Physics of Biology

1709 Submissions

[17] viXra:1709.0399 [pdf] submitted on 2017-09-26 20:03:35

Innaturalism

Authors: Miguel A. Sanchez-Rey
Comments: 2 Pages.

Antithetical naturalism.
Category: Physics of Biology

[16] viXra:1709.0275 [pdf] submitted on 2017-09-18 07:10:58

Understanding Cellular Communication

Authors: George Rajna
Comments: 39 Pages.

A team of Caltech scientists has uncovered a molecular code that cells use to communicate with each other. [27] Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions – thanks to a breakthrough in synthetic biology by the University of Warwick. [26] This "robot," made of a single strand of DNA, can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a high-intensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18]
Category: Physics of Biology

[15] viXra:1709.0272 [pdf] submitted on 2017-09-18 08:45:54

Ultra-Fast 3D Microscope

Authors: George Rajna
Comments: 38 Pages.

A new microscope can capture 3-D images of live organisms in real time. It's called the QIs-scope, an innovation from a spinoff of Universidad Carlos III de Madrid (UC3M), 4D Nature. The microscope can be used in biomedical research or to improve clinical diagnosis procedures. [22] Scientists have developed a camera that can see through the human body. [21] A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications in medical diagnosis, guided surgery, or pre-clinical drug testing. [20] Chemists at ITbM, Nagoya University have developed a super-photostable fluorescent dye called PhoxBright 430 (PB430) to visualize cellular ultra-structure by super-resolution microscopy. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are.
Category: Physics of Biology

[14] viXra:1709.0268 [pdf] submitted on 2017-09-18 06:39:04

Cells Programmed to Fight Disease

Authors: George Rajna
Comments: 38 Pages.

Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions – thanks to a breakthrough in synthetic biology by the University of Warwick. [26] This "robot," made of a single strand of DNA, can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a high-intensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17]
Category: Physics of Biology

[13] viXra:1709.0171 [pdf] submitted on 2017-09-14 03:11:52

Mobile-Phone Breathing Monitor

Authors: George Rajna
Comments: 39 Pages.

Researchers have developed new software that makes it possible to use low-cost, thermal cameras attached to mobile phones to track how fast a person is breathing. [22] Scientists have developed a camera that can see through the human body. [21] A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications in medical diagnosis, guided surgery, or pre-clinical drug testing. [20] Chemists at ITbM, Nagoya University have developed a super-photostable fluorescent dye called PhoxBright 430 (PB430) to visualize cellular ultra-structure by super-resolution microscopy. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12]
Category: Physics of Biology

[12] viXra:1709.0167 [pdf] submitted on 2017-09-13 11:42:53

Energy Highway along Protein Strands

Authors: George Rajna
Comments: 39 Pages.

The theory explaining how polarons carry energy in crystals can be applied to long molecules called polypeptides—which can fold into proteins. [25] Two new computational tools, MSMuTect and MSMutSig, could help reveal how often mutations in common DNA features called microsatellites appear in, and contribute to, cancer. [24] A Northeastern research team has developed new technology that optimizes DNA sequencing using nanophysics and electric currents. [23] Nevertheless, the accumulation of DNA damage is a cause of aging. A team of scientists based at CECAD at the University of Cologne is now trying to better understand the damage to the genome driving the aging process. [22] By taking a different approach, however, researchers at Houston Methodist made a surprising discovery leading to the development of technology with the ability to rejuvenate human cells. [21] The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff. [20] Scientists at the University of Bonn have succeeded in observing an important cell protein at work using a method that measures structural changes within complex molecules. [19] Scientists have now explored a modified form that can produce light-generated electrons and store them for catalytic hydrogen production even after the light has been switched off. They present this biomimetic photosynthesis approach in the journal Angewandte Chemie. [18] Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create lightweight night-vision glasses. [17] Magnets instead of antibiotics could provide a possible new treatment method for blood infection. [16] One of the biggest challenges in cognitive or rehabilitation neurosciences is the ability to design a functional hybrid system that can connect and exchange information between biological systems, like neurons in the brain, and human-made electronic devices. [15]
Category: Physics of Biology

[11] viXra:1709.0151 [pdf] submitted on 2017-09-12 07:57:39

DNA Microsatellites

Authors: George Rajna
Comments: 38 Pages.

DNA Microsatellites Two new computational tools, MSMuTect and MSMutSig, could help reveal how often mutations in common DNA features called microsatellites appear in, and contribute to, cancer. [24] A Northeastern research team has developed new technology that optimizes DNA sequencing using nanophysics and electric currents. [23] Nevertheless, the accumulation of DNA damage is a cause of aging. A team of scientists based at CECAD at the University of Cologne is now trying to better understand the damage to the genome driving the aging process. [22] By taking a different approach, however, researchers at Houston Methodist made a surprising discovery leading to the development of technology with the ability to rejuvenate human cells. [21] The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff. [20] Scientists at the University of Bonn have succeeded in observing an important cell protein at work using a method that measures structural changes within complex molecules. [19] Scientists have now explored a modified form that can produce light-generated electrons and store them for catalytic hydrogen production even after the light has been switched off. They present this biomimetic photosynthesis approach in the journal Angewandte Chemie. [18] Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create lightweight night-vision glasses. [17] Magnets instead of antibiotics could provide a possible new treatment method for blood infection. [16] One of the biggest challenges in cognitive or rehabilitation neurosciences is the ability to design a functional hybrid system that can connect and exchange information between biological systems, like neurons in the brain, and human-made electronic devices. [15] Wearable terahertz scanning device for inspection of medical equipment and the human body. [14]
Category: Physics of Biology

[10] viXra:1709.0146 [pdf] submitted on 2017-09-11 15:43:35

General Theoretical Aspects of Cell Mechanics from Circadian Oscillator Point of View Based on Higher Order Logic(HOL) – A Short Communication to Develop Informatics Framework Involving Bio-Chemical Concepts of Cells and Mobile Computing Environments.

Authors: N.T.Kumar, Thiago R, Sandro B, Vinicius R, Lisane V, Vanderlei P
Comments: 7 Pages. A Short communication on multi-discplinary approach based on informatics of cells and mobile computing environments

We observe the “internal clock” that man possesses in common with animals,plants and protists has drawn the interest of scientists and researchers from diverse fields of science and technology.Performing R&D in this promising and challenging domain of circadian rhythms is very much useful to those engaged in research in general,industrial and aerospace medicine.It is in this context it was decided to work on topics involving circadian rhythms and formalisms based on Higher Order Logic(HOL) using Dynamic Architecture concepts to further evaluate the theories involved and to come up with certain informatics frameworks. To the best of our knowledge this paper is one of the pioneering topics in the domain of “Circadian Systems” and its informatics.
Category: Physics of Biology

[9] viXra:1709.0139 [pdf] submitted on 2017-09-12 03:22:54

Internal Clock Within Live Human Cells

Authors: George Rajna
Comments: 37 Pages.

A team of scientists has revealed an internal clock within live human cells, a finding that creates new opportunities for understanding the building blocks of life and the onset of disease. [23] Nevertheless, the accumulation of DNA damage is a cause of aging. A team of scientists based at CECAD at the University of Cologne is now trying to better understand the damage to the genome driving the aging process. [22] By taking a different approach, however, researchers at Houston Methodist made a surprising discovery leading to the development of technology with the ability to rejuvenate human cells. [21] The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff. [20] Scientists at the University of Bonn have succeeded in observing an important cell protein at work using a method that measures structural changes within complex molecules. [19] Scientists have now explored a modified form that can produce light-generated electrons and store them for catalytic hydrogen production even after the light has been switched off. They present this biomimetic photosynthesis approach in the journal Angewandte Chemie. [18] Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create lightweight night-vision glasses. [17] Magnets instead of antibiotics could provide a possible new treatment method for blood infection. [16] One of the biggest challenges in cognitive or rehabilitation neurosciences is the ability to design a functional hybrid system that can connect and exchange information between biological systems, like neurons in the brain, and human-made electronic devices. [15] Wearable terahertz scanning device for inspection of medical equipment and the human body. [14] Optical microscopy experts at Colorado State University are once again pushing the envelope of biological imaging. [13]
Category: Physics of Biology

[8] viXra:1709.0136 [pdf] submitted on 2017-09-12 04:32:59

DNA Sequencing

Authors: George Rajna
Comments: 38 Pages.

A Northeastern research team has developed new technology that optimizes DNA sequencing using nanophysics and electric currents. [23] Nevertheless, the accumulation of DNA damage is a cause of aging. A team of scientists based at CECAD at the University of Cologne is now trying to better understand the damage to the genome driving the aging process. [22] By taking a different approach, however, researchers at Houston Methodist made a surprising discovery leading to the development of technology with the ability to rejuvenate human cells. [21] The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff. [20] Scientists at the University of Bonn have succeeded in observing an important cell protein at work using a method that measures structural changes within complex molecules. [19] Scientists have now explored a modified form that can produce light-generated electrons and store them for catalytic hydrogen production even after the light has been switched off. They present this biomimetic photosynthesis approach in the journal Angewandte Chemie. [18] Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create lightweight night-vision glasses. [17] Magnets instead of antibiotics could provide a possible new treatment method for blood infection. [16] One of the biggest challenges in cognitive or rehabilitation neurosciences is the ability to design a functional hybrid system that can connect and exchange information between biological systems, like neurons in the brain, and human-made electronic devices. [15] Wearable terahertz scanning device for inspection of medical equipment and the human body. [14] Optical microscopy experts at Colorado State University are once again pushing the envelope of biological imaging. [13]
Category: Physics of Biology

[7] viXra:1709.0135 [pdf] submitted on 2017-09-12 04:51:38

Gene Synthesis

Authors: George Rajna
Comments: 39 Pages.

A team of scientists led by the University of Southampton has demonstrated a groundbreaking new method of gene synthesis-a vital research tool with real-world applications in everything from growing transplantable organs to developing treatments for cancer. [24] A Northeastern research team has developed new technology that optimizes DNA sequencing using nanophysics and electric currents. [23] Nevertheless, the accumulation of DNA damage is a cause of aging. A team of scientists based at CECAD at the University of Cologne is now trying to better understand the damage to the genome driving the aging process. [22] By taking a different approach, however, researchers at Houston Methodist made a surprising discovery leading to the development of technology with the ability to rejuvenate human cells. [21] The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff. [20] Scientists at the University of Bonn have succeeded in observing an important cell protein at work using a method that measures structural changes within complex molecules. [19] Scientists have now explored a modified form that can produce light-generated electrons and store them for catalytic hydrogen production even after the light has been switched off. They present this biomimetic photosynthesis approach in the journal Angewandte Chemie. [18] Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create lightweight night-vision glasses. [17] Magnets instead of antibiotics could provide a possible new treatment method for blood infection. [16] One of the biggest challenges in cognitive or rehabilitation neurosciences is the ability to design a functional hybrid system that can connect and exchange information between biological systems, like neurons in the brain, and human-made electronic devices. [15] Wearable terahertz scanning device for inspection of medical equipment and the human body. [14]
Category: Physics of Biology

[6] viXra:1709.0100 [pdf] submitted on 2017-09-09 09:30:51

Diseases Targeted Using Nanotechnology

Authors: George Rajna
Comments: 35 Pages.

Scientists are designing materials that are a thousand times smaller than the width of a hair. Known as nanomaterials or nanoparticles, some could help treat diseases. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a high-intensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]
Category: Physics of Biology

[5] viXra:1709.0084 [pdf] submitted on 2017-09-07 14:21:29

Chromosome Motor Discovery

Authors: George Rajna
Comments: 23 Pages.

It is one of the great mysteries in biology: How does a cell neatly distribute its replicated DNA between two daughter cells? [14] Motorized molecules driven by light have been used to drill holes in the membranes of individual cells and show promise for either bringing therapeutic agents into the cells or directly inducing the cells to die. [13] Nanoengineers at the University of California San Diego have demonstrated for the first time using micromotors to treat a bacterial infection in the stomach. [12] The ability to stimulate neural circuits with very high precision light to control cells—optogenetics—is key to exciting advances in the study and mapping of the living brain. [11] A breakdown of memory processes in humans can lead to conditions such as Alzheimer's and dementia. By looking at the simpler brain of a honeybee, new research published in Frontiers in Molecular Neuroscience, moves us a step towards understanding the different processes behind long-term memory formation. [10], has shown that it is possible for some information to be inherited biologically through chemical changes that occur in DNA. During the tests they learned that that mice can pass on learned information about traumatic or stressful experiences – in this case a fear of the smell of cherry blossom – to subsequent generations. [9] A new way of thinking about consciousness is sweeping through science like wildfire. Now physicists are using it to formulate the problem of consciousness in concrete mathematical terms for the first time. Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[4] viXra:1709.0082 [pdf] submitted on 2017-09-07 18:19:51

A Possibility of Brain Stimulation with Oscillating Neutrinos

Authors: Evgeny A Novikov
Comments: 4 Pages.

Special properties of the first ordinary (observable) matter, produced in the universe -the oscillating neutrinos - are discussed in a context of their use for healing and stimulation of the brain.
Category: Physics of Biology

[3] viXra:1709.0075 [pdf] submitted on 2017-09-06 12:58:15

Electron Spin Resonance

Authors: George Rajna
Comments: 39 Pages.

Australian scientists have developed a new tool for imaging life at the nanoscale that will provide new insights into the role of transition metal ions such as copper in neuro-degenerative diseases. [22] Scientists have developed a camera that can see through the human body. [21] A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications in medical diagnosis, guided surgery, or pre-clinical drug testing. [20] Chemists at ITbM, Nagoya University have developed a super-photostable fluorescent dye called PhoxBright 430 (PB430) to visualize cellular ultra-structure by super-resolution microscopy. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16]
Category: Physics of Biology

[2] viXra:1709.0040 [pdf] submitted on 2017-09-04 09:59:20

Medical Camera

Authors: George Rajna
Comments: 37 Pages.

Scientists have developed a camera that can see through the human body. [21] A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications in medical diagnosis, guided surgery, or pre-clinical drug testing. [20] Chemists at ITbM, Nagoya University have developed a super-photostable fluorescent dye called PhoxBright 430 (PB430) to visualize cellular ultra-structure by super-resolution microscopy. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12]
Category: Physics of Biology

[1] viXra:1709.0012 [pdf] submitted on 2017-09-01 08:04:55

Nanoparticles Throw off Microscopic Measurements

Authors: George Rajna
Comments: 34 Pages.

Gold nanoparticles brighten the fluorescent dyes researchers use to highlight and study proteins, bacteria and other cells, but the nanoparticles also introduce an artifact that makes the dye appear removed from the target it's illuminating. [20] Researchers at the Hebrew University of Jerusalem have created a nanophotonic chip system using lasers and bacteria to observe fluorescence emitted from a single bacterial cell. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17] A crystalline material that changes shape in response to light could form the heart of novel light-activated devices. [16] Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by using a two-layer coating, each layer with a near zero thickness and weight. [15] Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. [14] Researchers have developed a way to use commercial inkjet printers and readily available ink to print hidden images that are only visible when illuminated with appropriately polarized waves in the terahertz region of the electromagnetic spectrum. [13] That is, until now, thanks to the new solution devised at TU Wien: for the first time ever, permanent magnets can be produced using a 3D printer. This allows magnets to be produced in complex forms and precisely customised magnetic fields, required, for example, in magnetic sensors. [12]
Category: Physics of Biology