Physics of Biology

1604 Submissions

[4] viXra:1604.0384 [pdf] submitted on 2016-04-29 21:50:35

The Principle of Biostellar Evolution

Authors: Jeffrey Joseph Wolynski
Comments: 1 Page.

A new principle of science is presented to connect biology with astronomy.
Category: Physics of Biology

[3] viXra:1604.0319 [pdf] submitted on 2016-04-23 08:38:36

Producing, Crystallizing Biomolecules

Authors: George Rajna
Comments: 22 Pages.

A new center has been established on campus to help researchers probe the structure of biological molecules. Housed in the basement of the Shriram Center, the Macromolecular Structure Knowledge Center contains equipment and resources for producing and crystallizing biological molecules. [11] When cryoEM images are obtained from protein nanocrystals the images themselves can appear to be devoid of any contrast. A group of scientists from the Netherlands have now demonstrated that lattice information can be revealed and enhanced by a specialized filter. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[2] viXra:1604.0312 [pdf] submitted on 2016-04-22 18:12:38

Alleles Dynamics

Authors: Domenico Oricchio
Comments: 1 Page.

I write the alleles dynamics far from Hardy-Weinberg equilibrium
Category: Physics of Biology

[1] viXra:1604.0005 [pdf] submitted on 2016-04-01 09:52:34

Brain Processes Emotions

Authors: George Rajna
Comments: 21 Pages.

A new study reveals how two populations of neurons in the brain contribute to the brain's inability to correctly assign emotional associations to events. Learning how this information is routed and misrouted could shed light on mental illnesses including depression, addiction, anxiety, and posttraumatic stress disorder. [11] In dynamic neuronal networks, pervasive oscillatory activity is usually explained by pointing to pacemaking elements that synchronize and drive the network. Recently, however, scientists at The Weizmann Institute of Science in Israel studied synchronized periodic bursting that emerged spontaneously in a network of in vitro rat hippocampus and cortex neurons, finding that roughly 60% of all active neurons were self-sustained oscillators when disconnected from the network – and that each neuron oscillated at its own frequency, which is controlled by the neuron's excitability. [10] Most biology students will be able to tell you that neural signals are sent via mechanisms such as synaptic transmission, gap junctions, and diffusion processes, but a new study suggests there's another way that our brains transmit information from one place to another. [9] Physicists are expected to play a vital role in this research, and already have an impressive record of developing new tools for neuroscience. From two-photon microscopy to magneto-encephalography, we can now record activity from individual synapses to entire brains in unprecedented detail. But physicists can do more than simply provide tools for data collection. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology