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Abstract

In this letter two theorems are stated, the first one on the ratio of an
electrical output voltage signal y (¢) to an electrical input voltage signal
z (t) of a circuit with an ideal impedance and the second one on the ratio
of an electrical output voltage signal y (¢) to an electrical input voltage
signal x (t) of a circuit with a non-ideal impedance. In the latter case,
the change of the ratio y (t) /x (t) is a measurable quantity of the change
of the resistive part of the output impedance and therefore a measure of
its quality.

1 Theorems on the transfer function of first
order circuits
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Figure 1: The transfer function H (w) describing the linear relationship between
the input signal z (¢) and the output signal y (¢).
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For a given input signal u = x (t) = r, - cos (w -t + ¢,) and a given transfer
function H (w) the output signal y (t) = r, - cos (w - t + ¢,) can be determined
from

ry - e’ = H (w) -1y -el%

Motivated by practical applications, we will confine our studies to the class of
transfer functions

H (w) =p-cos(p)-e’?, pc <—g,+z

2>7 p>0

We then have the following result:

Lemma
Let
z(t) =71y cos(w-t+ @), <p€<7g,+g>, p >0 and
y(t)=p-rs-cos(p)-cos(w-t+ @, + ).
Then
tan (¢) .
Dy —pzt)=—/"=9()
(2) Let z(t) =z (t) —y(t). Then:
() = (1 =p)-i(t) =w-tan(p) - (z (t) — 2 (¢))
Proof
(1) Y=—p-w-ry-cos(p) sin(w-t+ p, +¢) <
#S(Wz—pwx-sin(w-t—i-gox%—(p)
y—pra=sin(p) (=p-ry-sin(w-t+e, +¢)) =
ey 0 _tan(e)
= sin(e) w - cos () w
(2) j=-wly, y=z-2z
y—p- tanw(@':ﬁ:tanw(@)-(—wz'y)Z—w-tan(sO)'y
(—2)—p-&=—-w-tan(p) - (z — 2)
—(1-p)-d=w-tan(p)-(z—2) O
1.1 Theorem
Let © (t) =74 - cos(w -t + ¢y), ng( >\{0} and

y(t) =7y - cos(p) - cos (w-t+ +<,0)
Then:
1) g =0eyt)=x
(2)  Let z(t) == (t) —y(¢). Then:
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Proof

(1)  Using part (1) of the previous lemma for p = 1:

t
G=0o0=00) o ey
w

(2)  Using part (2) of the previous lemma for p = 1:

i=0e0=Z2=w-tan(p) - (r—2) e z=1

From part (1) of the previous lemma we have the following theorem:

1.2 Theorem

Let 2 (t) =7y -cos(w-t+ ¢g), ¢ € u +g>7p>0and

-2
y(t)=p -1y -cos(p)-cos(w-t+ @, + ). Then:
yt)=0eyt)=p-z(t)

Proof

Using part (1) of the lemma:

t
w

2 Application to an RC—circuit with an ideal ca-
pacitor
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Figure 2: The RC'—circuit with z(¢) as input voltage signal and y(t) as output
voltage signal. This circuit is a special case of the circuit in Figure 5, as the
latter converges to the former for R — oo.



Applying Theorem 1.1

r, =405V, o, = —g rad, w = 1007 rad/s

1
1
Zc JwC 1 .
H = = = = PR
@) =7 Z0 R+ L T+wRC cos () - €
qwC

v = —arg(1+ wRC)

Remark: in the case of an ideal capacitor, the graph of the signal u = z (t)
intersects the graph of the signal v = y (f) at its extremum. Accordingly, the
graph of the signal u = x (¢) intersects the graph of the difference signal
u=2z(t) =z (t)—y(t) at its extremum. These results can be used as a didactic
aid to visually recognize the fact that a capacitor is ideal, in the graphs of both
signals.
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Figure 3: Application of the theo- Figure 4: The graph of the signal
rem to an RC—circuit with an ideal u = z (t) intersects the graph of the
capacitor: the graph of the input difference signal u = z (t) = z (t) —
signal w = z (¢) in blue intersects y (t) at its extremum.

the graph of the output signal u =
y(t) in red at its extremum, i.e.

y (to) = = (to)-



3 Application to an RC'—circuit with a non—ideal
capacitor
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Figure 5: The RC—circuit of Figure 2 now with a resistive impedance Zz added
in parallel to impedance Z¢.

Applying Theorem 1.2

1 ~
Zr=R=15k0 Zoc=_—5=-10k2 Zz=R=30kK0

Jw
~ 1
R —— ~
e " Zp+Zc é_‘_i 1+ JwRC
qwC
R
A 1+ o B2C R
Hw)= R LtpwRC %
ZrR+ 2% ¢ R4 R R+ R+ jwRRC
1+ waC
R 1
T R+R = = prcos(p) e
+ 1+ ywC =
R+ R
—— i.e., independent of the capacitance C'
R+ R
RR
p=—arg |1+ wC =
( R+ R)
R 30 kQ 2
P -z

" RiLkR 15kQ+30kQ 3

. 2

i =0y =p-at)=3 ()
Remark: In the case of a non—-ideal capacitor, the graph of the signal u = p-x (t)
intersects the graph of the signal u = y (¢) at its extremum. In the extremum it
therefore holds that the ratio of the signal values y (t) and « (¢) is equal to the
ratio of resistance values R and R + R. These results can be used as a didactic



aid to visually recognize the fact that a capacitor is non-ideal, in the graphs of
both signals.
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Figure 6: Application of the theorem on an RC-circuit with a non—ideal ca-
pacitor: the output signal u = y(t) depicted in red is at its extremum, i.e.
y(to) = p-x(to) & p =y (to) /z (to) with the input signal u = x (t) drawn in
blue.
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