
	 1	

Brief Definitive Mini-Review for Immunology and Cell Biology Draft #3 as 21.8.17 

Archived	at	viXra.org	on	21.8.17	http://viXra.org/abs/1708.0242	

 

Reverse Transcriptase Mechanism of Somatic Hypermutation: 

Sixty years of Clonal Selection Theory 

 
	
	
Edward J Steele1  
	
	
 
1,a CYO’Connor ERADE Village Foundation Inc. Piara Waters, WA, AUSTRALIA 
 

 

Running head: Mechanism of SHM 

 
 
Keywords 
 
Somatic Hypermutation 
Strand-Biased Mutations 
DNA Polymerase-h 
A-to-I RNA and DNA editing 
RNA Exosome 
AID-Deaminase 
 
aCorrespondence: 
Associate Professor Edward J Steele PhD 
Honorary Research Associate  
CYO’Connor ERADE Village Foundation Inc. 
24 Genomics Rise, Piara Waters, WA 6112, AUSTRALIA 
 
Tel (+61) (0) 420 863 551 
Email: ejsteele@cyo.edu.au 
 
	
 



	 2	

Abstract:  The evidence for the reverse transcriptase mechanism of somatic hypermutation is 

substantial. In this 60th anniversary year of the publication of Burnet's Clonal Selection Theory the 

evidence is briefly reviewed and updated.	

-------	

Abbreviations used in this paper: 	

A>>T , mutations of A exceed mutations of T, e.g. as found in normal murine physiological SHM 

in vivo by 2.9 fold ;ADAR, Adenosine Deaminase that acts on RNA; AID, activation induced 

cytidine deaminase, a APOBEC family member, initiating via C-to-U lesions at WRCY/RGYW C-

site motifs in ssDNA of class switch recombination (CSR) and somatic hypermutation (SHM) 

processes at  somatically rearranged Ig V(D)J gene loci; APOBEC family, generic abbreviation for 

the deoxyribonucleic acid, or dC-to-dU, deaminase family of which AID is a member (APOBEC3 

A, B, C, D, F, G, H) similar in DNA sequence to the “apolipoprotein B RNA editor” APOBEC1; 

AP, an Abasic, or apurinic/apyrimidinic, site; APE, AP endonuclease; A-to-I, adenosine-to-inosine 

RNA editing; BCR, B cell Ig receptor; C, exons encoding constant regions of Ig molecules; D, the 

small "diversity' element part of the VDJ rearrangement process; G>>C, mutations of G exceed 

mutations of C, e.g. as found in normal murine physiological SHM in vivo by 1.7 fold; I, Inosine; 

Ig, immunoglobulin; IGHV, IGLV, megabase length germline regions encoding unrearranged V 

element arrays and associated D,J, C regions; J, joining elements, part of the VDJ rearrangement 

process; MMR, mismatch repair; MSH2-MSH6, MutSa heterodimer recognizing mispaired bases 

in DNA duplex; NTS, the non-transcribed, or “Top”, 5' to 3' strand; Pol-h or DNA polymerase-

h (eta); RNA Pol II, RNA Polymerase II; R, Adenosine or Guanine; RT, reverse transcriptase; RT-

Pol-h, reverse transcriptase activity displayed by Pol-h;! SHM, somatic hypermutation; TS, the 

transcribed, or “Bottom”, 3' to 5' strand, in context of a Transcription Bubble; TSRT, target site 

reverse transcription; U, uracil; UNG, uracyl DNA glycosylase involved in Base Excision Repair at 

dU sites in DNA resulting in either an Abasic site (AP) or APE-mediated ssDNA nicks (above); 

V[D]J, generic symbol for a rearranged immunoglobulin (or T cell receptor, TCR) variable region 

gene in the Adaptive Immune System; W, weak base pair involving A or U/T; WA-site,  target 

motif for ADAR deaminase including DNA Polymerase-eta error prone incorporation in vitro;  Y, 

pyrimidines T/U or C. 
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It is now 60 years since Sir MacFarlane Burnet first published The Clonal Selection Theory of 

Acquired Immunity,1 the foundation stone of modern immunology. Somatic mutation of the 

immunoglobulin variable region genes has been part and parcel of his clonal selection concept since 

its inception and is central to a rational understanding of immunological diversification, self-

tolerance and the emergence of cancer. We now have a very good idea of the molecular mechanism 

of somatic hypermutation. I have chosen to fit this scientific progress within 60 key publications 

since the late 1950s (Table 1). The most likely and plausible central molecular mechanism of Ig 

SHM, that fits with and explains all the evidence 58  is based on "Reverse Transcription" of the 

base-modified Ig pre-mRNA (Figure 1). That is, error-prone reverse transcription, by DNA 

Polymerase-h, of the Ig pre-mRNA template intermediate at rearranged V(D)J gene somatic loci. 

The Ig pre-mRNA encoding the V(D)J region is copied off the transcribed DNA strand carrying 

prior AID C-to-U deamination lesions (Uracils and Abasic sites), and it also accumulates ADAR-

deaminase mediated RNA editing A-to-I modifications.  This already base-modified pre-mRNA 

sequence is then copied back to the B lymphocyte genomic DNA and integrated at the rearranged 

VDJ site (concurrent with antigen-mediated selection of BCR bearing B lymphocytes, Centrocytes,  

in the Germinal Center). This is essentially the "Reverse Transcriptase Mechanism" which Jeff 

Pollard and I first published 30 years ago.21 The mechanistic steps, many logical, are clearly 

outlined in Figure 1 which shows that the A>>T and G>>C strand bias-generating mutagenic 

activity is firmly focused on the nascent RNA intermediate in the context of the Transcription 

Bubble. 52,52,54,58,60 Recent publications should be consulted for further recent definitive ADAR A-

to-I editing of RNA and DNA moieties at RNA:DNA hybrids within Transcription Bubbles.58-60  

Not only is it important to understand the correct molecular mechanism of SHM for cancer 

diagnosis and detection 57,64 but also to the current efforts to better understand 31,65 the origin of Ig 

diversity involving the mechanism of evolution of the sets germline V segments and the long IGHV 
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and IGLV haplotypes in individual human beings. 66,67. The author welcomes discussion by email. 
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Figure 1 Legend - The Reverse Transcriptase Mechanism of Somatic Hypermutation 
Modified in part from Figure 1 in Lindley and Steele.54   This is an adaptation of the target site 
reverse transcription (TSRT) process of Luan et al. 61 Shown is a RNA Polymerase II generated 
Transcription Bubble with C and A substrate deamination by AID and ADAR proteins; and the 
sequelae showing some key hypothesized DNA and RNA intermediates highlighted for the 
generation of the main strand- biased mutation signatures involving A-to-G, G-to-A, G-to-T and G-
to-C. 52,58,60  Black lines are DNA strands, red lines are pre-mRNA, blue thick lines are cDNA 
strands copied off pre-mRNA by reverse transcription via DNA polymerase h 47  Green bars are 
Inosines. Shown also is the action of the RNA exosome 55  allowing access of AID deaminase to 
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cytosines on the Transcribed Strand (TS). The ssDNA regions on the displaced Non-Transcribed 
Strand (NTS) are established targets of AID action. 41-44  With respect to the RNA intermediary step 
in this process mutations are first introduced at the DNA level by AID-mediated C-to-U 
deaminations, and then uracil DNA glycosylase (UNG)-generated Abasic sites in the TS (which can 
further mature into single strand nicks via the action of AP endonuclease generating the 3'-OH in 
the TS). These template Uracil and Abasic sites are transcribed into pre-mRNA by RNA Pol II 
generating G-to-A and G-to-C modifications respectively in the pre-mRNA as shown in Kuraoka et 
al. 62  which on TSRT-mediated reverse transcription, 61 integration and DNA replication result in 
G-to-A and G-to-C mutations in the NTS, in a strand biased manner. 52,54,58,60  Separately, 
adenosine-to-inosine (A-to-I) RNA editing events at WA targets, mediated by ADAR1 deaminase, 
in the nascent pre-mRNA emerging from  Transcription Bubble-proximal dsRNA stem loops may 
be copied back into DNA by reverse transcription via Pol-h. 50  In theory ADARs can also 
deaminate the RNA and DNA moieties in the RNA: DNA hybrid. 59,60  The strand invasion and 
integration of newly synthesized cDNA TS, as well as random-template mismatch repair 63 are 
hypothesized additional steps (not shown here). In more detail: RNA Pol II introduces mutations in 
the Ig pre-mRNA as it copies the AID lesions in TS DNA, concurrently A-to-I RNA edited sites 
appear in RNA stem(-loops) forming in nascent pre-mRNA near the transcription bubble 50  as well 
as in RNA:DNA hybrids within the bubble. 59,60  Next, the RT-priming substrates are formed by 
annealing the nicked TS strand with an exposed 3'-OH end (for Y Family translesion DNA 
polymerase-h,35  now acting in it reverse transcriptase mode. 47  These could arise due to excisions 
at previous AID-mediated Abasic sites, or due to an excision introduced by endonuclease activity 
associated with the MSH2-MSH6 heterodimer engaging a U:G mispaired lesion. 49  This allows 
extension of a new TS by cDNA synthesis from the 3'-OH end copying the already base modified 
pre-mRNA template (with Inosine base pairing preferentially, like G, with C). Show is an A>T 
transversion generated at the RT step at a template Inosine.  
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