1405 Submissions

[2] viXra:1405.0280 [pdf] replaced on 2015-03-25 13:29:09

An Adaptive Population Importance Sampler: Learning from the Uncertanity

Authors: L. Martino, V. Elvira, D. Luengo, J. Corander
Comments: IEEE Transactions on Signal Processing, Volume 63, Issue 16, Pages 4422-4437, 2015

Monte Carlo (MC) methods are well-known computational techniques, widely used in different fields such as signal processing, communications and machine learning. An important class of MC methods is composed of importance sampling (IS) and its adaptive extensions, such as population Monte Carlo (PMC) and adaptive multiple IS (AMIS). In this work, we introduce a novel adaptive and iterated importance sampler using a population of proposal densities. The proposed algorithm, named adaptive population importance sampling (APIS), provides a global estimation of the variables of interest iteratively, making use of all the samples previously generated. APIS combines a sophisticated scheme to build the IS estimators (based on the deterministic mixture approach) with a simple temporal adaptation (based on epochs). In this way, APIS is able to keep all the advantages of both AMIS and PMC, while minimizing their drawbacks. Furthermore, APIS is easily parallelizable. The cloud of proposals is adapted in such a way that local features of the target density can be better taken into account compared to single global adaptation procedures. The result is a fast, simple, robust and high-performance algorithm applicable to a wide range of problems. Numerical results show the advantages of the proposed sampling scheme in four synthetic examples and a localization problem in a wireless sensor network.
Category: Statistics

[1] viXra:1405.0263 [pdf] replaced on 2015-04-09 13:23:39

A Fast Universal Self-Tuned Sampler Within Gibbs Sampling

Authors: L. Martino, H. Yang, D. Luengo, J. Kanniainen, J. Corander
Comments: Digital Signal Processing, Volume 47, Pages 68-83, 2015.

Bayesian inference often requires efficient numerical approximation algorithms, such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods. The Gibbs sampler is a well-known MCMC technique, widely applied in many signal processing problems. Drawing samples from univariate full-conditional distributions efficiently is essential for the practical application of the Gibbs sampler. In this work, we present a simple, self-tuned and extremely efficient MCMC algorithm which produces virtually independent samples from these univariate target densities. The proposal density used is self-tuned and tailored to the specific target, but it is not adaptive. Instead, the proposal is adjusted during an initial optimization stage, following a simple and extremely effective procedure. Hence, we have named the newly proposed approach as FUSS (Fast Universal Self-tuned Sampler), as it can be used to sample from any bounded univariate distribution and also from any bounded multi-variate distribution, either directly or by embedding it within a Gibbs sampler. Numerical experiments, on several synthetic data sets (including a challenging parameter estimation problem in a chaotic system) and a high-dimensional financial signal processing problem, show its good performance in terms of speed and estimation accuracy.
Category: Statistics