BIVARIATE GENERATING FUNCTIONS FOR NON-ATTACKING WAZIRS ON RECTANGULAR BOARDS

RICHARD J. MATHAR

ABSTRACT. A wazir is a fairy chess piece that attacks the 4 neighbors to the North, East, South and West of the chess board. This work constructs the bivariate generating functions for the number of placing w mutually non-attacking wazirs on rectangular boards of shape $r \times c$ at fixed c. The equinumerous setup counts binary $\{0, 1\}$ arrays of dimension $r \times c$ which have w 1's with mutual L1 (Manhattan) distances > 1.

1. Non-Attacking Wazirs

A wazir is a chess figure that attacks the 4 squares directly attached to its square in the four principle compass directions. It has the narrow range of the king [6]—which attacks its surrounding 8 squares—but the directions of attack inherited from the rook. [Placed on the edge or in the corner of the board, the wazir attacks only 3 or 2 squares.] One may also say that a wazir attacks the squares in the von-Neumann neighborhood or that it attacks the four squares at L1 (Manhattan) distance equal to 1.

Definition 1. W(r, c, w) is the number of arrangements of w non-attacking wazirs on a $r \times c$ rectangular chess board.

W(r, c, w) is also the number of placements of w monominoes on $r \times c$ boards such that no two of them could be bonded edge-to-edge into dominoes or higher polyominoes.

Since we do not consider rotations or flips of the entire configuration along board middle axes, diagonals or through the center, the role of rows and columns may be interchanged:

(1)
$$W(r,c,w) = W(c,r,w).$$

If no wazir is present, the empty board is the only solution:

$$W(r,c,0) = 1$$

A single wazir can be placed on any square, because the constraint on neighbors is irrelevant then:

$$W(r,c,1) = rc.$$

A single wazir can be placed in one of 4 corners which leaves rc - 3 non-attacked squares for the second. A single wazir can be placed on one of the 2(r-2)+2(c-2) edges which leaves rc - 4 squares for the second. A single wazir can be placed on

Date: April 25, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 05A15, 08A50; Secondary 51E20.

Key words and phrases. Binary Matrices, Transfer Matrix, von-Neumann neighborhood.

one of (r-2)(c-2) non-border squares which leaves rc-5 squares for the second. 4(rc-3) + [2r+2c-8](rc-4) + (r-2)(c-2)(rc-4) is a factor 2 too large because each pair is counted twice:

(4)
$$W(r,c,2) = r + c + \frac{rc}{2}(rc - 5).$$

The encoding of a configuration is a stack of r 2-letter words of the alphabet $\{0, 1\}$ of length c, where 1's indicate that a wazir occupies a square, 0's indicate the square is empty. For a single row, the non-attacking request is closely related to the Zeckendorf representation and to words avoiding the 11 subword.

Example 1. The words of length 1 are 0 and 1. The words of length 2 are 00, 01, and 10. The words of length 3 are 000, 001, 010, 100 and 101. The words of length 4 are 0000, 0001, 0010, 0100, 0101, 1000, 1001, and 1010 [2, A014417].

The number of such words is F_{c+2} where F are the Fibonacci numbers.

The densest packing of non-attacking wazirs is achieved by placing them on the subgrid reachable by moves of a bishop. So

(5)
$$W(r,c,w) = 0 \quad \text{if} \quad w > \lceil rc/2 \rceil.$$

These trailing zeros are not printed in the tables of W(r, c, w) in this manuscript.

Definition 2. (Bivariate GF) A bivariate generating function keeping the number of columns fixed is

(6)
$$\hat{W}_c(x,y) \equiv \sum_{r=0}^{\infty} \sum_{w=0}^{\infty} W(r,c,w) x^r y^w.$$

2. TRANSFER MATRICES

W may be counted by recursively attaching a new row to an already existing binary array of c columns, registering only those rows (binary words) in the new row which are compatible with the non-attacking requirement; compatibility means the bitwise **and** of the new binary word and the binary row of the previous row must be zero.

This is a typical Markov chain requirement: compatibility is defined related to knowledge of a single previous row. A state diagram (automaton) is defined where each of the

$$(7) s = F_{c+2}$$

binary words is a node—a trivial labeling is the integer value of the binary word—, and a digraph is constructed where two nodes are connected by an arc if they are compatible.

Remark 1. Compatibility in this problem is commutative. So the digraph is a symmetric digraph.

The s nodes can be considered ordered, for example by just using their integer labels as a measure—which are unique because c is supposed to be fixed.

The accumulation of new rows in an array of c columns, starting with a (virtual) top row of the 000...0 word which is compatible with any other binary word, is a walk along arcs of the digraph.

NON-ATTACKING WAZIRS

$r \backslash w$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2					
3	1	3	1				
4	1	4	3				
5	1	5	6	1			
6	1	6	10	4			
7	1	7	15	10	1		
8	1	8	21	20	5		
9	1	9	28	35	15	1	
10	1	10	36	56	35	6	
11	1	11	45	84	70	21	1
12	1	12	55	120	126	56	7

TABLE 1. The number W(r, 1, w) of placing w non-attacking wazirs on $r \times 1$ boards [2, A011973]. Essentially a slanted version of the Pascal Triangle of binomial coefficients.

The Transfer Matrix method is the standard tool to track the number of new wazirs [5]. It is a $s \times s$ matrix T(n, m). T(n, m) = 0 if the *n*th node is not compatible with the *m*th node, otherwise it is xy^b where

- y^b indicates the number of wazirs has increased by b, the number of bits (or wazirs) in node n,
- and the x^1 indicates the number of rows has increased by 1.

Walks of finite length are associated with powers of the *T*-matrix, and the bivariate generating function \hat{W} is top left element of the inverse $(1-T)^{-1}$ [1, 3].

The nature of the transfer matrix method proves that the \hat{W} are rational polynomials in x and y because all elements of T are polynomials in x and y.

3. Results

The generating function associated with boards 1 column wide, Table 1, is

(8)
$$\hat{W}_1(x,y) \equiv p_1(x,y)/q_1(x,y) = (1+xy)/(1-x-x^2y).$$

The generating function associated with boards 2 columns wide, Table 2, is

(9)
$$\hat{W}_2(x,y) \equiv p_2(x,y)/q_2(x,y) = (1+xy)/(1-x-xy-x^2y).$$

The generating function associated with boards 3 columns wide, Table 3, is

(10)
$$\hat{W}_3(x,y) \equiv p_3(x,y)/q_3(x,y);$$

 $p_3(x,y) = (1+xy) \left(-x^2y^3 + xy + xy^2 + 1\right);$
 $q_3(x,y) = x^4y^4 + x^3y^4 - x^3y^2 - 3x^2y^2 - 2x^2y - x^2y^3 - xy - x + 1.$

RICHARD J. MATHAR

$r \backslash w$	0	1	2	3	4	5	5	6	8	9	10	11	12
0	1												
1	1	2											
2	1	4	2										
3	1	6	8	2									
4	1	8	18	12	2								
5	1	10	32	38	16	2							
6	1	12	50	88	66	20	2						
7	1	14	72	170	192	102	24	2					
8	1	16	98	292	450	360	146	28	2				
9	1	18	128	462	912	1002	608	198	32	2			
10	1	20	162	688	1666	2364	1970	952	258	36	2		
11	1	22	200	978	2816	4942	5336	3530	1408	326	40	2	
12	1	24	242	1340	4482	9424	12642	10836	5890	1992	402	44	2
	Γ	ABLI	E 2.	The m	umber	W(r, 2	,w) of	placing	w not	n-attac	king		
	W	vazirs	s on r	$\times 2$ bos	ards [2,	A0356	07][4]. I	Row sum	ns in $[2]$, A001	333].		
$r \backslash w$	0	1	2	3	4	5	6	7	8	9	10	11	12
r w	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	1	2	3	4	5	6	7	8	9	10	11	12
$\frac{r\backslash w}{0}$	$\begin{array}{c} 0 \\ 1 \\ 1 \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12
$\frac{r\backslash w}{0} \\ 1 \\ 2$	0 1 1 1	1 3 6	2 1 8	3	4	5	6	7	8	9	10	11	12
	0 1 1 1 1	$\begin{array}{c}1\\3\\6\\9\end{array}$	$\begin{array}{c} 2\\ 1\\ 8\\ 24 \end{array}$	3 2 22	4	5	6	7	8	9	10	11	12
	0 1 1 1 1 1 1	$\begin{array}{c}1\\3\\6\\9\\12\end{array}$	$\begin{array}{c} 2\\ 1\\ 8\\ 24\\ 49 \end{array}$	3 2 22 84	4 6 61	5 1 18	6	7	8	9	10	11	12
	0 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 \\ 3 \\ 6 \\ 9 \\ 12 \\ 15 \end{array}$	2 1 8 24 49 83	3 2 22 84 215	$\begin{array}{r} 4\\ 6\\ 61\\ 276 \end{array}$	5 1 18 174	6 2 53	79	8	9	10	11	12
	0 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1\\ 3\\ 6\\ 9\\ 12\\ 15\\ 18\end{array}$	2 1 8 24 49 83 126	3 22 84 215 442	$\begin{array}{c} 4\\ 6\\ 61\\ 276\\ 840 \end{array}$	5 1 18 174 880	$\frac{6}{2}$ 53 504	7 9 158	8 1 28	9	10	11	12
$ \begin{array}{c} r \backslash w \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array} $	0 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} 1 \\ 3 \\ 6 \\ 9 \\ 12 \\ 15 \\ 18 \\ 21 \end{array} $	2 1 8 24 49 83 126 178	$\begin{array}{c} 2\\ 22\\ 84\\ 215\\ 442\\ 792 \end{array}$	4 6 61 276 840 2023	5 1 18 174 880 3063	$\begin{array}{c} 2\\ 53\\ 504\\ 2763 \end{array}$	7 9 158 1478	8 1 28 472	9 2 93	10	11	12
$ \begin{array}{r} r \backslash w \\ 0 \\ 1 \\ $	0 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} 1 \\ 3 \\ 6 \\ 9 \\ 12 \\ 15 \\ 18 \\ 21 \\ 24 \end{array} $	2 1 8 24 49 83 126 178 239	3 22 22 84 215 442 792 1292	$\begin{array}{c} 4\\ 6\\ 61\\ 276\\ 840\\ 2023\\ 4176\end{array}$	5 1 18 174 880 3063 8406	2 53 504 2763 10692	$\frac{7}{9}$ 158 1478 8604	8 1 28 472 4374	9 2 93 1416	10 12 297	11 1 38	<u>12</u> 2
$ \begin{array}{r} r \backslash w \\ 0 \\ 1 \\ $	0 1 1 1 1 1 1 1 1 1 1 1 1	1 3 6 9 12 15 18 21 24 CABLI	2 1 8 24 49 83 126 178 239 E 3.	3 22 84 215 442 792 1292 The nu	4 6 61 276 840 2023 4176 imber	5 1 18 174 880 3063 8406 W(r, 3)	$\begin{array}{c} & & & \\ & & 2 \\ & 53 \\ 504 \\ 2763 \\ 10692 \\ , w \end{array}$ of	7 9 158 1478 8604 placing	8 1 28 472 4374 <i>w</i> no:	9 2 93 1416 n-attao	10 12 297 cking	11 1 38	<u>12</u> 2

Its Taylor expansion with respect to y starts

(11)
$$\hat{W}_{3}(x,y) = \frac{1}{1-x} + \frac{3x}{(1-x)^{2}}y + \frac{x(1+5x+3x^{2})}{(1-x)^{3}}y^{2} + \frac{x^{2}(2+14x+8x^{2}+3x^{3})}{(1-x)^{4}}y^{3} + \frac{x^{3}(6+31x+31x^{2}+10x^{3}+3x^{4})}{(1-x)^{5}}y^{4} + \cdots$$

The coefficients $[y^0]\hat{W}_c(x,y)$ and $[y^1]\hat{W}_c(x,y)$ are not interesting because they merely echo (2) and (3). The coefficient's $[y^j]$ denominators are powers of 1-x, so the W(r,c,w) are polynomials in r "down the columns" if c and w are kept constant. Each term $\propto x^l/(1-x)^k$ in the univariate generating function contributes $\propto {r+k-l-1 \choose k-1}$ to the polynomial [7].

Remark 2. The matrices 1 - T have (i) a top-left entry 1 - x where the 000...0 word is compatible with itself, (ii) at least one factor y in the left column where the 000...0 word is compatible with any other word with at least one 1, (iii) 1 on the diagonal where no word with at least one 1 is compatible with itself. Here is the

NON-ATTACKING WAZIRS

$r \backslash w$	0	1	2	3	4	5	6	7	8
0	1								
1	1	4	3						
2	1	8	18	12	2				
3	1	12	49	84	61	18	2		
4	1	16	96	276	405	304	114	20	2
5	1	20	159	652	1502	1998	1537	678	170
6	1	24	238	1276	4072	8052	10010	7836	3846
7	1	28	333	2212	9091	24238	42864	50726	40235
8	1	32	444	3524	17791	60168	140050	227456	259289
9	1	36	571	5276	31660	130318	379247	793690	1205457
10	1	40	714	7532	52442	255052	895062	2310740	4439121
11	1	44	873	10356	82137	461646	1902326	5869438	13739384
12	1	48	1048	13812	123001	785312	3723486	13406168	37187238
	T	ABLE	4. Tł	ne numb	per $W(r,$	(4, w) of	placing u	non-attac	king
	W٤	azirs	on $r \times$	4 board	s. Colum	ns for $r \ge$	$\geq 5 \text{ not prime}$	nted in full.	

example for c = 4 with s = 8 nodes labeled 0000, 0001, 0010, 0101,...1010 in the digraph:

The matrix inverse $(1-T)^{-1}$ puts the determinant in the denominator. By the quotient rule, the coefficients $[y^j]\hat{W}_c(x,y)$ are obtained by building the *j*-th partial derivatives with respect to *y*—essentially generating the *j*th power in the denominators—then setting y = 0. Laplace Expansion of 1-T along the first column and each submatrix along their first column proves that in the limit $y \to 0$ the determinant has the $(1-x)^{1+j}$ format needed to generate the polynomials "down the columns."

(13)
$$W(r,3,2) = \frac{9}{2}r^2 - \frac{13}{2}r + 3, \quad r \ge 1.$$

(14)
$$W(r,3,3) = \frac{9}{2}r^3 - \frac{39}{2}r^2 + 32r - 20, \quad r \ge 2.$$

(15)
$$W(r,3,4) = \frac{27}{8}r^4 - \frac{117}{4}r^3 + \frac{829}{8}r^2 - \frac{715}{4}r + 126, r \ge 3.$$

The generating function for the row sums is

(16)
$$\hat{W}_3(x,1) = \frac{(1+x)(1+2x-x^2)}{1-2x-6x^2+x^4}.$$

i\ i	0	1	2	3	4	5	6		$i \backslash j$	0	1	2	3	4	5	6	
$\iota \setminus j$	0	1	4	0	4	0	0	_	0	1							
0	1								1	1	2	1					
1	0	2	2						1	-1	-2	-1					
-	õ	0	1	0	1				2	0	-2	-5	-2				
2	U	0	T	U	-1				3	0	0	-1	0	$\overline{4}$	2		
3	0	0	0	0	-2	-2			4	0	0	-	0	0	2		
- 1	0	Ω	Ο	Ω	0	Ο	1		4	0	0	0	0	2	2		
4	0	0	0	0	0	0	T		5	0	0	0	0	0	0	-1	

TABLE 5. The coefficients $\alpha_{4,i,j}$ (left) and $\beta_{4,i,j}$ (right) for $\hat{W}_4(x,y)$.

The writeup of the rational polynomials of x and y in the generating functions is lengthy for larger c. Concise notation tabulates the coefficients α and β in numerator and denominator:

Definition 3. (polynomial coefficients of rational g.f.)

(17)
$$\hat{W}_c(x,y) \equiv \frac{\sum_{i,j} \alpha_{c,i,j} x^i y^j}{\sum_{i,j} \beta_{c,i,j} x^i y^j}.$$

The generating function associated with boards 4 columns wide, Table 4 is

(18)
$$\hat{W}_4(x,y) \equiv p_4(x,y)/q_4(x,y);$$

$$p_4(x,y) = -x^2y^4 + 2xy^2 + x^4y^6 - 2x^3y^5 - 2x^3y^4 + x^2y^2 + 2xy + 1;$$

$$q_4(x,y) = -x^5y^6 + 2x^4y^5 + 2x^4y^4 + 2x^3y^5 + 4x^3y^4 - x^3y^2 - 2x^2y^3 - 5x^2y^2 - 2x^2y - x - 2xy - xy^2 + 1;$$

 p_4 and q_4 rephrased in Table 5.

Its Taylor expansion with respect to y starts

(19)
$$\hat{W}_4(x,y) = \frac{1}{1-x} + \frac{4x}{(1-x)^2}y + \frac{x(3+9x+4x^2)}{(1-x)^3}y^2 + \frac{4x^2(3+9x+3x^2+x^3)}{(1-x)^4}y^3 + \frac{x^2(2+51x+120x^2+67x^3+12x^4+4x^5)}{(1-x)^5}y^4 + \cdots$$

(20)
$$W(r,4,2) = 8r^2 - 9r + 4, r \ge 1.$$

(21)
$$W(r,4,3) = \frac{32}{3}r^3 - 36r^2 + \frac{148}{3}r - 28, r \ge 2.$$

(22)
$$W(r,4,4) = \frac{32}{3}r^4 - 72r^3 + \frac{1235}{6}r^2 - \frac{599}{2}r + 187, r \ge 3.$$

The generating function for the row sums is

(23)
$$\hat{W}_4(x,1) = \frac{1+4x-4x^3+x^4}{1-4x-9x^2+5x^3+4x^4-x^5}.$$

The generating function associated with boards 5 columns wide, Table 6, is $\hat{W}_5(x, y)$ gathered in Table 7. Its Taylor expansion with respect to y starts

$$(24) \quad \hat{W}_5(x,y) = \frac{1}{1-x} + \frac{5x}{(1-x)^2}y + \frac{x(6+14x+5x^2)}{(1-x)^3}y^2 + \frac{x(1+34x+69x^2+16x^3+5x^4)}{(1-x)^4}y^3 + \frac{x^2(16+196x+282x^2+114x^3+12x^4+5x^5)}{(1-x)^5}y^4 + \cdots$$

NON-ATTACKING WAZIRS

$r \backslash w$	0	1		2		3		4		5			6			7			8
0	1																		
1	1	5		6		1													
2	1	10		32		38		16		2									
3	1	15		83		215		276		174			53			9			1
4	1	20	1	159		652	1	502	1	1998		15	37		6	78			170
5	1	25	4	260	1	474	5	024	10)741		146	50		127	98			7157
6	1	30	÷	386	2	2806	12	792	38	3438		780	52	1	083	54		10)3274
7	1	35	Ę	537	4	1773	27	381	107	7004	2	934	09	5	737	97		80)7161
8	1	40	7	713	7	7500	51	991	251	1354	8	754	07	22	392	18		425	55370
9	1	45	ę	914	11	112	90	447	522	2528	22	173	82	70	608	33		1710)1603
10	1	50	11	140	15	5734	147	199	99()816	49	725	70	190	347	28	Į	5641	5728
11	1	55	13	391	21	491	227	322	1748	3883	101	509	82	455	199	84	1(6025	54659
12	1	60	16	367	28	3508	336	516	2914	1894	192	319	04	990	493	02	40	0496	67606
I	Т	ABL	Е (3. I	Гhe	nur	nber	W(r)	, 5, w) of	placi	ng	w	non-	atta	acl	king		
	W	azirs	s or	r	$\times 5$	boar	ds. C	Colum	ns fo	$\operatorname{or} r >$	$^{-4}$ no	ot p	rint	ed i	n fu	11.	0		
										_	-	1							
	i\ i		1	9	9	4	Б	6	7	0	0	10	11	19) 1	9	14		
_	$\frac{l \setminus j}{0}$	1	1	2	3	4	9	0	1	0	9	10	11	12	. 1	3	14		
	1		2	E	1														
	1		о 0	0 9	1	0													
	2		0	3	0	2	1.0	15	4										
	ঠ 4		0	0	1	-3	-10	-10	-4	1	1								
	4		0	0	0	0	-4	-11	-1	-1	-1	-							
	5		0	0	0	0	0	0	6	20	20	7	0	1					
	6		0	0	0	0	0	0	0	0	-4	-9	-3	1	-				
	1	0	0	0	0	0	0	0	0	0	0	0	1	-1	-	3			
	8	0	0	0	0	0	0	0	0	0	0	0	0	C)	0	1		
$i \setminus j$	0) 1	-	2		3 4	4 5	6	7	8	9		10	11	12		13	14	
0	1																		
1	-1	-2	2	-1															
2	0	-3	3 -	$\cdot 12$	-14	4 -0	6 -1												
3	0) ()	-3	-1	0 -4	4 9	7	1										
4	0) ()	0	-	1 :	3 26	43	26	7	1								
5	0) ()	0	(0 () 4	11	1	-17	-12		-2						
6	0) ()	0	(0 0	0 0	0	-6	-20	-22	-	11	-4	-1				
7	0) ()	0	(0 0	0 0	0	0	0	4	:	9	5	1		1		
8	0) ()	0	(0 (0 0	0	0	0	0)	0	-1	1		3	1	
9	0) ()	0	(0 (0 0	0	0	0	C)	0	0	0		0	-1	
	ГАВ	le 7	7.]	Гhe	coe	fficie	ents c	$\ell_{5,i,j}$	(top)	and	$\beta_{5,i,j}$	(b	otto	m) :	for 1	\hat{W}_5	s(x,	y).	

$$\begin{array}{rcl} (25) & W(r,5,2) & = & \frac{25}{2}r^2 - \frac{23}{2}r + 5, \quad r \ge 1. \\ (26) & W(r,5,3) & = & \frac{125}{6}r^3 - \frac{115}{2}r^2 + \frac{206}{3}r - 36, \quad r \ge 2. \\ (27) & W(r,5,4) & = & \frac{625}{24}r^4 - \frac{574}{4}r^3 + \frac{8327}{24}r^2 - \frac{1765}{4}r + 249, \quad r \ge 3. \end{array}$$

RICHARD J. MATHAR

$r \backslash w$	0	1	2	3	4	5	6	7	8
0	1								
1	1	6	10	4					
2	1	12	50	88	66	20	2		
3	1	18	126	442	840	880	504	158	28
4	1	24	238	1276	4072	8052	10010	7836	3846
5	1	30	386	2806	12792	38438	78052	108354	103274
6	1	36	570	5248	31320	127960	368868	763144	1143638
7	1	42	790	8818	65272	339330	1280832	3581924	7514182
8	1	48	1046	13732	121560	769820	3612344	12842256	35093344
9	1	54	1338	20206	208392	1559038	8774380	38035756	129022058
10	1	60	1666	28456	335272	2896704	19049692	97720664	397650884
11	1	66	2030	38698	513000	5030426	37898664	224960724	1070686062
12	1	72	2430	51148	753672	8273476	70311824	474630304	2591238920
	T	ABLI	E 8. T	he num	ber $W(r$	(,6,w) of	placing w	non-attackir	ıg
	W	vazirs	s on $r >$	< 6 board	ds. Colun	nns for $r \ge$	3 not prim	ted in full.	

The generating function for the row sums is

(28)
$$\hat{W}_5(x,1) = \frac{1+9x+11x^2-37x^3-24x^4+53x^5-15x^6-3x^7+x^8}{1-4x-36x^2+105x^4-15x^5-64x^6+20x^7+4x^8-x^9}.$$

The generating function associated with boards 6 columns wide, Table 8, is $\hat{W}_6(x, y)$ gathered in Table 9. Its Taylor expansion with respect to y starts

$$(29) \quad \hat{W}_6(x,y) = \frac{1}{1-x} + \frac{6x}{(1-x)^2}y + \frac{2x(5+10x+3x^2)}{(1-x)^3}y^2 + \frac{2x(2+36x+57x^2+3x^4+10x^3)}{(1-x)^4}y^3 + \frac{2x^2(33+255x+266x^2+86x^3+5x^4+3x^5)}{(1-x)^5}y^4 + \cdots$$

The generating function for $r \times 7$ boards is $\hat{W}_7(x, y)$ gathered in Tables 10–13. Its Taylor expansion with respect to y starts

$$(30) \quad \hat{W}_{7}(x,y) = \frac{1}{1-x} + \frac{7x}{(1-x)^{2}}y + \frac{x(15+27x+7x^{2})}{(1-x)^{3}}y^{2} + \frac{x(10+130x+172x^{2}+24x^{3}+7x^{4})}{(1-x)^{4}}y^{3} + \frac{x(1+187x+1073x^{2}+886x^{3}+241x^{4}+6x^{5}+7x^{6})}{(1-x)^{5}}y^{4} + \cdots$$

												19											7	1
	I											18										Γ	Ξ	0
19												17									Ч	6-	2	0
18											0	16									11	-23	0	0
17									က	-2	0	15								IJ	30	-17	0	0
16								2-	17	2-	0	14							ဂု	25	21	ဂု	0	0
15								-19	17	0	0	13							-17	65	-11		0	0
14							1	-22	က	0	0	12						9-	-45	112	-17	0	0	0
13							-19	9	Ξ	0	0	11						35	85	13	-5	0	0	0
12						14	-71	17	0	0	0	10)4 -	35 -	55 1	0	0	0	0
11						53	. 98	5	0	0	0							<u> </u>	Ţ	2.5				
10					∞	10	55 -	0	0	0	0	6					10	-133	-131	10	0	0	0	0
6					5	1	۰۲ 0	0	0	0	0	∞				°.	60	-73	-60	0	0	0	0	0
					0	12	-	_	_	_	_	2				22	131	13	-10	0	0	0	0	0
œ				2	11	60	0	0	0	0	0	.0				x	5	с.		0	0	0	0	0
7				-38	-23	10	0	0	0	0	0	-				4	12	3		-		-		-
9			<u>5</u> -	-58	-23	0	0	0	0	0	0	J.			ဂု	31	47	J J	0	0	0	0	0	0
S			ŗ;	-32	ŗ,	0	0	0	0	0	0	4			-14	6-	e S	0	0	0	0	0	0	0
4			4	ب	0	0	0	0	0	0	0	c.		Ξ	-26	-14	Γ	0	0	0	0	0	0	0
3		ŝ	6		0	0	0	0	0	0	0	2		က္	-16	က္	0	0	0	0	0	0	0	0
2		4	က	0	0	0	0	0	0	0	0	Ч		ကဲ	ن.	0	0	0	0	0	0	0	0	0
Η		ŝ	0	0	0	0	0	0	0	0	0	0		-	- _	0	0	0	0	0	0		0	C
0		0	0	0	0	0	0	0	0	0	0	_		`ı'	_							_		_
$i \setminus j$	0	Ξ	2	က	4	ŋ	9	2	∞	6	10	$i \setminus j$	0	Η	0	က	4	ю	9	1-	x	6	10	11

TABLE 9. The coefficients $\alpha_{6,i,j}$ (left) and $\beta_{6,i,j}$ (right) for $\hat{W}_6(x,y)$.

											30							-26	039	229	011	243
											•							~	2	-2	- 20	-
											20							-317	7933	-9030	1047	-34
											28						ŵ	-1936	19106	-13694	1337	-15
15						83	-1296	19399	19742	-1428	27						-136	-6130	27360	-10332	447	0
14						533	004	- 187	428	.126	26					2	-1047	-8959	21112	-3615	32	0
13					-2	29	95 -3	97 -17	12 7	0	25					153	-5458	-252	5385	-189	-0	0
						18:	-30	-112	15		24				1	1273	8837	8986	3736	201	0	0
12					-12	3764	-703	-4463	126	0	3				×.	33	1 -1	4 1	י ק	4	0	0
11					-18	4807	1183	-960	0	0	21				Π	570	-4105	2900	-324	G)		
10				Ň	-62	3688	1052	-84	0	0	22				145	15297	-55310	20237	-838	-	0	0
9				-67	-307	1520	330	0	0	0	21			-18	917	24858	13935	6788	-40	0	0	0
x				-225	-573	229	36	0	0	0	20			52	35	26	72 -	48	6	0	0	0
7				-358	-460	-30	0	0	0	0				5- 2	39	218	-176	9				
9			Η	-267	-158	6-	0	0	0	0	19			-1537	11234	3584	-746	-180	0	0	0	0
ŋ			6	-73	-16	0	0	0	0	0	18		9	5109	2694	2719	2206	-36	0	0	0	0
4		Η	28	9	Η	0	0	0	0	0				ĩ	3			_	_	_	_	_
°.		6	24	4	0	0	0	0	0	0	17		51	-10700	32540	-13647	780	0	0	0	0	0
2		11	9	0	0	0	0	0	0	0	9	2	74	5	22	34	34	0	0	0	0	0
) 1		(0	0	0	0	0	0	0	0	Ξ		-12	1621	3165	-635	Ś					
$\sqrt{0}$	0 1	1	2	3	40	50	0	7	8	0 6	<u>\</u>	ы	9	- 2	∞	6	10	[]	12	[3	14	15
\cdot											\dot{i}				~		. –	, ¬	, –,	, –,	, –	

TABLE 10. The coefficients $\alpha_{7,i,j}$ for $\hat{W}_7(x,y), j \leq 30$.

									1
43								က	0
42							-4	5	0
41						5-	-12	0	0
40					0	-21	-13	۲	0
39					19	-70	-17	0	0
38				က	100	-106	-16	0	0
37				33	270	-121	9-	0	0
36			-27	140	451	-117	0	0	0
35			-238	421	439	-66	0	0	0
34		21	-997	1120	150	-15	0	0	0
33		162	-2773	2074	-94	0	0	0	0
32	27	553	-5051	2211	-90	0	0	0	0
31	325	599	-5195	1207	-20	0	0	0	0
$i \setminus j$	12	13	14	15	16	17	$\frac{18}{18}$	19	20

TABLE 11. The coefficients $\alpha_{7,i,j}$ for $\hat{W}_7(x,y), j \ge 31$.

											30							6	420	-10218	6516	2104	-243
											29							129	1976	-23991	15864	-1357	34
											28						-2	940	5716	-39300	18638	-1422	15
15					-18	-1953	19301	20696	-22206	1428	27						-45	4307	9392	41756	11870	-447	0
14					-148	-4392	22168	18509	-7722	126	26					-2	-433	-3698	4325	24961 -	3671	-32	0
13				2	-690	-8178	16237	11703	-1512	0	25					-48	2192	2544 1	5591	3901 -2	145	9	0
12				26	-1879	-11747	6072	4547	-126	0	24					447	786 -2	650 32	397 -15	919 -:	201	0	0
11				151	-2963	.11599	-61	096	0	0	23				6	- 13	14 -6	26 59	63 -37	28 4	-34 -	0	0
10			1	515	-2460	- 7160 -	-968	84	0	0	22				<u></u>	39 -24	00 -143	30 826	11 -395	29 34	1.	0	0
6			12	1148	-514	-2448	-330	0	0	0	1			20	$\frac{1}{2}$	5 08- 65	4 -217(5 8135	5 -229]	.8	0	C	C
8			65	1658	804	-325	-36	0	0	0	2				93(-2156	-2223^{2}	5159!	-683	4(J	•	
7		-1	149	1426	682	30	0	0	0	0	20			74	3682	-38655	-9680	16939	-582	-0	0	0	0
6		6-	128	643	197	6	0	0	0	0	19			508	9433	2223	0397	-351	180	0	0	0	0
5		-35	-15	106	16	0	0	0	0	0	x		H	6	2	8	8	0	9	0	0	0	0
4		-66	-83	-12	-	0	0	0	0	0	1		-	206	1627	-5752	2111	-241	ŝ				
3		-62	-41	-4	0	0	0	0	0	0	17		-131	5751	9966	1086	3275	-780	0	0	0	0	0
2	4-	-26	-9	0	0	0	0	0	0	0			'	цэ	16	-54	16	'					
0 1	-1 -3	0 -4	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	16	-1	-653	12033	20468	-40934	6670	-84	0	0	0	0	0
$i \setminus j$	0 -	2	က	4	5 C	9	7	x	6	10	$i \setminus j$	5	9	4	x	6	10	11	12	13	14	15	16

TABLE 12. The coefficients $\beta_{7,i,j}$ for $\hat{W}_7(x,y), j \leq 30$.

										Τ
43								ŝ	ဂု	0
42								13	ស់	0
41						5-	9	$\frac{18}{18}$	2-	0
40						-23	39	14	Ξ	0
39						-104	84	17	0	0
38				က	-12	-280	102	16	0	0
37				41	-64	-528	117	9	0	0
36				262	-187	-716	117	0	0	0
35			-14	1060	-605	-593	66	0	0	0
34		-11	-153	3046	-1656	-185	15	0	0	0
33		-125	-677	6328	-2763	94	0	0	0	0
32	က	-754	-1379	8821	-2601	06	0	0	0	0
31	52	-3201	-60	7151	-1287	20	0	0	0	0
$i \setminus j$	12	13	14	15	16	17	18	19	20	21

TABLE 13. The coefficients $\beta_{7,i,j}$ for $\hat{W}_7(x,y), j \ge 31$.

The symmetry (1) leads to redundancy in the W(r, c, w) tables.

Example 2. Row r = 3 in Table 2 equals row r = 2 in Table 3. Row r = 4 in Table 2 equals row r = 2 in Table 4. Row r = 4 in Table 6 equals row r = 5 in Table 4. Row r = 6 in Table 6.

In the data cube of the W(r, c, w) one can also construct other slices of 2D datasets:

- On square boards, W(r, r, w) is composed of the first row if Table 1, the second row if Table 2, the third row if Table 3, the fourth row if Table 4, the fifth row if Table 6, and so on [2, A232833].
- If w is constant and r, c are variable the symmetric table W(r, c, 2) of (4) emerges:

$r \backslash c$	1	2	3	4	5	6	7	8	
1	0	0	1	3	6	10	15	21	-
2	0	2	8	18	32	50	72	98	
3	1	8	24	49	83	126	178	239	
4	3	18	49	96	159	238	333	444	
5	6	32	83	159	260	386	537	713	
6	10	50	126	238	386	570	790	1046	
7	15	72	178	333	537	790	1092	1443	
8	21	98	239	444	713	1046	1443	1904	
or the	syn	nmetr	ic tał	ble W	(r, c,	3)			
$r \backslash c$	1	2	:	3	4	5	6	7	8
1	0	0		0	0	1	4	10	20
2	0	0		2	12	38	88	170	292
3	0	2	2	2	84	215	442	792	1292
4	0	12	8	4 2	276	652	1276	2212	3524
5	1	38	21	56	552	1474	2806	4773	7500
6	4	88	44	2 12	276	2806	5248	8818	13732
7	10	170	792	2 22	212	4773	8818	14690	22732
8	20	292	1292	2 35	524	7500	13732	22732	35012

Three of the W(r, c, 3) columns are registered in the Online Encyclopedia Of Integer Sequences [2, A000292,A035597,A172229].

4. Summary

We have fully qualified the bivariate generating function (6) counting configurations W(r, c, w) with w non-attacking wazirs on $r \times c$ boards for widths $c \leq 7$.

References

- Neil J. Calkin and Herbert S. Wilf, The number of independent sets in a grid graph, SIAM J. Sci. Stat. Comp. 11 (1998), no. 1, 54–60. MR 16128543
- O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2024), https://oeis.org/. MR 3822822
- 3. Richard J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO] (2014).
- 4. Jacob A. Siehler, Selections without adjacency on a rectangular grid, arXiv:1409.3869 (2014).
- 5. Richard P. Stanley, *Enumerative combinatorics*, 2 ed., vol. 1, Cambridge University Press, 2011. MR 1442260
- 6. Herbert S. Wilf, The problem of the kings, Elec. J. Combinat. (1995), no. 2, R3. MR 1309125
- 7. _____, Generatingfunctionology, Academic Press, 2004. MR 2172781

URL: https://www.mpia-hd.mpg.de/~mathar Email address: mathar@mpia-hd.mpg.de

MAX-PLANCK INSTITUTE FOR ASTRONOMY, KÖNIGSTUHL 17, 69117 HEIDELBERG, GERMANY