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Abstract9

In the paper a mathematical method, originated from studies of nonlinear par-
tial differential equations, is applied to the He approximation of outer electron
chemical bonds. The results can be used in the study of large molecules like
RNA and proteins. We follow a pairwise atom by atom coordinates approxima-
tion. Coordinates can be obtained from crystallography or electron microscopy.
The present paper solely presents the proof of concept of the existence of an
algorithm. It is expected that such algorithm can be employed in studies of
larger molecules.
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Introduction10

In a bi-atomic chemical bond as part of a larger molecule, one can try to use11

the He Schrödinger equation to incorporate the quantum mechanical behaviour12

of the two electrons. It can make sense to consider the two atoms as a kind of13

”super” Helium nucleus when looking at the two outer electrons. The author14

is aware that other quantum chemical methods do exist [1]. The presented15

method attempts to look at large molecules. Moreover we believe that the16

mathematics can add to our understanding of the atomic physics of the light17

elements. Accepting that the He approach can be allowed, then still there is18

this problem that the He Schrödinger equation has no exact solution.19

In the present paper we will try to come with an ”in principle” exact solution20

form where the energy eigen value must be approximated in iterative steps of21

an algorithm. The ”in principle solution” form is based on spectral integration22

theory. Previously, the present author applied a certain aspect of the theory with23

1The author wishes to thank Ad Popper Director Xilion BV.
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integrals with quadratic dispersion, to a nonlinear partial differential equation24

[2]. The algorithm that we present here derives from concepts of linear integral25

equations. It is a proof of concept and changes to it must be made in order to26

study large molecules effectively.27

Method28

1. Math of He Hamiltonian integral patching29

Let us start with the following two partial wave functions with dependence30

on the two electron coordinates x1 = (x1,1, x2,1, x3,1) and x2 = (x1,2, x2,2, x3,2).31

The He Schrödinger equation in ~ = c = 1 and me = 1 equals Hϕ = Eϕ with32

H = −1

2
(∆1 + ∆2) +

1

r1,2
−
(

1

r1
+

1

r2

)
(1)33

and E the energy eigenvalue [1]. Here, r1,2 =
√

(x1 − x2)T · (x1 − x2) and34

upper index T denotes the transposed The r1,2 represents the Euclidean distance35

between electron 1 and electron 2. Furthermore, r1 =
√
xT1 · x1 and r2 =36 √

xT2 · x2 together with ∆1 = ∂2

∂x2
1,1

+ ∂2

∂x2
2,1

+ ∂2

∂x2
3,1

. Similar ∆2 = ∂2

∂x2
1,2

+ ∂2

∂x2
2,2

+37

∂2

∂x2
3,2

.38

1.1. Partial wavefunctions39

In this section we will try to find ways to approximately solve the He equation40

starting from two primitive functions41

ψ0,k = fk exp [αkr1,2] (2)42

ψ1,k = gk exp [−βk(r1 + r2)]43

The k index is an auxiliary variable that can enter into auxiliary integration.44

For completeness of the argument let us look at45

∂

∂x1,1
ψ0,k = αk

(
x1,1 − x1,2

r1,2

)
ψ0,k (3)46

And therefore,47

∂2

∂x21,1
ψ0,k =

αk
r21,2

(
r1,2 − (x1,1 − x1,2)

(
x1,1 − x1,2

r1,1

))
ψ0,k + (4)48

α2
k

(
x1,1 − x1,2

r1,2

)2

ψ0,k49

Similarly,50

∂2

∂x21,2
ψ0,k =

αk
r21,2

(
r1,2 − (x1,2 − x1,1)

(
x1,2 − x1,1

r1,1

))
ψ0,k + (5)51

α2
k

(
x1,2 − x1,1

r1,2

)2

ψ0,k52
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From which the following can be derived.53

1.2. Preliminaries54

Let us define H0 = − 1
2 (∆1 + ∆2), then we may write55

H0ψ0,k = −2αk
r1,2

ψ0,k − α2
kψ0,k (6)56

and57

H0ψ1,k = 2βk

(
1

r1
+

1

r2

)
ψ1,k − β2

kψ1,k (7)58

Let us define the wave function ϕ59

ϕ =

∫
C

dλkψ0,k +

∫
D

dµkψ1,k (8)60

with very generally defined integrations over k. Looking at (6) and (7) we find61

H0ϕ = −
∫
C

dλk

{
2αk
r1,2

+ α2
k

}
ψ0,k +

∫
D

dµk

{
2βk

(
1

r1
+

1

r2

)
− β2

k

}
ψ1,k (9)62

Furthermore, in order to obtain the He Schrödinger equation63

ϕ = 2

∫
C

dλkαkψ0,k = 2

∫
D

dµkβkψ1,k (10)64

and65

Eϕ = −
∫
C

dλkα
2
kψ0,k −

∫
D

dµkβ
2
kψ1,k (11)66

Hence,67

Hϕ ≡ H0ϕ+
1

r1,2
ϕ−

(
1

r1
+

1

r2

)
ϕ = Eϕ (12)68

2. Essential equations69

In the first place let us combine (8) with (10). This gives70 ∫
C

dλk (1− 2αk)ψ0,k = −
∫
D

dµkψ1,k (13)71 ∫
D

dµk (1− 2βk)ψ1,k = −
∫
C

dλkψ0,k72

Secondly we combine (8) and (11) this gives73 ∫
C

dλkEψ0,k +

∫
D

dµkEψ1,k = −
∫
C

dλkα
2
kψ0,k −

∫
D

dµkβ
2
kψ1,k (14)74
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Thirdly, (10) and (11)75 ∫
C

dλk(2E)αkψ0,k =

∫
D

dµk(2E)βkψ1,k = (15)76

−
∫
C

dλkα
2
kψ0,k −

∫
D

dµkβ
2
kψ1,k77

this latter equation can be rewritten in two equations78 ∫
C

dλk(2Eαk + α2
k)ψ0,k = −

∫
D

dµkβ
2
kψ1,k (16)79 ∫

D

dµk(2Eβk + β2
k)ψ1,k = −

∫
C

dλkα
2
kψ0,k80

3. Lagrangian81

Suppose fk = exp[−αkρ1,2] and gk = exp[βk(ρ1 + ρ2)]. The ρ1,2, ρ1 and82

ρ2 must be consistent with x1 and x2 because r1,2, r1 and r2 are in a ”close83

neighbourhood” of ρ1,2, ρ1 and ρ2. The Lagrangian, with explicit (2), together84

with conditions derived from (10), weighted by κ and (13) weighted by κ′85

L =

∫
C

dλk
(
α2
k + 2Eαk − E

)
eαk(r1,2−ρ1,2) + (17)86 ∫

D

dµk
(
β2
k + 2Eβk − E

)
e−βk((r1−ρ1)+(r2−ρ2)) +87

κ

(∫
C

dλkαk e
αk(r1,2−ρ1,2) −

∫
D

dµkβk e
−βk((r1−ρ1)+(r2−ρ2))

)
+88

κ′
(∫

C

dλk(1− αk) eαk(r1,2−ρ1,2) +

∫
D

dµk(1− βk) e−βk((r1−ρ1)+(r2−ρ2))
)

89

With L = L(ρ1,2, ρ1, ρ2). Because of the two separate αk and βk, may write90

L = La + Lb. To study the zero-pont of the Lagrangian we will look at the91

derivatives to αk and βk because they can indicate the minimum.92

3.1. Derivative to αk93

Let us define La as94

La =

∫
C

dλk e
αk(r1,2−ρ1,2)

{
α2
k + (2E + κ− κ′)αk + (κ′ − E)

}
(18)95

This is the αk dependent part of (17). Hence, ∂La

∂αk
= ∂L
∂αk

. Therefore we may96

write97

∂L
∂αk

= (r1,2 − ρ1,2)

∫
C

dλk e
αk(r1,2−ρ1,2)

(
α2
k + (2E + κ− κ′)αk + (κ′ − E)

)
(19)98

+

∫
C

dλk e
αk(r1,2−ρ1,2) (2αk + 2E + κ− κ′)99
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The k integrands premultiplied by r1,2 − ρ1,2 can be assembled to give the100

following quadratic equation101

u(αk) = α2
k + (2E + κ− κ′)αk + (κ′ − E) (20)102

Hence, if we are looking for ∂L
∂αk

= 0 then because u(α±) = 0103

α± = −1

2
(2E + κ− κ′)± 1

2

√
D (21)104

and D ≡ (2E + κ − κ′)2 − 4(κ′ − E) > 0. Suppose now that αk1 = α− and105

αk2 = α+ and that the operation
∫
C
dλk is106 ∫

C

dλk ≡
∫ +∞

−∞
dk (δ(k − k1) + δ(k − k2)) (22)107

where δ(x) represents the Dirac delta function. This implies that in (18) La = 0108

and that the first term weighed by (r1,2 − ρ1,2) in (19) can vanish. The second109

term in (19 now reads110

(2α− + 2E + κ− κ′) exp[α−(r1,2 − ρ1,2)] + (23)111

(2α+ + 2E + κ− κ′) exp[α+(r1,2 − ρ1,2)] ≈ 0112

because, exp[α−(r1,2 − ρ1,2)] ≈ exp[α+(r1,2 − ρ1,2)] ≈ 1 with r1,2 in a close113

neighbourhood of ρ1,2. α± not extremely large. Note from(21), (2α− + 2E +114

κ − κ′) = −
√
D combined with (2α+ + 2E + κ − κ′) =

√
D. Hence, it follows115

that with (22) we have La = 0 together with ∂L
∂αk
≈ 0.116

3.2. Derivative to βk117

Subsequently, let us define Lb as118

Lb =

∫
D

dµk e
−βk((r1−ρ1)+(r2−ρ2))

{
β2
k + (2E − κ− κ′)βk + (κ′ − E)

}
(24)119

This is the βk dependent part of (17). It follows that, ∂Lb

∂βk
= ∂L
∂βk

. Therefore we120

may write121

∂L
∂βk

= −(r1 − ρ1 + r2 − ρ2)

∫
D

dµk e
−βk((r1−ρ1)+(r2−ρ2)) (25)122

×
(
β2
k + (2E − κ− κ′)βk + (κ′ − E)

)
123

+

∫
D

dµk e
αk(r1,2−ρ1,2) (2βk + 2E − κ− κ′)124

The k integrands premultiplied by (r1−ρ1+r2−ρ2) give the following quadratic125

equation126

v(βk) = β2
k + (2E − κ− κ′)βk + (κ′ − E) (26)127

5



Hence, if we are looking for ∂L
∂βk

= 0 then with v(β±) = 0128

β± = −1

2
(2E − κ− κ′)± 1

2

√
D′ (27)129

and D′ ≡ (2E − κ − κ′)2 − 4(κ′ − E) > 0. Suppose now that βk3 = β− and130

βk4 = β+ and that the operation
∫
D
dµk can be written like131 ∫

D

dµk ≡
∫ +∞

−∞
dk (δ(k − k3) + δ(k − k4)) (28)132

where, such as was stated previously, δ(x) is the Dirac delta function. This133

implies that in (24) Lb = 0. The second term in (25) now reads134

(2β− + 2E − κ− κ′) exp[β−(r1 − ρ1 + r2 − ρ2)] + (29)135

(2β+ + 2E − κ− κ′) exp[β+(r1 − ρ1 + r2 − ρ2)] ≈ 0136

because, exp[β−(r1 − ρ1 + r2 − ρ2)] ≈ exp[β+(r1 − ρ1 + r2 − ρ2)] ≈ 1 with r1137

in a close neighbourhood of ρ1 and r2 in a close neighbourhood of ρ2. β± not138

extremely large. Note from(27), (2β− + 2E − κ − κ′) = −
√
D′ combined with139

(2β+ + 2E − κ − κ′) =
√
D′. Hence, it follows that with (28) we have Lb = 0140

together with ∂L
∂βk
≈ 0.141

4. Meaning of L = 0142

After the detour concerning the Lagrangian, we may rightfully ask what it143

means that for the integrals selected in (22) and (28) we may conclude L =144

L(ρ1,2, ρ1, ρ2) = 0 close to the extremum ∂L
∂αk

≈ 0 and ∂L
∂βk
≈ 0. It means145

that under this particular selection of the λk integral and the µk integral the146

ϕ =
∫
C
dλkψ0,k +

∫
D
dµkψ1,k in (8) equals the one in (10) and the one147

ϕ =
−1

E

(∫
C

dλkα
2
kψ0,k +

∫
D

dµkβ
2
kψ1,k

)
(30)148

in (11). The ψ’s are given in (2).149

Therefore, with still unknown energy eigenvalue E 6= 0, we have construed150

a ”solution form” for the Helium problem based on primitive initial functions151

(2) and a proper selection of patching them together with integral procedures152

over a parameter independent of coordinates x1 and x2. The restriction is153

in the extremum requirement where only in a ”close neighbourhood” of pres-154

elected constants ρ1,2, ρ1 and ρ2 we have the L = 0 of the He form is close155

to the extrema. Note that ρ1,2, ρ1 and ρ2 can be freely selected but must be156

possible/plausible with x1 and x2.157

4.1. Proof of minimum158

Here it is demonstrated that with the selection of integral forms, (22) and159

(28), we approximate a minimum value with L = 0. Looking at (19) the second160
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derivative of L to αk is, for a ≡ r1,2 − ρ1,2161

∂2L
∂α2

k

= a2
∫
C

dλk e
aαk

(
α2
k + (2E + κ− κ′)αk + (κ′ − E)

)
(31)162

+2a

∫
C

dλk e
aαk (2αk + 2E + κ− κ′) + 2

∫
C

dλk e
aαk

163

Therefore, with (21) and (22) and
∫
C
dλk e

αk(r1,2−ρ1,2) > 0. This warrants the164

conclusion that ∂2L
∂α2

k
> 0. Similarly, we can conclude that ∂2L

∂β2
k
> 0. For, let us165

write, c ≡ r1 − ρ1 + r2 − ρ2. Then from (25)166

∂2L
∂β2

k

= c2
∫
D

dµk e
−cβk

(
β2
k + (2E − κ− κ′)βk + (κ′ − E)

)
(32)167

−2c

∫
D

dµk e
−cβk (2βk + 2E − κ− κ′) + 2

∫
D

dµk e
−cβk

168

The conclusion is that L = 0 is, close to a minimum because: ∂L
∂αk
≈ 0 and169

∂L
∂βk
≈ 0 and ∂2L

∂α2
k
> 0 together with ∂2L

∂β2
k
> 0 for α± and β±.170

4.2. Numerical proof of concept171

Obviously, when abstract mathematics provides a ”solution form”, the ques-172

tion arises; will it be numerical practicable and can its principles be recovered173

in an algorithm. We are especially interested in RNA crystallographic or elec-174

tron microscope coordinate data. Here in this test we use 6XRZ cryo-electron-175

microscopic coordinate data rcsb.org/structure/6XRZ, doi:10.2210/ pdb6XRZ/pdb176

of K. Zhang et al [3] 10.1101/2020.07.18.209270. In this section let us look at177

G coordinates C5’ and C4’178

h<-0.02707993179

xAtom1<-c(76.96, 77.639, 55.436)180

xAtom2<-c(78.265, 78.358 , 55.199)181

xMean<-(xAtom1+xAtom2)/2182

x1<-xMean+h*c(1,1,1)183

x2<-xMean-h*c(1,2,1)184

The x1 and x2 vectors indicate possible positions of two electrons. Here, r1,2 =185

0.09380763 with r1 = 123.2028 and r2 = 123.1100. Moreover, ρ1,2 = rh =186

0.06005371 and ρ1 + ρ2 = rk = 246.3337 and fixed them in this computation.187

Subsequently, the α’s and β’s were computed like in (21) and (27) with the188

use of κ = 0.02342234 and κ′ = −1.990899. The iteration started here in189

E = −1.990899 and with dE = 1 × 10−5 approached E ← E + dE zero in a190

number of steps. The discriminants were computed like191

D<-((2*E+k-k1)^2)+(4*(-k1+E))192

D1<-((2*E-k-k1)^2)+(4*(-k1+E))193

The requirement was D > 0 and D1 > 0. The α’s and β’s followed194
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aPlus<--0.5*(2*E+k-k1)+(0.5*sqrt(D))195

bPlus<--0.5*(2*E-k-k1)+(0.5*sqrt(D1))196

aMin<--0.5*(2*E+k-k1)-(0.5*sqrt(D))197

bMin<--0.5*(2*E-k-k1)-(0.5*sqrt(D1))198

The two primitive wave functions were computed in two functional expressions199

funPsi0<-function(alph,r12,rh){200

y<-exp(alph*(r12-rh))201

return(y)202

}203

funPsi1<-function(bet,x1,x2,rk){204

r1<-sqrt(t(x1)%*%x1)205

r2<-sqrt(t(x2)%*%x2)206

y<-exp(-bet*((r1+r2)-rk))207

return(y)208

}209

Then the three ϕ forms are computed referring to (8), (10) and the form in (30).210

Hence211

phi1<-funPsi0(aMin,r,rh)+funPsi1(bMin,x1,x2,rk)212

phi1<-phi1+(funPsi0(aPlus,r,rh)+funPsi1(bPlus,x1,x2,rk))213

phi2a<-(2*aMin*funPsi0(aMin,r,rh))+(2*aPlus*funPsi0(aPlus,r,rh))214

phi2b<-(2*bMin*funPsi1(bMin,x1,x2,rk))+(2*bPlus*funPsi1(bPlus,x1,x2,rk))215

phi2<-(phi2a+phi2b)/2216

phi3a<-((aMin^2)*funPsi0(aMin,r,rh))+((aPlus^2)*funPsi0(aPlus,r,rh))217

phi3b<-((bMin^2)*funPsi1(bMin,x1,x2,rk))+((bPlus^2)*funPsi1(bPlus,x1,x2,rk))218

phi3<-(phi3a+phi3b)/abs(E)219

The phi2/2 form is used also in the condition weighed by κ′ in (17). The220

(phi3a+phi3b)/2 refers to one entity, (30). The differences in a loop of max221

10000 iterations is computed as222

dPhi<-(abs(phi1-phi2)+abs(phi2-phi3)+abs(phi1-phi3))/3223

The result of computations under these conditions and with those parametriza-224

tion was dPhi=4.172812× 10−6 after N = 2511 iterations and225

print(c(phi1,phi2,phi3))=c(4.179276, 4.179270, 4.179270)226

We note that phi2a=4.17928 (lefthand integral (10)) while phi2b=4.17926 (right-227

hand integral (10)). The obtained approximated energy eigenvalue in this equa-228

tion is: E = −1.965799.229

Results230

The error margin is reasonably low but there are quite a number of iteration231

steps necessary to get there. The computations don’t need much computer232
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power. The approximation of the left and right hand side equality of (10) can233

still be improved but the difference of 2.4963× 10−5 look reasonable.234

The, fig 1, errn = dPhi goes upwards again beyond N=2511 with start value235

E=-1.990899 and dE=1 × 10−5 and κ and κ′, together with ρ1,2, ρ1 and ρ2,236

selected in the algorithm (viz. §4.2). However, it is also noted that an initial237

declining trend is demonstrated in figure 1. Therefore the principal solution is238

demonstrated here. Most likely the efficiency of the program can be improved239

and finally can be employed to better approximate the quantum electron density240

from the crystallographic coordinates of RNA.241

Conclusion242

In the present paper a mathematical scheme is employed to solve iteratively243

the He approximation for two binding electrons. Its importance is that the He244

approximation can be applied to pairs of atoms in larger molecules and can245

be a part of multidimensional scaling comparison of RNA-RNA. The affinity246

of protein for RNA in RNA-protein complexes can be studied as well with the247

quantum He approximation.248

If ϕ is defined as in (8) and is found approximately equal to the forms in (10)249

and (30) then the He Schrödinger equation has been solved in approximation.250

Hence the formal mathematics allows approximative but quantum chemistry251

based computations of large molecules. A computation that can be extended252

to large molecues like RNA and protein whose coordinate data are obtained253

from crystallography and cryo-electron-microscopy. The method is considered254

an improvement. It supplements earlier studies [4] and enables multidimensional255

scaling (MDS) statistics with less qualitative data in the MDS-based comparison256

geometry.257
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Figure 1: Representation of dPhi error in n iterations. There appears a linear steady de-
cline. However, at point N=2511, (errn ≈ 4.172812× 10−6) the errn = dPhi does no longer
substantially change and further downstream goes up.
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