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ABSTRACT

This work tackles the target detection problem through
the well-known global RX method. The RX method mod-
els the clutter as a multivariate Gaussian distribution, and has
been extended to nonlinear distributions using kernel meth-
ods. While the kernel RX can cope with complex clutters, it
requires a considerable amount of computational resources as
the number of clutter pixels gets larger. Here we propose ran-
dom Fourier features to approximate the Gaussian kernel in
kernel RX and consequently our development keep the accu-
racy of the nonlinearity while reducing the computational cost
which is now controlled by an hyperparameter. Results over
both synthetic and real-world image target detection problems
show space and time efficiency of the proposed method while
providing high detection performance.

Index Terms— Anomaly and target detection, Reed-
Xiaoli (RX), kernel methods, random Fourier features

1. INTRODUCTION

Anomaly Detection (AD) in remote sensing data analysis has
been (and will continue to be) one of the main important re-
search topics for various applications [1,2]. Anomaly deci-
sion is made by analyzing the difference of the pixel under
test (PUT) and the background. Various anomaly detectors
have been proposed in the literature under a number of as-
sumptions: 1) the choice of the background region and the
distribution, 2) the way of calculating the distance between
the PUT and the background statistics, and 3) the definition
of the decision threshold or test statistic [3].

Among the large variety of AD methods, the Reed-Xiaoli
(RX) is widely used for its simplicity, good practical results
and efficiency in operational settings [1, 2]. The RX algo-
rithm, which probably is the most known AD method for
hyperspectral images, it is based on assuming a multivari-
ate Gaussian distributed background and to deal with, it uses
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the Mahalanobis distance between the PUT and the back-
ground [4]. With regard to the background region, there are
two main different approaches. In the global approach the
whole image is defined as the background while in the lo-
cal approach pixels around the PUT are defined as the back-
ground by means of a sliding window or a segmentation based
approach [5,6]. Also, possible anomalies can be censored to
prevent degradation on the background statistics [7].

Even though RX is computationally efficient and works
well for simple backgrounds (mostly linear), it can not cope
with more complex, nonlinear and/or non-Gaussian back-
grounds. To deal with its limitations, more powerful tech-
niques like kernel methods can be used to cope with non-
Gaussian distributed data [8—10]. However, kernel RX is a
computationally demanding method because it involves ma-
trix inversion in the size of the sample count, e.g. for more
than thousand pixels. On the contrary, covariance matrix in
RX has fixed size which is proportional to spectral dimen-
sion of the image, e.g. around ten for multispectral images
and around hundred for hyperspectral images. Since AD is
generally the first step in further recognition tasks, the exe-
cution time is as (or even more) important as the detection
accuracy [11]. Besides, processor capacity (CPU or GPU),
memory storage, and execution budget can be limited in op-
erational applications [5]. In [12], a fast recursive kernel RX
method was recently introduced, which processes the data
in a causal manner. Although this method is fast, threshold
estimation for target decision is a problematic task since the
detection result is dependent on the location of the PUT in
the image.

In this study, we propose an alternative way to speed
up the kernel RX method while maintaining its accuracy:
we propose to approximate the kernel function with random
Fourier features [13] in order to project data into a nonlinear
feature space where a standard, cheap and efficient linear RX
method can be readily applied. Previous use of the random-
ized approach in remote sensing has considered classification
and regression problems [14, 15]. The proposed randomized
RX approach is able to significantly lower the execution time
and the memory storage compared to its kernel RX counter-
part, while preserving almost the same detection accuracy.
We give empirical evidence in both synthetic and real-world
remote sensing target detection problems.



The remainder of the paper is organized as follows. First,
section 2 briefly reviews the proposed method used in this
study. Then, section 3 presents the performance of the ran-
domized RX method. Finally, we conclude in section 4 with
some remarks and prospective future work.

2. RANDOMIZED RX

2.1. The RX algorithm

Let us define a hyperspectral image in matrix form X €
R™*4 where n is the number of pixels and d is the dimen-
sionality of each pixel, i.e. number of spectral channels. A
generic pixel element in / is denoted as the (column) feature
vector x; € RY.

Among the various AD proposed in the literature, one
of the most frequently used anomaly detector is the (spec-
tral only version of the) Reed-Xiaoli (RX) detector [4] that
is often used as a benchmark to which other methods are
compared. The RX detector characterizes the background by
its spectral mean vector p and covariance matrix Xpx =
éXTX, where X is the centered X matrix. The actual de-
tector calculates the Mahalanobis distance between the pixel
under test, X, and the background as follows

Drx(x.) = (% — ) TERk (%« — p). (1)

Note that we only need to invert the covariance matrix once.
However, the global RX detector characterizes the back-
ground of the complete scene by a single multivariate normal
probability density function (pdf). In many scenes, this
model is not adequate. For this reason, several variations
of the global RX detector have been proposed using kernel
functions, such as the kernel RX (KRX) [9].

2.2. The kernel RX algorithm

Notationally, let us map all pixels to a higher dimensional
Hilbert feature spaces # by means of the feature map ¢ :
X — ¢(x). The mapped training data matrix X € R"*? is
now denoted as & € R"™*%*_ Let us define a kernel function
K that, by virtue of the Riesz theorem, can evaluate (repro-
duce) the dot product between samples in #H, i.e. K(x,x') =
(p(x), Pp(x')) € R. Now, in order to estimate the anomalous-
ness (distance) for a test example x.., we first map it ¢(x.)
and then apply the RX formula in (1):

Dirx (%) = ¢(x.) (@7 @)1 pp(x.),

which, after some linear algebra, can be expressed in terms of
kernel matrices [8, 16]:

Drrx(x.) = k] (KK) 'k, ()

where k, = [K(X.,X1),..., K(Xs,%,)]T € R" contains
the similarities between x, and all training points in X us-
ing K, and K € R"™*" stands for the kernel matrix con-
taining all training data similarities. Note that, if n is very

large constructing and inverting kernel matrix is not feasible
hence generally N samples are randomly sampled to obtain
computational tractability. Recently, the kernel RX has been
also extended to non-Gaussian settings by defining a complete
family of anomalous change detectors with kernels [10].

2.3. The randomized RX algorithm

An outstanding result in the recent kernel methods litera-
ture makes use of a classical definition in harmonic anal-
ysis to improve approximation and scalability [13]. The
Bochner’s theorem states that a continuous shift-invariant
kernel K (x,x’) = K (x—x') on R is positive definite (p.d.)
if and only if K is the Fourier transform of a non-negative
measure. If a shift-invariant kernel K is properly scaled, its
Fourier transform p(w) is a proper probability distribution.
This property is used to approximate kernel functions with
linear projections on a number of D random features, as
follows:
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AP e ES— -
K(x,x') =~ D2 exp(—iw; x) exp(iw; x'),
where i = /=1, and w; € R? is randomly sampled

from a data-independent distribution p(w) [17]. Note that
we can define a D-dimensional randomized feature map
z : RY — CP, which can be explicitly constructed as
z(x) == [exp(iw] x),...,exp(iw},x)] .

Therefore, given n data points (pixels), the kernel matrix
K € R™ " can be approximated with the explicitly mapped
data, Z = [z1---2,]" € R™ P, and will be denoted as
K ~ ZZT. However, we do not use such approximation in
Eq. (2) which would lead to a mere approximation with extra
computational cost. Instead, we run the linear RX in Eq. (1)
with explicitly mapped points onto random Fourier features,
which reduces to

Drrx = R(2,(Z"Z) 'z,), 3)

where z, = z(x.), and R is the real part function R (a + 1b) =
a. This leads to a nonlinear randomized RX (RRX) that ap-
proximates the KRX in expectation. Essentially, we map the
original data x; into a nonlinear space through the explicit
mapping z(x;) to a D-dimensional space (instead of the po-
tentially infinite feature space with ¢(x;)), and then use the
linear RX formula. This allows to control the space and time
complexity explicitly through D, as one has to store matrices
of n x D and invert matrices of size D x D only (see Table 1).
Typically, parameter D satisfies D < n in practical applica-
tions, which turns to be a beneficial regularization effect in
the solution.

3. EXPERIMENTS

This section reports some empirical results comparing RX,
the KRX and the proposed RRX, in both synthetic and real
experiments which are run on Intel i7 4.0 GHz PC.



Table 1: Space and time complexity for all methods.

Space Time
Method | T |C' [T | C |C'|AD |
RX — d? — nd®> | & nd?
KRX nN | N? ndN | N3 N3 nN?
RRX nD | D? ndD | nD? | D3 nD?

T is transformation of image into a nonlinear space.
C is covariance matrix and C 1 is its inverse.
AD is anomaly detection.

3.1. Synthetic dataset

To compare the detectors in a controlled manner, we created
a synthetic test image of size 100 x 100 pixels with two spec-
tral channels. Fig. 1 shows data distribution in a density col-
ormap, here dark points are background and bright points are
anomalies. Besides, Fig.2.a shows image as false colored (the
first and the second dimensions assigned to the green and blue
channels, respectively). In this data, 2.72% of the pixels are

cast as anomalies (Fig. 2.d).
We added a

small regularization
value A = 1072
to better condition
matrix inversions,
and fixed the ker-
nel lengthscale o as
the median of all
pairwise distances
in both KRX and
RRX. Detection re-
sponses are given in
Fig. 2 using whole image in training for RX and RRX, and
randomly selected subset (N = 3000) in training for KRX.
Note that background in synthetic data (cf. Fig. 1) is complex
and non-Gaussian distributed. For this data with complex
background, RRX D = 3 fails since 3 Fourier basis is not
sufficient to model the background and RX also fails since
background is non-Gaussian distributed. However, both RRX
with only 50 basis (D = 50) and KRX (/N = 3000) are able
to model background properly.

Fig. 1: Distribution of synthetic data.

In Fig. 3 appears the ROC curves for all methods and they
are given in log scale (abcissa) where area under the curve
(AUC) values and execution times are given in legends. Since
background is not Gaussian distributed, RX has the lowest
performance. KRX and the proposed RRX with D = 50
basis show a similar superior performance, which is an ex-
pected result. However, computational load of KRX increases
rapidly as the number of training samples increase. In this pa-
per, we used N = 3000 randomly sampled pixels for KRX to
achieve satisfactory detection results. The RRX detector with
just D = 50 basis has similar detection performance yet two
orders of magnitude faster.

(a) data

(d) targets (e) RRX, D=3 (f) RRX, D=50
Fig. 2: Detection responses for synthetic data
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Fig. 3: ROC curve for synthetic data.

3.2. Real-world dataset

For the real-world test, a multispectral image of California
with 12 spectral channels and size of 964 x 332 is used (see
RGB composite in Fig. 4). California image is acquired from
Sentinel-2 satellite at 8 August 2017 and downloaded from
Google Earth Engine (GEE).

Fig. 4: California dataset (3 channels are used for false color)

The image was divided into 16 non-overlapping patches,
each having size of 100 x 100 pixels and anomalous pixels
were synthetically fused into these patches using the mask
given in Fig.2.d. Half of the patches are used as a training set
and the remaining half as the validation set. The regulariza-
tion parameter A\ was varied between 1075 and 109, and the



lengthscale of the kernel was varied by taking values between
[0.05, 5] and considering this particular values multiplied with
m, where m is the median of all pairwise distances. For each
A and c pairs, an average AUC value is calculated over the
validation set with 8 patches. The obtained optimal hyperpa-
rameters were A = 10~* and ¢ = 0.5.

Test results are evaluated for the red square with size of
100 x 100 which is shown in Fig. 4. Test results are given
in Fig. 5 in log scale where AUC values and execution times
are given in legends. Proposed RRX can obtain similar per-
formance with KRX using D = 100 basis and hence it is two
orders of magnitude faster for this data set. Thus, better ac-
curacies, robustness and computational efficiency is attained
with the proposed RRX.
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Fig. 5: ROC curve for California data.

4. CONCLUSIONS

We introduced the use of random Fourier features in the con-
text of anomaly detection. In particular, we focused on ap-
proximating the KRX method to cope with complex back-
grounds in an computationally efficient manner. The pro-
posed RRX provides space and time efficient solutions for
anomaly detection, while providing high detection accuracy
in complex nonlinear and non-Gaussian background distribu-
tions. In our experiments, we observed that proposed RRX
method can provide two orders of magnitude speedup com-
pared to KRX method with no loss in accuracy. Other kernel-
ized detectors can benefit from this strategy, which will be the
object of our future research.
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