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Abstract

In real life, occurrences of a series of things are supposed to come in an

order. Therefore, it is necessary to regard sequence as a crucial factor in

managing different kinds of things in fuzzy environment. However, few

related researches have been made to provided a reasonable solution to

this demand. Therefore, how to measure degree of uncertainty of ordinal

fuzzy sets is still an open issue. To address this issue, a novel ordinal rela-

tive fuzzy entropy is proposed in this paper taking orders of propositions

into consideration in measuring level of uncertainty in fuzzy environment.

Compared with previously proposed entropies, effects on degrees of fuzzy

uncertainty brought by sequences of sequential propositions are embodied

in values of measurement using proposed method in this article. Moreover,

some numerical examples are offered to verify the correctness and validity

of the proposed entropy.
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1. Introduction

How to measure degree of uncertainty of uncertain information in a

fuzzy environment is a hot topic which attracts lots of attention from re-

searchers globally. Many meaningful and useful theories have been devel-

oped to obtain truly useful information from uncertainty, such as Dempster

- Shafer evidence theory [1, 2], complex mass function [3–5], D-numbers

[6–8], Z-numbers [9–12], soft theory [13–16], fuzzy theory [17–20] and so

on [21–24]. Due to the effectiveness of those theories in handling uncer-

tainty, they have been applied into different kinds of fields and applica-

tions, like pattern recognition [25–27], decision making [28–32] and so on

[33–36]. Proposals of these actual applications contribute to extract impor-

tant information from a uncertain situation.

However, preparations before processing uncertain information must

include a measure on the level of uncertainty of a whole system. At present,

the most efficient tool in giving an indicator of the degree of uncertainty of

a existing system is to utilize entropies. Lots of relevant works have been

made, such as Deng entropy [37], motion entropy [38], interval entropy [39]

and non-additive entropy [40]. Nevertheless, all of the proposed entropies

do not take orders of propositions contained in a fuzzy system as a factor in

affecting the level of uncertainty of given system. There is a lack of relevant

researches on measuring degrees of uncertainty of an ordinal fuzzy system.

Therefore, in this paper, a new ordinal relative fuzzy entropy is proposed to

appropriately give an accurate description on situations of an ordinal fuzzy

system, which could be utilized in intuitionistic, pythagorean, fermatean

and orthopair environment. Compared with other existing proposed en-

tropies, it could reflect the influences brought by sequences of propositions
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which fits rules and criterions of actual situations.

This paper is organized as follows. Some basic concepts are introduced

in the section of preliminaries. In the next section, the proposed method is

elaborately illustrated and details is clearly explained. And in the section of

numerical examples, 5 examples in different fuzzy environments are pro-

vided to verify the rationality and validity of the proposed entropy. In the

last, conclusions are made to summarize the contributions of the proposed

method.

2. Preliminaries

In this section, some relevant concepts are briefly introduced and ex-

plained. Lots of related works have been made to solve a considerable

amount of problems involved with different fields of applications [41–45].

2.1. Fuzzy sets [46]

Definition 1. Let P be a FS in a finite universe of discourse which is

called H. And the mathematics form of a FS, P, in H can be defined as:

P = {x, µ(x)} (1)

µ(x) represents the membership degree of x ∈ H.

2.2. Intuitionistic fuzzy sets [47]

Definition 2. Let A be an IFS in a finite universe of discourse which is

called X. And the mathematics form of an IFS, A, in X can be defined as:

A = {〈x, µA(x), υA(x)|x ∈ X} (2)
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Besides, the properties the IFS satisfies can be defined as:

µA(x) : X → [0, 1] (3)

µA(x) represents the membership degree of x ∈ X.

υA(x) : X → [0, 1] (4)

υA represents the non - membership degree of x ∈ X. Besides, a con-

straint which the two parameters meet is defined as:

0 ≤ µA(x) + υA(x) ≤ 1 (5)

For an IFS defined in X, a degree of hesitance π(x) is defined as:

π(x) = 1− µA(x)− υA(x) (6)

The value of π(x) reflects the degree of hesitance of x ∈ X .

2.3. Pythagorean fuzzy sets [48, 49]

Definition 3. Let B be a PFS in a finite universe of discourse which is

called Z. And the mathematics form of a PFS, B, in Z can be defined as:

B = {〈x, BY(x), BN(x)|x ∈ Z} (7)

Besides, the properties the PFS satisfies can be defined as:

BY(x) : Z → [0, 1] (8)

BY(x) represents the membership degree of x ∈ Z.
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BN(x) : Z → [0, 1] (9)

BN(x) represents the non - membership degree of x ∈ Z. Besides, a

constraint which the two parameters meet is defined as:

0 ≤ B2
Y(x) + B2

N(x) ≤ 1 (10)

For an PFS defined in Z, a parameter K2(x) = B2
Y(x) + B2

N(x) is given,

then the degree of hesitance, BH(x), is defined as:

BH(x) =
√

1− K2(x) (11)

The value of BH(x) reflects the degree of hesitance of x ∈ Z.

2.4. Fermatean fuzzy sets [50]

Definition 4. Let C be a FFS in a finite universe of discourse which is

called Q. And the mathematics form of a FFS, C, in Q can be defined as:

C = {〈x, αF(x), βF(x)〉|x ∈ Q} (12)

Besides, the properties the FFS satisfies can be defined as:

αF(x) : Q→ [0, 1] (13)

αF(x) represents the membership degree of x ∈ Q.

βF(x) : Q→ [0, 1] (14)

βF(x) represents the non - membership degree of x ∈ Q. Besides, a
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constraint which the two parameters meet is defined as:

0 ≤ αF(x)3 + βF(x)3 ≤ 1 (15)

For an FFS defined in Q, a degree of hesitance, πF(x), is defined as:

πF(x) = 3
√

1− αF(x)3 − βF(x)3 (16)

The value of πF(x) reflects the degree of hesitance of x ∈ Q.

2.5. Orthopair Fuzzy Sets [51]

Definition 5. Let D be an OFS in a finite universe of discourse which is

called R. And the mathematics form of an OFS, D, in R can be defined as:

D = {〈x, D+(x), D−(x)|x ∈ R} (17)

Besides, the properties the OFS satisfies can be defined as:

D+(x) : R→ [0, 1] (18)

D+(x) represents the membership degree of x ∈ R.

D−(x) : R→ [0, 1] (19)

D−(x) represents the non - membership degree of x ∈ R. Besides, a

constraint which the two parameters meet is defined as:

0 ≤ (D+(x))n + (D−(x))n ≤ 1 (20)

For an OFS defined in R, a degree of hesitance, πO(x), is defined as:
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πO(x) = n
√

1− (D+(x))n − (D−(x))n (21)

The value of πO(x) reflects the degree of hesitance of x ∈ R.

2.6. Shannon entropy [52]

The Shannon entropy is denoted as Sh and it is defined as:

Sh = −
n

∑
i=1

pilogb pi (22)

n is the number of targets contained in a system and the icon pi repre-

sents the probability of a certain things to happen. When the base of the

logarithm, b, is equal to 2, then the unit of Shannon entropy is bit.

2.7. De Luca and Termini’s fuzzy set entropy [53]

Definition 6. A fuzzy set E = {x, µ(x)} is given, where µ(x) represents

the membership of certain propositions, then the corresponding entropy is

defined as:

DT(E) =
1
n

n

∑
i=1

[µE(xi)logµE(xi) + (1− µE(xi))log(1−µE(xi))] (23)

2.8. Pal Nikhil and Pal Sankar’s fuzzy exponential entropy [54]

Definition 7. A fuzzy set F = {x, µ(x)} is given, where µ(x) represents

the membership of certain propositions, then the corresponding entropy is

defined as:

PP(F) =
1

n(
√

e− 1)

n

∑
i=1

[µF(xi)e(1−µF(xi)) + (1− µF(xi))eµF(xi) − 1] (24)
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2.9. Zhang and Jiang’s intuitionistic fuzzy entropy [55]

Definition 8. An intuitionistic fuzzy set G = {x, µG(x), υG(x)} is given,

where µG(x) represents the membership of certain propositions and υG(x)

represents the non - membership of certain propositions, then the corre-

sponding entropy is defined as:

ZJ(G) = − 1
n

n

∑
i=1

[
µG(x) + 1− υG(x)

2
log

µG(x)+1−υG(x)
2

2 +
υG(x) + 1− µG(x)

2
log

υG(x)+1−µG(x)
2

2 ]

(25)

2.10. Hung and Yang’s intuitionistic fuzzy entropy [56]

Definition 9. An intuitionistic fuzzy set H = {x, µH(x), υH(x)} is given,

where µH(x) represents the membership of certain propositions and υH(x)

represents the non - membership of certain propositions, then the corre-

sponding entropy is defined as:

HY(x) = −(µH(x)logµH(x) + υH(x)logυH(x) + πH(x)logπH(x)) (26)

2.11. Xu’s pythagorean fuzzy entropy [57]

Definition 10. A pythagorean fuzzy set I = {x, IY(x), IN(x)} is given,

where IY(x) represents the membership of certain propositions and IN(x)

represents the non - membership of certain propositions, then the corre-

sponding entropy is defined as:

X(I) =
1
n

n

∑
i=1

[1− (1− IH(xi))|IY(xi)− IN(xi)|] (27)
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2.12. Yang’s pythagorean fuzzy entropy [58]

Definition 11. A pythagorean fuzzy set J = {x, JY(x), JN(x)} is given,

where JY(x) represents the membership of certain propositions and JN(x)

represents the non - membership of certain propositions, then the corre-

sponding entropy is defined as:

Y(J) =
1
n

n

∑
i=1
−(JY(x)2logJY(x)2

+ JN(x)2logJN(x)2
+ JH(x)2logJH(x)2

) (28)

3. Generalized entropies for Fermatean fuzzy sets and Orthopair fuzzy

sets

Due to the lack of proper entropies to measure degree of uncertainty

of Fermatean fuzzy sets and Orthopair Fuzzy Sets, some existing entropies

are generalized to provide a solution to give a measurement of the two

fuzzy sets mentioned before. In this section, Zhang and Jiang’s intuition-

istic fuzzy entropy [55] and Yang’s pythagorean fuzzy entropy [58] are se-

lected to customised as specific entropies for Fermatean fuzzy sets. Besides,

Hung and Yang’s intuitionistic fuzzy entropy [56] and Xu’s pythagorean

fuzzy entropy [57] are chosen to offer a solution in measuring level of un-

certainty of Orthopair Fuzzy Sets.

3.1. Fermatean fuzzy entropies

Definition 11. A fermatean fuzzy set L = {〈x, αL(x), βL(x)〉} is given,

where αL(x) represents the membership of certain propositions and βL(x)

represents the non - membership of certain propositions, then the corre-

sponding entropies are defined as:
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ZJFermatean(L) = − 1
n

n

∑
i=1

[
αL(x) + 1− βL(x)

2
log

αL(x)+1−βL(x)
2 +

βL(x) + 1− αL(x)
2

log
βL(x)+1−αL(x)

2 ]

(29)

Y(L) =
1
n

n

∑
i=1
−(αL(x)2logαL(x)2

+ βL(x)2logβL(x)2
+ πL(x)2logπL(x)2

) (30)

3.2. Orthopair fuzzy entropies

Definition 12. An orthopair fuzzy set M = {〈x, M+(x), M−(x)〉} is

given, where M+(x) represents the membership of certain propositions

and M−(x) represents the non - membership of certain propositions, then

the corresponding entropies are defined as:

HYOrthopair(M) = −(M+(x)logM+(x) + M−(x)logM−(x) + πO(x)logπO(x))

(31)

X(M) =
1
n

n

∑
i=1

[1− (1− πO(x))|M+(x)−M−(x)|] (32)

4. Proposed new ordinal relative fuzzy entropy

Although entropies have been widely used to measure the degree of

uncertainty of a system which contains a sequence of fuzzy sets [59–62],

none of the previously proposed entropies take order of propositions into

consideration which is an obvious defect in disposing problems related to

actual situations. Because every thing comes in an order, one thing hap-

pened then the other thing is able to take place. A new entropy is proposed
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to measure the level of uncertainty of different kinds of fuzzy sets consid-

ering effects brought by sequences of propositions.

4.1. Sequential fuzzy sets

All of the elements contained in an ordinal system of fuzzy sets come

in an order. And the relations among them are determined by their se-

quences to some extent. For an ordinal system of fuzzy sets, ΘOrdinal =

{P1, P2, P3, P4}, the proposition P1 must appear before the occurrences of

propositions P2, P3, P4. On the other side, propositions P2, P3, P4 can not

take the place of proposition P1 also. Then, all of the properties the ordinal

system of fuzzy sets are supposed to satisfy are defined as:

• For a certain ordinal system of fuzzy sets, the sequence of every propo-

sition is already confirmed and can not be changed. Once the order is

altered, then the system is replaced by a new one.

• The only relation among propositions contained in an ordinal system

of fuzzy sets is their order. And no other relationship exists among

appointed propositions.

• With the increase of the number of propositions confirmed, the degree

of uncertainty of the whole ordinal system of fuzzy sets is further

determined.

And a simple case is provided to illustrate all of the properties the ordi-

nal system of fuzzy sets satisfy.

Case 1:Assume there is an ordinal system of fuzzy sets, ΘOrdinal={P1,P2,P3},

three distinctive propositions are contained in this system. Then, the propo-

sition P1 is supposed to happen at first, then the second one to take place
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is the proposition P2. After confirmation of propositions P1, P2, only the

proposition P3 can be added into the whole fuzzy system. If the sequence

of all the propositions contained in the system is disturbed, then the condi-

tions of them are supposed to be changed.

4.2. Distributed weights for fuzzy sets in proposed entropy

Because every proposition contained in fuzzy system comes in an or-

der, the level of uncertainty of the system is further confirmed. And it is

necessary to consider the role of every step of confirming a proposition is

different, a confirmation of a proposition is supposed to have a direct and

indirect effect on other values of propositions. Besides, assume the number

of propositions contained in the system is a and the sequence of a certain

proposition is b. Therefore, the whole process of determining the values of

weights of different propositions is defined as:

(1) The weights of specific propositions is a − b + 1, and the process of

calculation is defined as:

WeightPb = a− b + 1 (33)

(2) The original values of propositions contained in a fuzzy system is de-

noted as 〈x, Pre, A f t〉. In fuzzy sets, the element Pre represents µ(x)

and A f t is considered equal to 0. Besides, the element Pre represents

µA(x) and A f t represents υA(x) in intuitionistic environment. More

than that, when taking pythagorean fuzzy sets into consideration, the

element Pre represents αB(x) and A f t represents βB(x). In the last,

in orthopair environment, the element Pre represents D+(x) and A f t

represents D−(x). Then the process of the calculation of obtaining the
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intermediate values is defined as:

MassPre
Pb

= WeightPb ∗ PrePb (34)

MassA f t
Pb

= WeightPb ∗ A f tPb (35)

(3) A step of normalization of intermediate values is designed, and the

calculation of process for elements Pre and A f t are defined as:

ValuePreFinal
Pb

=
MassPrePb

2 ∗∑n
t=1 MassPrePt

(36)

ValueA f tFinal
Pb

=
MassA f tPb

2 ∗∑n
t=1 MassA f tPt

(37)

Note : The cause of carrying the step of normalization is that the degree

of importance of a certain proposition decreases with the increase of the

number of its sequence, so the index of hesitance of it is exaggerated to

reduce its impact in determining the degree of uncertainty of the whole

system. And in order to ensure the values after modification still meets

properties of kinds of fuzzy sets, both of the modified values are divided

by 2.

4.3. Relative fuzzy entropy

Obviously, previously proposed entropy can not reflect influences brought

by orders of propositions. Because all the entropies regard every fuzzy set

as an individual instead of seeking for their underlying relationships and

influences to the whole system with every step of confirming a part of it.

To remain consistent with the operation of assigning different weights to

propositions, it is expected to manifest effects those modified values may
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Table 1: Details of the three fuzzy propositions in Case 2

PFinal
1 PFinal

2 PFinal
3

{〈x1, 0.52, 0.43〉} {〈x2, 0.34, 0.41〉} {〈x3, 0.58, 0.22〉}

lead. In order to solve all of the problems mentioned above, a variable k is

restricted range between 1 and a − 1 and then a relative fuzzy entropy is

defined as:

RFE(Pb, Pc) = PreFinalPb
× log

(
PreFinalPb
PreFinalPc

+e)
+ A f tFinalPb

× log
(

A f tFinalPb
A f tFinalPc

+e)
, b > c

(38)

If a denominator of an index of a log function and an addition, e, is can-

celled, then the proposed entropy can degenerate into the form of shannon

entropy [52], which means this proposed method remains consistent with

traditional information entropy.

Case 2 : Assume three propositions, P1, P2, P3, are contained in an or-

dinal fuzzy system. And all of them satisfy all of the properties sequen-

tial fuzzy sets have. Besides the details of the fuzzy sets corresponding to

propositions mentioned before are given in Table 1.

Utilizing the values provided in Table 1, for proposition P1, the mass of

its relative fuzzy entropy can be calculated and the process of calculation

can be given as:

RFE(P1, P2) = PreFinalP1
× log

(
PreFinalP1
PreFinalP2

+e)
+ A f tFinalP1

× log
(

A f tFinalP1
A f tFinalP2

+e)
=

1.9078

RFE(P1, P3) = PreFinalP1
× log

(
PreFinalP1
PreFinalP3

+e)
+ A f tFinalP1

× log
(

A f tFinalP1
A f tFinalP3

+e)
=

1.9204
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4.4. Individual ordinal relative fuzzy entropy

For previously proposed fuzzy entropy including relative fuzzy en-

tropy, their calculation on values of degree of uncertainty of a fuzzy system

is non-directional, which dose not conform to actual situations and mani-

fest influences brought by sequences of propositions contained in a fuzzy

system. In order to embody the features of an ordinal system, an individual

ordinal relative fuzzy entropy is proposed to adapt to this specific situation.

For instance, assume there are three propositions, P1, P2, P3, with respect to

P1, its value of individual ordinal relative fuzzy entropy can be only calcu-

lated through obtaining total mass of RFE(P1, P2) and RFE(P1, P3). Besides,

for proposition P2, only the process P2 → P3 can be taken into calculation.

As for P3, its value of individual ordinal relative fuzzy entropy is regarded

as 0. Because before the appearance of the last proposition P3 and fuzzy

system is ordinal, the whole system has already been confirmed. Then the

calculation of individual ordinal relative fuzzy entropy is defined as:

IORFE(Pb, Pc) =
n

∑
c=b+1

RFE(Pb, Pc) (39)

Case 3: Assume three propositions, P1, P2, P3, are contained in an or-

dinal fuzzy system. And all of them satisfy all of the properties sequen-

tial fuzzy sets have. Besides the details of the fuzzy sets corresponding to

propositions mentioned before are given in Table 2.

Utilizing the values provided in Table 2, the mass of its individual rel-

ative fuzzy entropy can be calculated and the process of calculation can be

given as:

IORFE(P1, Pc) = ∑n
c=1+1 RFE(P1, Pc) = RFE(P1, P2) + RFE(P1, P3) =

1.5681 + 1.5257 = 3.0938
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Table 2: Details of the three fuzzy propositions in Case 3

PFinal
1 PFinal

2 PFinal
3

{〈x1, 0.35, 0.44〉} {〈x2, 0.26, 0.38〉} {〈x3, 0.56, 0.29〉}

IORFE(P2, Pc) = ∑n
c=2+1 RFE(P2, Pc) = RFE(P2, P3) = 1.1981

IORFE(P3, Pc) = 0

Because the fuzzy system given is ordinal, the process of calculation

is also expected to be directional. With a value of individual ordinal rela-

tive fuzzy entropy calculated, the mass manifests the level of uncertainty at

this stage of the system. The number of propositions confirmed is more, the

degree of uncertainty of the system is further determined which is repre-

sented by the obtained values of individual ordinal relative fuzzy entropy.

The proposed fuzzy entropy appropriately measures situations of every

component in the whole fuzzy system.

4.5. Complete ordinal relative fuzzy entropy

The complete ordinal relative fuzzy entropy can be regarded as a syn-

thesis of individual ordinal relative fuzzy entropy which measures condi-

tions of every stage of the fuzzy system. Therefore, the complete ordinal

relative fuzzy entropy takes conditions of every phase of the whole system

into account. Then the process of calculation of complete ordinal relative

fuzzy entropy is defined as:

CORFE(Pb, Pc) =
n

∑
b=1

IORFE(Pb, Pc) (40)

Case 4: Assume three propositions, P1, P2, P3, are contained in an or-

dinal fuzzy system. And all of them satisfy all of the properties sequen-
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Table 3: Details of the three fuzzy propositions in Case 4

PFinal
1 PFinal

2 PFinal
3

{〈x1, 0.44, 0.32〉} {〈x2, 0.56, 0.33〉} {〈x3, 0.43, 0.27〉}

tial fuzzy sets have. Besides the details of the fuzzy sets corresponding to

propositions mentioned before are given in Table 3.

Utilizing the values provided in Table 3, the mass of its individual rel-

ative fuzzy entropy can be calculated and the process of calculation can be

given as:

CORFE(Pb, Pc) = ∑n
b=1 IORFE(Pb, Pc) = RFE(P1, P2) + RFE(P1, P3) +

RFE(P2, P3) + RFE(P3, Pc) = 1.3984 + 1.4663 + 1.7770 + 0 = 4.6417

So, this is a final measurement of the given ordinal fuzzy system.

4.6. Measurement about tradition fuzzy system using ordinal relative fuzzy en-

tropy

In the sections discussed above, they provide a solution on how to mea-

sure the condition of the ordinal fuzzy system which takes orders of propo-

sitions as an important factor in measurement on degree of uncertainty of

given system. However, the proposed ordinal entropy can be also utilized

to measure the degree of uncertainty of traditional fuzzy systems when

considering every kind of sequence of propositions. In other words, if all

of the different combinations of sequences are taken into consideration, the

level of uncertainty of a unordered fuzzy system can be also calculated in

the form of a synthesis of all kinds of situations. Then, the detailed process

of calculation is defined as:

• List all kinds of sequences of propositions contained in an ordinal

fuzzy system.
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Table 4: Details of the three fuzzy propositions in Case 5

P1 P2 P3

{〈x1, 0.43, 0.45〉} {〈x2, 0.52, 0.41〉} {〈x3, 0.24, 0.37〉}

• Calculate a sum of all values of different ordinal fuzzy system using

complete ordinal relative fuzzy entropy.

• Get an average according to the sum obtained above and the number

of propositions existing in a fuzzy system, and the final mass is an

evaluation of the classic unordered fuzzy system.

Case 5: Assume three propositions, P1, P2, P3, are contained in an or-

dinal fuzzy system in an intuitionistic environment. And all of them sat-

isfy all of the properties sequential fuzzy sets have. Besides the details of

the fuzzy sets corresponding to propositions mentioned before are given in

Table 4. The details of calculation according to defined process are given

below.

All possible combinations can be listed as:

{P1, P2, P3}, {P1, P3, P2}, {P2, P1, P3}, {P2, P3, P1}, {P3, P1, P2}, {P3, P2, P1}

A different sequence of propositions in an ordinal fuzzy system means

completely status of values of propositions. And on the base of definition

of complete ordinal relative fuzzy entropy, their values can be obtained and

listed as:

CORFESystem1(Pb, Pc) = 5.1671, CORFESystem2(Pb, Pc) = 3.6493,

CORFESystem3(Pb, Pc) = 4.9177, CORFESystem4(Pb, Pc) = 3.8328,

CORFESystem5(Pb, Pc) = 3.7105, CORFESystem6(Pb, Pc) = 4.0399.

And the number of different systems is 6 and an average of the level of

ordinal fuzzy system can be obtained by:

18



Table 5: Results produced by the three entropies

Zhang and Jiang’s entropy [55] Hung and Yang’s intuitionistic entropy [56] Proposed entropy

0.1070 2.1382 4.2195

CORFEUnordered =
∑6

i=1 CORFESystemi(Pb,Pc)
6 = 5.1671+3.6493+4.9177+3.8328+3.7105+4.0399

6 =

4.2195

Then, this is the final evaluation of the unordered fuzzy system.

Because the system is in an intuitionistic environment, then the degree

of uncertainty of the given fuzzy system can be measured by Zhang and

Jiang’s intuitionistic fuzzy entropy [55] and Hung and Yang’s intuitionis-

tic entropy [56]. Then, their values of measurement made the three fuzzy

entropies including proposed ordinal entropy are given in Table 5.

It can be easily obtained that the proposed ordinal relative fuzzy en-

tropy can be also used to measure level of uncertainty of a traditional fuzzy

system when considering all kinds of combinations of sequences. The ef-

fectiveness of proposed entropy in handling different kinds of situations is

validated in this section.

5. Numerical examples

In this section, 5 examples of fuzzy sets in different kinds of environ-

ment are provided to verify the better validity and correctness of proposed

ordinal relative fuzzy entropy in measuring degree of uncertainty of ordi-

nal fuzzy system compared with previously proposed entropies.

Example 1: Assume there are three propositions, P1, P2, P3, are con-

tained in an ordinal fuzzy system. Their original values are listed in Table

6 and the detailed process of calculation is given below.

First, obtain the weights corresponding to specific propositions.

19



Table 6: Original values of given propositions in Example 1

P1 P2 P3

{〈x1, 0.48〉} {〈x2, 0.56〉} {〈x3, 0.66〉}

Table 7: Values of measurement given by three different values in Example 1

Sequence Proposed entropy Pal and Pal’s entropy [54] De and Termini’s entropy [53]

{P1, P2, P3} 1.3328 0.3786 -2.0193
{P1, P3, P2} 1.4055 0.3786 -2.0193
{P2, P1, P3} 1.4594 0.3786 -2.0193
{P2, P3, P1} 1.5832 0.3786 -2.0193
{P3, P1, P2} 1.6811 0.3786 -2.0193
{P3, P2, P1} 1.7316 0.3786 -2.0193

WeightP1 = a − bP1 + 1 = 3, WeightP2 = a − bP2 + 1 = 2, WeightP3 =

a− bP3 + 1 = 1

Second, get the intermediate values of propositions.

MassPre
P1

= WeightP1 ∗ PreP1 = 1.44, MassPre
P2

= WeightP2 ∗ PreP2 = 1.12,

MassPre
P3

= WeightP3 ∗ PreP3 = 0.66

Third, get a step of normalization according to the definition of normal-

ization.

ValuePreFinal
P1

= Mass
PreP1

2∗∑n
t=1 MassPrePt

= 0.2236, ValuePreFinal
P2

= Mass
PreP2

2∗∑n
t=1 MassPrePt

=

0.1739

ValuePreFinal
P3

= Mass
PreP3

2∗∑n
t=1 MassPrePt

= 0.1024

Forth, find out all kinds of combinations of the three propositions and

they are listed below.

{P1, P2, P3}, {P1, P3, P2}, {P2, P1, P3}, {P2, P3, P1}, {P3, P1, P2}, {P3, P2, P1}

Fifth, calculate the values of degree of uncertainty of the ordinal fuzzy

system according to definition of ordinal relative fuzzy entropy. And the

values of measurement given by three different values are given in Table 7.
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It can be easily concluded that these previously proposed entropy can

not reflect the influences brought by order of propositions contained in an

ordinal fuzzy system. However, the values obtained by proposed entropy

fluctuate according to the sequence of propositions, which conforms to ac-

tual situations.

Example 2: Assume there are three propositions, P1, P2, P3, are con-

tained in an ordinal fuzzy system in intuitionistic environment. Their orig-

inal values are listed in Table 8 and the detailed results obtained are shown

in Table 9.

Table 8: Original values of given propositions in Example 2

P1 P2 P3

{〈x1, 0.47, 0.43〉} {〈x2, 0.52, 0.34〉} {〈x3, 0.25, 0.65〉}

Table 9: Values of measurement given by three different values in Example 2

Sequence Proposed entropy Zhang and Jiang’s entropy [55] Hung and Yang’s entropy [56]

{P1, P2, P3} 4.6529 0.9522 2.7869
{P1, P3, P2} 4.2509 0.9522 2.7869
{P2, P1, P3} 4.4752 0.9522 2.7869
{P2, P3, P1} 4.1179 0.9522 2.7869
{P3, P1, P2} 4.1399 0.9522 2.7869
{P3, P2, P1} 4.1823 0.9522 2.7869

It can be easily obtained that the proposed entropy is able to manifest

the effects brought by sequences of propositions and the values obtained

by the proposed method fluctuate with the change of orders of proposi-

tions. On the contrary, the two previously proposed entropy can not reflect

influences orders of propositions may cause.

Example 3: Assume there are three propositions, P1, P2, P3, are con-

tained in an ordinal fuzzy system in pythagorean environment. Their origi-
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nal values are listed in Table 10 and the detailed results obtained are shown

in Table 11.

Table 10: Original values of given propositions in Example 3

P1 P2 P3

{〈x1, 0.23, 0.56〉} {〈x2, 0.45, 0.34〉} {〈x3, 0.53, 0.32〉}

Table 11: Values of measurement given by three different values in Example 3

Sequence Proposed entropy Xu’s fuzzy entropy [57] Yang’s fuzzy entropy [58]

{P1, P2, P3} 3.9817 0.8622 0.9240
{P1, P3, P2} 4.3255 0.8622 0.9240
{P2, P1, P3} 4.0899 0.8622 0.9240
{P2, P3, P1} 4.8144 0.8622 0.9240
{P3, P1, P2} 4.2680 0.8622 0.9240
{P3, P2, P1} 4.5497 0.8622 0.9240

In this example, changes of sequences’ influences on level of uncer-

tainty of a given fuzzy system is presented by proposed entropy. The ef-

fectiveness of proposed method in handling fuzziness in pythagorean en-

vironment has been proven. Besides, the other two previously proposed

entropy can not reflect this kind of effects cause by orders of propositions.

Example 4: Assume there are three propositions, P1, P2, P3, are con-

tained in an ordinal fuzzy system in fermatean environment. Their original

values are listed in Table 12 and the detailed results obtained are shown in

Table 13.

It can be easily concluded that the proposed method appropriately re-

flect influences brought by sequences of propositions in a given fuzzy sys-

tem. On the opposite, obviously, the generalization of the two previously

proposed entropy can not properly reflect effects caused by orders of propo-
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Table 12: Original values of given propositions in Example 4

P1 P2 P3

{〈x1, 0.56, 0.32〉} {〈x2, 0.43, 0.33〉} {〈x3, 0.40, 0.37〉}

Table 13: Values of measurement given by three different values in Example 4

Sequence Proposed entropy Generalized Zhang and Jiang’s entropy [55] Generalized Yang’s entropy [58]

{P1, P2, P3} 4.1064 0.9833 0.9260
{P1, P3, P2} 4.1372 0.9833 0.9260
{P2, P1, P3} 4.2716 0.9833 0.9260
{P2, P3, P1} 3.8051 0.9833 0.9260
{P3, P1, P2} 4.2934 0.9833 0.9260
{P3, P2, P1} 3.8033 0.9833 0.9260

sitions.

Example 5: Assume there are three propositions, P1, P2, P3, are con-

tained in an ordinal fuzzy system in orthopair environment. Their original

values are listed in Table 14 and the detailed results obtained are shown in

Table 15.

Table 14: Original values of given propositions in Example 5

P1 P2 P3

{〈x1, 0.36, 0.54〉} {〈x2, 0.44, 0.37〉} {〈x3, 0.65, 0.22〉}

In this example, the effectiveness of proposed method in considering

influences brought by sequences of propositions contained in an ordinal

fuzzy system has been proven. However, the two generalization of previ-

ously proposed entropy can not reflect this specific phenomenon.
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Table 15: Values of measurement given by three different values in Example 5

Sequence Proposed entropy Hung and Yang’s entropy [56] Xu’s fuzzy entropy [57]

{P1, P2, P3} 4.1591 2.8537 0.8983
{P1, P3, P2} 4.5900 2.8537 0.8983
{P2, P1, P3} 4.4464 2.8537 0.8983
{P2, P3, P1} 4.4266 2.8537 0.8983
{P3, P1, P2} 4.3313 2.8537 0.8983
{P3, P2, P1} 3.9835 2.8537 0.8983

6. Conclusion

In real life, everything is supposed to take places in an underlying se-

quence and each of them has certain relations with others and influences

on situations of other incidents. The proposed entropy regards orders of

propositions contained in an ordinal fuzzy system as a crucial factor in

measuring degree of uncertainty of the given fuzzy system, which is the

main contribution of this paper. On the contrary, those entropies which

are already existed can not properly reflect real world and operation laws

of different things. Without doubt, the effectiveness in measuring level of

uncertainty of the given ordinal fuzzy system which conforms to actual sit-

uations. Numerical examples also provide strong evidences and support

in verifying validity and correctness of the proposed entropy.
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