Thermodynamics and Energy

1706 Submissions

[5] viXra:1706.0568 [pdf] submitted on 2017-06-30 07:12:56

Boltzmann Constant Measurements

Authors: George Rajna
Comments: 27 Pages.

By measuring the random jiggling motion of electrons in a resistor, researchers at the National Institute of Standards and Technology (NIST) have contributed to accurate new measurements of the Boltzmann constant, a fundamental scientific value that relates the energy of a system to its temperature. [15] The likelihood of seeing quantum systems violating the second law of thermodynamics has been calculated by UCL scientists. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Thermodynamics and Energy

[4] viXra:1706.0530 [pdf] submitted on 2017-06-29 07:17:33

Distance Measurements with Thermal Light

Authors: George Rajna
Comments: 37 Pages.

New research has made it possible for the first time to compare the spatial structures and positions of two distant objects, which may be very far away from each other, just by using a simple thermal light source, much like a star in the sky. [27] In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21]
Category: Thermodynamics and Energy

[3] viXra:1706.0522 [pdf] submitted on 2017-06-28 10:09:31

On Interrelation of Time and Entropy

Authors: Leonid M. Martyushev
Comments: 10 Pages.

A measure of time is related to the number of ways by which the human correlates the past and the future for some process. On this basis, a connection between time and entropy (information, Boltzmann-Gibbs, and thermodynamic one) is established. This measure gives time such properties as universality, relativity, directionality, and non-uniformity. A number of issues of the modern science related to the finding of laws describing changes in nature are discussed. A special emphasis is made on the role of evolutionary adaptation of an observer to the surrounding world.
Category: Thermodynamics and Energy

[2] viXra:1706.0484 [pdf] submitted on 2017-06-26 09:40:51

Electrocaloric Cooling

Authors: George Rajna
Comments: 35 Pages.

Researchers have built an electrocaloric refrigerator the size of a beverage coaster that can generate a temperature difference of about 2 K between the hot and cold ends of the device. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21] Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20] Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Thermodynamics and Energy

[1] viXra:1706.0439 [pdf] submitted on 2017-06-23 01:16:46

Stored Electromagnetic Energy

Authors: George Rajna
Comments: 33 Pages.

At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21] Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20] Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17]
Category: Thermodynamics and Energy