

TRAINING FEEDFORWARD NEURAL NETWORKS

FEEDFORWARD NEURAL NETWORKS:

EFFICIENCY AND PERFORMANCE OF

BACKPROPAGATION AND

EVOLUTIONARY ALGORITHMS

Kasper van Maasdam

Thesis supervisor

T. Lokhorst

Department of Mathematics

Stedelijk Dalton Lyceum Overkampweg

Dordrecht, Zuid-Holland, Netherlands

2021-10-13

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

1

ABSTRACT
Artificial neural networks are important in everyday life and are becoming more widespread.

For this reason, it is crucial they are understood and tested. This paper tests and compares two

training methods: reinforcement learning with backpropagation and an evolutionary method.

The hypothesis is that the training method using backpropagation and reinforcement learning

is more efficient in training a neural network to play a game than a model trained with the

evolutionary algorithm. However, the model trained with backpropagation and reinforcement

learning will have lower performance than a model trained with the evolutionary algorithm. To

research the hypothesis, a feedforward neural network and how it works must first be

explained.

Neural networks are systems inspired by the biological brain which enables a computer to

predict, model, classify and many other applications. All this by learning from some set of

training data to find general relations that can be applied to unseen data. A neural network

model is essentially a function with potentially thousands of parameters. Just like any other

function, input values are provided and with those, the output is calculated. In a feedforward

neural network, this process is called feedforward.

The process of feedforward is meaningless with a model that has not yet been configured to do

anything. A neural network must first be taught to perform a certain task. This is what is

accomplished with machine learning. Backpropagation is an example of a machine learning

method. For backpropagation two things are required: the input and the corresponding output.

Backpropagation will adjust the parameters of a model so the next time the same input is

provided, the output will be closer to the desired output. This is called optimisation.

Reinforcement learning is a way to teach a neural network by giving it positive reinforcement

when it does something good and negative reinforcement when it does something bad. This is

used when no desired output is known so backpropagation cannot directly be applied.

An evolutionary algorithm is much more intuitive than backpropagation. It is the imitation of

natural selection in biology, but with self-determined factors deciding the fitness of a model.

When training a neural network with an evolutionary algorithm, a large group of random

models will be generated, all performing the same task. Some models, however, will be better

suited for this task than others. How well they are suited to their environment is their fitness.

This will be the determining factor of who survives and can therefore reproduce and create

mutated offspring. This process is repeated as many times as required to reach the desired

performance.

The hypothesis of this paper has been proven wrong. Neural networks trained with an

evolutionary algorithm do end up performing at a higher level than models trained with

reinforcement learning and backpropagation. However, Neural networks trained with an

evolutionary algorithm are also more efficient with regard to not only the number of cycles

needed to reach the same performance but also with regard to the time required.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

2

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor T. Lokhorst for his dedicated support. He has

helped me complete this research paper with his insightful assistance and guidance.

Because of the many problems I have had to overcome, I have developed not only as a

student but also as a person with a different view on life in the process of writing and

researching this paper. It has helped me approach problems more thoughtfully and to remain

patient when things don’t work the way I want.

A debt of gratitude is also owed to my dear friend and classmate Evan Pacini. He has

expressed a great interest in my work and has encouraged me to fully explore and develop a

thorough understanding of neural networks.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

3

TABLE OF CONTENTS

Abstract .. 1

Acknowledgements ... 2

Table of Figures .. 4

1 Introduction ... 5

2 Motivation ... 5

3 Neural Networks .. 5

3.1 The Feedforward Function .. 7

4 Machine Learning .. 8

4.1 Backpropagation ... 8

4.1.1 Activation Functions .. 10

4.1.2 Iterations .. 10

4.1.3 Shape ... 10

4.1.4 Learning Rate .. 11

4.2 Reinforcement Learning .. 11

4.3 Evolutionary Algorithms ... 11

4.4 Local and Global Minima.. 12

5 Research .. 13

5.1 The Game ... 13

5.2 The Neural Network.. 14

5.3 Backpropagation and Reinforcement Learning .. 16

5.4 Evolutionary Algorithms ... 16

5.4.1 Fitness ... 17

5.5 Testing the Hypothesis .. 17

5.6 Problems and Path to Success ... 18

6 Conclusion ... 21

7 Further Research .. 21

8 Figures ... 22

9 Sources .. 30

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

4

TABLE OF FIGURES
FIGURE 1 – TWO EXAMPLES OF A FEEDFORWARD NEURAL NETWORK. SQUARES REPRESENT NODES AND THE LINES

REPRESENT THE WEIGHTS. THE COLOUR OF THE LINES INDICATES THE VALUE OF THE WEIGHT: THE DARKER,

THE LOWER, AND THE BRIGHTER, THE HIGHER. GREY LIKE THE BACKGROUND IS 0. THIS MEANS ALL LINES

DARKER THAN THAT ARE NEGATIVE. ... 22
FIGURE 2 - A NEURAL NETWORK INTERPOLATING SOME FUNCTION F(X) GIVEN SPARSE TRAINING DATA WITH A

LEARNING RATE OF 0.01 AFTER 10000 ITERATIONS OF TRAINING. ... 23
FIGURE 3 - A NEURAL NETWORK INTERPOLATING SOME FUNCTION F(X) GIVEN SPARSE TRAINING DATA WITH A

LEARNING RATE OF 0.0008 AFTER 10000 ITERATIONS OF TRAINING. ... 23
FIGURE 4 - A FREEZE-FRAME OF PONG. LEFT: AI, RIGHT: HUMAN .. 24
FIGURE 5 - THE TRAINING DATA ARRAY FORMAT. ... 24
FIGURE 6 - REINFORCEMENT LEARNING: PERFORMANCE OVER TIME. LOW PERFORMANCE. 25
FIGURE 7 - REINFORCEMENT LEARNING: PERFORMANCE OVER TIME. HANDICAPPED OPPONENT. LEARNING RATE:

0.05. .. 25
FIGURE 8 - REINFORCEMENT LEARNING: PERFORMANCE OVER TIME. NOT A HANDICAPPED OPPONENT. LEARNING

RATE: 0.2. .. 26
FIGURE 9 - REINFORCEMENT LEARNING: PERFORMANCE OVER TIME. HANDICAPPED OPPONENT. LEARNING RATE:

0.2... 26
FIGURE 10 - EVOLUTIONARY ALGORITHM: PERFORMANCE OVER TIME. HANDICAPPED OPPONENT. 27
FIGURE 11 - EVOLUTIONARY ALGORITHM: PERFORMANCE OVER TIME. NOT A HANDICAPPED OPPONENT. 27
FIGURE 12 - MODEL RESETTING BETWEEN AFTER 2830 ITERATIONS. .. 28
FIGURE 13 - THE FIRST TWO CYCLES OF A MODEL LEARNING TO PLAY PONG WITHOUT THE EXPANDING TRAINING

DATA SET. .. 28
FIGURE 14 - THE FIRST TWO CYCLES OF A MODEL LEARNING TO PLAY PONG WITH THE EXPANDING TRAINING DATA

SET. ... 28
FIGURE 15 - A 5-D GRAPH OF A MODEL LEARNING PONG WITH FOUR INPUT VALUES AND ONE OUTPUT VALUE.

COMPLICATED AND NOT EASY TO UNDERSTAND. ... 29

https://d.docs.live.net/66d6dc66d66fc61e/School/Jaar5/PWS/ArtificialNeuralNetworksPWS2.docx#_Toc85059343

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

5

1 INTRODUCTION
Artificial neural networks are of increasing importance in not only scientific research but also

in everyday life. Therefore, we must develop a thorough understanding of the implementation

of these neural networks, how they work and how they learn. This paper will examine, test and

compare two ways of training feedforward neural networks. Namely backpropagation with

reinforcement learning and an evolutionary algorithm. The former involves numerous

complicated mathematical operations. The evolutionary algorithm, however, is much more

intuitive and understandable. These two methods have been chosen because they differ greatly.

Inspired by Google’s DeepMind, the neural networks will be taught to play a game. This way,

the training methods can be compared by their game playing performance.

The expectation is that the training method using backpropagation and reinforcement learning

is more efficient in training a neural network to play a game than a model trained with the

evolutionary algorithm. However, the model trained with backpropagation and reinforcement

learning will have lower performance than a model trained with the evolutionary algorithm.

However, before this can be examined, firstly the question of what a neural network is, must

be answered. Also, the process of backpropagation, reinforcement learning and evolutionary

algorithms must be explained.

2 MOTIVATION
Neural networks have been my interest for a long time. I used to hear a lot about it on the TV,

but I never understood how a computer program could learn to do things no other hand-made

algorithm could do. It always seemed very complicated and far above my level of

understanding. In this paper, I wanted to learn and explore the mathematics behind a neural

network and backpropagation. In addition, I wanted to explore other ways of training a neural

network. Other, more intuitive ways. That is why I chose the evolutionary method. It is

something I had learned about in my biology class and I already envisioned how this method

could be applied to neural networks.

I had once before tried to develop a neural network. At the time, however, I did not know

anything about it. It was doomed to fail. So, this is my second attempt, a fresh start to do it

right.

3 NEURAL NETWORKS
Neural networks are systems inspired by the biological brain which enables a computer to

predict, model, classify and many other applications. All this by learning from some set of

training data to find general relations that can be applied to unseen data. Image and speech

recognition, text generation, text summarization and real-time route planning are examples of

what computers can de because of neural networks.

Neural networks can be visualised as nodes connected by lines. There are many types of neural

networks, but this paper focuses on feedforward neural networks. This means that nodes do not

form a cycle. In feedforward neural networks, the nodes are ordered in vertical layers parallel

to each other. Every node in a certain layer is connected to every node in the layers to its left

and its right (see Figure 1). The first layer is the input layer and this is where data gets inserted

into the model that needs to be processed. The processing is done in the hidden layers. These

are often considered black boxes. Once the data has been put through all the hidden layers, it

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

6

is put into the output layer; notice that the number of input nodes does not need to be equal to

the number of output nodes. This is the output of the model. The hidden layers are all layers

between the input and the output layer.

When taking a closer look at the image, it becomes visible there is more to it than just nodes

and lines. Each line represents a weight. These weights are parameters. They are what

determine the influence of each node throughout the process. That is why they are called

weights. Another important element of the network is the biases. Every node contains a bias.

These are also parameters that influence the outcome of the model.

It is very important to differentiate each node, weight and bias. Therefore, accurate notation is

crucial. To get a better understanding of the notation used in this paper, the following list is

provided:

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑤

𝑏𝑖𝑎𝑠𝑒𝑠 = 𝑏

𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 = 𝜆

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑎 𝑙𝑎𝑦𝑒𝑟 = 𝑁𝑙

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 = 𝐿

𝑖𝑛𝑑𝑒𝑥 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑎 𝑙𝑎𝑦𝑒𝑟 = 𝑙

𝑖𝑛𝑑𝑒𝑥 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑎 𝑛𝑜𝑑𝑒 = 𝑗

𝑖𝑛𝑑𝑒𝑥 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑘

To now differentiate between layers, a superscript is used (𝑁 is a special case, as it never needs

subscripts to differentiate a node). 𝑤(2), 𝑏(2), 𝜆(2) and 𝑁2 would give the weights, the biases,

the node values and the number of nodes of the second layer respectively. 𝑤(𝐿), 𝑏(𝐿), 𝜆(𝐿) and

𝑁𝐿 would give the weights, the biases, the node values and the number of nodes of the last layer

(the output layer) respectively. Each of these in its general form can be specified as such: 𝑤(𝑙),

𝑏(𝑙), 𝜆(𝑙) and 𝑁𝑙.

To differentiate one step further, subscripts are used. These specify individual nodes in the

layer specified in the superscript. 𝑤1
(𝐿)

, 𝑏1
(𝐿)

 and 𝜆1
(𝐿)

 would give the weights, the bias and the

node value of the first node of the output layer respectively. 𝑤𝑁𝐿
(𝐿)

, 𝑏𝑁𝐿
(𝐿)

 and 𝜆𝑁𝐿
(𝐿)

 would give the

weights, the bias and the node value of the last node of the output layer respectively. Each of

these in its general form can be specified as such: 𝑤𝑗
(𝑙)

, 𝑏𝑗
(𝑙)

 and 𝜆𝑗
(𝑙)

.

There is one further step of differentiating. This is only for the weights. Because weights are

connections between layers and each node of a layer is connected to all the nodes of the layer

to its left, specifying a layer and a node will still provide an array of values. This is why it is

required to differentiate the nodes of the layer to its left to specify a singular weight. This is

done as such: 𝑤𝑗𝑘
(𝑙)

. 𝑤2 5
(𝐿)

 would refer to the weight between the second node of the last layer

and the fifth node of the layer to its left.

Nota bene. The first layer has no biases and there is no layer to its left with nodes to which

weights can connect. This means 𝑤(1) and 𝑏(1) are non-existent. 𝜆(1) and 𝑁1 , however, do

exist as 𝜆(1) would just refer to the input values and 𝑁1 to the number of input nodes.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

7

Something else to keep in mind is that 𝑤, 𝑏, 𝜆 and 𝑁 are matrices and behave accordingly.

When specifying 𝑙 and 𝑗 with 𝑤, and 𝑙 with 𝑏 and 𝜆, they still return a vector. This can be

shown as follows:

𝑤(𝑙) =

(

𝑤11
(𝑙)

𝑤12
(𝑙)

⋯ 𝑤1𝑘
(𝑙)

𝑤21
(𝑙)

𝑤22
(𝑙)

⋯ 𝑤2𝑘
(𝑙)

⋮ ⋮ ⋱ ⋮

𝑤𝑗1
(𝑙)

𝑤𝑗2
(𝑙)

⋯ 𝑤𝑗𝑘
(𝑙)

)

 𝑏(𝑙) =

(

𝑏1
(𝑙)

𝑏2
(𝑙)

⋮

𝑏𝑗
(𝑙)

)

 𝜆(𝑙) =

(

𝜆1
(𝑙)

𝜆2
(𝑙)

⋮

𝜆𝑗
(𝑙)

)

𝑤𝑗
(𝑙) = (𝑤𝑗1

(𝑙) 𝑤𝑗2
(𝑙) ⋯ 𝑤𝑗𝑘

(𝑙))

3.1 THE FEEDFORWARD FUNCTION

A neural network model is essentially a function with potentially thousands of parameters. Just

like any other ordinary function, input values are provided and with those, the output is

generated. This process is called feedforward. This word describes the feeding of the model

with information which is then moving forward from one layer to the next, each transition

modifying the values according to the weights and biases until it reaches the output layer.

First, there is one more step to introduce: the activation function. This function is added to help

the network learn complex patterns in the data. It takes in the output from the previous node

and converts it into some form that can be taken as input to the next node (Jain, 2019).

When input data is provided, the first thing that is calculated is the values of each node of the

second layer. To calculate the value of a singular node 𝑗 in the second layer, the following steps

are taken:

1. The sum of all the input values multiplied by their corresponding weight is calculated.

This sum can be simplified with the help of the dot product of the weights vector and

the input layer vector.

∑(𝑤𝑗𝑘
(2) × 𝜆𝑘

(1))

𝑁1

𝑘=1

= 𝑤𝑗
(2) ⋅ 𝜆(1)

2. Before putting the sum through the activation function, first, the bias of node 𝑗 is added.

This results in an intermediate, represented by 𝑧.

𝑧𝑗
(2) = 𝑤𝑗

(2) ⋅ 𝜆(1) + 𝑏𝑗
(2)

3. 𝑧 is now put through the activation function. This results in the final value of node 𝑗.

𝜆𝑗
(2) = 𝐴𝑐𝑡(𝑧𝑗

(2))

This is for just one value, but using matrix multiplication, 𝑧 can be calculated for an entire layer

with only one operation:

𝑧(2) = 𝑤(2) ⋅ 𝜆(1)

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

8

Notice how 𝑗 is no longer specified. This is because 𝑧(2) is a vector containing all the values

for the second layer. Note that some activation functions such as the softmax function require

this 𝑧 vector instead of a single 𝑧𝑗.

With the layer that has just been calculated, the next layer can be calculated in the same way.

This process repeats until the values of the output layers have been calculated.

4 MACHINE LEARNING
The process of feedforward is meaningless with a model that has not yet been configured to do

anything. A neural network must first be taught to perform a certain task. This is what is

accomplished with machine learning. There are many methods of machine learning. These

methods can be split up into two categories: Supervised Learning (SL) and Unsupervised

Learning (UL). The methods that will be discussed in this paper are backpropagation,

reinforcement learning and evolutionary algorithms. Backpropagation requires some advanced

and intermediate mathematical operations that require some foreknowledge. The evolutionary

algorithms are much more apprehensible and intuitive, but less efficient. Which method,

however, is faster in practice?

4.1 BACKPROPAGATION

Backpropagation is an example of a supervised machine learning method. For backpropagation

two things are required: the input and the corresponding output. Backpropagation will adjust

the weights and biases in such a way that the next time the same input is provided, the output

will be closer to the desired output. This is called optimisation.

For a model to know how good or bad a certain output is, a cost function is used. This is a

function that takes the output of a model and the desired output of each node and returns a cost.

Each problem has a fitting cost function. In backpropagation, an error function is used as the

cost function.

The principal idea behind backpropagation is finding out how much each weight and bias

influence the final cost. Because the entire neural network can be seen as a composite function

where the output of a previous layer is the input of the next, finding the influence of each weight

can be accomplished with the chain rule by taking the partial derivative.

To find out how the cost function changes in relation to the weights and the biases, the gradient

of the cost function with respect to the weights and the biases need to be calculated. Imagine a

cost function 𝐶 and some weight 𝑤𝑗𝑘
(𝑙)

. These two quantities are not directly proportionate to

each other. This is where the chain rule comes in.

𝜕𝐶

𝜕𝑤𝑗𝑘
(𝑙)
=
𝜕𝐶

𝜕𝜆𝑗
(𝑙)
×
𝜕𝜆𝑗

(𝑙)

𝜕𝑧𝑗
(𝑙)
×
𝜕𝑧𝑗

(𝑙)

𝜕𝑤𝑗𝑘
(𝑙)

Note that

𝐶 = 𝐸𝑟𝑟𝑜𝑟(𝜆(𝐿))

𝜆𝑗
(𝑙)
= 𝐴𝑐𝑡(𝑧𝑗

(𝑙)
)

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

9

𝑧𝑗
(𝑙)
= 𝑤𝑗

(𝑙)
⋅ 𝜆(𝑙−1) + 𝑏𝑗

(𝑙)

When looking carefully at those definitions, the capital 𝐿 should be noticed. This indicates that

the cost function is directly proportionate to the output layer. Also, it should be noted that 𝑤𝑗𝑘
(𝑙)

is part of 𝑤𝑗
(𝑙)

 so that when taking the partial derivative,

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑘
(𝑙)
= 𝜆𝑘

(𝑙−1)

When the change in the cost function in relation to that weight is calculated, the weight is

updated. This is the optimisation process and can be described as such:

𝑤𝑗𝑘
(𝑙)
≔ 𝑤𝑗𝑘

(𝑙)
− 𝛼 ×

𝜕𝐶

𝜕𝑤
𝑗𝑘

(𝑙)

Here 𝛼 is the learning rate. This is a hyperparameter: a parameter whose value is used to control

the learning process.

As mentioned above, the change in 𝐶 is directly proportional to the change in 𝜆(𝐿). This means

that in cases where 𝑙 ≠ 𝐿,
𝜕𝐶

𝜕𝜆𝑗
(𝑙) cannot be calculated in one step because then, 𝐶 is not directly

proportional to the change in 𝜆(𝐿). To calculate
𝜕𝐶

𝜕𝜆𝑗
(𝑙), would be to calculate the change in cost

in relation to the change of a node value in a certain layer. To calculate this value for any node

in a layer where 𝑙 < 𝐿, it would need to start at layer 𝐿 and propagate back to layer 𝑙. This is

where the name comes from.

Another way of describing the change in cost in relation to the change of a node 𝑗 in layer 𝑙

would be with a question: How much do all the nodes in layer 𝑙 + 1 think node 𝑗 in layer 𝑙

should change? Answering this question would result in a sum. A sum of all the ‘opinions’ of

the nodes in the layer to its right. This sum would look like this:

𝜕𝐶

𝜕𝜆
𝑗

(𝑙)
= ∑ (

𝜕𝐶

𝜕𝜆𝑛
(𝑙+1)

×
𝜕𝜆𝑛

(𝑙+1)

𝜕𝑧𝑛
(𝑙+1)

×
𝜕𝑧𝑛

(𝑙+1)

𝜕𝜆
𝑗

(𝑙)
)

𝑁𝑙+1

𝑛=1

Mind the indices 𝑛 and 𝑗. They are very important. The 𝑛 indicates a specific node in the layer

to the right (𝑙 + 1). While 𝑛 iterates over every node in layer 𝑙 + 1, 𝑗 remains constant. This

way each node in the layer to the right has a saying in how node 𝑗 should change.

This derivative, however, can also not be calculated directly when 𝑙 < 𝐿 − 1, because the

function would still have to know how each of the nodes in the layer to the right should change.

Only then can they tell how node 𝑗 should change. Following this logic,
𝜕𝐶

𝜕𝜆𝑗
(𝑙) appears to be a

recursive function starting from layer 𝐿, the output layer, and ending at node 𝑗 in layer 𝑙.

Keep in mind that the same steps are taken when calculating the change of the cost function in

relation to the biases. Only then,
𝜕𝐶

𝜕𝑏𝑗
(𝑙) is calculated instead of

𝜕𝐶

𝜕𝑤𝑗𝑘
(𝑙).

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

10

4.1.1 ACTIVATION FUNCTIONS

There are many types of activation functions. Each activation function influences a neural

network differently, but ultimately, four factors should be considered. Because of how

backpropagation works, the most important requirement for an activation function is that it

needs to be differentiable. Another factor is the computational expense. Functions including

exponents, logarithms or other intensive operations generally slow down the entire training

process. Functions with a range between zero and one or minus one and one can cause the

gradient of the first couple layers of larger models to vanish and it can cause the activation to

shift towards zero. This phenomenon is called the vanishing gradient problem. Another

problem is the shifting of the gradients to a certain offset. This happens if an activation function

is not zero-centred.

In this paper, the last two factors are not taken into account as the models that will be used, are

not big at all.

4.1.2 ITERATIONS

The process of backpropagation is specific. It calculates precisely how the weights and biases

need to change to reduce the cost. This is very useful and makes fitting and interpolating data

points1 easy and efficient. However, after having performed backpropagation and having

optimized the parameters, the neural network is merely one step closer to its optimum where

cost is at its lowest. The process must be iterated many times. The number of iterations is very

important and should be taken into consideration. Too many, and something called overfitting

might occur. Too little, and underfitting might occur.

Overfitting occurs when a model fits exactly against its training data. This way, the algorithm

cannot perform accurately anymore against unseen data, which is why it is trained in the first

place. Overfitting is a result of too many iterations of training, too specific input data or a model

too complex for its job.

Underfitting, on the other hand, occurs when a model cannot find a relation between the input

and the output data. This way there is a high cost when performing against the training data as

well as unseen data. This is a result of too few iterations, too insufficient input data or a model

that is too simple.

The generalization of new data is why machine learning algorithms are used every day in

making predictions and classifying data.

4.1.3 SHAPE

See Figure 1. The shape of the model determines how many layers a neural network has. It also

determines how many nodes each layer has and how layers and nodes are connected. Big,

complex models include many parameters and are therefore more time-consuming to train.

While simply adding more nodes to a layer will slightly increase the number of connections

between nodes and therefore increase the ability of a model to find more complex relations

between the input and the output, adding a layer to a model creates many more connections,

greatly increasing the number of parameters present in the model.

A layer can also be a limiting factor in the model. Take for example a model with five input

nodes, a hidden layer of one node, a hidden layer with twenty nodes and an output layer. First,

1 See Figure 2 for an example.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

11

all the information stored in the input layer gets compressed into one node; loss of data will

occur. Next, the data is then expanded over twenty nodes. Despite the model being more

complex including the first hidden layer of one node, if that first layer was excluded, the loss

of data would not have occurred, resulting in a model more capable of interpreting the input

data.

Great care should be taken when deciding on the shape of a neural network, though the process

of doing so is hard and complex.

4.1.4 LEARNING RATE

When applying backpropagation, the learning rate is very important. This can make or break

the training process. If the learning rate is too high, the model will not reach its optimum lowest

cost because the steps taken to reach this minimum are too large. The opposite can also happen.

If the learning rate is too low, it will take many more iterations than necessary for the model to

be trained sufficiently. Compare Figure 2 and Figure 3 to see how the learning rate has

influenced the results after ten thousand iterations. In these figures, backpropagation is used to

teach two identical feedforward neural networks to interpolate the training data. The only

difference between the two processes is the learning rate. Yet the performance is very different.

It is visible that the second model is going in the right direction, but it will take much longer

before it reaches the same performance as the first model. This is because of the smaller step

size that is taken each iteration to approach the cost minimum.

4.2 REINFORCEMENT LEARNING

Fitting training data with backpropagation is great for teaching a neural network to better

predict according to input data. However, backpropagation requires input and the

corresponding output. Does this mean it is useless when the corresponding output data is not

known? No, but it needs some help. This is where reinforcement learning comes in.

Reinforcement learning is a way to teach a neural network to do more complex operations by

giving it positive reinforcement when it does something good and negative reinforcement when

it does something bad.

One example where reinforcement learning can be applied is when training a model to play a

game. With most games when a prediction is made by the AI, it is unknown if it was a good

action or a bad action. This is only known after the model is awarded positive or negative

feedback – when it has earned a point for example. The crucial part of reinforcement learning

is that all inputs and corresponding predictions are saved until the AI is reinforced

(backpropagation is applied). If the reinforcement is positive, the model should be trained to

be more likely to do the same by applying backpropagation to the model with all the saved

inputs and outputs as training data. If the feedback is negative, the model should be trained to

be less likely to make the same predictions.

4.3 EVOLUTIONARY ALGORITHMS

An evolutionary algorithm is much more intuitive than backpropagation. It is the imitation of

natural selection in biology, but then with self-determined factors determining the fitness of a

model.

When training a neural network with an evolutionary algorithm, a large group of random

models will be generated. All these models will perform the same task. Some models, however,

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

12

will be better suited for this task than others. How well they are suited to their environment is

called their fitness. This can be calculated any way and will be the determining factor of who

will survive and who will not.

When all models have finished, they will be put in a list ordered by fitness, from high to low.

Then it should be determined what percentage will survive. Say 20%, then the top 20% will

survive and the other 80% will be discarded. They are replaced by clones of the survivors, but

each with random mutations. This way, the survivors remain in the model pool, ensuring that

the performance of the pool cannot decrease. This new pool is then tested on how well they

perform.

This process is repeated as many times as it takes to get a model that meets the requirements.

This happens by natural selection. When by chance one of the mutated models ends up being

better than the previous top models, it will survive and be used to generate new mutated models.

If repeated enough times, the top models will become fitter and fitter. This is generally how

bacteria are considered to evolve and for example, become more resilient to certain antibiotics.

Another way of approaching evolutionary algorithms is by generating new models by mating,

instead of cloning. This way, the genes of the top models will be shared amongst all models.

This is more representative of how animals evolve. Mutations can still occur, but this is not the

only way how offspring can differ from each other. Which genes are taken from the father and

which from the mother will also be random and create unique children.

In this context, genes can be interpreted as weights and biases.

A big disadvantage of evolutionary algorithms is the computational expense required to run all

of the models to perform the same task. On the other hand, the many models make a reasonable

solution against the problem of being unable to find the global minimum.

4.4 LOCAL AND GLOBAL MINIMA

Getting the lowest cost is the goal of a neural network. However, is it even possible to get the

lowest cost in an environment? Generally, using backpropagation, only a local minimum can

be found.

When a random model is generated, it has a certain cost. This cost can then be reduced or

increased. By performing for example backpropagation, the weights and biases are changed to

decrease the cost. This change makes the model a different model with a different cost. When

plotting all possible models and their costs on a graph, a landscape will be seen with bumps

and holes. When a model has improved a little bit, a step is taken downwards towards one of

the many holes. No matter how much this model is improved by backpropagation, the lowest

the model can go is as low as the hole. This hole, however, might not be the lowest hole there

is. The model has then reached its local minimum.

Somewhere on the landscape, there is a hole that is lower than all other holes. This is the global

minimum. So when training one random model, the chance is very slim that this model is on a

path down the global minimum. Nearly always, it will reach a local minimum.

The advantage of evolutionary algorithms is that not only one model is trained, but perhaps

many hundreds. This means that the result is not dependant on one path, but many paths are

going to local minima. One of these paths is then the lowest of all. This model is then the fittest.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

13

5 RESEARCH
The hypothesis of this paper describes the training method using backpropagation and

reinforcement learning to be more efficient in training a neural network to play a game than a

model trained with the evolutionary algorithm. However, the model trained with

backpropagation and reinforcement learning will have a higher performance than a model

trained with the evolutionary algorithm. To examine which of the two methods is superior, a

test game has been made and a program has been made which describes the neural network

and its capabilities. The code can be accessed here:

https://github.com/KaspervanM/PWSFeedforwardNeuralNetworkPong

5.1 THE GAME

The game made to test the capabilities of the learning algorithms is Pong. Pong is a PvP2 game

involving two paddles hitting a ball (see Figure 4). One paddle is located on the left side of the

screen and one paddle is located on the right side of the screen. The paddles can only move in

the direction of the y-axis. The goal of the game is to hit the ball past the paddle of the opponent.

If a ball passes a paddle, a point is awarded to the player controlling the opposing paddle.

The game is made using Python 3.9 with a library called Pygame and is based on an online

tutorial (101 Computing, 2019). In addition to the game, the Python code also contains an

interface to use the neural network. For this, the Python library ctypes is utilised.

When the ball hits the ceiling or the floor, it bounces while preserving its speed. When it

bounces, the x-velocity remains the same, but the y-velocity is multiplied by −1. Upon hitting

the paddle, the x-coordinate of the ball is multiplied by −1. However, if the paddle is moving,

the y-velocity increases with the speed at which the paddle was moving. In addition, even if

the paddle is stationary, there is a chance of a small random offset in the y-velocity of the ball.

This was added to create an increased amount of variety in the game with the same inputs.

The game has a standard framerate of sixty frames per second. This means all objects are

updated and all other game logic is calculated once every sixtieth of a second. This is a speed

that looks natural for humans. However, the game can go faster. This is useful for running tests.

For this reason, the function limiting the framerate to sixty frames per second can be toggled

on or off. Depending on the speed of the computer and how much needs to be calculated, a

normal game of pong can run at around two or three thousand frames per second. There is still

a limiting factor, however. The game still shows every frame in the game window. The printing

of a frame can happen quickly, but nowhere near as quick as required to keep up with the

possible framerate. This then drops the framerate. To fix this problem, the printing of the screen

has been made toggleable.

In the end, Pong is a simple game perfect for testing the capabilities of a neural network. It is

easy to make and can therefore easily be adapted if changes need to be made during the testing

and development of the neural network training algorithms.

2 Player versus Player

https://github.com/KaspervanM/PWSFeedforwardNeuralNetworkPong

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

14

5.2 THE NEURAL NETWORK

The neural network and the algorithms to use and train it are made in C++3. The C++ code is

compiled into a DLL4 with a C interface using Microsoft Visual Studio 2019. The C-interface

is required to interface with the ctypes library in Python. The neural network is programmed

in C++ instead of Python because C++ is much faster than Python. Training a model is

therefore much less time-consuming.

The DLL is composed of four parts:

1. The Model class

2. The ModelFunctions class

3. The TrainingData class

4. The ModelStorage class

To create a Model object, a modelArg object must be passed to the class constructor5. This

object contains the arguments for the model: the seed, the shape, and the activation functions.

The shape and the activation functions are stored in a vector6. The Model class has four

attributes: weights, biases, shape and actFuncts (activation functions). Attributes shape

and actFuncts are set in the class constructor. The weights and biases are randomly generated

based on the seed7. The Model object has two methods: one to set weights and biases and

one to mutate the model.

The method to mutate the model works by changing the weights and biases according to the

mutation rate and mutation degree. The mutation rate determines the chance of a weight or bias

to mutate and the mutation degree determines the size of the mutations. When a weight or bias

is mutated, a random number is added generated by normal distribution according to a given

seed with its mean set to 0 and its standard deviation to the mutation degree. Any mutation can

therefore be positive or negative.

The other functions using the model are methods in the ModelFunctions class. These functions

include:

• The activation method

• The activation_derivative method

• The feedforward method

• The cost method

• The cost_derivative method

• The backpropagation method

• The optimize method

• The train method

3 C++ is an object oriented general purpose programming language and, except for minor details, a superset of the
C programming language. (Stroustrup, 1997)
4 Dynamic Link Library
5 A class constructor is a special member function of a class that is executed whenever we create new objects of

that class. (Tutorialspoint, n.d.)
6 In C++, vectors are sequence containers representing arrays that can change in size. (cplusplus.com, n.d.)
7 Random number engines generate pseudo-random numbers using seed data as entropy source.

(cppreference.com, n.d.)

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

15

All of the methods are static and can therefore be used without the need for a ModelFunctions

object. The activation and activation_derivative method include many activation

functions: the identity function, the binary activation function, the sigmoid, tanh, ReLU,

leaky_ReLU, ReLU6, leaky_ReLU6, softplus, softsign, gaussian, swish, hard_swish,

fastSigmoid
8 and softmax activation function. The functions can handle a vector of values

or a single value. This way, an entire layer can easily be calculated. Keep in mind: The first

two activation functions do not work with backpropagation.

The feedforward function calculates the values of all the nodes by forwards propagation as

explained in 3.1. Then, the output layer is returned. The cost and cost_derivative methods

include only one activation function. This is the Mean Squared Error (MSE) function (Pai,

2020)

The last three methods mentioned above are what train the neural network. The train function

controls the backpropagation and optimisation. It repeats the process as many times as the user

requires. The number of iterations is passed as a parameter. The function also requires a

TrainingData object. This object contains the training data split up in batches (Figure 5).

When performing backpropagation on multiple training data samples, it is desired that each

input is inserted into the same model so changes to the weights and biases can be made

accordingly. Say, there is a training data set of four data points (a data point contains the input

and the corresponding output). When backpropagation is performed on the first data point, the

outcome is how to change the parameters of the model to better predict for this data point. So,

if optimisation (changing the model parameters according to the outcome of the

backpropagation to predict more closely to the desired output) would be performed, this would

decrease the cost for this single data point. However, there are three other training data points

left. This one change could have increased the cost of those. That would not be desired. When

it is the turn of the next training data point, the model has changed already and will provide a

different output than it would have before. Also, any changes done now could negate the

changes done previously.

To prevent that from happening, instead of performing optimisation directly after calculating

the
𝜕𝐶

𝜕𝑤
 and

𝜕𝐶

𝜕𝑏
 of any data point, these values are stored. This provides the opportunity to take

the average of all those values and perform optimisation with that. This way, perhaps not for

individual points, but on average, the cost will decrease more.

Now the question: Why not put all the training data in one big batch? The answer can be found

in time efficiency. Bigger batches take longer to compute. By making it variable, the user can

weigh the pros and cons and decide on the best batch size.

The train function works precisely as explained above and calculates the average per batch

to optimise the model.

When the backpropagation method is called, first all changes in cost with relation to the

change of all node values are calculated for the entire model in a recursive function. This is

stored in a C++ vector. Then, the program loops through each layer starting from the front –

near the input (layer 1). There is no reason for this other than convenience because, with the

8 The fast sigmoid function is an approximation of the sigmoid function, but faster.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

16

change in cost with relation to the change of the node values already being calculated, all

changes in cost with relation to the change in weights and biases can be calculated individually.

In the loop, per layer, the derivative of the activation is calculated and stored in a vector. With

these two vectors, all the changes in cost with relation to the change in biases can be calculated.

To calculate the change in cost with relation to the change weights the corresponding node

values need to be multiplied as well.

The code is the basis of this paper. All tests have been made using the code and the creation of

it has helped with creating an understanding of what neural networks are in practice.

5.3 BACKPROPAGATION AND REINFORCEMENT LEARNING

The principle idea of reinforcement learning is simple: The program runs until a point is scored,

saving all the inputs and outputs from the model as training data. If the neural network scores

a point, save the training data as is, but if the opponent scores, save the training data with the

outputs inverted. Then the model trains with backpropagation accordingly.

In the Python code of the game, there is an event loop. This is the loop in which all the new

coordinates of all objects are calculated and where the pixels that will be displayed are

generated. In the loop, the game also checks for potential user inputs. This is the perfect place

to have the model predict and output. The model uses the following as input for the feedforward

function:

• the normalized9 x- and y-coordinates of the ball,

• the normalized coordinates of its paddle

• the y-velocity of the ball.

The output will be a number between 0 and 1 and will be rounded to an integer. This means

that the prediction is either 0 or 1 which corresponds with up or down respectively. The paddle

then moves accordingly. Furthermore, the input is saved alongside the prediction. When the AI

scores a point, all moves leading up to that point are added to a list containing all input data

and corresponding output data of all decisions up until the model is trained. If the opponent

scores, the data is also added, but then the prediction is inverted (1 becomes 0 and vice versa)

so it learns to do the opposite of what it did in the situations leading up to failure. This final list

then functions as training data. When the model has been trained, the entire process starts again.

A model is trained when it has played a set amount of games (one cycle). Training means

applying backpropagation to the model with the training data gathered in the past cycle.

5.4 EVOLUTIONARY ALGORITHMS

For the evolutionary method, backpropagation is not used. Instead, there will be a set of

randomly generated models of which some are more suited for its goal. Of these more suited

models a new set will be generated, but the newly generated models will have mutations that

differentiate them. In the game, the top ten to twenty per cent of the models with the highest

fitness will be saved.

9 The values are normalized by dividing them by the highest possible value they can become. This way, they are

a value between 0 and 1. This is easier for the model to interpret.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

17

5.4.1 FITNESS

Deciding what determines fitness is very important. With Pong, there are a few ways. The

simplest is awarding one point to each goal scored and having each model run for a set amount

of games. The models that scored the most goals, get the highest fitness scores and will survive

the round. Another way of calculating the fitness, similar to the first, is by also awarding points

when the paddle of the model hits the ball. For example, 5 points when a goal is scored and 1

point per hit. This way of determining the fitness will result in models playing differently than

models trained with the first method.

When trying the second method, It is evident that hitting the ball as many times as possible is

very rewarding. Even more so than scoring a point. After some dozen cycles, the AI had figured

out that there was a flaw in the game engine. The models would exploit the collision (between

ball and paddle) by vibrating very quickly and jamming the ball between the floor and its

paddle. This way, the ball would get stuck in the paddle, resulting in many hit points.

5.5 TESTING THE HYPOTHESIS

The method used to test the hypothesis of this paper comprises of two parts:

1. Testing reinforcement learning with backpropagation.

2. Testing the evolutionary algorithm.

3. Comparing reinforcement learning with backpropagation to the evolutionary algorithm.

After the game and the neural network had been made, the testing could begin. First, an

opponent was made. This was done by making the opponent paddle move up when the ball

was above his centre and down when it was below his centre. The models could now be trained

on this opponent.

How well a model performs compared to the opponent is calculated by dividing the number of

wins by the number of games they have played in total. When 95% of the games are won, the

model is regarded to have outperformed the opponent. With reinforcement learning, the

number of games played directly influence how well the model learns. With the evolutionary

method, however, this is not the case. For this reason, the number of games played per cycle

with the evolutionary method can be much lower than the number of games played per cycle

with reinforcement learning. This is why the performance is expressed as a ratio instead of the

number of points per game.

Firstly, the method with reinforcement learning and backpropagation was investigated. When

testing, however, it was evident that the models were having a hard time beating the opponent.

This meant that when applying backpropagation, the model rarely scored and therefore could

not be positively reinforced. It could only learn from its mistakes (see Figure 6). It was for this

reason that a toggleable handicapped opponent was implemented, meaning the opponent moves

twice as slow as the model. When training against this opponent, the model was making better

improvements.

With finally some results worth examining, something else seemed to be out of order. The

model would make a great improvement after one cycle but perform terribly the next (see

Figure 7). This phenomenon could be explained by how reinforcement learning is

implemented. One cycle, the model would be terrible, learn to do the opposite and perform

well the next. However, in that cycle, when it does good moves, sometimes the model doesn’t

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

18

score. When it plays very good, the games are short because it scores quick and when it plays

mediocrely, the games last longer. The longer games mean more training data is gathered

during the cycle. This would be the reason that there is more training data of the model

performing mediocrely and losing than doing bad and losing or doing good and winning. This

means that it then learns that it should do the opposite of what it was doing when playing

mediocrely. However, This way, the model becomes worse.

When playing around with the learning rate, it can be found that the phenomenon of alternating

performances can be reduced by increasing the learning rate. Figure 7 was generated with a

model that was trained with a learning rate of 0.05. This number was arbitrary. By increasing

the number, the model would be changed more drastically and therefore theoretically learn

more per cycle. This way, there are fewer mediocre performances. This worked so well, that it

seemed to have resolved the issue of having an opponent that is too good. As seen in Figure 8,

the model remains consistent much more than before even when training against an opponent

that is not handicapped. When training against the handicapped opponent, the model quickly

learns to outperform the other player (see Figure 9). The start is still rough, but it quickly

catches up. Figure 8 is also a good example of how a neural network has reached its local

minimum: The performance has plateaued.

The next training method examined was the evolutionary method. The goal was to compare

this method to backpropagation and reinforcement learning. This meant that the first thing that

was done, was to train against the handicapped opponent. This worked very well (see Figure

10). It even worked faster than the method using reinforcement learning. The comparison

between Figure 9 and Figure 10 shows that neural networks trained with an evolutionary

algorithm are more efficient than neural networks trained with backpropagation and

reinforcement learning in not only the duration but also in the number of cycles needed to reach

the required performance.

After having performed so well training on a handicapped opponent, it was time to remove the

handicap. Without the handicap, the training method worked very consistently. It takes a long

time, but generally, the top model (best model of the pool) will end up outperforming the

opponent (see Figure 11). This is unlike the model trained by reinforcement learning because

that model never reaches the level of outperforming an opponent that is not handicapped.

See the following video to get a better understanding of how Pong works with neural networks:

https://youtu.be/TBZMXTO0hTU

5.6 PROBLEMS AND PATH TO SUCCESS

While experimenting, many issues rose to the surface and many possible solutions were tried

to fix them. Many of the solutions were never used during final testing but still contributed to

the development of a better understanding of neural networks. Mostly at the beginning of

development, much of the code was made and the tests were run without a thorough

understanding of neural networks and backpropagation.

The first big problem was understanding reinforcement learning. At first, the code was written

to follow the following: If the neural network scores a point, save it as good training data, if

the opponent scored it, save it as bad training data. It seemed logical to make the learning rate

a negative number when training on bad data, then the model would learn to do the opposite.

Luckily, there was soon a realisation that backpropagation was all about the influence of

https://youtu.be/TBZMXTO0hTU

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

19

weights and biases on the cost function. So with a negative learning rate, the influence

decreases. This is not at all the same as learning to do the opposite.

To fix this, instead of or reversing the learning rate, the training data is reversed. This way, it

would learn to do the opposite of what it did when the opponent scored.

After the fix, the model was still not learning very well. To fix this, the input values were

changed. Before, they were the coordinates of the ball, the coordinates of the model’s paddle

and the y-velocity of the ball. These were changed to be normalized values: the y-coordinates

of the ball and the y-coordinates of the paddle were divided by the max y-value. This way it

was a normalized input: a number between 0 and 1, in this case. This is easier to handle for the

model. This worked!

It worked surprisingly well. However, after a few more training cycles, it started doing worse.

The issue was that the paddle started doing the opposite of what it was supposed to do: It evaded

the ball. The model was very good at it too.

To investigate whether it was the backpropagation that was faulty, models were tested by fitting

functions. This resulted in weird issues. The model was resetting after a certain amount of

iterations (see Figure 12). To find out what was wrong, the code was investigated. During

intensive debugging, nothing seemed out of the ordinary, but the cost would not decrease.

While tracing the steps taken to calculate the change in weights and biases to figure out the

problem, a huge mistake was found in the code when calculating
𝜕𝑧𝑛

(𝑙+1)

𝜕𝜆
𝑗
(𝑙) in the function

calculating the change in cost with relation to the change of the node values10. The mistake was

made when copying some code from other functions.

With the bug fixed, there were great improvements. No longer any inexplicable behaviour and

the fitting was much closer.

Inspired by the testing of backpropagation, the function of creating graphs was added to the

Pong game. This way, the fitting and interpolating could become visible. For this, the input of

the model had to be reduced. Each extra input and output would require a new dimension in

the graph. So, the graph would plot two normalized input parameters: the y-coordinate of the

ball and the paddle, and one output value. Despite less data, the model performed okay. An

example of the graph is in Figure 13.

Also, graphs with more input data were tested. However, none provided any clear insight and

were just complicated to look at (see Figure 15).

With the new graph-plotting function it becomes clear how the model is learning. A few things

stood out:

1. Per cycle, the training data was very different.

2. The model would overshoot the apparent optimum

10 Reminder:
𝜕𝐶

𝜕𝜆
𝑗
(𝑙) = ∑ (

𝜕𝐶

𝜕𝜆𝑛
(𝑙+1) ×

𝜕𝜆𝑛
(𝑙+1)

𝜕𝑧𝑛
(𝑙+1) ×

𝜕𝑧𝑛
(𝑙+1)

𝜕𝜆
𝑗
(𝑙))

𝑁𝑙+1
𝑛=1

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

20

This is the problem later known as the problem of alternating performance levels with

reinforcement learning and backpropagation. Before the solution used in final testing was

found, it was first solved incorrectly.

During The tests on the backpropagation, it became apparent that the network was excellent at

interpolation and thus predicting data that falls within the scope of provided training data.

Extrapolation, however, a model cannot do. No function – even linear ones – could be

extrapolated with the neural network. This was not an issue, because when learning to play

simple games, extrapolation is not required. The idea then was that the training data for learning

Pong would have to cover a considerable range of possible situations which the model should

learn to deal with.

The information about the limits of my neural network matches the problem of the

reinforcement learning algorithm. In one cycle, the model would learn how to deal with one

subset of situations and fit the training data. In the next cycle, however, the model would train

on completely different training data dealing with a different subset of situations. This way, the

model would overwrite what it had learned from previous cycles. As shown in Figure 13, the

training data moves from one side to another. This would confuse the model and it would only

know how to deal with situations it encountered in its most recent cycle.

These issues are fixed by saving and adding the training data of each cycle to a larger,

expanding set of training data on which the model will be trained (see Figure 14). Notice that

the previous training data is stored and used every cycle. The positive influence this change

has on the model can be spotted by the slight curve upwards on the far left side of the prediction

points.

However, when taking a step back and thinking about what this solution is doing, it falls apart.

A huge amount of training data is collected and saved so it can relearn data. Using this method

with all the training data used, the point of a neural network is defeated. No longer does the

model need to find a relation between the input and output in such a way that it can predict

well on unseen data. The model has no unseen data. Nearly all possibilities are already

described in the training data. This was not at all desired. What is desired is that the model only

trains on new data and that it remembers what it has learned before. This was achieved by

increasing the learning rate.

Another effort towards improving the training of the model was changing the way the model

gets points. Instead of scoring, hitting the ball was awarded points. This was implemented in

both the reinforcement learning algorithm and the evolutionary algorithm. However, never

much progress was made because of glitches in the game (as explained in 5.4.117) and even

when these glitches were fixed, no real improvements were to be seen.

Something else implemented at some point, but never used during final testing was a way to

speed up the process of testing called dataThinner. This would alternately remove half of the

training data a set number of times. The way it worked, seems logical: all of the data points are

very close to one another. Of a group, the model only needs one to understand what to learn

and less training data saves time. However, it ended up not making that big of a difference

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

21

6 CONCLUSION
Feedforward neural networks are systems including many parameters that can learn from

training data to find general relations which can be applied to unseen data. This way it can

predict, interpolate and fit functions and even learn to play games.

A neural network can be trained to fit training data with backpropagation by changing the

parameters to better predict the desired output. When in combination with reinforcement

learning, neural networks learn by positive reinforcement when it does well and negative

reinforcement when it does bad. Another way to train neural networks is with an evolutionary

algorithm. This method tests many models at the same time to see who is more fit for the

environment. Those that survive live to reproduce. This way natural selection will ensure

models performing well.

The hypothesis, namely that the training method using backpropagation and reinforcement

learning is more efficient in training a neural network to play a game than a model trained with

the evolutionary algorithm, but the model trained with backpropagation and reinforcement

learning will have lower performance than a model trained with the evolutionary algorithm of

this paper, has been proven wrong. Neural networks trained with an evolutionary algorithm do

end up performing at a higher level than models trained with reinforcement learning and

backpropagation. However, neural networks trained with an evolutionary algorithm are also

more efficient with regard to not only the number of cycles needed to reach the same

performance but also with regard to the time required. Figure 9 and Figure 10 show how

reinforcement learning and backpropagation in the case of learning pong is slower and less

efficient than the evolutionary algorithm at reaching a high level of performance. Figure 8 and

Figure 11 show that models trained by the evolutionary algorithm reach a higher level of

performance in general than models trained by the reinforcement learning algorithm and

backpropagation.

7 FURTHER RESEARCH
The data seems to be definitive, and the hypothesis seems to be proven wrong. However,

because the data deviates so much from its expectation, something might have gone wrong in

the research. The reinforcement learning algorithm for example. This could have been wrongly

applied to the situation resulting in suboptimal performance, disturbing the data. This is why

the reinforcement learning algorithm should be further experimented with and investigated.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

22

8 FIGURES

Figure 1 – Two examples of a feedforward neural network. Squares represent nodes and the lines represent the weights. The
colour of the lines indicates the value of the weight: the darker, the lower, and the brighter, the higher. Grey like the

background is 0. This means all lines darker than that are negative.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

23

Figure 2 - A neural network interpolating some function f(x) given sparse training data with a learning rate of 0.01 after

10000 iterations of training.

Figure 3 - A neural network interpolating some function f(x) given sparse training data with a learning rate of 0.0008 after
10000 iterations of training.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

24

Figure 4 - A freeze-frame of Pong. Left: AI, right: human

Figure 5 - The training data array format.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

25

Figure 6 - Reinforcement learning: performance over time. Low performance.

Figure 7 - Reinforcement learning: performance over time. Handicapped opponent. Learning rate: 0.05.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

26

Figure 8 - Reinforcement learning: performance over time. Not a handicapped opponent. Learning rate: 0.2.

Figure 9 - Reinforcement learning: performance over time. Handicapped opponent. Learning rate: 0.2.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

27

Figure 10 - Evolutionary algorithm: performance over time. Handicapped opponent.

Figure 11 - Evolutionary algorithm: performance over time. Not a handicapped opponent.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

28

Figure 12 - model resetting between after 2830 iterations.

Figure 13 - The first two cycles of a model learning to play Pong without the expanding training data set.

Figure 14 - The first two cycles of a model learning to play Pong with the expanding training data set.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

29

Figure 15 - A 5-D graph of a model learning Pong with four input values and one output value. Complicated and not easy to
understand.

TRAINING FEEDFORWARD NEURAL NETWORKS

Made as a school assignment at the Stedelijk Dalton Lyceum Overkampweg for the department of mathematics. 2021

30

9 SOURCES

101 Computing. (2019, May 27). Pong Tutorial using Pygame. Retrieved from 101

Computing: https://www.101computing.net/pong-tutorial-using-pygame-getting-

started/

Bendersky, E. (2016, October 18). The Softmax function and its derivative. Retrieved from The

Green Place: https://eli.thegreenplace.net/2016/the-softmax-function-and-its-

derivative/

cplusplus.com. (n.d.). std::vector. Retrieved from cplusplus.com:

https://www.cplusplus.com/reference/vector/vector/

cppreference.com. (n.d.). Pseudo-random number generation. Retrieved from

cppreference.com: https://en.cppreference.com/w/cpp/numeric/random

DeepMind. (n.d.). About. Retrieved from DeepMind: https://deepmind.com/about

IBM Cloud Education. (2021, March 3). Overfitting. Retrieved from IBM:

https://www.ibm.com/cloud/learn/overfitting

Jain, V. (2019, December 30). Everything you need to know about “Activation Functions” in

Deep learning models. Retrieved from towards data science:

https://towardsdatascience.com/everything-you-need-to-know-about-activation-

functions-in-deep-learning-models-84ba9f82c253

Karpathy, A. (2016, May 31). Andrej Karpathy blog. Retrieved from Deep Reinforcement

Learning: Pong from Pixels: http://karpathy.github.io/2016/05/31/rl/

Maasdam, K. v. (2021, October 13). PWSFeedforwardNeuralNetworkPong. Retrieved from

GitHub: https://github.com/KaspervanM/PWSFeedforwardNeuralNetworkPong

Maasdam, K. v. (2021, October 13). Training Feedforward Neural Networks. Retrieved from

YouTube: https://youtu.be/TBZMXTO0hTU

Pai, A. (2020, October 26). Mean Squared Error Cost Function. Retrieved from Machine

Learning Works: https://www.machinelearningworks.com/tutorials/mean-squared-

error-cost-function

Shiffman, D. (2018, March 12). 11.1: Introduction to Neuroevolution - The Nature of Code.

Retrieved from YouTube: https://www.youtube.com/watch?v=lu5ul7z4icQ

Stroustrup, B. (1997). The C++ Programming Language Third Edition. Reading,

Massachusetts, the United States of America: Addison-Wesley.

Tutorialspoint. (n.d.). C++ Class Constructor and Destructor. Retrieved from Tutorialspoint:

https://www.tutorialspoint.com/cplusplus/cpp_constructor_destructor.htm

