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Abstract: Until the early twentieth century, the three-dimensional space and one-dimensional time 

were considered separate beings. In 1909, German mathematician H. Minkowski connected together 

space and time into single idea, creating a new the four-dimensional spacetime.  

 

In this paper we proposed the extension of this idea by the connection together the Minkowski four-

dimensional spacetime and the mass density into the single idea, creating a new entity: the four-

dimensional spacetime with the mass density.  

 

 

1. Introduction 

 

Until the early twentieth century, the three-dimensional space and one-dimensional time were 

considered separate beings. In 1909, German mathematician H. Minkowski connected together space 

and time into single idea, creating the four-dimensional spacetime [1]. The idea of the spacetime 

enjoyed success in the Special Relativity (SR) and the General Relativity (GR), correctly describing a 

range of physical phenomena.  

 

In this paper we propose the extension of this idea by the connection together the Minkowski four-

dimensional spacetime and the mass density into the single idea, creating a new entity: the four-

dimensional spacetime with the mass density. We expect that this idea will allow us to solve the problem 

of the sources of inertia.  

 

We assume additionally that: 

• in absence of the outer gravitational field the mass density becomes the bare mass density,  

• under influence outer gravitational field the bare mass density becomes the effective mass 

density.  

 

The idea of the spacetime with the bare (or the effective) mass density we call the massification of 

spacetime.  

 

 

2. The bare medium  

 

The spacetime with the bare mass density bareρ  is defined mathematically as follows  

 

),-,-,-(diag barebarebarebarebare
def

bare ρρρρηρρ µνµν =⋅=  
(1) 

 

where: bare

µνρ  is the bare mass density tensor, µνη  is the Minkowski tensor, µ, ν  = 0, 1, 2, 3.  

 

In the absence of any outer fields, the spacetime with the constant bare mass density ( constbare =ρ ) is 

the homogeneous, isotropic and time independent.  
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The bare mass density is no longer the scalar and becomes the tensor. Note that bareρ  never reaches 

zero ( 0≠bareρ ), although it may be very close. In the contrast to the vacuum, the spacetime with the 

bare mass density (let us call them the bare medium) is a never empty. So determined the bare medium 

is equivalent to the field of inertia, which is a special case of the gravitational field. The inertial field is 

responsible for the inertia of the body and is described by the tensor bare

µνρ .   

 

In the bare medium the metric is defined as the Minkowski metric  

 

( ) νµ
µνµν ηη dxdxds ⋅=2 . (2) 

 

This metric is independent of the inertial frame of reference and well suited to describe all the physical 

phenomena occurring in SR. The bare medium has influences on the physical processes. The presence 

of bodies and their motion has no influence on the bare medium. Particles behave in accordance with 

the principle of inertia, i.e. they are at rest or moving in a straight line at constant speed with respect to 

the bare medium (not with respect to the spacetime itself).  

 

During the uniform motion, clocks and roots indicate the different time and length, than at the rest. 

This difference results from the change of the bare mass density during the uniform motion with 

respect to the bare medium.  

 

 

3. The effective medium  

 

Under influence outer gravitational field the bare mass density becomes the effective mass density. 

The spacetime with the effective mass density let us call them the effective medium.  

 

The metric of the effective medium is mathematically defined as  

 

( )( ) ( ) νµµν
µν ρ

ρ
ρ dxdx

x
xds

bare

def

⋅=2
 

(3) 

 

where: ( )xµνρ  is the symmetric and position dependent the effective mass density tensor.  

 

The effective mass tensor ( )xµνρ  can be positive or negative, so the metric (3) also may take positive 

or negative values. This tensor  describes all the physical properties of the effective medium and also 

the mathematical relationship between the effective medium and the bare medium under the 

influence the gravitational field. In a some sense, ( )xµνρ  is similar to the metric tensor ( )xgµν  with 

metric   

 

( )( ) ( ) νµ
µνµν dxdxxgxgds ⋅=2  (4) 

 

in GR.  

 

Rest and motion of all bodies takes place with respect to the effective medium, which becomes a new 

reference frame. Additionally the presence of bodies and their motion has influence on the effective 

medium. In non-inertial systems the field of inertia passes into the gravitational field.  
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In the absence of any outer gravitational fields the effective mass becomes the bare mass and the 

metric (3) becomes the metric (2).  

 

The concept of effective mass tensor to describe gravitational phenomena, instead of usual metric 

tensor, for the first time, was discussed in [2].  

 

Let's analyze the motion of the body in an effective medium and let’s compare the equation of motion 

with the classical Newtonian equation.   

 

 

4. The equation of motion in the effective medium 

 

The Lagrangian function for the body in the effective medium has form  

 

( )
ττ

ρ
νµ

µν
d

dx

d

dx
xL

2

1
=  

 

 

 

The equation of motion  

 

( ) ( )
0

2

1
=

∂

∂
−

ττ

ρ

τ

νµ

γ
µνγ

d

dx

d

dx

x

x

d

xdp
 

 

(5) 

 

where: ( ) ( )
τ

ρ
µ

µγγ
d

dx
xxp ⋅=  is the effective density of the four-momentum, τ  is the proper time.  

 

The equation of motion (5) explicitly refers to the effective medium, which is described by the effective 

mass density tensor ( )xµνρ . So the motion of the body takes place only in relation to the effective 

medium, not to the relation of the spacetime itself or all bodies in the Universe (Mach’s Principle [3]). 

The new quality of the understanding has been reached.  

 

When ( )xγνρ  does not depends explicitly on τ , the equation (5) takes the form   

 

( ) ( )( ) 0
2

2

=⋅Γ+
ττ

ρ
τ

ρ
νµ

µνγµν

µ

µγ
d

dx

d

dx
x

d

xd
x  

 

(6) 

 

where:  

 

( )( ) ( ) ( ) ( )









∂

∂
−

∂

∂
+

∂

∂
=Γ γ

µν
µ

γν
ν

γµ
µνγµν

ρρρ
ρ

x

x

x

x

x

x
x

def

2

1
 

 

(7) 

 

assuming that the condition  

 

( ) ( ) ( )
ττ

ρρ

ττ

ρ νµ

µ
νγ

ν
µγ

νµ

ν
µγ

d

dx

d

dx

x

x

x

x

d

dx

d

dx

x

x
⋅








∂

∂
+

∂

∂
=⋅

∂

∂

2

1
 

 

 

 

is satisfied. 
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The equation (7) is very similar to the Christoffel symbols of the first kind, where instead metric tensor 

( )xgµν , we have the effective mass density tensor ( )xµνρ . This is an interesting result because the 

Christoffel symbols describing the metric connection, while the equation  

 

( )
( )

0
2

1
=

∂

∂
−








ττττ

νµ

γ
µν

ν

γν
d

dx

d

dx

x

xg

d

dx
xg

d

d
 

 

(8) 

 

is the geodesic equation in GR.  

 

If the surrounding bodies consist only with the bare masses, i.e. ( ) barex µνµν ρρ = , ( ) 0=Γ bare
µνγµν ρ  then 

the equation of motion (6) takes the form:   

 

0
2

2

=
τ

ρ
ν

µν
d

xdbare . 
 

(9) 

 

The body with the bare mass density bare
µνρ  is in the rest or moves in a straight line with the constant 

speed in the respect to the bare medium. The principle of inertia has gained a new meaning and the 

equation (9) determines the new inertial reference frame – the bare medium reference frame. This 

reference frame is determined by the bare medium property only.  

 

During any change in state of motion of the body appears the inertia, which source is the spacetime 

with the effective mass density. The inertia becomes an intrinsic property of the massification of 

spacetime. The magnitude of the inertia of any body is also determined by the massification of 

spacetime. This is the opposite of that, than previously thought. Until now it was thought that inertia 

is determined by the masses of the Universe and by their distribution [4]. In our model an isolated 

object in the Universe always has of the inertial properties, because the spacetime with the bare mass 

density bareρ  formed an inseparable whole. The spacetime ceased to be empty.  

 

We analyze now the massification of spacetime for the slow motion speed and the slow rotating body 

in a static and a weak gravitational field. 

 

 

5. A weak gravitational field approximation 

 

In a weak gravitational field we can decompose ( )xµνρ  to the following simple form 

( ) ( )xx bare *
µνµνµν ρρρ += , where: ( ) 1* <<xµνρ  is a very small perturbation in the effective mass density 

tensor. 

 

 

5.1. The equation of motion  
 

At slow motion speeds, in a static, a weak and the spherically symmetric field the equation of motion 

(6) reduces to  

  

( )( ) ( )rc

dt

rd
rrr

bare *
00

2

2

2
*

2
ρρρ ∇−≅⋅+  

 

(10) 
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where: c  is the speed of light.  

 

The equation (10) is a little different than well-known Newton's equation of the motion for the gravity. 

It what currently we consider to be the inertial mass density, really is the sum of the bare mass density 
bareρ  and ( )xrr

*ρ  -  rr-component of the very small perturbation in the effective mass density. Note 

that gravitational mass density does not appear explicitly in the equation (10).  

 

Does it mean that, in our model, during massification of the spacetime, the Equivalence Principle, 

underlying the GR, lost raison d'être?  

 

According to the Correspondence Principle we expect that there is a relationship between the component 

( )r*
00ρ  and the gravitational potential ( )rV  in the following form [5]  

 

( ) ( )
2

*
00 2

c

rVr
bare

≅
ρ
ρ

 
 

(11) 

 

where: ( )
r

GM
rV = , G  is the gravitational constant, M is the mass and r  is the distance. After 

substituting (11) to (10), (on the assumption that ( ) 0* =rrrρ ) , we obtain  

 

( )
r

rV

dt

rd

∂
∂

−=
2

2

 
 

(12) 

 

the well-known Newtonian equation of motion in the gravitational potential ( )rV . 

 

 

5.2. The rotating body 
 

Let’ s consider the slowly rotating body in a static and weak gravitational field. The equation of 

motion have the form   

 

( ) ( ) ( )
dt

dx

x

x

x

x
c

x

xc

dt

xd i

k

j

j

k

i

i
bare















∂

∂
−

∂

∂
⋅+

∂

∂
−=⋅

*
0

*
0

*
00

2

2

2

2

ρρρ
ρ  

 

(13) 

 

The sources of inertia are the following expressions: 
( )
ix

x

∂

∂ *
00ρ

 and 
( ) ( )

k

j

j
k

x

x

x

x

∂

∂
−

∂
∂ *

0
*
0

ρρ
. These 

components we can determine from the matrix [6]  

 

( )

( )

























−

−
+

−

⋅=

0000

000

000

0
2

222

*

c

x
c

y
c

x

c

y

c

yx

x bare

ω

ω

ωωω

ρρµν , 

 

 

where 222 yxr += .  
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Finally, we get well-known equation  

 

dt

dr
r

dt

rd
ωω 22

2

2

−−=  
 

(14) 

 

which includes an real the centrifugal and Coriolis acceleration.  

 

In the Newtonian approximation the equations of motion (12) and (14) does not depend, explicitly, on 

the mass density.   

 

 

6. The rotating bucket with water problem 

 

There are two entirely different measurements of the Earth’s angular velocity, astronomical (from 

upper culmination to upper culmination of the star) and dynamic (by means of Foucault’s pendulum 

experiment), which give the same results (in the limit of the experimental errors). In both cases the 

motion is described with respect to the effective medium and the coincidence of these measurements 

is the result of massification of the spacetime.  

 

In the famous experiment with the rotating bucket with water [7, 8] the motion of water takes place also 

to relative of the effective medium, therefore the surface of water takes the shape of the parabolic. So, 

massification of the spacetime explains both these physical phenomena.  

 

 

7. What is the bare and the effective mass density?  

 

Each theoretical model must correspond with the real of the physical world. We suppose that the bare 

mass density bareρ  corresponds with the critical density 
G

H
c π

ρ
8

3 2

=  [6], where: H is the Hubble 

constant. This term is use in the modern cosmology to determine the spatial geometry of the Universe, 

where cρ  is the critical density for which the spatial geometry is flat (or Euclidean).  

 

The flat spatial geometry in GR corresponds with the bare medium in our model. The curved 

spacetime corresponds with the effective medium.  

 

 

8. Summary   

 

In this paper was applied an alternative attempt to describe gravitational phenomena, using a new 

idea of the massification of spacetime, which provides the following benefits:   

 

1. During any change in state of motion of the body appears the inertia, which source is the 

spacetime with the effective mass density. 

2. The inertia becomes an intrinsic property of massification of the spacetime.  

3. The magnitude of the inertia of any body is determined by massification of the spacetime.  

4. Inertial forces, appearing in the non-inertial frames of reference, there are no longer fictitious 

forces.  

5. In the gravitational field clocks and roots indicate the different time and length, than in the 

absence of the field. This difference results from the change of the effective mass density in a 

gravitational field [9].  
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9. Conclusion 

 

The idea of massification of the spacetime, although a very attractive, requires experimental 

confirmation. Predicted the annual relative change of the fluctuation in the effective mass as resulting 

from ellipticity of the orbit for the Earth, is equal to 6.6 x 10-10 [9].  

 

GR does not predicts a such fluctuations.  
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