
Working Draft

Page 1 of 10

Global density clustering

Scott Cohen

This paper presents Global Density Clustering, (GDC), an algorithm that has several major advantages

over the most popular existing clustering algorithms: (1) No parameters are chosen at the outset of the

function; rather, the user can control the desired resolution as clustering proceeds. (2) GDC is efficient

enough to work on a large dataset even when there are a sizable number of features. It is O(MN log N)

where M is the number of features, i.e. the dimension, and N is the number of data points, i.e. the dataset

size. It is suitable for big data. (3) GDC has the advantage of the powerful and intuitive definition of

clusters as: points within a cluster are closer than distance dist to their nearest neighbor in the cluster (dist

is not picked at the outset but rather that is chosen as the algorithm is progressing) and all points outside

the cluster are further than dist from any point in the cluster. (4) GDC supports variable density without

the plethora of special data structures such as HDBSCAN needs. (5) Other advantages are described. An

essential reason that GDC has these advantages is it searches for and considers points whose nearest

neighbor are furthest apart before searching for those that are closer together. It is a top-down or “global”

consideration of distances that other density algorithms do from a bottom-up or “local” view. Other novel

approaches to the main problems of clustering such as noisy backgrounds are described.

I. INTRODUCTION
All clustering algorithms have issues. According to the Impossibility Theorem for clustering, there is no

best clustering algorithm [1]. Multiple valid meaningful clusters can be constructed from the same data.

See section 3.2 in [2]. This paper, however, proposes an algorithm that has many advantages compared to

the most popular existing choices.

[3] is a comprehensive survey of clustering algorithms with a table that tabulates the strengths of many

clustering algorithm on 7 aspects: time complexity; scalability; handles large-scale data; handles high

dimensional data; suitable shape of cluster; sensitive to sequence of inputting data; sensitive to noise and

outliers. Large-scale data includes the issues of the 4 Vs: volume, velocity, variety, and incomplete

veracity.

There are also, however, other issues that arise for some but not all clustering algorithms. Some of these

are: whether parameters need to be chosen before the algorithm runs especially if the parameters are

difficult to choose and the results are sensitive to that choice; whether the algorithm is easily explainable

especially in regulated fields since a person oversees the result; how well does the algorithm handle

streaming of a large update of data; does it handle categorical data; does it have unusual data structures

that take time to construct, interpret, and explain.

The following comparisons touch on the above issues and are organized by discussing them in the context

of the most well-known and popular current clustering algorithms.

There are many disadvantages of k-means clustering that do not occur with GDC. With GDC:

• There is no equivalent of k, let alone an arbitrary choice of k. In fact, no parameters are chosen at

the outset of the algorithm; as the algorithm progresses, the user has the option to stop it when

user likes the clusters found thus far. The user decides when the resolution is right. A

Working Draft

Page 2 of 10

suggestion to stop is made when nearest neighbors get much closer together than before. This

is the GDC solution to one of the most difficult problems in clustering. See section 3.3 in [2].

• Many kinds of clusters are captured that k-means misses even in the simplest of situations such

as in 2-dim let alone in higher dimensions. See section 3.1, figure 5 in [2] for one example.

• There is no need to worry whether the clusters are roughly spherical as with k-means. See table

22 in [3].

• All this is efficiently supported in an arbitrary number of dimensions.

• It is suitable for big data with or without any sampling. The entire (big) database can be

efficiently clustered.

• There is no concern about sensitivity to an initial choice of centroids.

Perhaps the biggest advantage of k-means is that it is fast: O(tMN) where M is the number of features, N

is the dataset size, and t is the number of iterations of the k-means algorithm. Algorithmically, global

density clustering is not far behind if t is at least slightly bigger than log N which is not unreasonable.

Global density clustering is O(MN log N) so the comparison depends on t versus log N. Sort routines

even on big data are so highly optimized and log N even for big data is probably somewhat smaller than

40. So, the comparison of runtimes is reasonable.

Although global density clustering is, as its name suggests, a density algorithm, it does not suffer from

some of the disadvantages of other density algorithms such as DBSCAN, OPTICS, and HDBSCAN. With

GDC:

• There is no need or use for parameters min pts or epsilon let alone any arbitrary choice of them as

with DBSCAN and OPTICS.

• Clusters are caught that would be missed because of the arbitrary choice of epsilon as with

DBSCAN and OPTICS, especially in higher dimensions.

• The worst-case runtime is better than DBSCAN, OPTICS, HDBSCAN which are worse than

O(N log N). See [4]. It is O(MN log N) where M is the number of features (i.e. dimensions)

and N is the number of points in M-dim (i.e. the dataset size). This is the difference between

practical and for the worst-case situation prohibitively intolerable as with DBSCAN, OPTICS

and HDBSCAN.

• There is no need or use for a dendrogram as with OPTICS.

• There is no need or use for a minimum spanning tree, cluster hierarchy, condensed tree or any

other special purpose structures that take time to construct, interpret, and explain as with

HDBSCAN.

• We have easy explanations of what the algorithm is doing unlike HDBSCAN.

Density algorithms all have a major benefit in their intuitive definition of the clusters that are uncovered,

and the arbitrary cluster shapes supported. Likewise, GDC has those benefits. GDC definition of a cluster

is that points are within a cluster if they are closer than distance dist to their nearest neighbor in the cluster

and that all points outside the cluster are further than dist from any point in the cluster. (The distance dist

is not picked at the outset but rather that is chosen as the algorithm is progressing.) In addition, GDC has

the advantages described above; they are significant.

Hierarchical clustering has some serious performance disadvantages. Regarding GDC:

• GDC is exponentially faster. It is O(MN log N) where M is the number of features (i.e.

dimensions) and N is the number of points in M-dim (i.e. the dataset size).

• GDC only needs two calls to sort the data per feature and one of them nearly always exists

anyway because it'll be a primary or secondary index.

Working Draft

Page 3 of 10

Until GDC, the benefits of hierarchical clustering were more theoretical than practical because of its

runtime performance.

In general, choosing such parameters such as k, epsilon, min pts, etc. is largely a guessing game. At best

they indicate some a priori knowledge such as there are 10 digits for the MNIST dataset, so we say for k-

means that there are 10 clusters at the outset of the algorithm. But choosing these parameters affect the

resulting clustering which defeats the exploratory advantage of clustering algorithms. We are affecting the

result before we know what the best choice for clusters is.

In general, it would be useful to avoid all these a priori choices which can affect the outcome before we

start. It is valuable to be easy to explain. It is also very valuable to be usable for big data.

II. GLOBAL DENSITY CLUSTERING
The approach taken in this paper is, first, completely solve the problem when each data point is a scalar

i.e. just a single real number and then, second, build up the solution to when each data point is a M

dimensional point where M is the number of features of the data.

The complete solution of the 1-dimensional data point used here is based on the observation that the

clusters along a line with the N points are simply bounded by the largest of the N-1 intervals that are in

descending order. This view occurs as a result of looking at the global picture and drilling top down.

Although this is a density algorithm in that we look for pockets of points close to each other (usually a

local view) we use top down processing (usually a global view) to find the dense pocket of data points.

Hence, the name of this algorithm.

Let’s say that when we pick the largest interval in one dimension, it is largest_interval_remaining. Then

all, say, k < N data points to the left of largest_interval_remaining are in one group of clusters. Likewise,

all N-k data points to the right of largest_interval_remaining are in a different group of clusters. Every

point in the left group of clusters is further than |largest_interval_remaining| from every point in the right

group of clusters. This procedure then may be, but not necessarily, repeated for one or both the left group

and the right group for second_largest_interval_remaining, and so on.

Now we discuss building up the solution from 1-dim to where each data point is an M dimensional point.

The approach relies on a few observations:

• First, if two points are in the same cluster then they should be in the same cluster in each

projection onto an axis (even though the reverse is not necessarily true);

• Second, in M-dim space, if the distance is dist between two points then the projection onto at

least one axis is ≥ dist/M; otherwise the M lengths would add up to less than dist when in L1

norm which is a contradiction.

• Third, the minimum distance between points of different clusters is, in L1 norm,

∑|largest_interval_remaining| whereas the maximum distance between two nearest neighbors is

∑|second_largest_interval_remaining| which can be much smaller.

Distance is in L1 norm for convenience of analysis; similar situations occur for L2 norm as well as other

norms. Also, the axes could be any M independent vectors although we simply choose the orthogonal

coordinate axes so that their projection onto that axis is just selecting its coordinate of the M coordinates.

An essential reason that GDC has these advantages is it searches for and considers points whose nearest

neighbor is furthest apart before searching for those that are closer together. It is a top-down or “global”

consideration of distances that other density algorithms do from a bottom-up or “local” view.

Working Draft

Page 4 of 10

A careful reading of the above description indicates that GDC is a divisive hierarchical algorithm as well

as a density algorithm. As a result of the top-down consideration of clusters, variable density of the

clusters is handled easily: clusters defined earlier in the top-down processing have lower density than

those clusters that are defined later.

GDC handles streaming data updates by collecting as much of the new data being streamed into memory

of a single computer where it can sort it fast. Then GDC merges the sorted updates into the existing data

which is also sorted. This is simply another merge iteration of the mergesort used by GDC. During this

merge, nearest neighbor distances are updated so that the top-down processing of defining clusters can be

repeated. But since the sorting is the reason that time complexity is O(MN log N) and it is done as just

mentioned, it will be practical for GDC to repeat defining clusters based on the new information of

nearest neighbors. In this way, streaming data fits naturally into the GDC algorithm.

Noisy data is particularly problematic for many algorithms including GDC. Distinguishing outliers from

noise is very difficult. Another example of a problem is where noise causes two clusters that should be

separate to be confused with a single cluster. DBMAC and DBMAC II [5] approaches the problem of a

noisy background (even 80%) with multi-scale analysis. GDC considers two alternatives to multi-scale

analysis.

Both approaches by GDC to handle noise take advantage of the step where GDC projects the dataset onto

each 1-dimensional axis. At that time, GDC can insert code to deal with noise in 1-dim space. The heavy-

handed code to deal with noise removal in 1-dim space is Fast Fourier Transforms (FFT). In particular,

1. FFT the 1-dim projections of the dataset,

2. Remove higher frequencies just as if denoising an audio signal

3. Do the inverse FFT back from frequency space to the 1-dim projection

4. Remove the data points in the 1-dim projection that are not in the result of the inverse FFT

5. Remove the M-dimensional points that projected onto those points in step 4.

6. Continue with GDC processing.

FFT is O(N log N) time complexity so the impact on runtime depends on how many axes, one or more,

the above steps are done.

A less heavy-handed approach with much faster time complexity is to simply subtract the average density

from the 1-dim projections of the dataset, In particular,

1. Set avg_density to the range of values on the 1-dim divided by N

2. Pick at random, uniform distribution, points on this axis with a probability of avg_density.

3. Remove the points in 1-dim

4. Remove the M-dimensional points that projected onto those points in step 3.

5. Continue with GDC processing

For this less heavy-handed approach, it is important to note that no assumption of constant density within

the cluster is assumed. Cluster density is irrelevant. Rather the assumption is of homogenous density of

the average amount of background noise. This might be a more realistic restriction. Even that assumption

might be ameliorated by treating different regions of the dataset separately.

The only step that is not O(MN) in all the above for GDC is a sort of the dataset on each feature and

possibly a FFT on one or more 1-dim axes; even for the huge datasets of big data this is not prohibitive.

Therefore, it is not an order O(N2) algorithm. In the code for this paper, mergesort is used because of its

excellent performance on big data. All other processing of data is done with sequential passes over the

Working Draft

Page 5 of 10

data so only sequential disk IO is necessary and that results in the best performance for runtime especially

for big data.

III. WHAT IS A COMPLETE CLUSTERING SOLUTION?
We define a complete clustering solution in any dimensional space to be a partition of data points into

clusters of 1 or more data points that satisfy two properties:

For some number dist, where v1, v2 are two data points (i.e. vectors), for all v1 in one cluster we can find

a partition into one or more sets of data points where

(*) if there is more than one data point v1,vk in the cluster then there exists a sequence of points v_i

starting at v1 and ending at vk all in that cluster, |v_iPlus1 - v_i| < dist;

(**) all v2 in a different cluster, |v1-v2| ≥ dist

Note that this paper uses the L1 norm because it is easier to analyze in this situation than the L2 norm. So

if dist is the distance between v1 and v2, dist = ∑ |v1[axis_ndx]- v2[axis_ndx]|

There is a choice of clusters that satisfies properties (*) and (**) and for a given dist it is unique. The

argument is for each point A: add all points to the cluster that are within distance dist of A; keep repeating

the previous step for each point in the cluster until either all points in the entire dataset are in the cluster

or not. This satisfies property (*). If not all points are in the cluster containing point A then all the

remaining points are distance ≥dist from all points in the cluster which is property (**) Now we can

repeat the above steps by finding a cluster that is distinct from the cluster containing point A.

In order to get a little more understanding, consider that as dist increases, clusters get larger and there are

fewer clusters. The largest dist can be is the diameter of the dataset in RM. As dist decreases the clusters

get smaller and eventually there are N clusters where each is an isolated point like an outlier. The smallest

dist can be is the smallest interval which can be close to zero.

So, letting dist start out as the diameter or larger of the dataset in RM, we start top-down from a global

view with one cluster and as dist gets smaller when we set it to the largest remaining distance between

two points. We iteratively apply the first step to either the left group of clusters or to the right group of

clusters.

We continue decreasing dist until the next interval is a dramatic drop in size (the ratio is tiny) or until the

user is satisfied with the clusters found thus far. A dramatic drop in size might indicate that any more

clusters will already be dense enough to form a single cluster. But the user can override this and continue

clustering.

One could think of (*) as a local statement about nearest neighbors in just one cluster and just about its

insides. On the other hand, (**) is basically a global statement about points that are not nearby but far

apart in two clusters i.e. global objects.

Picking the largest interval on an axis may in practice initially pick out the outliers and then will probably

start to divide the data points roughly in half. If so then there will be roughly the number of outliers plus

log(N) repetitions which helps make this an even faster algorithm. Regardless, the worst case runtime is

only O(MN log N).

IV. PSEUDO-CODE FOR COMPLETE SOLUTION IN 1-DIMENSION

Working Draft

Page 6 of 10

First, we show the python pseudo-code for global density clustering in 1-dimension. It is a complete

solution.

Start with a dist > diameter, a cluster containing the entire dataset, and a single axis line.

sorted_N_points = sort the N 1-dim data points that are on that axis

largest_interval_array = sort-in-descending-order(diff-2-consecutive(sorted_N_points))

for interval_ndx in range(N):

 largest_interval_remaining = largest_interval_array[interval_ndx]

 Say largest_interval_remaining is bounded by data points I_L on the left and I_R on the right.

 If I_L and I_R both belong to the same cluster

 and that cluster is bounded by data points C_L on the left and C_R on the right:

 then replace that cluster with the two clusters;

 one, data points in [C_L, I_L] and, two, data points in [L_R, C_R]

 If largest_interval_array[interval_ndx+1] is much smaller than largest_interval_remaining:

 then ask the user whether to quit

 reduce dist to dist= largest_interval_array[interval_ndx]

 /* when done the clusters satisfy (*) and (**) */

V. THE APPROACH FOR MORE THAN 1-DIM DATA POINTS
For simplicity, let’s start with M=2. Let 1-dim point Ax be the 2-dim point A projected onto the x-axis

and 1-dim Ay be the point A projected onto the y-axis. Likewise, for 2-dim point B and 1-dim points Bx

and By. Then either (remember that M=2 for now)

|Bx – Ax| > |B – A|/M

where the left side of the inequality is distance along a 1-dimensional interval bounded by 1-dim points

Ax and Bx and the right side of the inequality is an M-dim distance along a M-dimensional line segment

bounded by M-dim points A and B; or

|By – Ay| > |B – A|/M

for the 1-dim points Ay and By. This either/or inequalities is because of the L1 norm where

|B – A| = |Bx – Ax| + |By – Ay|

Define

Kdist is the cluster in M-dim containing A for distance dist,

Kdist
x is the cluster of the projection of Kdist onto the x-axis, in 1-dim containing Ax for distance

dist.

By the definition of Kdist
x, for every axis x,

(**) if Ax ϵ Kdist
x
 and Bx is not then |Ax - Bx| > dist.

Working Draft

Page 7 of 10

(*) if Ax and Bx ϵ Kdist
x and Ax and Bx are nearest neighbors then |Ax - Bx| < rx*dist where

rx= (second_largest_interval_remaining / largest_interval_remaining).

Notice that, for each axis, rx ≤ 1 because second_largest is always smaller or equal to largest.

Figure 1.

Just in case the figure is not clear:

Ax + dist = Bx = B’x; B’’x = Bx + 2*dist; Ay = By = B’’y; B’y = By + 2*dist

The entire dataset in figure 1 is four M-dim points where M=2, {A, B, B’, B’’}. Kdist
x is that 1-dim cluster

that contains Ax; Kdist
y is that 1-dim cluster that contains Ay; 1-dim clusters on x-axis are {Ax, Bx},

{B’’} and on y-axis are {Ay}, {B’y}; the M-dim clusters are {A, B}, {B’}, {B’’}; inverse(Kdist
x) = {A, B,

B’}; inverse(Kdist
y) = {A, B, B’’}

For simplicity say M = 2. Consider the set of dataset points K’ in M-dim space

K’ = {∩ inverse(Kdist
x)}

where inverse() takes a set of 1-dim points Kdist
x and maps them to the set of M-dim points that project

onto Kdist
x.

The subset K’ is in fact a solution: it satisfies (**) because

If A ϵ {∩ inverse(Kdist
x)} where the intersection is over every axis and B is not in {∩

inverse(Kdist
x)} then

B ϵ {ꓴ {inverse(Kdist
x)}complement}

for at least one axis x, B ϵ {inverse(Kdist
x)}complement.

B ϵ {set of all M-dim points Z s.t. |Zx - Ax| < dist} complement.

For at least one axis x, |Bx - Ax| > dist

which implies |B - A|> dist. Also, K’ satisfies (*) because

for every axis x, |Bx - Ax| < dist where dist will be some largest_interval_remaining; so,

|Bx - Ax| < rx*dist where rx*dist will be the second_largest_interval_remaining and summing

∑ |Bx - Ax| < ∑ rx*dist

A B B’’

B’

Working Draft

Page 8 of 10

|B - A| < dist

if

∑ rx < 1.

But this is a reasonable inequality to expect at some time as we reduce distance dist in descending order

of largest_interval_remaining. In English, it says that if the density decreases enough on all the axes (even

if, most likely, by different amounts) then we can make a cluster for that distance that is a complete

solution.

If distance dist does not satisfy ∑ rx < 1 then an alternative approach is to increase dist slightly to dist’ so

that Kdist’
x does satisfy (*).

Note that when we include a new M-dim point the maximum distance between nearest neighbors in the

same cluster might decrease along one or more axes and thus in M-dim space as well. Yet the partition

cluster that contains point A will still obey (*). Similarly, the minimum distance between two clusters

may increase along one or more axes and thus increase in M-dim space. Yet the partition into clusters will

still obey (**).

An outline of the algorithm is in the section below. This approach is a complete solution that always

satisfies (*) and (**). The algorithm is O(MN log N).

VI. PSEUDO-CODE FOR MORE THAN 1-DIMENSION

Now, we show the python pseudo-code for global density clustering in M-dimensions and M axes

axes[0],… axes[M-1]. Note how it builds on the solution in 1-dimension axis for each axis.

for axis_ndx in range(M):

 Get all clusters on the line axes [axis_ndx] for distance dist that is one of the largest intervals

 using the 1-dimension solution.

 Say the clusters are D1, D2, … Dn’ where n’ is

 largest_interval_remaining[axis_ndx][n’ – 1] = dist >

largest_interval_remaining[axis_ndx][n’]

 sum_all_second_largest += largest_interval_remaining[axis_ndx][n’]

 which happens to be the second_largest_interval_remaining[axis_ndx]

 Replace each cluster Ci with the group of clusters {{Ci ∩ D1}…, {Ci ∩ Dn’}}

 reduce dist to dist= largest_interval_array[interval_ndx]

 /* when done the clusters satisfy (*) and (**) */

if sum_all_second_largest < dist:

 adjust dist and repeat the above loop until either this inequality holds or

 we decide there is no clear-cut further division into clusters.

When implemented efficiently, this algorithm is O(MN log N).

Working Draft

Page 9 of 10

VII. RESULTS AND COMPARISON WITH OTHER CLUSTERING

ALGORITHMS
We investigate how well global density clustering does with MNIST images of digits: (1) suggesting the

correct number of clusters, ten for the digits; (2) accurately predicting the label of a test digit by seeing

which cluster we assign the test digit to and seeing the label that we assigned to that cluster during the

training phase. The label assigned to that cluster was the plurality of the labels of all the digits in that

cluster during training phase. We then do the same with k-means and DBSCAN and compare the results.

We can even compare the results to the accuracy of supervised learning models such as kNN,

XGBOOST, etc. All this is work that is in progress.

VIII. FUTURE INVESTIGATIONS
An important action is to try different datasets. MNIST is the “hello world” dataset for machine learning

algorithms but clustering has more practical uses such as in market segmentation. Such datasets would

provide real-world use and comparison of the global density algorithm.

The second item to do is to compare against other “all nearest neighbor” algorithms in addition to the

above comparison with k-means and DBSCAN. For example, [6] Amitabh Varshney, is orders of

magnitude faster than alternatives. It is important to see how well global density does in comparison

especially on big data.

Of course, there are many other directions to explore. For example, exploring norms other than L1 would

be nice. More important is exploring Hamming distance for categorical clustering. An important study

will be the impact of GDC ideas on other cluster algorithms and cluster methods (a distinction from [5]).

It will be informative to see how it fits in with the clustering of cluster algorithms by their clustering of 12

datasets. See section 3.5 in [2].

But most important is that future investigation must try clustering big data to analyze its performance. We

would learn the limits of M and N for not being prohibitively costly in runtime performance. Large scale

clustering is where we cluster millions of data points with thousands of features. Gene clustering,

clustering of earth science data and other extremely valuable applications have an M of order 100 and an

N of order 100,000 and requires support for large scale clustering. See section 4.3 in [2]. This is where

GDC may have a particularly significant impact.

IX. REFERENCES

[1] Kleinberg J An impossibility theorem for clustering NIPS 15 MIT Press 463-470 (2002).

[2] Jain, A, Data clustering: 50 years beyond K-means, Pattern Recognition Letters

Volume 31, Issue 8, 1 June 2010, Pages 651-666 https://doi.org/10.1016/j.patrec.2009.09.011

[3] Xu, D., Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data. Sci. 2, 165–193

(2015). https://doi.org/10.1007/s40745-015-0040-1

[4] Schubert E., Sander J., Ester M., Kriegel H. P. DBSCAN Revisited, Revisited: Why and How You

Should (Still) Use DBSCAN ACM Transactions on Database Systems, Vol. 42, No. 3, Article 19. 2017.

[5] T. Zhang and B. Yuan, "Density-Based Multiscale Analysis for Clustering in Strong Noise Settings

With Varying Densities," in IEEE Access, vol. 6, pp. 25861-25873, 2018.

https://www.sciencedirect.com/science/journal/01678655
https://www.sciencedirect.com/science/journal/01678655/31/8
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1007/s40745-015-0040-1

Working Draft

Page 10 of 10

[6] Sankaranarayanan, J., Samet, H. A fast all nearest neighbor algorithm for applications involving large

point-clouds Computers & Graphics, 2, 157-174 (2007).

[7] Xu R, Wunsch D Survey of clustering algorithms. IEEE Trans Neural Netw 16:645–678 (2005).

