitening

tonowi odimumnu  remgredie]
Dutolustnefim  prcmite
uaﬁam:uam ,[ ﬁmt:mfb

(96.2) verso estimated by
Symmetric Whitening

Figure 96: Estimates by Symmetric Whitening
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Figure 97: Estimates by Whitening
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(98.1) recto estimated by
PCA

Figure 98:

(98.2) verso estimated by
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Estimates by PCA
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.9539 3.8356 6.1210-107°
MATODS 45.2314 49.0506 0.0011
FASTICA 29.2027 148.9813 0.0701
Symmetric Whitening | 451.6652 419.6792 0.0373
Whitening 2.8741-10% | 352.5680 0.1792
PCA 8.0327 - 103 | 3.5478 - 103 0.3596

Table 17: Errors of the algorithms by using the mixture matrix in (29).

(99.1) original recto

(99.2) original verso

Figure 99: Ideal images

(100.1) degraded recto

(100.2) degraded verso

Figure 100: Degraded images
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Figure 91. We consider the ideal images in Figure 99. Using the above indicated mixture
matrices, we synthetically obtain the degraded images in Figure 100.

By applying the algorithms we obtain, as estimates, the results in Figures 101-106.

(101.1) recto estimated by (101.2) verso estimated by
ZEODS ZEODS

Figure 101: Estimates by ZEODS

(102.1) recto estimated by (102.2) verso estimated by
MATODS MATODS

Figure 102: Estimates by MATODS

In Table 18 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 99.

We consider the ideal images in Figure 107.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 108.

By applying the algorithms we obtain, as estimates, the results in Figures 109-114.

In Table 19 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 107. We consider the ideal images in Figure 115.
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(103.1) recto estimated by (103.2) verso estimated by
Fastlca Fastlca

Figure 103: Estimates by Fastlca

(104.1) recto estimated by (104.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 104: Estimates by Symmetric Whitening

(105.1) recto estimated by (105.2) verso estimated by
Whitening Whitening

Figure 105: Estimates by Whitening
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(106.1) recto estimated by

PCA

(106.2) verso estimated by
PCA

Figure 106: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A

ZEODS 0.2423 3.5365 2.044 -107°
MATODS 35.0330 51.3125 0.0002
FASTICA 4.4079 4.1418 0.0126
Symmetric Whitening |  45.8355 117.4545 0.0305
Whitening 6.7961 - 103 | 3.7444 - 103 0.3297
PCA 1.1179 - 10* | 4.1416 - 103 0.3893

Table 18: Errors of the algorithms by using the mixture matrix in (29).

(107.1) original recto

(107.2) original verso

Figure 107: Ideal images
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(108.1) degraded recto (108.2) degraded verso

Figure 108: Degraded images

(109.1) recto estimated by (109.2) verso estimated by
ZEODS ZEODS

Figure 109: Estimates by ZEODS

(110.1) recto estimated by (110.2) verso estimated by
MATODS MATODS

Figure 110: Estimates by MATODS

25



(111.1) recto estimated by (111.2) verso estimated by
Fastlca Fastlca

Figure 111: Estimates by Fastlca

(112.1) recto estimated by (112.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 112: Estimates by Symmetric Whitening

(113.1) recto estimated by (113.2) verso estimated by
Whitening Whitening

Figure 113: Estimates by Whitening

o6



(114.1) recto estimated by
PCA

(114.2) verso estimated by

PCA

Figure 114: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.4521 1.3566 1.9913-107°
MATODS 67.4521 75.6765 0.0007
FASTICA 14.8255 47.8983 0.0429
Symmetric Whitening | 221.8945 190.5466 0.0377
Whitening 1.6127-10% | 421.6936 0.0377
PCA 3.7456 - 103 | 1.3281 - 103 0.3954

Table 19: Errors of the algorithms by using the mixture matrix in (29).

(115.1) original recto

(115.2) original verso

Figure 115: Ideal images
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Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 116.

(116.1) degraded recto (116.2) degraded verso

Figure 116: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 117-122.

(117.1) recto estimated by (117.2) verso estimated by
ZEODS ZEODS

Figure 117: Estimates by ZEODS

In Table 20 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 115.

We consider the ideal images in Figure 123.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 124.

By applying the algorithms we obtain, as estimates, the results in Figures 125-130.

In Table 21 we present the mean square errors with respect to the original documents

obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 123.

28



(118.1) recto estimated by (118.2) verso estimated by
MATODS MATODS

Figure 118: Estimates by MATODS

(119.1) recto estimated by (119.2) verso estimated by
Fastlca Fastlca

Figure 119: Estimates by Fastlca

(120.1) recto estimated by (120.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 120: Estimates by Symmetric Whitening
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(121.1) recto estimated by (121.2) verso estimated by
Whitening Whitening

Figure 121: Estimates by Whitening

/.-..{., { ’A
(122.1) recto estimated by (122.2) verso estimated by
PCA PCA

Figure 122: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.1486 0.1950 | 6.2159-107°
MATODS 1.9025 2.3132 2.1564 - 10~°
FASTICA 0.9037 0.5265 0.0117
Symmetric Whitening 3.8798 12.8583 0.0270
Whitening 1.7404-10% | 833.1407 0.3356
PCA 2.5707-10% | 795.5274 0.3916

Table 20: Errors of the algorithms by using the mixture matrix in (29).
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(123.1) original recto (123.2) original verso

Figure 123: Ideal images

(124.1) degraded recto (124.2) degraded verso

Figure 124: Degraded images

(125.1) recto estimated by (125.2) verso estimated by
ZEODS ZEODS

Figure 125: Estimates by ZEODS
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(126.1) recto estimated by
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(126.2) verso estimated by
MATODS

Figure 126: Estimates by MATODS
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(127.1) recto estimated by

Fastlca

Figure 127
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(128.1) recto estimated by
Symmetric Whitening
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(127.2) verso estimated by
Fastlca

: Estimates by Fastlca
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(128.2) verso estimated by
Symmetric Whitening

Figure 128: Estimates by Symmetric Whitening
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Whitening

Figure 129: Estimates by Whitening

(129.1) recto estimated by

PCA

(129.2) verso estimated by
Whitening

mus.d

Xt bre: bodie

(130.2) verso estimated by

PCA

Figure 130: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A

ZEODS 1.8024 5.2181 1.012-1074
MATODS 20.7090 19.3665 0.0001
FASTICA 15.7847 3.3160 0.0223
Symmetric Whitening 7.2817 109.0196 0.0339
Whitening 1.7703 - 10* | 8.5767 - 103 0.0339
PCA 2.17489 - 10* | 5.9721 - 10° 0.4655

Table 21: Errors of the algorithms by using the mixture matrix in (29).
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As we observe in the previous results, the ZEODS methods, in terms of errors, always
obtains better results than the Fastlca, PCA, Whitening and Symmetric Whitening algorithms.
However, the MATODS algorithm gives results close to those of the proposed algorithm only
in the image in Figure 115. To see this, we compare the execution time of the two algorithms

in the image in Figure 115.

Used Technique Time
ZEODS 0.3510s
MATODS 956.3210s

Table 22: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix
in (29) on the image in Figure 115

To see a further demonstration of what we said before, we now make a further test on
another image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 131.

(131.1) original recto (131.2) original verso

Figure 131: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 132.

In Table 23 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 131.

By applying the algorithms we obtain, as estimates, the results in Figures 133-134.

As we can note in the results of the previous subsection, the ZEODS method, in terms
of errors, always obtains better results than the other algorithms, and is even faster than the
MATODS method, as shown in Table 30.

These results given in terms of time are consistent with the previously obtained results.
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(132.2) degraded verso

Figure 132: Degraded images

Used Technique | MSE Recto | MSE Verso | MSE of A
ZEODS 11.1003 10.4289 3.7659 - 107
MATODS 4.0124 3.1247 2.2459 -107°

Table 23: Errors of the algorithms by using the mixture matrix in (29).

£

2.

(133.1) recto estimated by (133.2) verso estimated by
ZEODS ZEODS

Figure 133: Estimates by ZEODS

y

(134.1) recto estimated by (134.2) verso estimated by
MATODS MATODS

Figure 134: Estimates by MATODS
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Used Technique Time
ZEODS 0.3440s
MATODS 910.1002s

Table 24: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix
in (29) on the image in Figure 131

4.4 Case 4: Second asymmetric matrix

In the fourth and last case we consider another asymmetric mixture matrix. For every channel

R, G and B, the corresponding matrices are

07 03 045 0.55 07 0.3
Ap = CAg = CAp = . 30
i (0.2 o.s) “ (o.4 0.6 ) b (0.51 0.49) (30)

Now we see the behavior of the presented algorithms, regarding both errors and the graphical
point of view. We consider the ideal images in Figure 135.
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(135.1) original recto (135.2) original verso

Figure 135: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 136.

By applying the algorithms we obtain, as estimates, the results in Figures 137-142.

In Table 25 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 135. We consider the ideal images in Figure 143. Using the above indicated mixture
matrices, we synthetically obtain the degraded images in Figure 144.

By applying the algorithms we obtain, as estimates, the results in Figures 145-150.

In Table 26 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of

Figure 143.

66



Wg R ngrgiel
e mine ﬁ
‘ umt“

(136.1) degraded recto

(136.2) degraded VErso

Figure 136: Degraded images
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(137.2) verso estimated by
ZEODS

Figure 137: Estimates by ZEODS
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(138.1) recto estimated by
MATODS

(138.2) verso estimated by
MATODS

Figure 138: Estimates by MATODS
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(139.1) recto estimated by

Fastlca

(139.2) verso estimated by
Fastlca

Figure 139: Estimates by Fastlca
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(140.1) recto estimated by
Symmetric Whitening

(140.2) verso estimated by
Symmetric Whitening

Figure 140: Estimates by Symmetric Whitening

(141.1) recto estimated by
Whitening

(141.2) verso estimated by
Whitening

Figure 141: Estimates by Whitening



(142.1) recto estimated by

PCA

(142.2) verso estimated by
PCA

Figure 142: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 3.9507 4.9612 7.6397 - 107°
MATODS 50.1485 41.1745 0.0098
FASTICA 615.3561 346.1334 0.0719
Symmetric Whitening | 707.1949 631.6572 0.0520
Whitening 2.3355-10% | 938.1797 0.2227
PCA 6.5589 - 103 | 4.1706 - 103 0.3401

Table 25: Errors of the algorithms by using the mixture matrix in (30).

(143.1) original recto

(143.2) original verso

Figure 143: Ideal images
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(144.1) degraded recto (144.2) degraded verso

Figure 144: Degraded images

(145.1) recto estimated by (145.2) verso estimated by
ZEODS ZEODS

Figure 145: Estimates by ZEODS

(146.1) recto estimated by (146.2) verso estimated by
MATODS MATODS

Figure 146: Estimates by MATODS
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(147.1) recto estimated by (147.2) verso estimated by
Fastlca Fastlca

Figure 147: Estimates by Fastlca

(148.1) recto estimated by (148.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 148: Estimates by Symmetric Whitening

(149.1) recto estimated by (149.2) verso estimated by
Whitening Whitening

Figure 149: Estimates by Whitening
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(150.1) recto estimated by
PCA

PCA

Figure 150: Estimates by PCA

(150.2) verso estimated by

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 1.2642 2.6337 | 2.2806-107°
MATODS 62.2418 85.4395 0.0026
FASTICA 353.226 182.7357 0.0303
Symmetric Whitening | 409.8490 495.5137 0.1435
Whitening 7.7216 - 10® | 3.5975 - 103 0.4449
PCA 1.2810 - 10* | 2.5195 - 103 0.4473

Table 26: Errors of the algorithms by using the mixture matrix in (30).
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We consider the ideal images in Figure 151.

(151.1) original recto (151.2) original verso

Figure 151: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the images in Figure

152. By applying the algorithms we obtain, as estimates, the results in Figures 153-158.

(152.1) degraded recto (152.2) degraded verso

Figure 152: Degraded images

In Table 27 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 151. We consider the ideal images in Figure 159.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 160.

By applying the algorithms we obtain, as estimates, the results in Figures 161-166.

In Table 28 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 159.

We consider the following images in Figure 167.

Using the above indicated mixture matrices, we synthetically obtain the degraded images
in Figure 168.
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(153.1) recto estimated by (153.2) verso estimated by
ZEODS ZEODS

Figure 153: Estimates by ZEODS

(154.1) recto estimated by (154.2) verso estimated by
MATODS MATODS

Figure 154: Estimates by MATODS

(155.1) recto estimated by (155.2) verso estimated by
Fastlca Fastlca

Figure 155: Estimates by Fastlca
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(156.1) recto estimated by (156.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 156: Estimates by Symmetric Whitening

(157.1) recto estimated by (157.2) verso estimated by
Whitening Whitening

Figure 157: Estimates by Whitening

(158.1) recto estimated by (158.2) verso estimated by
PCA PCA

Figure 158: Estimates by PCA
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.6289 1.3893 9.6560 - 10~°
MATODS 12.0247 30.8065 8.8984 - 1074
FASTICA 166.6276 91.2465 0.0386
Symmetric Whitening | 352.5150 410.2975 0.0579
Whitening 1.6118-10% | 830.0139 0.3584
PCA 3.0682 - 103 | 1.8473-103 0.3767

Table 27: Errors of the algorithms by using the mixture matrix in (30).

(159.1) original recto

(159.2) original verso

Figure 159: Ideal images

(160.1) degraded recto

(160.2) degraded verso

Figure 160: Degraded images
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(161.1) recto estimated by (161.2) verso estimated by
ZEODS ZEODS

Figure 161: Estimates by ZEODS

(162.1) recto estimated by (162.2) verso estimated by
MATODS MATODS

Figure 162: Estimates by MATODS

(163.1) recto estimated by (163.2) verso estimated by
Fastlca Fastlca

Figure 163: Estimates by Fastlca
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(164.1) recto estimated by (164.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 164: Estimates by Symmetric Whitening

(165.1) recto estimated by (165.2) verso estimated by
Whitening Whitening

Figure 165: Estimates by Whitening

(166.1) recto estimated by (166.2) verso estimated by
PCA PCA

Figure 166: Estimates by PCA
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Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 0.3876 1.7862 6.7032-107°
MATODS 3.1985 5.1475 0.0002
FASTICA 34.7680 15.8122 0.0228
Symmetric Whitening 8.8713 17.2117 0.0458
Whitening 2.2407-10% | 1.2194- 103 0.4580
PCA 2.8462-10% | 941.9039 0.4180

Table 28: Errors of the algorithms by using the mixture matrix in (30).
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(167.1) original recto (167.2) original verso

Figure 167: Ideal images

(168.1) degraded recto (168.2) degraded verso

Figure 168: Degraded images

79



By applying the algorithms we obtain, as estimates, the results in Figures 169-174.
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(169.1) recto estimated by (169.2) verso estimated by
ZEODS ZEODS

Figure 169: Estimates by ZEODS
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(170.1) recto estimated by (170.2) verso estimated by
MATODS MATODS

Figure 170: Estimates by MATODS

In Table 29 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 167.

As we observe in the results of the previous subsection, the ZEODS methods, in terms
of errors, always obtains better results than the Fastlca, PCA, Whitening and Symmetric
Whitening algorithms. However the MATODS algorithm obtains results close to those of the
proposed algorithm only in the image in Figure 159. But the execution time of the ZEODS
algorithm is much shorter than those of the MATODS algorithm. To see this, we compare the
execution time of the two algorithms in the image in Figure 159.

To see a further demonstration of what we said before, we now make a further test on
another image, obtaining similar results by means of both algorithms ZEODS e MATODS. We

consider the ideal images in Figure 175.
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(171.1) recto estimated by (171.2) verso estimated by
Fastlca Fastlca

Figure 171: Estimates by Fastlca

(172.1) recto estimated by (172.2) verso estimated by
Symmetric Whitening Symmetric Whitening

Figure 172: Estimates by Symmetric Whitening

(173.1) recto estimated by (173.2) verso estimated by
Whitening Whitening

Figure 173: Estimates by Whitening
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(174.1) recto estimated by
PCA

(174.2) verso estimated by

PCA

Figure 174: Estimates by PCA

Used Technique MSE Recto | MSE Verso | MSE of A
ZEODS 3.2977 3.6252 1.090 - 1074
MATODS 35.0124 42.8569 1.5041 -10~4
FASTICA 232.7229 147.4355 0.0304
Symmetric Whitening | 235.6894 607.9245 0.1441
Whitening 1.4669 - 10* | 6.6340 - 103 0.5272
PCA 1.9414 - 10% | 3.9348 - 103 0.4795

Table 29: Errors of the algorithms by using the mixture matrix in (30).

Used Technique Time
ZEODS 0.3390s
MATODS 845.1618s

Table 30: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix

in (30) on the image in Figure 159

(175.2) original verso

Figure 175: Ideal images
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Using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 176.
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(176.1) degraded recto (176.2) degraded verso

Figure 176: Degraded images

In Table 31 we present the mean square errors with respect to the original documents
obtained by means of the above algorithms for the estimate of the recto and the verso of
Figure 175.

Used Technique | MSE Recto | MSE Verso | MSE of A
ZEODS 8.1003 7.4289 3.7659 - 107°
MATODS 6.0247 5.1247 2.2459-107°

Table 31: Errors of the algorithms by using the mixture matrix in (30).

The ZEODS algorithm obtains results very close to the MATODS algorithm. We get, as

estimates, the results in Figures 177-178. We analyze the execution time of algorithms. As in

(177.1) recto estimated by (177.2) verso estimated by
ZEODS ZEODS

Figure 177: Estimates by ZEODS
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(178.1) recto estimated by (178.2) verso estimated by
MATODS MATODS

Figure 178: Estimates by MATODS

the previous case, we get that the ZEODS method gives results in a much shorter time than
the MATODS method, as we can see in Table 30.

Used Technique Time
ZEODS 0.3510s
MATODS 812.1014s

Table 32: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix
in (29) on the image in Figure 175

These results given in terms of time are consistent with the previously obtained results.
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