
 

Neural Network based Classification of Flowers 

using Transfer Learning 

Abhishek 

School of Computing Science and 

Engineering  

Galgotias University 

Greater Noida, India 

abhishek@galgotiasuniversity.edu.in 

Abstract— One of the classical problems in the field of 

computer vision and machine learning and subsequently deep 

learning is image classification. While Deep Learning solves the 

much difficult hurdles like feature extraction and presents us 

with better optimizations like gradient descent and Adam 

optimizer, most deep learning models still need a lot of raw 

computational power to train models on local Graphical 

Processing Units (GPUs) or Tensor Processing Units (TPUs) in 

the cloud. All of this computational power is not readily 

available in all environments and systems and hence the concept 

of pre-trained models can help to reduce training time by a huge 

margin. Initial models get trained on large array of GPUs and 

do feature extraction. The classification part is for the end-user 

to customize in accordance to the problem at hand and can be 

completed in very less time.  

We tackled the multi-class classification botanical problem 

of identifying flowers of 5 types, namely, Sunflower, Rose, 

Dandelion, Daisy, and Tulip. The feature extraction part is done 

with the model (Google’s Inception-v3) and fully connected 

softmax layers were trained on local machine on a Nvidia 

GeForce GTX 950 (with CUDA activated) within 30 minutes 

time and total steps/epochs were 4000 only. The total number of 

training images is 3,500 (approx.). The finished model produced 

results with final test accuracy as 91.9% on new images (N=664). 

Keywords—classification, flowers, feature extraction, pre-trained 

models. 

I. INTRODUCTION 

Convolutional neural networks (CNNs) opened a door to 
a new era of classification. Multi-class classification of the 
order of couple dozen classes is now possible. Using existing 
CNN model of layering can be efficient as well as robust in 
classification tasks, but requires a lot of data and 
computational power to classify images with higher degree of 
accuracy. This hardware include GPUs, FPGAs, and ASICs 
like Google’s TPU and IBM TrueNorth [1]. Despite the 
attractive qualities of CNNs, and despite the relative 
efficiency of their local architecture, they have still been 
prohibitively expensive to apply in large scale to high-
resolution images. The feature extraction task taken at hand in 
this paper is done by using Inception-v3 [2]. 

The network training process is then relatively simpler with a 
GPU and the final model for a custom use case is ready after 
training on custom classes for approx. 30 min to 1 hr. This 
paper does it for five flowers’ 3.500 images with each class 
having approx. 700 images but it can be extended to any multi-
class classification problem with no additional overhead. 

II. RELATED WORKS 

In [3], Noval general K nearest neighbor classifier 

GKMNC[4] was used for visual classification. Sparse 

representation based method[5] for learning and deriving the 

weights coefficients and FISTA[6] was used for 

optimization. CNN-M[7], a pretrained CNN was used for 

image features extractions then marginal PCA[8] is applied 

to reduce the dimension of the extracted features. In[9], Alex 

net[10] model, a deep neural network is used to learn scene 

image features. During the training phase, series of 

transformation such as convolution, max pooling, etc are 

performed to obtained image features. Then two classifier 

SVM[11] classifier and Softmax[12] classifier are trained 

using extracted features from the AlexNet model. In[13], 

Spatial pyramid pooling was used in CNN to eliminate the 

fixed size input requirements. for this new network structure 

SPP-net was used, which can generate a fixed length 

representation regardless of image size. Standard back 

propagation algorithm was used for training, regardless of the 

input image. In[14], Kernalized version of Nave bayes 

Neabour[15] was used for image classification and SVM[11] 

classifier was trained on Bag-Of-Features[16] for visual 

classification. In[17], Extension of the HMAX[18], a four 

level NN has been used for image classifications. The local 

filters at first level are integrated into last level complex 

filters to provide a exible description of object regions. 

In[19], Nearest neighbor classifier[15] was used for visual 

classifications. SIFT[20] descriptor to describe shape, 

HSV[21] values to describe colors and MR filters to describe 

texture were used. 

III. LOGISTICS OF TRANSFER LEARNING 

A. Feature Extraction Task 

One of the most computationally intensive tasks in neural 
network approach is feature extraction. The transfer learning 
model aims to make this task independent of the use case. One 
of the ways it does that is to exhaustively train (primary) a 
custom CNN architecture on millions of images and labels. 

A number of such models are already available e.g. 
AlexNet[22], VGGNet[23], Google LeNet/Inception-v1[24], 
ResNet[25].  

B. Classification Task 

The model is then exported and then subjectively trained 

(secondary) for a given use case. This training will not require 

an elaborate dataset, nor will it require powerful 

computational hardware. The model does not perform feature 

extraction again during this secondary training but trains and 

stores weights for new use case among the softmax layers. 

 

 

Fig. 1. Transfer Learning Pipeline. 



IV. INCEPTION-V3 LAYERS [2] 

Convolution layer - The model is looking for features in 

the picture, however, it does not know where they are, so it 

tries the filter everywhere. The filter is simply a mathematical 

vector, where it multiplies the value in the image (from 0 to 

1) with the value in the convolution. 

 

 

Fig. 2. Convolution process schematic. 

Pooling layer — AvgPool and MaxPool – Reduce the 

sample size while keeping mathematical integrity of the data. 

 

 

Fig. 3. Pooling sublayers schematic. 

AvgPool sublayer - Average pooling takes the values to 

process, and takes the average of the values. It adds up all the 

values, and divides them by the number of values. 

MaxPool sublayer - Max pooling takes the values and 

replaces it with the largest value. 

Concatenate layer - combine the results at the end to 

create a new sample. This step involves dropping all the 

negative values. We want to filter out the irrelevant parts of 

the image, so whenever a pixel’s value is less than 0, it’s 

swapped out for a 0. Inception-v3 uses ReLu (Rectified 

Linear Units). 

 

Fig. 4. Concatenate process schematic. 

V. DATASET  

Inception-v3 is trained for the ImageNet [26] Large Visual 
Recognition Challenge using data from 2012. ImageNet has 

over 14 million images from over 1000 classes and is 
extensively used for computer vision research. 

For this paper, 3,670 images are used to train the fully-
connected and softmax layers over 4000 epochs. 

All images need to be of clear resolution greater than 
800x600 for better results. Images also need to be at least 16-
bit coloured. The images can be scraped from google images 
using chrome extensions or python scripts written for the 
same. 

Each image is resized to 299 x 299 x 3 dimensions because 
to train a CNN using transfer learning, image input size to 
CNN must be same as the input size given to the original 
model [2].  

TABLE I.  DATASET CLASS LABEL DISTRIBUTION 

Class Label N = No. of images in dataset 

Daisy 633 

Dandelion 898 

Roses 641 

Sunflowers 699 

Tulips 799 

Total 3,670 

a. All images sourced from open-license sources on Google Images. 

 

VI. TRAINING METHODOLOGY 

The learning method used in this experiment is supervised 

learning [27]. The network is trained with stochastic gradient 

utilizing the TensorFlow [28] distributed machine learning 

system using a Nvidia GeForce 950 GTX GPU with batch 

size 100 for 4,000 epochs. Training set has 90 percent images 

and Evaluation set has two subsets, test subset has 10 percent 

of images and validation subset has 10 percent of images, 

both amounting to approx. 367 images each. Training 

learning rate = 0.01, training interval = 10. These 

hyperparameters are customizable in retrain.py file.  

Training accuracy was 89.7% at the beginning of the training 

process and starts to increase, after completion of all training 

steps it reached to 98.0%. Validation accuracy was 75.8% 

during initiation of training and validation process and final 

validation accuracy was 93.0%. Final training accuracy was 

91.9. 

VII. RESULTS AND COMPARISONS 

The model is able to classify class label images with high 

precision.  

 

Below image of dandelion tested produces the following 

results –  

 

Evaluation time (1-image): 1.387s 

dandelion (score=0.99877) 

daisy (score=0.00097) 

tulips (score=0.00018)  

sunflowers (score=0.00007)  

roses (score=0.00001) 

 



 

Fig. 5. Sample test image (Dandelion class). 

Another image test results – Evaluation time (1-image): 

1.231s, sunflowers (score=0.93991), dandelion 

(score=0.03731), daisy (score=0.01330), tulips 

(score=0.00671), roses (score=0.00277). 

 

Fig 6. Sample test image (Sunflower class) 

CONCLUSION 

In this paper, the classification layers (fully-connected and 

softmax) of pre-trained Inception-v3 model was re-trained 

successfully by implementing transfer learning technique. The 

model yields a final test accuracy of 91.9 percent on 5 classes 

of  flower images dataset. Further this model can be used to 

retrain for much more classes within small time and with 

reasonable computational hardware to classify plants and 

other flowers’ images as well as other objects. 

REFERENCES 

[1] Y. LeCun, "1.1 Deep Learning Hardware: Past, Present, and Future," 
2019 IEEE International Solid- State Circuits Conference - (ISSCC), 
San Francisco, CA, USA, 2019, pp. 12-19. 

[2] Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and 
Jonathon Shlens and Zbigniew Wojna, “Rethinking the Inception 
Architecture for Computer Vision” in 1512.00567- arXiv, 2015 

[3] Q. Liu, A. Puthenputhussery, and C. Liu, Novel general knn classifier 
and general nearest mean classifier for visual classification," in Image 
Processing (ICIP), 2015 IEEE International Conference on. IEEE, 
2015, pp. 1810-1814 

[4] J. M. Keller, M. R. Gray, and J. A. Givens, A fuzzy k-nearest neighbor 
algorithm," IEEE transactions on systems, man, and cybernetics, no. 4, 
pp. 580-585, 1985. 

[5] J. A. Tropp, Greed is good: Algorithmic results for sparse 
approximation," IEEE Transactions on Information theory, vol. 50, no. 
10, pp. 2231-2242, 2004. 

[6] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding 
algorithm for linear inverse problems," SIAM journal on imaging 
sciences, vol. 2, no. 1, pp. 183-202, 2009. 

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of 
the devil in the details: Delving deep into convolutional nets," arXiv 
preprint arXiv:1405.3531, 2014. 

[8] I. Jolliffe, Principal component analysis," in International encyclopedia 
of statistical science. Springer, 2011, pp. 1094-1096. 

[9] J. Sun, X. Cai, F. Sun, and J. Zhang, Scene image classification method 
based on alex-net model," in Informative and Cybernetics for 
Computational Social Systems (ICCSS), 2016 3rd International 
Conference on. IEEE, 2016, pp. 363-367. 

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification 
with deep convolutional neural networks," in Advances in neural 
information processing systems, 2012, pp. 1097-1105. 

[11] C. Cortes and V. Vapnik, Support-vector networks," Machine learning, 
vol. 20, no. 3, pp. 273-297, 1995. 

[12] N. M. Nasrabadi, Pattern recognition and machine learning," Journal 
of electronic imaging, vol. 16, no. 4, p. 049901, 2007. 

[13] K. He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep 
convolutional networks for visual recognition," in European 
conference on computer vision.Springer, 2014, pp. 346-361. 

[14] T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, The nbnn kernel," 
in Computer Vision (ICCV), 2011 IEEE International Conference on. 
IEEE, 2011, pp. 1824-1831. 

[15] K. P. Murphy et al., Naive bayes classifiers," University of British 
Columbia, vol. 18, 2006. 

[16] Z. S. Harris, Distributional structure," Word, vol. 10, no. 2-3, pp. 146-
162, 1954. 

[17] C. Theriault, N. Thome, and M. Cord, Extended coding and pooling in 
the hmax model," IEEE Transactions on Image Processing, vol. 22, no. 
2, pp. 764-777, 2013. 

[18] M. Riesenhuber and T. Poggio, Hierarchical models of object 
recognition in cortex," Nature neuroscience, vol. 2, no. 11, p. 1019, 
1999. 

[19] M.-E. Nilsback and A. Zisserman, A visual vocabulary for flower 
classification," in Computer Vision and Pattern Recognition, 2006 
IEEE Computer Society Conference on, vol. 2. IEEE, 2006, pp. 1447-
1454. 

[20] D. G. Lowe, Object recognition from local scale-invariant features," in 
Computer vision, 1999. The proceedings of the seventh IEEE 
international conference on, vol. 2. Ieee, 1999, pp. 1150-1157. 

[21] A. R. Smith, Color gamut transform pairs," ACM Siggraph Computer 
Graphics, vol. 12, no. 3, pp. 12-19, 1978. 

[22] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). 
ImageNet Classification with Deep Convolutional Neural Networks. 
Neural Information Processing Systems. 25. 10.1145/3065386. 

[23] Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep 
Convolutional Networks for Large-Scale Image Recognition. arXiv 
1409.1556. 

[24] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. 
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper 
with convolutions,” 2015 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Jun. 2015. 

[25] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for 
Image Recognition," 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778. 

[26] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: 
A large-scale hierarchical image database," 2009 IEEE Conference on 
Computer Vision and Pattern Recognition, Miami, FL, 2009, pp. 248-
255. 

[27] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine 
learning: A review of classification techniques," Emerging artificial 
intelligence applications in computer engineering, vol. 160, pp. 3-24, 
2007. 

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. 
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. 
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, 
J. Levenberg, D. Mane,´ R. Monga, S. Moore, D. Murray, C. Olah, M. 
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. 
Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War- ´ den, M. 
Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale 
machine learning on heterogeneous systems, 2015. Software available 
from tensorflow.org 

 

  


