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Abstract. Let f be a homogeneous polynomial of degree d with coefficients

in C. The Waring rank of f is the smallest integer r such that f is a sum of

r powers of linear forms. We show that the Waring rank of the polynomial

x1y2z3 − x1y3z2 + x2y3z1 − x2y1z3 + x3y1z2 − x3y2z1

is at least 18, which matches the known upper bound.

1. Introduction

In this paper, we work over the field C of complex numbers. A polynomial
is called homogeneous if its non-zero terms have equal degrees, and it is called
a linear form if its degree is 1. The Waring rank of a homogeneous polynomial
f ∈ C[x1, . . . , xn] of degree d is the smallest integer r for which one can write

(1.1) f = c1 `
d
1 + . . . + cr `

d
r

for some linear forms `1, . . . , `r ∈ C[x1, . . . , xn] and scalars c1, . . . , cr ∈ C. This
definition transfers to arbitrary fields of characteristic greater than d, which is a
sufficient condition to the existence of the decomposition (1.1) for some r [3]. We
remark that, if the ground field is C, then every number admits a root of degree d,
and the coefficients c1, . . . , cr can be omitted without loss of generality.

Waring rank is an active topic of modern research [1, 3, 6, 20, 22, 26, 30], and
it appears in the study of secant varieties and other questions in algebraic ge-
ometry [2, 5, 11, 24, 30, 32]. Its practical applications may include the study of
matrix multiplication [7], parametrized algorithms [29], independent component
analysis [4, 8, 9]. Waring rank is NP-hard to compute [33], and its value remains
unknown for many relevant instances. This paper is devoted to the polynomial
detd ∈ F[x11, . . . , xdd] defined as the determinant of a generic d × d matrix. The
Waring rank of the determinant grows exponentially with d, but the ratios between
the known lower and upper bounds are still exponential [22]. No exact value was
known for the Waring rank of the d× d determinant except the trivial cases

WR(det1) = 1, WR(det2) = 4,

where WR(f) stands for the Waring rank of f . Our aim is to prove the following.

Theorem 1.1. The Waring rank of det3 equals 18.

This solves the problem with the Waring rank of the 3×3 determinant, previously
discussed in several research papers [3, 10, 11, 12, 14, 15, 21, 22, 23, 26, 32] and
popular media such as the Open Problem Garden [38] and MathOverflow [39].
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A general lower bound

(1.2) WR(detd) >
1

2

(
2d

d

)
was proved by Shafiei [32] using the result of Ranestad, Schreyer [30], and it implies
WR(det3) > 10. Landsberg, Teitler [26] used a lower bound based on the singu-
larities of the hypersurface of a given polynomial and proved that WR(det3) > 14.
Farnsworth [15] improved the inequality (1.2), and his results allowed to conclude
that the border Waring rank of det3 is at least 14. Since the border Waring rank
is less than or equal to the Waring rank, the result of Farnsworth gives a different
proof of the inequality WR(det3) > 14. Derksen, Teitler [14] proved an analogue
of (1.2) in terms of the so-called cactus rank, and they showed that the cactus rank
of det3 is at least 14. Again, since the cactus rank is a lower bound for the Waring
rank, this result gives another proof of the inequality WR(det3) > 14. A further
improvement was made by Boij, Teitler [3], who used the syzygies of the corre-
sponding apolar ideal and showed that WR(det3) > 15. Finally, the current lower
bound was given by Conner, Harper, Landsberg [11] with a computer calculation
based on a technique from algebraic geometry. In fact, they proved that the border
rank of the tensor corresponding to det3 equals 17, which implies WR(det3) > 17.

An early upper bound on WR(detd) is given by Gurvits [26] using the inequality

(1.3) WR(x1 · x2 · . . . · xd) 6 2d−1

and the standard expansion of the determinant, which lead to

(1.4) WR(detd) 6 2d−1d!

and give WR(det3) 6 24. We refer the reader to [22] for further improvements on
the general bound (1.4), and we note that the inequality in (1.3) can be replaced by
the equality [6, 30]. Derksen [13] and Krishna, Makam [23] expressed det3 as the
sum of five products of linear forms, which implied WR(det3) 6 20. This bound
cannot be further improved by this approach because, as shown by Ilten, Teitler [21],
one cannot write det3 as the sum of less than five such products. Ilten, Süss [20]
reiterated this result and gave a proof free of computer calculations. Nevertheless,
Conner, Gesmundo, Landsberg, Ventura [3, 10] gave an explicit decomposition of
det3 into the sum of 18 third powers of linear forms. So we have

17 6WR(det3) 6 18,

but whether the Waring rank of det3 is 17 or 18 remained open until now. The aim
of this paper is to show that WR(det3) > 18 and complete the proof of Theorem 1.1.

2. Partially symmetric tensors

Similarly to the approach taken in a sister paper [36], we employ the natural
correspondence between the Waring rank and symmetric tensor decompositions [1].
Since the polynomial det3 has degree three, we switch to three-dimensional tensors,
and, as in the introduction, all tensors, matrices, vectors, and scalars considered
below are taken over C. All linear spaces are assumed to be C-linear and finite
dimensional, and span Φ denotes the C-linear span of a family Φ of vectors in some
C-linear space. It should be noted, however, that the proof of our lower bound
remains valid for the Waring rank computed with respect to any other field.
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A symmetric tensor T is an n × n × n array of scalars such that the value of
T (i|j|k) remains invariant under a permutation of elements i, j, k in an indexing set
of cardinality n. The symmetric rank of T is the smallest integer r for which there
exist length-n vectors u1, . . . , ur and scalars c1, . . . , cr such that

(2.1) T = c1u
⊗3
1 + . . .+ cru

⊗3
r

with v⊗3 being the tensor whose (i|j|k) coordinate equals vivjvk.

The Waring rank of a polynomial f equals the symmetric rank of f viewed as a
symmetric tensor [1, 26, 30]. The paper [36] contains a more detailed comment on
this correspondence and an example of a situation similar to our current setting.
We recall that, for any fixed index k, the k-th slice of an n × n × n tensor T is
defined as the n × n matrix whose (i, j) entry equals T (i|j|k). The linear space
spanned by the slices of the 9× 9× 9 tensor corresponding to det3 is

(2.2) L =



x11 x12 x13 x21 x22 x23 x31 x32 x33
x11 0 0 0 0 k −h 0 −f e
x12 0 0 0 −k 0 g f 0 −d
x13 0 0 0 h −g 0 −e d 0
x21 0 −k h 0 0 0 0 c −b
x22 k 0 −g 0 0 0 −c 0 a
x23 −h g 0 0 0 0 b −a 0
x31 0 f −e 0 −c b 0 0 0
x32 −f 0 d c 0 −a 0 0 0
x33 e −d 0 −b a 0 0 0 0


with the first row and first column indicating the labels in the indexing set. The
x11 slice of det3 is obtained by taking the variable a equal to 1/6 and all other
variables equal to 0 in (2.2). Similarly, the variable b corresponds to the x12 slice,
the variable c indicates the x13 slice, and so on.

Definition 2.1. (See [5].) Let L be a linear space spanned by a family of symmetric
n× n matrices. The partially symmetric rank of L is the smallest cardinality of a
family Φ of symmetric rank-one matrices such that L ⊆ span Φ.

Every slice of a tensor T satisfying (2.1) belongs to span{u1 ⊗ u1, . . . , ur ⊗ ur},
so the symmetric rank of a tensor is greater than or equal to the corresponding
partially symmetric rank. We are going to prove the following result.

Theorem 2.2. We have psrL > 18, where L is the linear space in (2.2).

Here, the notation psrL stands for the partially symmetric rank of L. The rest
of this paper is devoted to the proof of Theorem 2.2, which implies the desired lower
bound in Theorem 1.1 by the above discussion. In the forthcoming Section 3, we
proceed with some further notations and basic results. In Section 4, we compare this
study with a recent investigation of the Waring rank of the 3×3 permanent [36], and
we explain the relevance of the symmetry of det3 to the current study. In Section 5,
we analyze the possible representations of L which might imply psrL 6 17, and
we use the symmetry to reduce them to several particular situations as described
in Theorem 5.6. In Sections 6 and 7, we analyze the possible partially symmetric
decompositions of the restrictions of L to the two relevant submatrices, and Sec-
tions 8 and 9 are devoted to several basic properties of small families of symmetric
6 × 6 rank-one matrices. In Section 10, we put all technical results together, and
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we prove Theorem 2.2 by showing that none of the situations described in Theo-
rem 5.6 can actually arise. Finally, Section 11 contains several further remarks and
relations to several other open problems on tensor decompositions.

3. Our notation and general observations

We begin with some notation related to matroid theory [28].

Definition 3.1. Let H be a finite family of elements in a linear space V . An
element v ∈ H is called a coloop of H if v does not belong to the linear span of
H \ {v}. A collinear pair in H is a linearly dependent subset with two elements.

We are going to prove Theorem 2.2 by contradiction, and, to this end, we adopt
one convention in the manner similar to Assumption 3.1 in [36]. More precisely,
the following statement is the negation of Theorem 2.2.

Assumption 3.2. There exists a family α = (α1, . . . , α17) of vectors in C9 such
that α has no collinear pairs, and the linear space

(3.1) Λ = span{α1 ⊗ α1, . . . , α17 ⊗ α17}
contains the space L as in (2.2).

Remark 3.3. The assumption that α has 17 elements does not cause a loss of
generality because, otherwise, we can add a generic vector to α without breaking
any relevant property. Similarly, we can assume without loss of generality that no
collinear pair appears in α, because otherwise we can replace one of the collinear
elements by a generic vector again without breaking any relevant property.

We proceed with some further notation similar to [36].

Notation 3.4. We denote by M the six-dimensional subspace of C9 cut by the
(x11, x12, x13, x21, x22, x23) coordinates, which corresponds to taking the six left-
most columns with respect to the block partition of (2.2).

Notation 3.5. We define mi as the projection of αi onto M .

The following statement is similar to Claim 3.4 in [36].

Lemma 3.6. Let P be a subspace of the space Λ as in (3.1). If dimP > 9, then

dimL ∩ P > dimP − 8,

where L is the space (2.2).

Proof. We have dim(L + P ) 6 17 because every matrix in L ∪ P belongs to the
linear span of the 17 matrices αi ⊗ αi as in Assumption 3.2. We get

17 > dim(L+ P ) = dimL+ dimP − dimL ∩ P,
and the result follows because dimL = 9. �

The following statement is almost trivial but important for our technique; we
used it in the consideration of the 3× 3 permanent as well [36].

Observation 3.7. Let c1, . . . , cn be a family of non-zero scalars, and let v1, . . . , vn
be a family of vectors taken in some linear space. If

(3.2) w = c1(v1 ⊗ v1) + . . .+ ck(vn ⊗ vn),

then rankw > 2 dim span{v1, . . . , vn} − n.
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Proof. If vectors vi1 , . . . , vit are linearly independent, then the total of the corre-
sponding t summands in (3.2) has rank t. Since there are n−t summands remaining,
their total has rank at most n− t, and hence rankw > t− (n− t). �

4. Using the symmetry

One may want to compare the current problem of computing WR(det3) with the
analogous question for the 3× 3 permanent, which is the polynomial

per3 = x1y2z3 + x1y3z2 + x2y3z1 + x2y1z3 + x3y1z2 + x3y2z1.

The upper bound WR(per3) 6 16 was known for a while [18, 31] before the match-
ing lower bound was confirmed [12, 36]. As explained above, the current approach
may look similar to [36], but the problem of computing WR(det3) has two sub-
stantial differences. In particular, the desired lower bound of 18 is larger than the
corresponding bound for per3, so the current paper may require a more deeper com-
binatorial analysis as compared to [36]. However, the complexity of the problem
can be reduced by the use of the symmetries of det3 as in [11]. In fact, for any pair
of n× n matrices A and B with det(AB) = 1, the mappings

(4.1) X → AXB and X → AX>B

preserve1 the determinant of an unknown n× n matrix X. The linear transforma-
tions preserving the permanent of X have the form (4.1) as well, but the matrices
A and B should be restricted to have only one non-zero entry in every row and in
every column [27]. As we can see, the symmetry group of det3 is much richer, and
we are going to exploit it in the result of this auxiliary section. Before we proceed,
we need to recall the tensor analogue of a linear substitution of variables.

Definition 4.1. Let t be a positive integer, let U and V be linear spaces. Any
linear mapping A : U → V induces the linear mapping

U ⊗ . . .⊗ U︸ ︷︷ ︸
t times

→ V ⊗ . . .⊗ V︸ ︷︷ ︸
t times

defined by the formula

k∑
i=1

ai1 ⊗ . . .⊗ ait →
k∑
i=1

(Aai1)⊗ . . .⊗ (Aait)

for any positive integer k and arbitrary vectors (aij) in U . We write TA to denote
the image of a tensor T ∈ U ⊗ . . .⊗ U under this mapping.

Remark 4.2. Let αi be a vector in the family α as in Assumption 3.2. In what
follows, we think of αi as the 3×3 matrix which has the (p, q) position equal to the
corresponding xpq entry in the vector αi. In particular, a pair of 3× 3 non-singular
matrices A,B induce the invertible linear mapping on C9 defined as X → AXB.

The following is the main result of this section.

Lemma 4.3. Let A be an invertible mapping of the form (4.1). The condition (3.1)
in Assumption 3.2 remains true if every αi is replaced by Aαi.

1By an old result of Frobenius [16], no other linear transformation of X preserves detX.
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Proof. The validity of (3.1) means that there exist β1, . . . , β17 such that

∆ = α1 ⊗ α1 ⊗ β1 + . . .+ α17 ⊗ α17 ⊗ β17,
where ∆ is the tensor corresponding to det3. As explained above, the tensor ∆ is
invariant under the corresponding mapping as in Definition 4.1, so we get

∆ = (Aα1)⊗ (Aα1)⊗ (Aβ1) + . . .+ (Aα17)⊗ (Aα17)⊗ (Aβ17),

which gives a desired conclusion. �

A matrix-theoretic description of the determinant preservers is as follows.

Lemma 4.4. If L is the space as in (2.2), then ALA> = L, whenever

A =

 A O O
O A O
O O A


with all blocks being 3× 3, and A is a non-singular 3× 3 matrix.

Proof. The mapping X → XA> corresponds to the matrix A. �

Lemma 4.5. If L is the space as in (2.2), then BLB> = L, whenever

B =

 b11I b12I b13I
b21I b22I b23I
b31I b32I b33I


with all blocks being 3× 3, and B = (bij) is a non-singular 3× 3 matrix.

Proof. The mapping X → BX corresponds to the matrix B. �

5. A stronger version of Assumption 3.2

In this section, we employ Lemma 4.3 to give several conditions on the set α
which can be added to Assumption 3.2 without loss of generality.

Lemma 5.1. Let V be a k-dimensional vector space. Let u = (u1, . . . , uk) and
v = (v1, . . . , vk) be two families of vectors in V . Then the vectors

π1u1 + . . .+ πkuk and π1v1 + . . .+ πkvk

are collinear for some (π1, . . . , πk) 6= (0, . . . , 0).

Proof. If v is linearly dependent, then we complete the proof immediately by choos-
ing (π1, . . . , πk) 6= (0, . . . , 0) such that π1v1 + . . .+πkvk = 0. Otherwise, v is a basis
of V , and we write the vectors of the coordinates of u1, . . . , uk, with respect to the
basis v, as the columns of the k× k matrix which we call U . Since the ground field
is algebraically closed, we can find t such that det(tI−U) = 0, and then there exist
(π1 . . . , πk) 6= (0, . . . , 0) such that

π1(tv1 − u1) + . . .+ πk(tvk − uk) = 0,

which implies the desired conclusion. �

Definition 5.2. We write row a to denote the row space of a matrix a.

Lemma 5.3. Let a and b be non-collinear 3× 3 matrices such that

dim(row a+ row b) > 2.

Then, for some 1× 3 matrix `, the matrices `a and `b are not collinear.
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Proof. If x and y are non-singular 3 × 3 matrices, then the current statement is
true if and only if it is true for (xay, xby) instead of (a, b). This allows us to focus
on the cases when a has one of the forms1 0 0

0 0 0
0 0 0

 ,

1 0 0
0 1 0
0 0 0

 ,

1 0 0
0 1 0
0 0 1

 ,

and their analysis is straightforward. �

Remark 5.4. The set of all appropriate matrices ` in Lemma 5.3 is generic.

The following is a key step towards the main result of this section.

Lemma 5.5. Let α be a family as in Assumption 3.2. Then there exists a matrix

S =

1 0 0
0 s1 s2
0 s3 s4


with s1s4 6= s2s3 such that the linear span of

(σα1)⊗ (σα1), . . . , (σα11)⊗ (σα11)

contains a non-zero element with the zero projection onto M ⊗M , where M is the
subspace specified in Notation 3.4, and σ is the mapping A→ SA.

Proof. We define the subspace H as

H = L ∩ span{α1 ⊗ α1, . . . , α11 ⊗ α11},

where L is the space in (2.2), and we note that dimH > 3 by Lemma 3.6. In
particular, we can take three linearly independent matrices h1, h2, h3 ∈ H.

Further, we note that the top middle and top right blocks of any matrix in L are
skew-symmetric, where the partition into the blocks is taken with respect to (2.2).
Therefore, the space of all possible blocks of this type has dimension three, and
hence we can apply Lemma 5.1 with k = 3, where u1, u2, u3 are the top middle
blocks of h1, h2, h3, and v1, v2, v3 are the top right blocks of h1, h2, h3, respectively.
Lemma 5.1 tells that, for some non-zero h ∈ H, the top middle block of h is collinear
to the top right block of h. Since, for any ` ∈ L, the top middle block of the matrix
`σ as in Definition 4.1 equals s1 times the top middle block of ` plus s2 times the
top right block of `, we can find (s1, s2) 6= 0 such that the top middle block of hσ
is zero. It remains to find arbitrary (s3, s4) such that s1s4 6= s2s3. �

We proceed with the main result of this section. We recall that mi is the pro-
jection of αi onto the first six coordinates as explained in Notation 3.5.

Theorem 5.6. If Theorem 2.2 is false, then there exists a family as in Assump-
tion 3.2 which satisfies, additionally, one of the following conditions:

(1) m16 = m17 = 0,
(2) the family

(m1 ⊗m1, . . . ,m17 ⊗m17)

has no collinear pairs and has a dependent subset with 11 elements.
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Proof. As explained in Section 3, the negation of Theorem 2.2 implies the existence
of a family α as in Assumption 3.2. We analyze two possible cases separately.

Case 1 : There exist i, j ∈ {1, . . . , 17} such that i 6= j and

(5.1) dimR 6 1 with R = rowαi + rowαj .

In view of Assumption 3.2, we have dimR = 1, so we obtain

AR> =


0

0
r

 with r ∈ C


for some non-singular 3 × 3 matrix A. Now we apply Lemma 4.3 to the mapping
A defined as X → AX> and get a family α′ satisfying Assumption 3.2 and, addi-
tionally, containing (Aαi) ⊗ (Aαi) and (Aαj) ⊗ (Aαj); this family α′ satisfies the
assertion (1) of the current theorem up to the relabeling i→ 16, j → 17.

Case 2 : The condition (5.1) is invalid, for all distinct i, j ∈ {1, . . . , 17}.
We consider the mappings

A : X → GX and B : X → SGX

where G is a generic 3×3 matrix, and S is the matrix obtained from the application
of Lemma 5.5 to the family

(Aα1)⊗ (Aα1), . . . , (Aα11)⊗ (Aα11).

Now let M be the family of the projections of the members in

(5.2) (Bα1)⊗ (Bα1), . . . , (Bα17)⊗ (Bα17)

onto M ⊗M , where M is the subspace introduced in Notation 3.4. In order to
see that the family (5.2) satisfies the assertion (2) in the current theorem, we need
to check that the family M has a dependent subset with 11 elements and has
no collinear pairs. The first of these conditions follows from the relation of our
construction to Lemma 5.5, and the second condition is implied by Remark 5.4
because the mapping X → SX does not change the first row of X.

Cases 1 and 2 cover all possibilities, so the proof is complete. �

6. The upper right 6× 3 block of L

We proceed with some relevant information on the following matrix space.

Definition 6.1. We define L∗ as the set of all restrictions of the matrices in L to

{x11, x12, x13, x21, x22, x23} × {x31, x32, x33},
that is, to the upper right 6× 3 blocks in (2.2).

We need to explore the behavior of L∗ under the multiplication from the left.

Lemma 6.2. If A is a non-zero 1× 6 matrix, then dimAL∗ > 2.

Proof. Let B be an arbitrary non-singular 3×3 matrix. A straightforward checking
(or, alternatively, an application of Lemma 4.4) shows that

L∗ =

(
B O
O B

)
· L∗ ·B>

which allows us to reduce the situation to either

A = (x 0 0 | y 0 0) or A = (1 0 0 | 0 0 1).
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We have dimAL∗ = 2 in the first case and dimAL∗ = 3 in the second case. �

Lemma 6.3. If A is a rank-two 2 × 6 matrix, then dimAL∗ > 3. Moreover, the
equality dimAL∗ = 3 holds if and only if

(6.1) A = (c1A
′ | c2A′)

for some rank-two 2× 3 matrix A′ and for some c1, c2 ∈ C.

Proof. We begin with the consideration of one special case.

Special case: The row space of A contains a non-zero vector whose restriction to
the first three coordinates is collinear to its restriction to the last three coordinates.
In other words, this means that s1 times the former restriction equals s2 times the
latter restriction with some (s1, s2) 6= 0. Using Lemma 4.5 with

b13 = b23 = b31 = b32 = 0, b33 = 1, b12 = s1, b22 = −s2,

we can assume that some non-zero vector of the form

a =
(
x1 y1 z1 0 0 0

)
belongs to the row space of A. If every row of A has all zeros at the last three posi-
tions, then dimAL∗ = 3, and also we fall into (6.1). Otherwise, we get dimAL∗ > 4
by the application of Lemma 6.2 because the upper 3×3 block of L∗ and the bottom
3× 3 block of L∗ depend on the non-intersecting families of variables.

We proceed with the general situation. If the condition of the special case does
not realize, then we can use an argument similar to Lemma 6.2 and assume that

a =
(

1 0 0 0 0 1
)

is a row of A without loss of generality, and also either

(6.2) A =

(
1 0 0 0 0 1
x1 0 y1 u1 0 v1

)
or A =

(
1 0 0 0 0 1
0 1 0 x y z

)
with (x, y) 6= (0, 0). The second option in (6.2) implies dimAL∗ > 4 with a
straightforward checking. In the first case, according to Lemma 5.1, the row space
of A contains a non-zero vector with the left 1× 3 part collinear to its right 1× 3
part, and hence the situation reduces to the special case above. �

Lemma 6.4. Let A be a rank-three 3 × 6 matrix. Then either dimAL∗ = 3 or
dimAL∗ > 5, and the former condition applies if and only if

A = (c1A
′ | c2A′)

for some non-singular 3× 3 matrix A′ and for some c1, c2 ∈ C.

Proof. Using Lemma 5.1, we conclude that the row space of A contains a non-zero
vector whose restriction to the first three coordinates is collinear to the restriction
to the last three coordinates. An argument as in the special case of Lemma 6.3
allows us to assume that some non-zero vector of the form

a =
(
x1 y1 z1 0 0 0

)
belongs to the row space of A. If every row of A has all zeros at the last three
coordinates, then we have dimAL∗ = 3 by Lemma 6.3; otherwise, some vector

b =
(
x2 y2 z2 x3 y3 z3

)
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with (x3, y3, z3) 6= 0 appears as a row of A, and Lemma 6.2 implies dimAL∗ > 4. In
this case, according to Lemma 6.3, we can have dimAL∗ 6 4 only if the restriction
of any row of A to the last three coordinates is collinear to (x3, y3, z3), and the(

∗ ∗ ∗ 0 0 0
)

part of the row space of A is spanned by a. But then rankA = 2, which contradicts
the initial assumption and proves that dimAL∗ > 5. �

Lemma 6.5. If A is a rank-four 4× 6 matrix, then dimAL∗ > 5.

Proof. Since rankA + 3 > 6, the row space of A has a non-zero intersection with
any three-dimensional subspace of the full six-dimensional space. Therefore, the
row space of A contains non-zero vectors of both of the forms(

∗ ∗ ∗ 0 0 0
)

and
(

0 0 0 ∗ ∗ ∗
)
,

and the rest follows from Lemma 6.4. �

7. The upper left 6× 6 block of L

Now we need to estimate the partially symmetric rank of the restriction of L to
the upper left 6× 6 block, where the partition into the blocks corresponds to (2.2).

Theorem 7.1. The partially symmetric rank of the linear space

(7.1) G =


0 0 0 0 k −h
0 0 0 −k 0 g
0 0 0 h −g 0
0 −k h 0 0 0
k 0 −g 0 0 0
−h g 0 0 0 0


is at least nine.

Proof. We argue by contradiction, and we assume that

G ⊆ span{v1 ⊗ v1, . . . , v8 ⊗ v8}

with some vectors v1, . . . , v8. We consider two possible cases separately.

Case 1 : There is a linearly dependent family F ⊂ {v1, . . . , v8} with |F | = 6.
We get F = {v1, . . . , v6} after an appropriate relabeling, and we take a maximal

linearly independent subfamily F ′ of F . Also, we complete F ′ to a basis B of the
full six-dimensional space by adding one or two of the vectors v7, v8. We assume
without loss of generality that v7 appears in B and take the subspace

H = G ∩ span{v1 ⊗ v1, . . . , v7 ⊗ v7},

and we note that dimH > 3 + 7 − 8 = 2. Written with respect to the new basis,
every matrix h ∈ H has the form

(7.2) h =

(
xh O1×5
O5×1 h′

)
with xh ∈ C; we denote by H ′ the set of all possible choices of h′ in (7.2). It can
be noted directly from the formulation of the theorem that

(7.3) rankh = 4, for any non-zero h ∈ G,
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so the rank of a generic matrix in H ′ should equal 3. Therefore, every matrix in H ′

has rank at most three, but since dimH > 2, we can find a non-zero matrix g ∈ H
with xg = 0. This implies rank g 6 3 and contradicts to (7.3).

Case 2 : Every family of six vectors in (v1, . . . , v8) is linearly independent.
By Observation 3.7 and the condition (7.3), every non-zero matrix in G equals

λ1(v1 ⊗ v1) + . . .+ λ8(v8 ⊗ v8)

with either exactly four or exactly eight numbers among (λ1, . . . , λ8) being non-
zero. This is a contradiction because C8 has no three-dimensional subspace in which
every non-zero vector has either exactly four non-zeros or exactly eight non-zeros.

Cases 1 and 2 cover all possibilities, so the proof is complete. �

Remark 7.2. A similar and more thorough reasoning leads to psrG = 10, but we
decided to stay with a weaker bound which is sufficient for our purposes.

8. Split subspaces of small matrices

Our approach requires a description of certain subspaces of m×m matrices with
relatively small dimensions. We begin with formulations of two useful properties.

Definition 8.1. Let V be a linear space and S ⊆ V ⊗ V . The set S splits if there
exist V1 ( V and V2 ( V such that V = V1 ⊕ V2, and every s ∈ S represents as

s = s1 ⊕ s2 with s1 ∈ V1 ⊗ V1 and s2 ∈ V2 ⊗ V2.

We say that the pair (V1, V2) is a witness of the splitting of S.

Definition 8.2. Let V be a linear space and S ⊆ V ⊗ V . A full splitting of S is a
sequence (V1, . . . , Vk) with V = V1 ⊕ . . .⊕ Vk such that every s ∈ S represents as

s = s1 ⊕ . . .⊕ sk with sj ∈ Vj ⊗ Vj for any j ∈ {1, . . . , k},

every Vj is non-zero, and the restriction of S to any Vj ⊗ Vj does not split.

Remark 8.3. If Definition 8.2 applies with some family S and some integer k, and
if q is an integer with q 6 k, then S said to split into at least q parts.

Remark 8.4. If S ⊆ V ⊗ V does not split, then Definition 8.2 applies with k = 1.

One further auxiliary definition is needed to proceed.

Definition 8.5. Let S be a family of symmetric rank-one t× t matrices. The type
of S is (a, b), where a is the dimension of the linear span of the set of all columns
of the matrices in S, and b is the dimension of the linear span of S itself.

We proceed with the main result of this section. It gives a sufficient condition
under which a set of the type (t, b) splits, for t ∈ {2, 3, 4, 5, 6} and b 6 2t− 2.

Lemma 8.6. Let t be an integer with 2 6 t 6 6. Let S be a family of symmetric
rank-one t × t matrices with dim spanS 6 2t − 2. If S has no coloops and no
collinear pairs, then S splits.

Proof. We can assume that the type of S is indeed (t, x), for some x, because,
otherwise, there is a basis in which all the matrices in S have all their entries
collected in the top left 5× 5 submatrix, which would witness the splitting of S.
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Now let us fix a subset B ⊂ S that is a basis of spanS. Since S contains no
coloops and no collinear pairs, any matrix β ∈ B admits a linear combination

(8.1) ψ =
∑
b∈B

λbb with rkψ = 1

such that λβ 6= 0 and ψ is not collinear to β. According to Observation 3.7, the set
of all b satisfying λb 6= 0 in (8.1) is a type (τ, y) family with τ > 2 and y > 2τ − 1.
Therefore, for any β, there is a type (τ, 2τ − 1) subfamily ϕβ ⊂ B containing β.

We proceed with the analysis of two appropriate special cases.

Special case 1 : S possesses a type (t− 1, 2t− 3) subfamily F .
Let B′ be a basis of the linear span of all the columns of the matrices in F , and

let v be a non-zero column of some matrix that lies in S but outside spanF . Then
the matrices of S, if written with respect to the basis B′ ∪ {v}, are block-diagonal
with a 5× 5 block corresponding to B′ and a 1× 1 block corresponding to v.

Special case 2 : S possesses a type (t− 2, 2t− 5) subfamily F ′.
Similarly to the previous special case, we can represent S with respect to an

appropriate basis so that spanS admits a basis B consisting of the matrices 0 0 O
0 0 O
O O B′

 ,

 1 0 O
0 0 O
O O O

 ,

 0 0 O
0 1 O
O O O

 ,

and one additional matrix s. Here, the size of the B′ block is (t − 2) × (t − 2),
and B′ is a concise version of a basis of spanF ′. If one of the rows of the top right
block of s is zero, then we end up with the conclusion of the special case 1. This
should happen, indeed, because, otherwise, any linear combination of B that is
rank-one and involves s with a non-zero coefficient should be collinear to s, which
is a contradiction as noted in the second paragraph of this proof.

We proceed the argument. In view of the discussion of the second paragraph,
the special cases 1 and 2 solve the cases t = 2, t = 3, t = 4 immediately. If t = 5,
then we can assume without loss of generality that any subfamily ϕβ has type (2, 3)
again because of the special cases 1 and 2. We take one such subfamily ϕβ , and also
we take one arbitrary matrix γ in B outside spanϕβ . Further, we take a matrix δ
in B outside spanϕβ + spanϕγ , and we note that one of the families

ϕβ ∪ ϕγ , ϕβ ∪ ϕδ, ϕγ ∪ ϕδ
does not split, and then the special case 2 applies, because, if they all split, then
the dimension of spanϕβ + spanϕγ + spanϕδ should equal 3 + 3 + 3 = 9 > 2t− 2.

Now we focus on the case t = 6. If the family S contains a type (τ, 2τ − 1)
subfamily with τ > 4, then we appeal to the special cases 1 and 2 and complete
the proof. If S contains two subfamilies ϕ1 and ϕ2 of the type (3, 5), and the
corresponding sums of the row spaces V1 and V2 are not equal, then

• (V1, V2) witnesses the splitting of S if V1 ∩ V2 = 0,
• one of the special cases 1 and 2 applies to the family ϕ1 ∪ ϕ2 otherwise.

Therefore, if we take an arbitrary matrix γ in B outside spanϕ1, then the family
ϕγ can be assumed to have the type (2, 3). Further, we take a matrix δ in B outside
spanϕ1 + spanϕγ , and, similarly to the case t = 5, we note that one of the families

ϕ1 ∪ ϕγ , ϕ1 ∪ ϕδ, ϕγ ∪ ϕδ
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does not split (and then one of the above special cases applies) because otherwise

dim(spanϕβ + spanϕγ + spanϕδ) = 5 + 3 + 3 = 11 > 2t− 2.

So we can assume that every family ϕβ is of the type (2, 3). An argument similar
to the case t = 5 reduces the situation to the case when the basis B consists of Φ1 O O

O O O
O O O

 ,

 O O O
O Φ2 O
O O O

 ,

 O O O
O O O
O O Φ3


and one additional matrix s, where Φ1, Φ2, Φ3 are bases of the space of the sym-
metric 2 × 2 matrices. If one of the diagonal blocks of s is zero, then B splits
immediately, and the proof is complete. Otherwise, every off-diagonal block of s
is non-zero, and then any linear combination of B that is rank-one and involves s
with a non-zero coefficient should be collinear to s, which is impossible, as explained
above, because S has no coloops and no collinear pairs. �

The following remark is not used in our further considerations.

Remark 8.7. The statement of Lemma 8.6 does not generalize to arbitrary large
t. In fact, a counterexample to the potential generalization of Lemma 8.6 to any
t > 9 can be constructed as follows. We find an even integer u such that

t+ 1 6 u 6
4t− 4

3

and take a generic family (v1, . . . , vu) of vectors of length t. If

S = {v1 ⊗ v1, . . . , vu ⊗ vu} ∪W1 ∪ . . . ∪Wu/2

with Wi being the set of all (v2i−1+εv2i)⊗(v2i−1+εv2i) with ε 6= 0, then S does not
split, and S has neither a coloop nor a collinear pair. Also, we have dimS 6 2t−2.

We finalize the section with a corollary of Lemma 8.6.

Corollary 8.8. Let F be a type (6, 9) family of symmetric rank-one matrices. If
F has no coloops and no collinear pairs, then F splits into at least three parts.

Proof. This family admits a splitting (U, V ) by Lemma 8.6, and the same lemma
applies again either to the U ⊗ U or V ⊗ V part of the initial splitting. �

9. Almost split subspaces of small matrices

In this section, we discuss another notion similar to that of splitting. Our goal
is to get a partial generalization of Lemma 8.6 to the case t = 6, dim spanS = 11.

Definition 9.1. Let V be a linear space, and let S be a family of symmetric rank-
one matrices in V ⊗ V . The set S is almost split if there exist V1 ( V and V2 ( V
such that V = V1+V2, dimV1∩V2 6 1, and the columns of any matrix s ∈ S belong
to either V1 or V2. The pair (V1, V2) is called a witness of the almost splitting of S.

One easy relation between Definitions 8.1 and 9.1 is as follows.

Lemma 9.2. Let S be an almost split family of symmetric rank-one matrices as
witnessed by the pair (V1, V2). Let β be a non-zero vector in V1 ∩ V2. Let S2 be the
set of all restrictions of the matrices in S to V2⊗V2. If S2 splits and, additionally,
S contains a non-zero matrix collinear to β ⊗ β, then S splits as well.
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Proof. Let (U1, U2) be a witness of the splitting of S2. Then a non-zero matrix
collinear to β ⊗ β belongs to either

(U1 ⊗ U1)⊕ 0 or 0⊕ (U2 ⊗ U2) ,

which corresponds to the splitting of S as either (U1 +V1, U2) or (U1, V1 +U2). �

We proceed with the desired generalization of Lemma 8.6.

Lemma 9.3. Let S be a set of rank-one symmetric 6× 6 matrices. If

(1) the linear span of S has dimension 11,
(2) S has a dependent set of 11 elements,
(3) S has no coloops and no collinear pairs,

then S is almost split.

Proof. Similarly to the argument in Lemma 8.6, we fix a subset B ⊂ S that is a
basis of spanS, and we conclude that any matrix β ∈ B admits a linear combination

(9.1) ψ =
∑
b∈B

λbb in S

such that λβ 6= 0 and ψ is not collinear to β, and, since ψ ∈ S, we get rkψ = 1. We
define ϕβ as the set collecting all b satisfying λb 6= 0 in (9.1), and Observation 3.7
shows that ϕβ has the type (τ, y) with τ > 2 and y > 2τ − 1.

Now we consider a dependent subset F ⊂ S with 11 elements, which exists be-
cause of the assumption (2) in the formulation. Then we take an inclusion minimal
linearly dependent subfamily F ′ ⊆ F , and an application of Observation 3.7 shows
that any subfamily of F ′ with cardinality |F ′|−1 has the type (ρ, δ) with δ > 2ρ−1.
We remark that ρ > 2 by the assumption (3) in the formulation, and we also get
ρ 6 5 because |F ′| − 1 6 |F | − 1 = 10. So we can take a family

(9.2) Φ of the type (r, 2r − 1) with maximal possible r ∈ {2, 3, 4, 5}.
From now on, we write V to denote the linear span of the columns of the matrices

in Φ. We have dimV = r by the definition of the type, and we write V to denote
an arbitrary fixed basis of V. Also, we can assume that there exist matrices2

(9.3) (u1 ⊗ u1) , . . . , (u6−r ⊗ u6−r) in S

such that U ∪ V is a basis of the full six-dimensional space, where

U = (u1, . . . , u6−r).

Now we can find a family B ⊂ S which is a basis of spanS consisting of

(1B) 2r − 1 matrices in 0U ⊕ (V ⊗ V),
(2B) 6− r matrices in (U ⊗ U)⊕ 0V ,
(3B) 6− r other matrices,

with U = spanU . Here, (1B) can be an arbitrary maximal linearly independent
subfamily of Φ, and (2B) are the matrices in (9.3). Also, we define the integer α as
the quantity of all those matrices in B which do not lie in

(U ⊗ U)⊕ (V ⊗ V)

or, equivalently, which have a non-zero U × V block when written with respect to
the basis U ∪V . Also, we define A as the multiset of all the non-zero restrictions of
the matrices in B to the U × V block; a non-zero matrix a appears in A with the

2Otherwise, there would be a common kernel vector for S, and hence S would be split.
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multiplicity m if any only if there are precisely m matrices in B whose restrictions
to the U × V block coincide with a. We have |A| = α, and the matrices in (1B)
and (2B) cannot contribute to A; we get

(9.4) 0 6 α 6 6− r.

We assume that α is minimal possible over all choices of the matrices (9.3). We are
going to complete the proof with a separate consideration of every possible value
of α, but we need several additional special cases in the course of this argument.
The rest of the proof gives a list of several conditions each of which is sufficient to
deduce the desired assertion, which is the almost splitting of S, and we will see it
later that the presented conditions cover all possible values of α.

Sufficient condition 1 : The rows of the matrices in A are all collinear.
In this case, the pair (U + row a,V) is the desired almost splitting of S, where

a is any matrix in B which contributes to A, that is, a matrix in B which has a
non-zero U × V block. If there are no such matrices a, then (U ,V) is the splitting
of S, and, since S is split, it has to be almost split as well.

Sufficient condition 2 : Either α = 0 or α = 1.
This reduces to the sufficient condition 1.

Sufficient condition 3 : S contains two matrices s1, s2 such that the restrictions
of s1, s2 to the U × V block are non-zero and have collinear columns.

Since s1, s2 are not collinear by the assumption (3) in the formulation of the
lemma, the rows of s1, s2 are not collinear as well. Therefore, the family Φ∪{s1, s2}
has the type (r + 1, 2r + 1), and this implies r = 5 by the maximality of r. We get
α 6 1 by the inequality (9.4), and it remains to apply the sufficient condition 2.

Sufficient condition 4 : A contains two matrices with collinear columns.
Follows immediately from the sufficient condition 3 above.

Sufficient condition 5 : There exists a ∈ A such that every rank-one linear com-
bination of A that involves a with a non-zero coefficient is collinear to a.

Let b ∈ B be the matrix that corresponds to a, that is, the matrix a appears
to be the restriction of b to the U × V block. Since b is not a coloop of S by
the assumption (3) in the formulation of the lemma, there should exist a matrix
s ∈ S which is a linear combination of B that involves b with a non-zero coefficient.
According to the current condition 5, the U × V block of s has to be collinear
to a, but s itself is not collinear to b again because of the assumption (3) in the
formulation. Therefore, we get the family Φ ∪ {b, s} of the type (r+ 1, 2r+ 1) and
complete the proof similarly to the sufficient condition 3.

Sufficient condition 6 : One has α = 2.
Follows immediately from the sufficient conditions 1, 4, 5 above.

Sufficient condition 7 : One has r = 2, and there exist families f1, f2, f3 ⊂ S
each of which has the type (2, 3) such that dim span f1 ∪ f2 ∪ f3 = 9.

If, for j = 1, 2, 3, the notation Vj stands for the linear span of the rows of fj ,
then, by the maximality of r in (9.2), we should have the direct sum V1 ⊕ V2 ⊕ V3
equal to the full six-dimensional space. Since dim spanS = 11, there exist two
matrices b, c ∈ S such that f1∪f2∪f3∪{b, c} is a basis of spanS. Now, if the rows
of the restrictions of b, c to the (V1 + V2)⊗ V3 are collinear, then the pair

(V1 + V2 + row b+ row c, V3)
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is the desired witness of the almost splitting of S. Alternatively, if the columns of
the restrictions of b, c to (V1 + V2) ⊗ V3 are collinear, then the family f3 ∪ {b, c}
has the type (3, 5), which contradicts to the maximality of r in (9.2). It remains
to consider the case when the restrictions of b, c to the (V1 + V2)⊗ V3 have neither
collinear rows nor collinear columns, but then, similarly to the sufficient condition 5,
we can find a matrix s ∈ S which is not collinear to b but for which the restriction
of s to (V1+V2)⊗V3 is collinear to such a restriction of b. This shows that f3∪{b, s}
has the type (3, 5) and contradicts to the maximality of r again.

Sufficient condition 8 : One has α = 3.
In this case, we have three matrices b, c, d ∈ B whose restrictions to the U × V

blocks are non-zero. Further, we can assume that the restrictions of b, c, d to the
U × V blocks are linearly independent, and the sum of the column spaces of these
restrictions has dimension two, because otherwise we cannot avoid all the sufficient
conditions 1, 4, 5 simultaneously. Therefore, there is a dimension two subspace
U ′ ⊂ U such that the rows of b, c, d belong to U ′ + V. Now we take the set ϕb
as in the first paragraph of this proof, and the application of (9.1) allows us to
express a matrix ψ ∈ S as a linear combination of the matrices in ϕb taken with
non-zero coefficients. Since the restrictions of b, c, d to the U ×V block are linearly
independent, there exists at least one non-zero column of ψ with an index in V . As
explained above, this column belongs to U ′ + V, and, since ψ is rank-one, we get

rowψ ⊂ U ′ + V.
If we have ψ /∈ span Φ ∪ {b, c, d}, then the family Φ ∪ {b, c, d, ψ} has the type
(r+2, 2r+3), which implies r = 4 by the maximality of r in (9.2) and contradicts to
the inequality (9.4). Therefore, the matrix ψ is a linear combination of Φ∪{b, c, d},
and hence ϕb is a subset of Φ ∪ {b, c, d}. If ϕb ∩ Φ 6= ∅, then the family ϕb ∪ Φ
witnesses a contradiction via the maximality of r again. Since ϕb has the type (ρ, x)
with some ρ > 2 and x > 2ρ − 1, the only remaining possibility is that the family
ϕb equals {b, c, d} and has the type (2, 3), which means that

(9.5) dim(row b+ row c+ row d) = 2.

In the case r = 3, we get a contradiction to the minimality of α as follows. We
proceed with b, c, g in the role of the matrices (9.3), where g is an element of S
such that U ′ + V + row g is the full six-dimensional space. In view of (9.5), the full
six-dimensional space can be expressed as

U ′′ ⊕ V with U ′′ = row b+ row c+ row d+ row g,

and we immediately have

b, c, d, g ∈ (U ′′ ⊗ U ′′)⊕ 0V and Φ ⊂ 0U ′′ ⊕ (V ⊗ V) .

So we see that the corresponding partition (1B)–(3B) has at most 11 − 4 − 5 = 2
matrices with the non-zero U ′′⊗V block, which gives the desired contradiction with
the minimality of α because the initial assumption is α = 3.

Now we can focus on the case r = 2. Similarly to the previous paragraph, we
take matrices g, h in S such that the full six-dimensional space expresses as

U ′′ ⊕ V with U ′′ = row b+ row c+ row d+ row g + row h.

We proceed by replacing the matrices (9.3) with b, c, g, h, and we get

b, c, d, g, h ∈ (U ′′ ⊗ U ′′)⊕ 0V and Φ ⊂ 0U ′′ ⊕ (V ⊗ V) ,
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which means that at most 11 − 5 − 3 = 3 matrices in the corresponding par-
tition (1B)–(3B) can have their U ′′ ⊗ V blocks non-zero. In order to avoid the
sufficient conditions 2 and 6, we can assume that there are exactly three such ma-
trices. These matrices must form a (2, 3) type subfamily by repeating the current
argument, so the sufficient condition 7 concludes the proof.

Sufficient condition 9 : One has α = 4.
We have exactly four matrices b, c, d, e ∈ B with the non-zero restrictions to

the U × V blocks. If H be the sum of the row spaces of b, c, d, e, then the rows
of the matrices in Φ ∪ {b, c, d, e} belong to H + V. We remark that r = 2 by the
inequality (9.4), so the maximality of r in (9.2) implies that either

(9.6) dim(H + V) = 5 or dim(H + V) = 6.

Similarly to the special case 8, we note that the restrictions of b, c, d, e to the U ×V
blocks are non-zero. We consider the two possibilities in (9.6) separately.

Special case 9.1 : Assume dim(H +V) = 6. Then the columns of the restrictions
of b, c, d, e to the U×V blocks span the full four-dimensional subspace corresponding
to the indexes in U . The only way to avoid the sufficient conditions 1 and 5, up to
the relabeling of b, c, d, e, is that the rows of b, c are collinear modulo U , and the
rows of d, e are collinear modulo U . This does not allow any of the sets ϕb and
ϕd as in the first paragraph of the proof to be of the type (6, 11), and hence they
should be of the type (2, 3) by the maximality of r in (9.2). Therefore, the families
ϕb, ϕd, Φ allow an application of the sufficient condition 7.

Special case 9.2 : Assume dim(H + V) = 5. Then we complete V , which is a
basis of V, to a basis W ∪ V of span(H + V) by adding a family W with |W | = 3.
Also, we complete this new basis by adding some vector γ to get a basis

(9.7) Γ = {γ} ∪W ∪ V

of the full six-dimensional space. Finally, we define L as the linear span of all
possible γ-th rows of the matrices in S written with respect to the basis Γ.

We write dimL = δ, and if δ = 0, then the matrices in S have a common zero
row, which implies that S is split and completes the proof. So we can focus on the
case δ > 1, and then we take matrices `1, . . . , `δ ∈ S with linearly independent γ-th
rows. In fact, there should exist one more matrix `0 ∈ S with γ-th row non-zero,
because the set S has no coloops by the assumption (3) of this lemma. We have

dim(C`0 + . . .+ C`δ) = δ + 1

because S has no collinear pairs again by the assumption (3). We have L ∩ V = 0
from our construction, so there exist matrices g1, . . . , g4−δ ∈ S such that the full
six-dimensional space represents as

L ⊕ V with L = row g1 + . . .+ row g4−δ + L.

We take the matrices g1, . . . , g4−δ, `1, . . . , `δ in the role of (9.3), and we have

`0, . . . , `δ, g1, . . . , g4−δ ∈ (L ⊗ L)⊕ 0V and Φ ⊂ 0L ⊕ (V ⊗ V) .

So we see that the corresponding partition (1B)–(3B) has at most 11 − 5 − 3 = 3
matrices with the non-zero L ⊗ V block, which contradicts to the minimality of α
because the initial assumption is α = 4. Therefore, the case 9.2 does not realize,
and this completes the consideration of the final sufficient condition 9.
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Since we have r > 2 from (9.2), the inequalities (9.4) imply 0 6 α 6 4. Therefore,
one of the sufficient conditions 2, 6, 8, 9 satisfies, and the result follows. �

10. The proof of Theorem 5.6

Now we are prepared to complete the proof of Theorem 2.2, which is done by
showing that neither the case 1 nor case 2 of Theorem 5.6 can realize. We need
several further notations to be used in this section.

Definition 10.1. We use the letter α to denote the family that satisfies Assump-
tion 3.2. Also, we write µ to denote the set of mi ⊗ mi over all i ∈ {1, . . . , 17},
where mi is defined in Notation 3.5.

Definition 10.2. We write µ′ to denote the family obtained by removing all zeros
and all coloops from the family µ as in the previous definition.

Observation 10.3. The family µ′ has no coloops.

Definition 10.4. A collinear pair is called non-zero if both parts of it are non-zero.

We need to specify one subspace of the space L as in (2.2).

Definition 10.5. We define L◦ as the linear space consisting the matrices obtained
from (2.2) by taking g = h = k = 0.

We still use the notation Λ for the space defined in Assumption 3.2.

Lemma 10.6. Let P be a subspace of Λ. Then dimL◦ ∩ P > dimP − 11.

Proof. We have dim(L◦ + P ) 6 17 because every matrix in L◦ ∪ P belongs to the
linear span of the 17 matrices αi ⊗ αi as in Assumption 3.2. We get

17 > dim(L◦ + P ) = dimL◦ + dimP − dimL◦ ∩ P,
and the result follows because dimL◦ = 6. �

We proceed with one further technical result.

Lemma 10.7. If µ has no non-zero collinear pairs, then µ′ does not split.

Proof. We argue by contradiction. Assuming that µ′ splits and µ has no non-zero
collinear pairs, we aim to check that L◦ is not a subset of the space Λ as in (3.1).
Up to the relabeling of the vectors in α, we can assume that

µ′ = (m1 ⊗m1, . . . ,mc ⊗mc)

for some c 6 17. Then a linear combination

λ1(α1 ⊗ α1) + . . .+ λ17(α17 ⊗ α17)

can have all zeros at the upper left 6 × 6 block only if λj = 0 for all j > c, and
hence it suffices to prove that L◦ is not contained in

Λ′ = span{α1 ⊗ α1, . . . , αc ⊗ αc}.
Now let (V1, . . . , Vk) be a full splitting of µ′ as in Definition 8.2. We have k > 2 by
the initial assumption, and also, since µ′ has no coloops and no collinear pairs, we
have dimVj > 2, for all j ∈ {1, . . . , k}. Therefore, there exists a non-singular 6× 6
matrix C such that all the matrices in Cµ′C> are block-diagonal, and the block
structures of all these matrices fall simultaneously into one of the following cases.

Case 1 : There are three 2× 2 blocks.
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Case 2 : The first block is 2× 2, the second block is 4× 4.
Case 3 : There are two 3× 3 blocks.

We complete the 6× 6 matrix C to the matrix

C =

(
C O6×3

O3×6 I3×3

)
of the same format as the matrices in (2.2). Using this notation, we write

(10.1) CL◦C> ⊆ CΛ′C>

for the negation of the statement L◦ * Λ′ needed to complete the proof, and hence
we need to get a contradiction from (10.1). We remark that the upper right 6× 3
block of the left-hand side of (10.1) is CL∗, where L∗ is the space as in Definition 6.1,
and this allows us to use the results of Section 6. In particular, a restriction of
Cµ′C> to the first 2 × 2 block as in the case 1 should have dimension three by
Lemma 8.6, and there should be at least three more elements in Cµ′C> with non-
zeros at this block, by Lemma 6.3, because the matrices in CΛ′C> corresponding to
the other blocks leave the first two rows of CL∗ untouched. Therefore, we should
have at least 3 + 3 = 6 matrices in µ′ associated with the 2× 2 block, and a similar
consideration with the 4× 4 block shows that it is non-zero in at least 7 + 5 = 12
such matrices. Therefore, each of the cases 1 and 2 requires at least 18 matrices to
be present in µ′, but this is a contradiction because µ′ contains c 6 17 elements.

Now we focus on the case 3. A reasoning similar to the previous paragraph shows
that the case dimAL∗ = 3 of Lemma 6.4 should apply, whenever A is the matrix
formed by either the first three rows or the last three rows of C. Then every of the
3× 3 diagonal blocks is non-zero on 5 + 3 = 8 matrices in µ′, and Lemma 6.4 gives

C =

(
p1G p2G
p3H p4H

)
with G and H being 3× 3 matrices and with scalar p1, p2, p3, p4. An application of
Lemma 4.5 with

b13 = b23 = b31 = b32 = 0, b33 = 1, b11 = p4, b12 = p2, b21 = −p3, b22 = −p1

reduces the situation to the case when C is block-diagonal with two 3 × 3 blocks,
and then the matrices in µ′ are also block-diagonal with two 3×3 blocks. Therefore,
there exists at most 17 − 8 − 8 = 1 matrix in α which has non-zeros in the upper
middle block with respect to the partition in (2.2), and this matrix does not suffice to
span all the upper middle blocks in L because their space is three-dimensional. �

We are ready to prove one of the main results of this section.

Theorem 10.8. The option (1) in Theorem 5.6 does not realize.

Proof. We are going to reach a contradiction from the condition (1).

Special case 1 : The family µ has no non-zero collinear pairs.
According to Lemma 10.7, the family µ′ cannot split, and, using Lemma 8.6,

we conclude that µ should span a subspace of dimension at least 11. Up to the
relabeling of the indexes, we assume that the upper left 6× 6 blocks of

α5 ⊗ α5, . . . , α15 ⊗ α15



20 YAROSLAV SHITOV

are linearly independent. Also, we have m16 = m17 = 0 directly from the condi-
tion (1) in Theorem 5.6. Therefore, the linear span of the matrices αj ⊗ αj with
5 6 j 6 17 has a zero intersection with L◦, which contradicts to Lemma 10.6.

Special case 2 : The family µ has a non-zero collinear pair.
We can assume m1 = m2 without loss of generality. We are going to reach a

contradiction in a way similar to the special case 1 by constructing a linear subspace
Q of the space Λ as in (3.1) such that:

• the dimension of Q is at least 12,
• the intersection L◦ ∩Q is zero.

We define Q as the span of the set B which includes the following 12 matrices:

(10.2) α16 ⊗ α16, α17 ⊗ α17,

(10.3) α1 ⊗ α1 − α2 ⊗ α2

and also a total of nine of those αj⊗αj for which mj⊗mj are linearly independent,
which is possible by Theorem 7.1. According to Lemma 10.6, there should exist a
non-zero element ψ ∈ L◦ that represents as a linear combination of the matrices
in B. However, every matrix in B except the nine mentioned last have all zeros in
the upper left 6 × 6 block, and hence a linear combination of B can belong to L◦
only if all these nine matrices are given zero coefficients. Also, the matrices (10.2)
do not contribute to the upper right 6× 3 block of L◦, and we get a contradiction
because the upper right 6×3 block of the matrix (10.3) has rank at most one while
every such block for non-zero matrices in L◦ has rank at least two.

Cases 1 and 2 cover all possibilities, so the proof is complete. �

Now we can focus on the option (2) in Theorem 5.6.

Lemma 10.9. If the option (2) in Theorem 5.6 is true, then dim spanµ = 11 and
µ′ = µ, and the family µ is almost split as witnessed by a pair (U, V ) with either

(2A) dimU = 2, dimV = 5,
(2B) dimU = 3, dimV = 4.

Proof. Lemma 10.7 shows that µ′ does not split, and then Lemma 8.6 implies
dim spanµ′ > 11. So we see that

11 > dim spanµ > dim spanµ′ > 11,

in which the first inequality follows from Lemma 10.6. We get

dim spanµ = dim spanµ′ = 11

and hence µ′ = µ. Now we apply Lemma 9.3 to see that µ is almost split, and
it remains to note that the cases (2A) and (2B) cover all the possibilities for an
almost splitting of a family of 6× 6 matrices. �

Now we turn down the assumptions (2A) and (2B) in Lemma 10.9.

Theorem 10.10. The option (2) in Theorem 5.6 does not realize.

Proof. We need to deduce a contradiction from the assumption (2) in Theorem 5.6.
Using Lemma 10.9, we find a non-singular 6× 6 matrix C such that either

• all the matrices in CµC> have the form Φ25, or
• all the matrices in CµC> have the form Φ34,



THE WARING RANK OF THE 3× 3 DETERMINANT 21

where

Φ25 =


∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

 and Φ34 =


∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗


with ∗’s being the placeholders for arbitrary scalars. Since the matrices in CµC>

are all rank-one, any such matrix has all non-zeros concentrated in either the upper
left block (of size 2 × 2 for Φ25 and 3 × 3 for Φ34) or bottom right block (of size
5× 5 for Φ25 and 4× 4 for Φ34). The set of latter matrices is to be called the upper
part of CµC>, and the former matrices are the corresponding lower part.

We proceed in a way similar to Lemma 10.7. We have

CL◦C> ⊆ CΛC> = spanCµC>

with

C =

(
C O6×3

O3×6 I3×3

)
and, in order to deduce a contradiction, we pick an arbitrary basis B of spanµ and
consider the two possible cases separately.

Case 1 : All the matrices in CµC> have the form Φ25.
Using Lemma 6.2, we conclude that there should be at least two upper matrices

in µ which do not belong to B, and Lemma 6.5 shows that at least 5 lower matrices
of µ lie outside B. Therefore, µ contains at least |B|+2+5, which is a contradiction
because |B| = 11 (by Lemma 10.9) and |µ| = 17 (by Definition 10.1).

Case 2 : All the matrices in CµC> have the form Φ34.
An argument as in the case 1 leads to a similar contradiction unless we have

(10.4) dimA1L∗ + dimA2L∗ 6 6,

where A1 is the matrix obtained by taking the first two rows of C, and A2 is the
matrix formed by the last three rows of C. According to Lemmas 6.3 and 6.4, the
inequality (10.4) is only possible if

(10.5) C =

 p1K p2K
ξ γ

p3H p4H


in which K is a rank-two 2× 3 matrix, H is a rank-three 3× 3 matrix, ξ and γ are
unknown 1 × 3 matrices, and p1, p2, p3, p4 are scalars. Since the form Φ34 cannot
invalidate upon any change of the third row of C, as long as the matrix obtained
from C in this way remains non-singular, we can assume that

(10.6) C =

(
p1G p2G
p3H p4H

)
with G being a non-singular 3 × 3 matrix. We remark that the matrix (10.6)
is indeed non-singular, because the condition p1p4 6= p2p3 is both necessary for
the non-singularity of (10.5) and sufficient for the non-singularity of (10.6). An
application of Lemma 4.5 with

b13 = b23 = b31 = b32 = 0, b33 = 1, b11 = p4, b12 = p2, b21 = −p3, b22 = −p1
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reduces the situation to the case when C is block-diagonal with two 3 × 3 blocks.
Then the matrices in µ are products of the form

K1 O3×3

O3×3 K2




∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗




K3 O3×3

O3×3 K4


with fixed matrices K1,K2,K3,K4 of size 3 × 3. We note that the columns of
the upper right block of all the matrices in µ span lie in a subspace of dimension
at most one (namely, this subspace is K1 times the third coordinate vectors in
C3). This corresponds to the fact that the upper middle blocks of the matrices
in Λ have their columns in a fixed subspace of dimension at most one, and, in
view of Assumption 3.2, the matrices in (2.2) satisfy the same property. This is a
contradiction because the upper middle blocks of (2.2) can be of rank two.

As explained in the first paragraph, the cases 1 and 2 cover all possibilities. �

Theorems 10.8 and 10.10 invalidate both the options (1) and (2) in Theorem 5.6,
so we deduce the correctness of Theorem 2.2 from Theorem 5.6.

11. Concluding remarks

We showed that the symmetric and partially symmetric ranks of the tensor
corresponding to the 3 × 3 determinant are equal to 18. However, we did not
manage to generalize our approach to compute the rank of this tensor.

Question 11.1. What is the rank of the tensor of the 3× 3 determinant?

The results in the above mentioned papers [10, 11] imply that this rank is either
17 or 18. If the correct value is 17, then the 3 × 3 determinant gives a small
counterexample to a recently disproved conjecture of Comon [34, 37] and disproves
the partially symmetric version of this conjecture, which remains open [5, 17, 34].
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