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Abstract: The present paper deals with two types of topologies on the set of integers, Z: a
quasi-discrete topology and a topology satisfying the T1

2
-separation axiom. Furthermore, for each

n ∈ N, we develop countably many topologies on Zn which are not homeomorphic to the typical
n-dimensional Khalimsky topological space. Based on these different types of new topological
structures on Zn, many new mathematical approaches can be done in the fields of pure and applied
sciences, such as fixed point theory, rough set theory, and so on.
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1. Introduction

The present paper concerns the existence problem of the topologies on Zn that are not
homeomorphic to the typical n-dimensional Khalimsky topology. More precisely, after establishing
many topologies on Z that are not homeomorphic to the Khalimsky line topology, we will extend
this approach to the set Zn, where n ∈ N, and N is the set of natural numbers. Namely, how many
topologies on Zn are not homoeomorphic to the typical n-dimensional Khalimsky topological space?
Since we will often use the term “Khalimsky” in this paper, hereafter, we will use the notation “K-” for
short instead of the “Khalimsky” if there is no danger of ambiguity. In this paper we will often use the
notation “ :=” to introduce new notions without proving the fact.

Several kinds of digital topologies [1–6], such as digital topology using digital adjacencies [7],
K-topology [8], Marcus–Wyse (M-, for short) topology [3], and generalized M-topology [9], have played
important roles in pure and applied topologies. More precisely, digital images can be considered
as subsets of Zn with some structures, such as a digital adjacency (or the digital connectivity in
the Rosenfeld model), the Khalimsky, the Marcus–Wyse, the H-topological, and the Alexandroff
structures [10,11]. In particular, these structures play important roles in the fields of digital homotopy
theory, fixed point theory, digital topological rough set theory, digital geometry, information theory,
and so forth [12–16]. Thus, an intensive development of new topologies on Zn, which are different
from the well-known topologies on Zn, can facilitate the study of pure and applied sciences including
computer science. Indeed, the present paper aims at developing new topologies that are different from
the K-product topology on Zn (or (Zn, κn)) and are not homeomorphic to (Zn, κn). Based on these
kinds of new topologies on Zn, we can further establish several kinds of homotopies for various types
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of continuous maps on the newly-established topological spaces. In addition, we can introduce new
types of homotopic thinnings using these homotopies on Zn.

The rest of the paper is organized as follows: Section 2 refers to some notions relating to
homeomorphism for Alexandroff spaces and comparisons among topological spaces. Section 3
proposes countably many subbases Sk on Z for establishing the corresponding topological spaces
(Z, Tk), k ∈ Z, where Tk := TSk is the topology generated by Sk as a subbase. In addition, we prove
that the topology T0 := TS0 is not a Kolmogorov space and the topology Tk satisfies the T1

2
-separation

axiom, k 6= 1. Section 4 proposes two kinds of topologies on Z: a quasi-discrete (clopen) topology and
a topology equipped with the T1

2
-separation axiom. In addition, they are proved to be Alexandroff

spaces. Section 5 corrects a certain inappropriate comment proposed by Boxer et al. in the paper [17].
Section 6 concludes the paper.

2. Homeomorphisms for Alexandroff Spaces

In this section we refer to several concepts and definitions which are used in this paper.

Definition 1. [10,11] We say that a topological space (X, T) is an Alexandroff (topological) space if every point
x ∈ X has the smallest (or minimal) open neighborhood in (X, T).

As an Alexandroff space, the Khalimsky nD space was established and the study of its properties
includes the papers [8,18–21].
Let us now recall basic notions from the K-topology on Zn.

Definition 2. The Khalimsky line topology on Z, denoted by (Z, κ), is induced by the set {[2n − 1, 2n +

1]Z | n ∈ Z} as a subbase [8], where for a, b ∈ Z, [a, b]Z := {x ∈ Z | a ≤ x ≤ b}.
The product topology on Zn induced by (Z, κ) is called the Khalimsky product topology on Zn (or the

Khalimsky nD space), denoted by (Zn, κn).

Hereafter, for a subset X ⊆ Zn we will denote the subspace induced by (Zn, κn) with (X, κn
X),

n ≥ 1, and we call it a K-topological space. As usual, we denote the cardinality of a denumerable
set with ℵ0. In particular, we denote a Khalimsky interval with ([a, b]Z, κ[a,b]Z) (or [a, b]Z for short,
if there is no danger of ambiguity). In addition, we will often use the following notations in this paper:
(m, n)Z := {x ∈ Z |m � x � n}, [m, n)Z := {x ∈ Z |m ≤ x � n}, [m,+∞)Z := {x ∈ Z |m ≤ x},
and (−∞, n]Z := {x ∈ Z | x ≤ n}. Depending on the situation, we may use the intervals with the
K-topology or without topology, i.e., just a set.

Let us now recall certain notions and basic structures of (Zn, κn). A point x = (xi)i∈[1,n]Z ∈ Z
n

is pure open if all coordinates, say xi, i ∈ [1, n]Z, are odd, pure closed if each of the coordinates is
even, and the other points in Zn are called mixed [20]. In addition, these points are shown by using
the following symbols, i.e., � and • mean a pure closed point and a pure open point, respectively.
Motivated by these notations, in order to describe certain points in the newly-established topological
spaces in this paper such as Tk, T′k, we will also use the symbols � and • for showing a closed point
and a pure open point, respectively, in the topologies (see Figures 1 and 2). Regarding the further
statement of a mixed point in (Z2, κ2), for the points p = (2m, 2n + 1) (resp. p = (2m + 1, 2n)), we call
the point p closed-open (resp. open-closed).
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Figure 1. Configuration of the closedness of the singleton {2n} in the topological space (Z, T1),
e.g., 2n = 8.
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Figure 2. Non-homeomorphism between T1 and T2. In particular, see the elements 2, 3, 6, and 7 in
(Z, T2), and so on.

With this perspective, in (Z2, κ2) we clearly observe that for the point p = (p1, p2) of Z2 the
smallest (open) neighborhood of the point, denoted by SNK(p) ⊂ Z2, is the following [10,11,18]:

SNK(p) =



{p} if p is pure open,

{(p1 − 1, p2), p, (p1 + 1, p2)} if p is closed-open,

{(p1, p2 − 1), p, (p1, p2 + 1)} if p is open-closed,

N8(p) if p := (2m, 2n), m, n ∈ Z, i.e., pure closed,

where N8(p) := [2m− 1, 2m + 1]Z × [2n− 1, 2n + 1]Z.


(1)

Hereafter, in (X, κn
X), we denote the smallest open set containing a point x with SNX(x) :=

SNK(x) ∩ X for short or SN(x) [22] if there is no danger of confusion.

Definition 3. A topology T is called a quasi-discrete topology [23] (or clopen or pseudo-discrete topology [24])
if every open set in T is closed.

Remark 1. (1) In view of (1), any infinite set of (Zn, κn) is not compact in (Zn, κn).
(2) Due to the connectedness of (Z, κ) [20], (Zn, κn) is clearly connected.

In the category of Alexandroff spaces, for two Alexandroff spaces A1 and A2, it is clear that a
map f : A1 → A2 is continuous if, and only if, for each point a1 ∈ A1, f (SN(a1)) ⊆ SN( f (a1)), where
SN(x) means the smallest open set containing the point x in the given Alexandroff space. In addition,
for two Alexandroff spaces A1 and A2, a map h : A1 → A2 is called an Alexandroff homeomorphism
if h is a continuous bijection, and further, h−1 : A2 → A1 is continuous.
For instance, in (Zn, κn), let us now recall the notion of K-continuity of a map between two
K-topological spaces [8] as follows: For two K-topological spaces (X, κn0

X ) := X and (Y, κn1
Y ) := Y,

a function f : X → Y is said to be K-continuous at a point x ∈ X if f is continuous at the point x from the
viewpoint of K-topology. Further, we say that a map f : X → Y is K-continuous if it is K-continuous
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at every point x ∈ X. Indeed, since (Zn, κn) is an Alexandroff space (see (1)), the above X and Y are
Alexandroff spaces. Thus we can represent the K-continuity of f at a point x ∈ X [18], as follows

f (SNK(x)) ⊆ SNK( f (x)). (2)

Based on this approach, a map h : X → Y is called a K-homeomorphism if h is a K-continuous
bijection and further, h−1 : Y → X is K-continuous.
We say that a topological space satisfies the separation axiom T1

2
[25–27] if every singleton of (Z2, γ) is

either an open or a closed set. Then, we call it a T1
2
-space.

For two topologies, >1 and >2, on a set X, in the case >1 is coarser (weaker) than >2 and >2 is finer
(stronger) than >1 [28], we use the notation >1 ≤ >2. If additionally >1 6= >2, then we say that >1 is
strictly coarser than >2 and >2 is strictly finer than >1 [28]. In this case we use the notation >1 � >2.
In examining the case >1 ≤ >2, we can equivalently take the following approach. Let Bi be bases for
the topologies >i, i ∈ {1, 2}. Then, it is clear that

>1 ≤ >2 ⇔ ∀ b1 ∈ B1 and ∀x ∈ b1, ∃ b2 ∈ B2 such that x ∈ b2 ⊆ b1. (3)

3. Various Types of Topologies on Z Generated by Certain Subbases Sk, K ∈ Z

In this section, many types of subbases, say Sk, k ∈ Z, are introduced for establishing topologies
of Z. Then, we intensively explore the topological features of TSk , k ∈ Z, with respect to separation
axioms and an Alexandroff space structure. As mentioned previously, each element [2n− 1, 2n + 1]Z
of the subbase of the K-line topology consists of three consecutive elements. Indeed, the topology
on Z generated by the set {[2n, 2n + 2]Z | n ∈ Z} as a subbase is homeomorphic to (Z, κ). Thus, we
now consider other types of elements which are not consecutive, such as for a given number k ∈ Z,
{{2n, 2n + 1, 2n + 2k + 1}, n ∈ Z}, {{2n, 2n + 1, 2n + 2k}, n ∈ Z} and so forth.

Let us now investigate various properties of the topologies generated by certain subbases
Sk, k ∈ Z.

Lemma 1. Given a number k ∈ Z, assume the set

Sk := {Sk,n | Sk,n := {2n, 2n + 1, 2n + 2k + 1}, n ∈ Z}. (4)

Consider a topology on Z generated by Sk as a subbase, denoted by TSk . Then, (Z, TSk ) is an Alexandroff
space.

Before proving this claim, as the set Sk is totally determined by the number k ∈ Z, hereafter,
the topology TSk of Lemma 1 will be denoted by Tk for simplicity, i.e., Tk := TSk .

Proof. Given a number k ∈ Z, a topology generated by the given subbase Sk is obtained in terms of
the following process.

Sk → BSk → TBSk
:= Tk, (5)

where BSk is the base induced by the subbase Sk and Tk is the topology generated by the set BSk as a
base. Since

BSk = Sk ∪ {{2n + 1} | n ∈ Z} ∪ {∅,Z},

Tk is an Alexandroff space.

Example 1. (1) The topology T−1 := TS−1 is generated by the set S−1 = {{2n− 1, 2n, 2n + 1} | n ∈ Z} as a
subbase. Thus, for any n ∈ Z, we obtain

SN(2n) = [2n− 1, 2n + 1]Z and SN(2n + 1) = {2n + 1},
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from which T−1 is proved to be an Alexandroff space.
(2) The topology T0 := TS0 is generated by the set S0 = {{2n, 2n + 1} | n ∈ Z} as a subbase. Thus, for any
n ∈ Z we obtain

SN(2n) = SN(2n + 1) = {2n, 2n + 1},

which implies that T0 is an Alexandroff space.
(3) The topology T1 := TS1 is generated by the set S1 = {{2n, 2n + 1, 2n + 3} | n ∈ Z} as a subbase. Thus,
for any n ∈ Z we obtain

SN(2n) = {2n, 2n + 1, 2n + 3} and SN(2n + 1) = {2n + 1},

which means that T1 is an Alexandroff space.

Lemma 2. For distinct numbers k1, k2 ∈ Z, we obtain the following:
(1) Sk1 ∩ Sk2 = ∅.
(2) BSk1

6= BSk2
.

Proof. (1) (Case 1) Consider the case of which either of k1 and k2 is equal to 0. Without loss of generality,
let us assume k1 = 0. Then, due to the subbase given in (4) (see also Example 1(2)), we observe that
whereas each member of S0 has cardinality 2, that of Sk2 has cardinality 3, which clearly implies that
S0 ∩ Sk2 = ∅.
(Case 2) In the case neither of k1 and k2 is equal to 0 and further, k1 6= k2, each member of Sk1 is
different from any element of Sk2 because{

{2m, 2m + 1, 2m + 2k1 + 1}(∈ Sk1) 6= {2n, 2n + 1, 2n + 2k2 + 1}(∈ Sk2)

if k1 6= k2,

which implies that Sk1 ∩ Sk2 = ∅.
(2) The bases BSki

, induced by the subbases Ski
, i ∈ {1, 2}, are finally obtained, as follows: BSk1

= Sk1 ∪ {{2m + 1} |m ∈ Z} ∪ {∅,Z} and

BSk2
= Sk2 ∪ {{2n + 1} | n ∈ Z} ∪ {∅,Z}.

 (6)

According to the property Sk1 ∩ Sk2 = ∅ (see the proof of (1) of Lemma 2), (6) supports the
assertion.

Theorem 1. For a number k ∈ Z \ {0}, we obtain
(1) (Z, T0) is not a Kolmogorov space.
(2) (Z, Tk) is a T1

2
-space, k ∈ Z \ {0}.

Proof. (1) Since BS0 = {{2n, 2n + 1} | n ∈ Z} ∪ {∅,Z}, by Example 1(2), the proof is completed. To be
precise, due to the smallest open sets SN(2n) and SN(2n + 1) in (Z, T0) (see Example 1(2)), (Z, T0) is
not a Kolmogorov space.
(2) Due to the bases on (6), we obtain BS1 = S1 ∪ {{2n + 1} | n ∈ Z} ∪ {∅,Z}. Thus, in the topological
space (Z, T1), it is clear that every singleton consisting of an odd number is open. Let us now prove
that every singleton consisting of an even number is closed. Namely, let us prove that for each
element 2n ∈ Z, the singleton {2n} is a closed set in T1. For the sake of doing this work, let us
take a hard look at the topological structure of T1. Due to the topology T1 := TS1 generated by the
set S1 := {S1,n := {2n, 2n + 1, 2n + 3} | n ∈ Z} as a subbase, it is clear that for each 2n + 1 ∈ Z,
the singleton {2n + 1} ∈ BS1 ⊂ T1. Let us now consider the complement of {2n} in Z, denoted by
{2n}C. For the set

{2n}C = (−∞, 2n− 1]Z ∪ [2n + 1, ∞)Z,



Mathematics 2019, 7, 1072 6 of 12

for convenience, put A1 := (−∞, 2n− 1]Z and A2 := [2n + 1, ∞)Z. Then, the set A2 can be represented
in the following way, say A2 := {2n + 1} ∪ [2n + 2, ∞)Z. Since the singleton {2n + 1}(⊂ A2) belongs
to BS1 ⊂ T1 and further, [2n + 2, ∞)Z ∈ T1, it is clear that the set A2 ∈ T1. Considering the topology T1,
let us now examine if each element of A1 is an interior point of {2n}C. Indeed, A1 is represented by

A1 := (−∞, 2n− 3]Z ∪ {2n− 2, 2n− 1}.

Based on the subbase S1 of (4), whereas the subset (−∞, 2n− 3]Z ∪ {2n− 1}(⊂ A1) is an open
set in T1, there is no element b1(∈ S1 ⊂ BS1) containing the remaining element 2n− 2 ∈ A1, where
b1 ⊂ A1. Thus, A1 /∈ T1. However, there is a member {2n− 2, 2n− 1, 2n + 1}(3 2n− 2) in S1. Thus,
2n− 2(∈ Z) is an interior point of {2n}C. Hence, although {2n− 2, 2n− 1, 2n + 1}(∈ S1) is not a
subset of A1, it is a subset of {2n}C. Finally, we conclude that {2n}C is an open set in T1.
For instance, we can confirm that the singleton {8} of Figure 1 is proved a closed set in T1 in the
following way. The set

{8}C = (−∞, 7]Z ∪ [9, ∞)Z

is represented by A1 := (−∞, 7]Z and A2 := [9, ∞)Z. Although A1 := (−∞, 5]Z ∪ {6, 7} is not an open
set in T1, we observe that A2 ∈ T1. Since each of the sets {6, 7, 9}, (−∞, 5]Z, and [9, ∞)Z belongs to T1

(for 2n = 8, see Figure 1), we conclude that {8}C is an open set in T1.
Finally, according to (4) and using a method similar to the proof of being a T1

2
-space of (Z, T1), we

obtain that (Z, Ti) is also a T1
2
-space, i ∈ Z \ {0}. Then this is true since every singleton consisting of

an odd number is an open set in Ti, i ∈ Z \ {0}.

Some further studies of the structures of (Z, Ti), i ∈ Z, will intensively be done in Section 4 (see
Theorem 2).

4. Countably Many Types of Topologies on Z Generated by the Subbases Sk, K ∈ Z

In this section, we now intensively characterize the topological spaces (Z, Tk), k ∈ Z. One
important thing is that we can observe several types of topological features on Z depending on the
given subbases Sk, k ∈ Z, such as a quasi-discrete, the K-topological, and Alexandroff topological
structures. Furthermore, for i 6= j, i, j ∈ Z, we find that Ti 6= Tj and further, Ti is not homeomorphic to
Tj either.

Theorem 2. For the topological spaces (Z, Tk), k ∈ Z, we obtain the following properties, where Tk := TSk .
(1) (Z, T0) is a quasi-discrete (not discrete) topological space.
(2) (Z, T0) is not connected.
(3) (Z, T−1) is the K-topological line.
(4) Ti 6= Tj if i 6= j, and i, j ∈ Z.
(5) For distinct numbers i, j ∈ Z, Ti is not homeomorphic to Tj.

Proof. (1) Since S0 = {{2n, 2n + 1} | n ∈ Z}, we have BS0 = S0 ∪ {∅,Z}. Hence, with the topology
T0 := TS0 (see (5)), the smallest open set containing an even number 2n(∈ Z) or an odd number
2n + 1(∈ Z) is exactly the set {2n, 2n + 1} (see Example 1(2)). Thus, each open set in T0, denoted by
O(∈ T0), can be represented by

O =
⋃

n∈M⊆Z
{2n, 2n + 1}. (7)

Therefore, the closure of O(∈ T0) is equal to itself, which completes the proof.
(2) Owing to Theorem 2 (1), the proof is completed. Namely, for any n ∈ Z, {{2n, 2n+ 1}, {2n, 2n+

1}C} is a separation of (Z, T0).
(3) Since the topology T−1 is generated by the set {{2n− 1, 2n, 2n + 1} | n ∈ Z} as a subbase, it is

equal to the K-line topology κ on Z.



Mathematics 2019, 7, 1072 7 of 12

(4) (Case 1) For distinct numbers i, j ∈ Z, assume that either of i and j is equal to 0. Without
loss of generality, we may take i = 0 and j 6= 0. Since S0 = {{2m, 2m + 1} |m ∈ Z}, we obtain
BS0 = S0 ∪ {∅,Z}. Meanwhile, for each j ∈ Z \ {0}, the base

BSj = Sj ∪ {{2n + 1} | n ∈ Z} ∪ {∅,Z} (see (6)),

is induced by the subbase Sj = {{2n, 2n + 1, 2n + 2j + 1} | n ∈ Z}. According to (3), we obtain that
Tj is not comparable with T0. Namely, T0 � Tj and Tj � T0. To be precise, based on (3), consider
an arbitrary member of BS0 , say b0 ∈ BS0 = {{2m, 2m + 1} |m ∈ Z} ∪ {∅,Z}, and take an element
2m ∈ b0 ∈ BS0 . Then, there is no element

bj ∈ BSj

such that 2m ∈ bj ⊆ b0, which implies that T0 � Tj.
Conversely, consider an arbitrary member of BSj , say bj ∈ BSj , and take an element 2n + 1 ∈ bj.

For convenience, we may put bj = {2n + 1}. Then, there is no element

b0 ∈ BS0 = {{2n, 2n + 1} | n ∈ Z} ∪ {∅,Z}

such that 2n + 1 ∈ b0 ⊆ bj, which implies that Tj � T0.

(Case 2) For i, j ∈ Z \ {0} and i 6= j, let us compare two topologies Ti and Tj according to (3).
Then, we prove that Ti is not comparable with Tj, i.e., Ti � Tj and Tj � Ti. Let us take any bi ∈ BSi ,
e.g., bi := {2n, 2n + 1, 2n + 2i + 1} and further, an element 2n ∈ bi. Then, by Lemma 2, there is no
member bj ∈ BSj such that 2n ∈ bj ⊆ bi, which implies that Tj is not finer than Ti.
Meanwhile, using a method similar to the proof of this approach, we can also prove that Ti is not finer
than Tj either, which completes the proof.

(5) (Case 1) Owing to Theorem 1, it is clear that T0 is not homeomorphic to Ti, i ∈ Z \ {0}.
(Case 2) For two numbers i, j ∈ Z \ {0}, without loss of generality, we may assume i � j. Then

we prove that Ti is not homeomorphic to Tj. Before proving this assertion, we observe that for the
topologies Ti, Tj, in view of (3) and Theorem 1 (2), each singleton consisting of an odd (resp. an even)
number is an open (resp. a closed) set in both Ti and Tj.

Using the reductio ad absurdum, suppose there is a homeomorphism

f : (Z, Ti)→ (Z, Tj). (8)

At this moment, we need to recall the following.

• By Lemma 1, both Ti and Tj are Alexandroff topological structures, in which every point in these
topological spaces has its smallest open set with finite cardinality.

• Owing to the continuities of the bijections f and f−1 and the Alexandroff topological structures of
Ti and Tj, it is clear that

f (SNi(x)) = SNj( f (x)) (9),

where SNi(x) is the smallest open set of x in (Z, Ti) and SNj( f (x)) is the smallest open set of f (x)
in (Z, Tj).

• Owing to the bases BSi and BSj (see (6)), for the even or odd numbers in (Z, Ti) and (Z, Tj), we
obtain the following.

in (Z, Ti),

{
(1)SNi(2n) = {2n, 2n + 1, 2n + 2i + 1}, and

(2)SNi(2n + 1) = {2n + 1}.

}
(10)
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in (Z, Tj),

{
(3)SNj(2m) = {2m, 2m + 1, 2m + 2j + 1}, and

(4)SNj(2m + 1) = {2m + 1}.

}
(11)

• The homeomorphism of f implies that

for any sj ∈ Sj (see (4)), we should obtain f−1(sj) ∈ Ti.

Namely, f−1(sj) = ∪i∈Mbi, where bi ∈ BSi = Si ∪ {(2n + 1 | n ∈ Z}. In other words, any element
x ∈ f−1(sj) should be an interior point of f−1(sj) in Ti. Put x = 2n ∈ Z0, where Z0 (resp. Z1) is the set
of even (resp. odd) integers. Then, owing to (10), 2n ∈ SNi(2n) ⊂ f−1(sj).

Based on this observation, we now proceed to the proof. Since f is a continuous bijection, in view
of (9), (10), and (11), in (Z, Tj) we obtain

f (2n) = 2m ∈ sj = {2m, 2m + 1, 2m + 2j + 1} = SNj(2m).

More precisely, owing to (9), (10), and (11), we obviously obtain that

f (2n) ∈ Z0, and f (2n + 1) ∈ Z1. (12)

Hence, using the smallest open sets in Ti and Tj (see (10) and (11)), for some m, n ∈ Z, we may
assume f (2n) = 2m. Then, the other elements 2n + 1 and 2n + 2i + 1 in SNi(2n) should be mapped by
the map f as follows: {

(1) f (2n + 1) = 2m + 1, and

(2) f (2n + 2i + 1) = 2m + 2j + 1.

}
(13)

Indeed, regarding the maps in (13), we observe f (2n + 1) 6= 2m + 2j + 1 according to the
continuities of f and f−1 (see the continuity of f−1 at 2m + 2j) because{

f (SNi(2n)) = SNj( f (2n)) and

f (2n) ∈ Z0, SNj(2m + 2j) = {2m + 2j, 2m + 2j + 1, 2m + 2j + 5}.

}
Then, owing to (1) and (2) of (13), we have a contradiction with respect to the bijection of f

because f is not a bijection at least what concerns the elements 2m + 2, 2m + 3, 2m + 6, 2m + 7, and so
on in (Z, Tj). Thus it turns out that Ti is not homeomorphic to Tj.

For instance, without loss of generality, we may take j = i + 1. Then consider the map f of (8)
with j = i + 1, i.e.,

f : (Z, Ti)→ (Z, Ti+1).

In practice, considering the topologies Ti (resp. Ti+1) as T1 (resp. T2), we suffice to prove that T1

and T2 are not homeomorphic, as follows:
Following the reductio ad absurdum, recall the homeomorphism in (8)

f : (Z, T1)→ (Z, T2).

Furthermore, without loss of generality, we may assume f (0) = 0 according to (12) and (13). Then
f (1) = 1, because SN1(0) = {0, 1, 3} and SN2( f (0)) = SN2(0) = {0, 1, 5} (see (4) and (5)) and further,
f (SN1(0)) = SN2( f (0)) = {0, 1, 5} so that f (1) ∈ {1, 5}. Suppose f (1) = 5 instead of f (1) = 1. Then,
since the smallest open set of 4 in (Z, T2) is SN2(4) = {4, 5, 9}, and f−1 should be also continuous at
4 in (Z, T2). Thus f−1(SN2(4)) should contain the element 1 and further, | f−1(SN2(4)) | = 3, where
| · |means the cardinality of the given set. Hence we obtain f−1(4) = 0, which invokes a contradiction
to being a map of f at 0, i.e., f (0) = 0 and f (0) = 4 (see this process in Figure 2). Thus we must have
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f (1) = 1 and further, f (3) = 5. Owing to the mapping f (3) = 5 and SN1(2) = {2, 3, 5}, we obtain
f (SN1(2)) = SN2( f (2)) (see (9)). Then f−1(SN2(4)) = SN1( f−1(4)) = SN1(2) (see (12)) so that we
have f (2) = 4 and f (5) = 9.

Owing to the mapping f (5) = 9, we have f (SN1(4)) = SN2( f (4)), where SN1(4) = {4, 5, 7}.
In addition, f−1(SN2(8)) = SN1( f−1(8)) so that we have f−1(8) = 4, i.e., f (4) = 8 and further,
f (5) = 9 and f (7) = 13.

Using this process, we conclude that there are no elements in (Z, T1) mapping to the elements 2,
3, 6, 7 and so on, which invokes a contradiction to the bijection of f .

Corollary 1. Each Ti is connected if i ∈ Z \ {0}).

Proof. By Theorems 1 and 2 ((3), and (5)), the proof is completed.

Up to now we have studied the structures of the topologies Tk generated by the subbase Sk, k ∈ Z
in terms of the process of (5). As proven in Theorem 2, it turns out that there are countably many
topologies Tk, k ∈ Z \ {−1}, on Zwhich are not homeomorphic to the K-line topology (Z, κ).
Let us now replace the subbase Sk of (4) by the set S′k (see (9)), where

S′k := {S′k,n | S′k,n = {2n, 2n + 1, 2n + 2k}, n ∈ Z}. (14)

Then, what happens on the topology TS′k
using the process of (5) (see also (15) below)? Based

on this query, we now investigate certain structures of TS′k
. Before proceeding to this work, we can

recognize some similarities and differences between Sk of (4) and S′k, as follows:

(1) | Sk,n | = | S′k,n | for k, n ∈ Z,

(2) | Sk | = ℵ0 = | S′k | for k ∈ Z, and

(3) the only difference between Sk,n and S′k,n

are the two distinct numbers 2n + 2k + 1 and 2n + 2k.


Lemma 3. Given a number k ∈ Z, consider the set S′k of (14). Then, S′k is a subbase for a topology on Z.
The topology generated by S′k as a subbase is denoted by TS′k

. Thus, we have (Z, TS′k
) as an Alexandroff space.

Since the set S′k is totally determined by the number k ∈ Z, hereafter, the topology TS′k
of Lemma

3 will be denoted by T′k := TS′k
for simplicity. Thus, given a number k ∈ Z, with the process given in

(5), consider the topology generated by the given subbase S′k of Lemma 3 in the following way.

S′k → BS′k
→ TBS′k

:= T′k, (15)

where BS′k
is the base generated by the subbase S′k and T′k is the topology generated by the set BS′k

as a
base. According to the process of (15), we observe that for k ∈ Z \ {0} each singleton consisting of
even (resp. odd) number is an open (resp. a closed) set.

Using a method similar to the proof of Theorem 2, we obtain the following:

Corollary 2. For the topological spaces (Z, T′i ), i ∈ Z, we obtain the following:
(1) (Z, T′0) is a quasi-discrete (not discrete) topological space.
(2) T′0 is not connected.
(3) Although (Z, T′1) is not the K-topological line, it is homoeomorphic to (Z, κ).
(4) T′i 6= T′j if i 6= j, and i, j ∈ Z.
(5) For distinct numbers i, j ∈ Z, T′i is not homeomorphic to T′j if i, j ∈ Z.
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Proof. (1) Due to the structure of S′0 and the process of (15), the smallest open set of 2n or 2n + 1 is the
set {2n, 2n + 1}.
(2) Due to (1) above, the proof is completed.
(3) Consider the map h : (Z, T′1)→ (Z, T−1) defined as h(x) = x + 1. Then, it is a homeomorphism.
(4) Due to (15), for any distinct numbers k1, k2 ∈ Z, using a method similar to the proof of Lemma 2,
we obtain

S′k1
∩ S′k2

= ∅ and B′Sk1
6= B′Sk2

.

Further, in terms of a method similar to the proof of Theorem 2 (3), the proof is completed.
(5) With the topology T′i , i ∈ Z, using a method similar to the proof of Theorem 2 (5), we complete
the proof.

In view of Theorem 2 and Corollary 2, we obtain the following:

Remark 2. For each k ∈ Z we obtain
(1) T0 = T′0.
(2) T0 6= T′k, k ∈ Z \ {0}.
(3) Tk is not homeomorphic to T′k if k ∈ Z \ {0}.

Let us now consider some topologies on Z2 generated by certain Cartesian products of the sets Sk,
S′k as subbases. To be precise, using the process similar to that of (5), we may consider many types
of the Cartesian products, such as Sk × Sk, Sk × S′k, and so forth. Then, we denote by (Z2, TSk×Sk )

and (Z2, TSk×S′k
) generated by the above Cartesian products as subbases. Based on Theorem 2 and

Corollary 2, we obtain the following:

Corollary 3. There are countably many topologies TSk×Sk , TSk×S′k
, and so on, k ∈ Z \ {0} which are not

homeomorphic to the 2-dimensional K-topological plane, i.e., (Z2, κ2).

Using the method given in Corollary 3, for the set Zn, we can also obtain countably many
topologies generated by certain n-tuple Cartesian products of Sk and S′k. Further, each of these
topologies need not be homeomorphic to the n-dimensional K-topological space, i.e., (Zn, κn).

5. Further Remarks and Work

Recently, there have been many works regarding fixed point theory from the viewpoint of digital
topology, including the papers [1,2,15,17]. We say that a non-empty digital image (X, k) has the almost
(or approximate) fixed point property (AFPP) if, for every k-continuous self-map f of (X, k), there is a
point x ∈ X, such that f (x) = x or f (x) is k-adjacent to x (see Theorem 4.1 of [7]). Indeed, the paper [7]
started the AFPP for digital images. Regarding the previous part of Example 2.12 in [17], Boxer et al.
pointed out in [1] that there is a certain wrong attribution of the AFPP of a finite digital plane (or a
finite digital picture) in [7]. However, Rosenfeld indeed proved that a finite digital plane (Y, 8) has the
AFPP. Thus the paper [1] just cited this fact in the following way. “Every digital image (Y, 8) has the
AFPP [7].” Then we strongly need to stress that in [7], the above digital image, (Y, 8), certainly means
only a finite digital plane (or a finite digital picture) instead of a general digital image. Despite this
situation, misunderstanding it, the authors of [17] stated an irrelevant comment.

Remark 3. As a general case instead of the finite digital plane, we can state that “not every digital image (Y, 8)
has the AFPP (see Remark 6.2 of [1] in details)”. Boxer et al. [17] mentioned that a simple closed 8-curve with l
elements in Z2, say SC2,l

8 := (xi)i∈[0,l−1]Z does not have the AFPP in the category of digital topological space

(or DTC). Indeed, one important thing is that every SCn,l
k := (xi)i∈[0,l−1]Z does not have the AFPP in DTC.

For instance, consider the self-map f of SCn,l
k with f (xi) = xi+2(mod l).
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Using a method similar to the AFPP in DTC in Remark 3, we can refer to the AFPP for simple
closed curves under K- or Marcus-Wyse topology, as follows:

Remark 4. In the category of K- or Marcus–Wyse topological spaces, every simple closed curve with l element
does not have the AFPP (see [9,29–31]).

As a further work, we can study the following:

• As proven in Theorem 2, since there are many kinds of connected topological spaces (Z, Ti), i ∈
Z \ {0}, which are different from the K-line topology (Z, T−1), we can further explore the fixed
point property (FPP) or the AFPP for connected subspaces of these topological spaces in the given
topological categories.

• As mentioned in Corollary 3, based on the new topological spaces (Z2, TSk×Sk ) and (Z2, TSk×S′k
),

we can further study the FPP or the AFPP for connected subspaces of these topological spaces.

6. Concluding Remarks

We have shown countably many topologies on the setZwhich are not homeomorphic to the K-line
topology. Further, in proceeding with this work, another two types of topologies, a quasi-discrete
topology and a topology satisfying the T1

2
-separation axiom have been discussed. In addition, many

types of topologies on Zn which are not homeomorphic to the n-dimensional K-topological space were
also proposed. Based on these newly-established topological structures, we can explore the FPP or the
AFPP for connected subspaces of these topological spaces.
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