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Abstract. The aim of this paper is to introduce and characterize the concepts
of I-open sets and their related notions in ideal minimal spaces.

In [6], Popa and Noiri introduced the notion of minimal structure which is a

generalization of a topology on a given nonempty set. And they introduced the

notion of m-continuous functions as a function defined between a set with a minimal

structure and a topological space. They showed that the m-continuous functions

have properties similar to those of continuous functions between topological spaces.

Let X be a topological space and A ⊂ X. The closure of A and the interior of

A are denoted by Cl(A) and Int(A), respectively. A subfamily m of the power set

P (X) of a nonempty set X is called a minimal structure [6] on X if ∅ and X belong

to m. By (X,m), we denote a nonempty set X with a minimal structure m on

X. The members of the minimal structure m are called m-open sets [6], and the

pair (X,m) is called an m-space. The complement of an m-open set is said to be

m-closed [6]. The concept of ideals in topological spaces has been introduced and

studied by Kuratowski [1] and Vaidyanathasamy [8]. An ideal I on a topological

space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I and B

⊂ A implies B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a minimal

space (X,m) with an ideal I on X and if P(X) is the set of all subsets of X, a

set operator (.)∗m: P(X) → P(X), called the local minimal function [7] of A with

respect to m and I, is defined as follows: for A ⊂ X, A∗
m(m, I) = {x ∈ X|U∩A /∈ I

for every U ∈ m(x)}, where m(x) = {U ∈ m|x ∈ U}. The set operator m Cl∗(.)

is called a minimal ∗-closure and is defined as m Cl∗(A) = A ∪ A∗
m for A ⊂ X.

The minimal structure m∗(I,m) = {U ⊂ X | m Cl∗(X \ U) = X \ U} called the

∗-minimal structure is finer than m and m Int∗(A) denotes the m∗-interior of A in

m∗(m, I).
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1. Preliminaries

Definition 1.1 ([2]). Given A ⊂ X, the m-interior of A and the m-closure of

A are defined by m Int(A)= ∪{W/W ∈ m,W ⊂ A} and m Cl(A) = ∩{F/A ⊂
F,X \ F ∈ m}, respectively.

Theorem 1.2 ([2]). Let (X,m) be an m-space, and A, B subsets of X. Then

x ∈ m Cl(A) if and only if U ∩ A ̸̸= ∅ for every U ∈ m containing x. And the

following properties hold:

(i) m Cl(m Cl(A)) = m Cl(A).

(ii) m Int(m Int(A)) = m Int(A).

(iii) m Int(X \ A) = X \ m Cl(A).

(iv) m Cl(X \ A) = X \ m Int(A).

(v) If A ⊂ B, then m Cl(A) ⊂ m Cl(B).

(vi) m Cl(A ∪ B) ⊃ m Cl(A) ∪ m Cl(B).

(vii) A ⊂ m Cl(A) and m Int(A) ⊂ A.

Definition 1.3. A subset A of a minimal space (X,m) is said to be

(i) m-preopen [3] if A ⊂ m Int(m Cl(A)).

(ii) m-semiclosed [4] if m Int(m Cl(A)) ⊂ A

Definition 1.4. A function f : (X,m) → (Y, τ) is said to be m-precontinuous [3]

if the inverse image of every open set of Y is m-preopen in (X,m).

Lemma 1.5 ([7]). Let (X,m, I) be an ideal generalized space and A, B subsets of

X. Then we have the following:

(1) If A ⊂ B, then A∗
m ⊂ B∗

m.

(2) A∗
m = m Cl(A∗

m) ⊂ m Cl(A).

(3) (A∗
m)∗m ⊂ A∗

m.

(4) (A ∪ B)∗m ⊂ A∗
m∪ B∗

m.

2. m-I-open sets

Definition 2.1. A subset A of an ideal minimal space (X,m, I) is said to be m-

I-open if A ⊂ m Int(A∗
m).

The family of all m-I-open subsets of (X,m, I) is denoted by IO(X,m). The family

of all m-I-open sets of (X,m, I) containing the point x is denoted by mIO(X, x).

Remark 2.2. It is clear that m-I-openness and m-openness are independent no-

tions.

Example 2.3. Let X = {a, b, c}, m = {∅, {a}, {b}, X} and I = {∅, {a}}. Then

the set {a} is m-open but not m-I-open.
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Example 2.4. Let X = {a, b, c}, m = {∅, {a}, {b}, X} and I = {∅, {c}}. Then

m Int({a, b}∗m) = m Int(X) = X ⊃ {a, b}. Therefore, {a, b} is an m-I-open set but

it is not m-open.

Proposition 2.5. Every m-I-open set is m-preopen.

Proof. Let A be an m-I-open set. Then A ⊂ m Int(A∗
m) ⊂ m Int(m Cl(A)). There-

fore, A is m-preopen. ¤

The following example shows that the converse of Proposition 2.5 is not true in

general.

Example 2.6. Let X = {a, b, c}, m = {∅, {a}, {b}, X} and I = {∅, {a}}. Then

the set {a} is m-preopen but not m-I-open.

Theorem 2.7. For an ideal minimal space (X,m, I) and A ⊂ X, we have:

(1) If I = {∅}, then A∗
m(I) = m Cl(A) and hence each m-preopen set is m-I-

open set.

(2) If I = P(X), then A∗
m(I) = ∅ and hence A is m-I-open if and only if

A = ∅.

Theorem 2.8. For any m-I-open set A of an ideal minimal space (X,m, I), we

have A∗
m = (m Int(A∗

m))∗m.

Proof. Since A is m-I-open, A ⊂ m Int(A∗
m). Then A∗

m ⊂ (m Int(A∗
m))∗m. Also

we have m Int(A∗
m) ⊂ A∗

m, (m Int(A∗
m))∗ ⊂ (A∗

m)∗ ⊂ A∗
m. Hence we have, A∗

m =

(m Int(A∗
m))∗m. ¤

Theorem 2.9. If {Uα : α ∈ ∆} ⊂ IO(X,m), then
∪
{Uα : α ∈ ∆} ∈ IO(X,m).

Proof. Since {Uα : α ∈ ∆} ⊂ IO(X,m), then Uα ⊂ m Int((Uα)∗m), for every

α ∈ ∆. Thus,
∪

Uα ⊂
∪

(m Int((Uα)∗m)) ⊂ m Int(
∪

(Uα)∗m) ⊂ mInt((
∪

Uα)∗m).

Hence
∪
{Uα : α ∈ ∆} ∈ IO(X,m). ¤

Theorem 2.10. If A ⊂ (X,m, I) is m-I-open and m-semiclosed, then A =

m Int(A∗
m).

Proof. Given A is m-I-open. Then A ⊂ m Int(A∗
m). Since A is m-semiclosed, by

Lemma 1.5 m Int(A∗
m) ⊂ m Int(m Cl(A)) ⊂ A. Thus m Int(A∗

m) ⊂ A. Hence we

have, A = m Int(A∗
m). ¤

Definition 2.11. A subset F of an ideal minimal space (X,m, I) is called m-I-

closed if its complement is m-I-open.

Remark 2.12. For A ⊂ (X,m, I) we have X\(m Int(A))∗m ̸= m Int((X\A)∗m) in

general.
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Example 2.13. Let X = {a, b, c}, m = {∅, {a}, {b}, X} and I = {∅, {a}}.
Then X\(m Int({a}))m = X\{a}∗m = X\∅ = X (∗) and m Int((X\{a})∗m) =

m Int({b, c}∗m) = m Int{b, c} = b (∗∗). Hence from (∗) and (∗∗), we get

X\(m Int(A))∗m ̸= m Int((X\A)∗m).

Theorem 2.14. If A ⊂ (X,m, I) is m-I-closed, then A ⊃ (m Int(A))∗m.

Proof. Let A be m-I-closed. Then B = Ac is m-I-open. Thus, by Lemma

1.5 B ⊂ m Int(B∗
m) ⊂ m Int(m Cl(B)) and Bc ⊃ m Cl(m Int(Bc)). That is,

m Cl(m Int(A)) ⊂ A, which implies that (m Int(A))∗m ⊂ m Cl(m Int(A)) ⊂ A.

Therefore, A ⊃ (m Int(A))∗m. ¤

Theorem 2.15. Let A ⊂ (X,m, I) and (X\(m Int(A))∗m) = m Int((X\A)∗m).

Then A is m-I-closed if and only if A ⊃ (m Int(A))∗m.

Proof. It is obvious. ¤

Definition 2.16 ([7]). A subset A of an ideal minimal space (X,m, I) is said to

be:

(i) m∗-closed if A∗
m ⊂ A.

(ii) m∗-perfect if A∗
m = A.

Theorem 2.17. For a subset A ⊂ (X,m, I), we have

(i) If A is m∗-closed and A ∈ IO(X,m), then m Int(A) = m Int(A∗
m).

(ii) If A is m∗-perfect, then A = m Int(A∗
m) for every A ∈ IO(X,m).

Proof. (i) Since A is m∗-closed and A ∈ IO(X,m), A∗
m ⊂ A and A ⊂ m Int(A∗

m).

Then A ⊂ m Int(A∗
m) and m Int(A) ⊂ m Int(m Int(A∗

m)) ⊂ m Int(A∗
m). Also, A∗

m ⊂
A. Then m Int(A∗

m) ⊂ m Int(A). Hence m Int(A) = m Int(A∗
m).

(ii) Let A be m∗-perfect and A ∈ IO(X,m). We have, A∗
m = A, m Int(A∗

m) =

m Int(A), m Int(A∗
m) ⊂ A. Also we have A ⊂ m Int(A∗

m). Hence we have, A =

m Int(A∗
m). ¤

Definition 2.18. Let (X,m, I) be an ideal minimal space, S a subset of X and x

a point of X. Then

(i) x is called an m-I-interior point of S if there exists V ∈ IO(X,m) such

that x ∈ V ⊂ S.

ii) the set of all m-I-interior points of S is called the m-I-interior of S and

is denoted by mI Int(S).

Theorem 2.19. Let A and B be subsets of (X,m, I). Then the following properties

hold:

(i) mI Int(A) = ∪{T : T ⊂ A and T ∈ IO(X,m)}.
(ii) mI Int(A) is the largest m-I-open subset of X contained in A.

(iii) A is m-I-open if and only if A = mI Int(A).
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(iv) mI Int(mI Int(A)) = mI Int(A).

(v) If A ⊂ B, then mI Int(A) ⊂ mI Int(B).

(vi) mI Int(A) ∪ mI Int(B) ⊂ mI Int(A ∪ B).

(vii) mI Int(A ∩ B) ⊂ mI Int(A) ∩ mI Int(B).

Proof. (i). Let x ∈ ∪{T : T ⊂ A and T ∈ IO(X,m)}. Then, there exists

T ∈ mIO(X, x) such that x ∈ T ⊂ A and hence x ∈ mI Int(A). This shows that

∪{T : T ⊂ A and T ∈ IO(X,m)} ⊂ mI Int(A). For the reverse inclusion, let

x ∈ mI Int(A). Then there exists T ∈ mIO(X, x) such that x ∈ T ⊂ A. We

obtain x ∈ ∪{T : T ⊂ A and T ∈ IO(X,m)}. Then mI Int(A) ⊂ ∪{T : T ⊂ A

and T ∈ IO(X,m)}. Therefore, we obtain mI Int(A) = ∪{T : T ⊂ A and T ∈
IO(X,m)}.
The proofs of (ii)-(v) are obvious.

(vi). Clearly, m Int(A) ⊂ m Int(A ∪ B) and m Int(B) ⊂ m Int(A ∪ B). Then we

obtain m Int(A) ∪ m Int(B) ⊂ m Int(A ∪ B).

(vii). Since A ∩ B ⊂ A and A ∩ B ⊂ B, by (v), we have m Int(A ∩ B) ⊂ m Int(A)

and m Int(A ∩ B) ⊂ m Int(B). Then m Int(A ∩ B) ⊂ m Int(A) ∩ m Int(B). ¤

Definition 2.20. Let (X,m, I) be an ideal minimal space, S a subset of X and x

a point of X. Then

(i) x is called an m-I-cluster point of S if V ∩S ̸= ∅ for every V ∈ mIO(X, x).

(ii) the set of all m-I-cluster points of S is called the m-I-closure of S and is

denoted by mI Cl(S).

Theorem 2.21. Let (X,m, I) be an ideal minimal space and A ⊂ X. A point

x ∈ mI Cl(A) if and only if U ∩ A ̸= ∅ for every U ∈ mIO(X, x).

Proof. It follows easily from Definition 2.20. ¤

Theorem 2.22. Let (X,m, I) be an ideal minimal space and A ⊂ X. Then the

following propeties hold:

(i) mI Int(X\A) = X\mI Cl(A);

(ii) mI Cl(X\A) = X\mI Int(A).

Proof. (i) Let x /∈ mI Cl(A). There exists V ∈ mIO(X, x) such that V ∩ A =

∅; hence x ∈ V ⊂ X \ A. Thus, we obtain x ∈ mI Int(X\A). This shows

that X\mI Cl(A) ⊂ mI Int(X\A). Let x ∈ mI Int(X\A). Since mI Int(X\A) ∩
A = ∅, we obtain x /∈ mI Cl(A); hence x ∈ X\mI Cl(A). Therefore, we obtain

mI Int(X\A) = X\mI Cl(A).

(ii) follows from (i). ¤

Theorem 2.23. Let A and B be subsets of (X,m, I). Then the following properties

hold:

(i) mI Cl(A) = ∩{F : A ⊂ F and F ∈ IC(X,m)}.
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(ii) mI Cl(A) is the smallest m-I-closed subset of X containing A.

(iii) A is m-I-closed if and only if A = mI Cl(A).

(iv) mI Cl(mI Cl(A)) = mI Cl(A).

(v) If A ⊂ B, then mI Cl(A) ⊂ mI Cl(B).

(vi) mI Cl(A ∪ B) ⊃ mI Cl(A) ∪ mI Cl(B).

(vii) mI Cl(A ∩ B) ⊂ mI Cl(A) ∩ mI Cl(B).

Proof. The proofs follows from Theorems 2.19 and 2.22. ¤

Definition 2.24. A subset Bx of an ideal minimal space (X,m, I) is said to be an

m-I-neighbourhood of a point x ∈ X if there exists an m-I-open set U such that

x ∈ U ⊂ Bx.

Theorem 2.25. A subset of an ideal minimal space (X,m, I) is m-I-open if and

only if it is an m-I-neighbourhood of each of its points.

Proof. Let G be an m-I-open set of X. Then by definition, it is clear that G is

an m-I-neighbourhood of each of its points, since for every x ∈ G, x ∈ G ⊂ G

and G is m-I-open. Conversely, suppose G is an m-I-neighbourhood of each of

its points. Then for each x ∈ G, there exists Sx ∈ IO(X,m) such that Sx ⊂ G.

Then G =
∪
{Sx : x ∈ G}. Since each Sx is m-I-open and an arbitrary union of

m-I-open sets is m-I-open, G is m-I-open in (X,m, I). ¤

3. m-I-continuous functions

Definition 3.1. A function f : (X,m, I) → (Y, τ) is said to be m-I-continuous if

for every V ∈ τ , f−1(V ) ∈ IO(X,m).

Remark 3.2. Every m-I-continuous function is m-precontinuous but the converse

is not true,in general.

Example 3.3. Let X = {a, b, c}, m = {∅, {a}, {b}, X}, τ = {∅, {a}, X} and

I = {∅, {a}}. Then the identity function f : (X,m, I) → (X, τ) is m-precontinuous

but not m-I-continuous.

Remark 3.4. It is clear that m-I-continuity and m-continuity are independent

notions.

Example 3.5. Let (X,m, I) be the ideal minimal space in Example 2.3, τ =

{∅, {a}, X} and I = {∅, {a}}. Then the identity function f : (X,m, I) → (X, τ)

is m-continuous but not m-I-continuous.

Example 3.6. Let (X,m, I) be the ideal minimal space in Example 2.4 and τ =

{∅, {a}, X}. Then the identity function f : (X,m, I) → (X, τ) is m-I-continuous

but not m-continuous.
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Theorem 3.7. For a function f : (X,m, I) → (Y, τ), the following statements are

equivalent:

(i) f is m-I-continuous;

(ii) For each point x in X and each open set F of Y such that f(x) ∈ F , there

is an m-I-open set A in X such that x ∈ A, f(A) ⊂ F ;

(iii) The inverse image of each closed set of Y is m-I-closed in X;

(iv) For each subset A of X, f(mI Cl(A)) ⊂ Cl(f(A));

(v) For each subset B of Y , mI Cl(f−1(B)) ⊂ f−1(Cl(B));

(vi) For each subset C of Y , f−1(Int(C)) ⊂ mI Int(f−1(C)).

Proof. The proof is clear. ¤

Definition 3.8. The graph G(f) of a function f : (X,m, I) → (Y, τ) is said to

be m-I-closed in X × Y if for each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈
mSIO(X, x) and an open set V of Y containing y such that (U × V ) ∩ G(f) = ∅.

Lemma 3.9. The graph G(f) of a function f : (X,m, I) → (Y, τ) is m-I-closed in

X × Y if and only if for each (x, y) ∈ (X×Y ) \ G(f), there exists U ∈ mIO(X, x)

and an open set V of Y containing y such that f(U) ∩ V = ∅.

Proof. The proof is an immediate consequence of Definition 3.8. ¤

Theorem 3.10. If f : (X,m, I) → (Y, τ) is an m-I-continuous function and (Y, τ)

is T2, then G(f) is m-I-closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y ̸= f(x). Since Y is T2, there exist

disjoint open sets V , W of Y such that f(x) ∈ W and y ∈ V . Since f is m-I-

continuous, there exists U ∈ mIO(X, x) such that f(U) ⊂ W . Therefore, f(U)

∩V = ∅. Therefore, by Lemma 3.9, G(f) is m-I-closed. ¤

Definition 3.11. An ideal minimal space (X,m, I) is called an m-I-T2 space if

for each pair of distinct points x, y ∈ X, there exist U, V ∈ mIO(X) containing x

and y, respectively, such that U ∩ V = ∅.

Theorem 3.12. If f : (X,m, I) → (Y, τ) is an m-I-continuous injective function

and Y is a T2 space, then (X,m, I) is an m-I-T2 space.

Proof. The proof follows from the definitions. ¤

Theorem 3.13. If f : (X,m, I) → (Y, τ) is an injective m-I-continuous function

with an m-I-closed graph, then X is an m-I-T2 space.

Proof. Let x1 and x2 be any distinct points of X. Then f(x1) ̸= f(x2), so

(x1, f(x2)) ∈ (X × Y )\G(f). Since the graph G(f) is m-I-closed, there exist an

m-I-open set U containing x1 and V ∈ τ containing f(x2) such that f(U)∩V = ∅.
Since f is m-I-continuous, f−1(V ) is an m-I-open set containing x2 such that

U ∩ f−1(V ) = ∅. Hence X is m-I-T2. ¤
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Definition 3.14. An ideal minimal space (X,m, I) is said to be m-I-connected if

X cannot be expressed as the union of two nonempty disjoint m-I-open sets.

Theorem 3.15. A m-I-continuous image of an m-I-connected space is connected.

Proof. The proof is clear. ¤

Lemma 3.16 ([5]). For any function f : (X, τ, I) → (Y, σ), f(I) is an ideal on

Y .

Definition 3.17. A subset K of an ideal minimal space (X,m, I) is said to be

m-I-compact relative to X, if for every cover {Uλ : λ ∈ Λ} of K by m-I-open sets

of X, there exists a finite subset Λ0 of Λ such that K\
∪
{Uλ : λ ∈ Λ0} ∈ I. The

space (X,m, I) is said to be m-I-compact if X is an m-I-compact subset of X.

Definition 3.18. A subset K of an ideal minimal space (X,m, I) is said to be

countably m-I-compact relative to X, if for every cover {Uλ : λ ∈ Λ} of K

by countable m-I-open sets of X, there exists a finite subset Λ0 of Λ such that

K\
∪
{Uλ : λ ∈ Λ0} ∈ I. The space (X,m, I) is said to be countably m-I-compact

if X is a countably m-I-compact subset of X.

Definition 3.19. A subset K of an ideal minimal space (X,m, I) is said to be

m-I-Lindelöf relative to X, if for every cover {Uλ : λ ∈ Λ} of K by m-I-open sets

of X, there exists a countable subset Λ0 of Λ such that K\
∪
{Uλ : λ ∈ Λ0} ∈ I.

The space (X,m, I) is said to be m-I-Lindelöf if X is an m-I-Lindelöf subset of

X.

Theorem 3.20. If f : (X,m, I) → (Y, τ) is an m-I-continuous surjection and

(X,m, I) is m-I-compact, then (Y, τ, f(I)) is f(I)-compact.

Proof. Let {Vλ : λ ∈ Λ} be an open cover of Y . Then {f−1(Vλ) : λ ∈ Λ} is an

m-I-open cover of X and hence, there exists a finite subset Λ0 of Λ such that

X\
∪
{f−1(Vλ) : λ ∈ Λ0} ∈ I. Since f is surjective, Y \

∪
{Vλ : λ ∈ Λ0} =

f(X\
∪
{f−1(Vλ) : λ ∈ Λ0}) ∈ f(I). Therefore, (Y, σ, f(I)) is f(I)-compact. ¤

Theorem 3.21. If f : (X,m, I) → (Y, σ) is an m-I-continuous surjection and

(X,m, I) is m-I-Lindelöf, then (Y, σ, f(I)) is f(I)-Lindelöf.

Proof. The proof is similar to the previous theorem. ¤

Theorem 3.22. If f : (X,m, I) → (Y, σ) is an m-I-continuous surjection and

(X,m, I) is countably m-I-compact, then (Y, σ, f(I)) is countably f(I)-compact.

Proof. The proof is similar to the previous theorem. ¤
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We close with the following:

Are there proper examples showing the relationships of m-I-compactness and

m-compactness, countably m-I-compactness and countably m-compactness, and

m-I-Lindelöfness and m-Lindelöfness?
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