Physics of Biology

1703 Submissions

[5] viXra:1703.0248 [pdf] submitted on 2017-03-26 08:46:20

Critical Step in DNA Repair

Authors: George Rajna
Comments: 39 Pages.

New research led by Harvard Medical School reveals a critical step in a molecular chain of events that allows cells to mend broken DNA. [21] Now, Barton's lab has shown that this wire-like property of DNA is also involved in a different critical cellular function: replicating DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15]
Category: Physics of Biology

[4] viXra:1703.0123 [pdf] submitted on 2017-03-13 09:06:38

Magnetic Brain Activity

Authors: George Rajna
Comments: 37 Pages.

Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity. [25] A new study out of the University of California Los Angeles (UCLA) has found that one part of the neurons in our brains is more active than previously revealed. The finding implies that our brains are both analog and digital computers and could lead to better ways to treat neurological disorders. [24]
Category: Physics of Biology

[3] viXra:1703.0111 [pdf] submitted on 2017-03-12 11:27:44

Our Powerful Brains

Authors: George Rajna
Comments: 36 Pages.

A new study out of the University of California Los Angeles (UCLA) has found that one part of the neurons in our brains is more active than previously revealed. The finding implies that our brains are both analog and digital computers and could lead to better ways to treat neurological disorders. [24]
Category: Physics of Biology

[2] viXra:1703.0081 [pdf] submitted on 2017-03-08 19:12:50

Long Term Stability and the Meaning of Life

Authors: Daniel Rocha
Comments: 11 Pages. Essay submitted to FQXI contest

A new definition of life is given, which is sufficient to construct practical experiments to understand the origin of life. Stable mechanisms throughout evolution are discussed and their importance on human society are highlighted in the conclusion. Link to FQXI contest: http://fqxi.org/community/forum/topic/2846
Category: Physics of Biology

[1] viXra:1703.0058 [pdf] submitted on 2017-03-07 07:07:57

DNA Information Storage

Authors: George Rajna
Comments: 38 Pages.

Work at the New York Genome Centre represents a big step towards DNA-based information storage. Andrew Masterson reports. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12] We model the electron clouds of nucleic acids in DNA as a chain of coupled quantum harmonic oscillators with dipole-dipole interaction between nearest neighbours resulting in a van der Waals type bonding. [11] Scientists have discovered a secret second code hiding within DNA which instructs cells on how genes are controlled. The amazing discovery is expected to open new doors to the diagnosis and treatment of diseases, according to a new study. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology