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Abstract 

 

The derivation of a generalized transport flux is attempted from the well-known Fokker-Planck 

equation using a covariant 4-dimensional approach 

 Four-dimensional tensor analysis is used in the derivation of this generalized transport flux. 
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1 Main Argument 
 

   The derivation result used will be that of C. Kittel2 (and his source), in addition to other sources3.  

The derivation derives from the Smoluchowski equation using a conditional probability P(z∣y, t) 

that a particle at z at t = 0 will be at y during the time interval Δt.  The result derived is the Fokker-

Planck equation without sources: 
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 If A(y) = 0, then there are equal probabilities of moving either left or right.  If B(y) is 

independent of position or in other words there is an isotropic environment, then this reduces to 

the usual diffusion equation.  Now let’s construct the covariant formulation utilizing the 

symbolism1 that /μ is a partial derivative with respect to coordinate μ (or  )  and /μ represents the 

contravariant partial derivative with respect to coordinate μ (which runs from 1 to 4). 
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 The above equation then incorporates the first two terms on the left of the Fokker-Planck 

equation. 
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where K is a constant and is left as such to be as general as possible. 

 

 This is still not in completely covariant form since we have not used the covariant derivative // 

which involves the Christoffel symbols in curved coordinate systems.   

 

The author digresses here momentarily to introduce the covariant derivative and the Christoffel 

symbol, actually the Christoffel symbol of the second kind. 

The covariant derivative of a contravariant vector is 
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The Christoffel symbol of the second kind is defined as  
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ik g g g g= + − where ikg  is the 4-dimensional metric with a signature of -

1 -1 -1 +1 in a flat Lorentzian spacetime. 

 

Equation 4 in covariant form now becomes: 
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which is now a covariant equation.  We can now factor out the covariant derivative and obtain: 
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 ( ) ( )
/

J A P K BP
 = + =  transport flux or current density                                (7)   

 

This is slightly more general than other transport fluxes usually found and represented in 

irreversible thermodynamics, such as (again from Kittel): 

Jx Kx = - ∇ W  

Ohms law: x = e and Ke = electrical conductivity, W = electric potential, Je = current density 



Fourier’s law: x = q and Kq = thermal conductivity, W = Temperature, Jq = heat current density 

Fick’s law: x = m and Km = diffusivity, W = particle or mass concentration, Jm = mass or particle 

current density. 

 

2 Conclusion 
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The above transport flux shows that there is a flow in three dimensions determined by the vector 

“stress” components A  and the gradient in the non-isotropic factor BP  for 1, 2,3 = .  Actually, 

the three dimensional vector components of A  point in the negative A , due to the fact that 
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The whole point in deriving this new generalized transport flux is to hopefully simplify 

investigations such as electrical conductivity, thermal conductivity, and diffusivity, etc. in 

environments in which the “stress” and non-isotropic factors are more complicated and by 

reducing the second order Fokker-Planck equation to a first order equation. 

There is also an added bonus in that there is now a 4-dimensional component.  
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 which is derived from equation 8 and which hopefully sheds light upon 

the variation in time of the components of the transport flux. 

 

 It would be interesting to know in how many other venues this structural form for a transport flux 

arises, and what are, if any, the common characteristics they all share. 
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