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Solving graph isomorphism problem

in polynomial time

Abstract

We show that the graph isomorphism problem is solvable in polynomial time. First, we define the following

functions. Let S be a vertex-weighted graph. Let Vw0(S) be the set of vertices of S with weight 0. Let Sg(S, v, w)
be the vertex-weighted graph in which weight w is given to vertex v of S. Let Ev(S) be the set of eigenvalues of the

adjacency matrix of S. Next, we prove the following to obtain the automorphisms of S using eigenvalue sets. Let

Svi = Sg(S, vi, w) and Svj
= Sg(S, vj , w) with vi, vj ∈ Vw0(S), vi 6= vj and w > 0. When Ev(Svi) = Ev(Svj ),

Svi
and Svj are isomorphic. Next, we construct an algorithm to determine whether two given graphs Ga and Gb

are isomorphic using this result. Write n for the number of vertices of these graphs. Let Sa0
= Ga and Sb0 = Gb.

Consider a vertex weight wi > 0 6∈ {wj |0 ≤ j < i}. Let Sai+1
be Sg(Sai

, vai
, wi) with vai

∈ Vw0(Sai
). Let

Sbi+1
be Sg(Sbi , vbi , wi) with vbi ∈ Vw0(Sbi). Let Ev(Sai+1

) = Ev(Saj+1
). Then, we check the vertex mapping

{vai
7→ vbi |0 ≤ i < n} to determine whether Ga and Gb are isomorphic. The computational complexity to detect

whether the two graphs are isomorphic is O(n6).

Index Terms

graph isomorphism problem, graph spectrum, polynomial time computation.

I. INTRODUCTION

THE graph isomorphism problem [1] is to determine whether two given graphs are isomorphic. This

problem is one of the major problems in theoretical computer science, especially regarding the

class of its computational complexity [2]. There are practical algorithms that can determine whether two

graphs are isomorphic [3], [4], [5]. These methods can obtain correct results at a practical level. On the

theoretical side, a quasi-polynomial algorithm has been proposed [6], [7]. On the other hand, polynomial-

time isomorphism detection algorithms exist for special graphs [8], [9], [10].

The set of the eigenvalues of the adjacency matrix of a graph indicates the characteristics of the graph.

However, if the two sets of eigenvalues are the same, such graphs are called cospectral graphs[11], the

graphs might not be isomorphic. Therefore, we cannot determine the isomorphism of two graphs by

whether their eigenvalue sets are only the same. When there two sets are the same, if the multiplicities

of the eigenvalues are all 1, we can determine whether the graphs are isomorphic in O(n3) time [12].

However, it is unclear whether a polynomial-time algorithm exists for general graphs.

In this paper, we show that the graph isomorphism problem is solvable in polynomial time. First, we

define the following functions. Let S be a vertex-weighted graph. Let Vw0(S) be the set of vertices of S
with weight 0. Let Sg(S, v, w) be the vertex-weighted graph in which weight w ∈ N is given to vertex

v of S. Let Ev(S) be the set of eigenvalues of the adjacency matrix of S. Next, we prove the following

Theorem II.1 to obtain the automorphisms of S using eigenvalue sets.

Theorem II.1. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi 6= vj and w > 0.

When Ev(Svi) = Ev(Svj), Svi and Svj are isomorphic.

Next, we construct an algorithm to determine whether two given graphs Ga and Gb are isomorphic

using this result. Write n for the number of vertices of these graphs. Let Sa0 = Ga and Sb0 = Gb.

Consider a vertex weight wi > 0 6∈ {wj|0 ≤ j < i}. Let Sai+1
be Sg(Sai , vai , wi) with vai ∈ Vw0(Sai).

Let Sbi+1
be Sg(Sbi , vbi , wi) with vbi ∈ Vw0(Sbi). Let Ev(Sai+1

) = Ev(Sbi+1
). Then, we check the vertex

mapping {vai 7→ vbi |0 ≤ i < n} to determine whether Ga and Gb are isomorphic. Since the elements

of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients of the eigenequation

of this matrix are all integers. Then, we calculate the Frobenius normal form [13], [14] to obtain the
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coefficients of the eigenequation of this matrix without real number calculations. Then, we compare the

coefficients to determine whether the sets of eigenvalue are the same. The computational complexity of

detecting whether the two graphs are isomorphic is O(n6).
This paper is organized as follows. Section II provides the proofs used to determine whether two graphs

are isomorphic. Section III presents an algorithm to solve this problem. Finally, Section IV presents a

conclusion regarding the result of this paper.

II. PROOF

In this section, we provide the proofs for the results about the determination of whether two given

graphs are isomorphic.

A. Preparation

We define the following functions, which will be used in the proofs and the methods. Suppose S be

a vertex-weighted graph. Let Vw0(S) be the set of vertices of S with weight 0. Let Sg(S, v, w) be the

vertex-weighted graph in which the weight w ∈ N is given to vertex v of S. Denote the adjacency matrix

of S by A(S). Let Ev(S) be the set (with multiplicities) of eigenvalues of A(S).

B. Obtain the automorphisms

The following Theorem II.1 and Corollary II.2 prove that it is possible to obtain the automorphisms of

S using eigenvalue sets.

Theorem II.1. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi 6= vj and w > 0.

If Ev(Svi) = Ev(Svj), then Svi and Svj are isomorphic.

Proof. We show that if Ev(Svi) = Ev(Svj), then Svi and Svj are not cospectral but isomorphic.

Let A(Svi) and A(Svj) be Avi and Avj , respectively. When there exists a permutation matrix P such

that Avi = P tAvjP , Svi and Svj are isomorphic. Denote the eigenfunctions of Avi and Avj by fvi and fvj ,
respectively. When fvi and fvj are the same, the eigenvalue sets of Avi and Avj are the same. Therefore,

we will prove that such a nontrivial permutation matrix exists when fvi − fvj = 0.

Without loss of generality, we may assume i = 1 and j = 2. We show the characteristic polynomials

fv1 and fv2 as below.
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The weights of the vertices are w, w3, and . . . wn, all of which are integers. Then,

fv1 − fv2 = w
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(1)

If n = 2, fv1 and fv2 are the same. Hence, in this case, Sv1 and Sv2 are isomorphic.

We treat the case of n = 3 as follows. Equation 1 becomes

fv1 − fv2 = w

∣

∣

∣

∣

0 a2,3
a3,2 w3 − λ

∣

∣

∣

∣

− w

∣

∣

∣
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a3,1 w3 − λ

∣

∣

∣

∣

= w(a2,3a3,2 − a1,3a3,1)

= 0.

So, when a2,3 = a1,3, fv1 and fv2 are the same. For this case, then, Sv1 and Sv2 are isomorphic.

Let n > 3. Suppose the matrix A′ is as follows.

A′ =











w3 a3,4 · · · a3,n

a4,3
. . . a3,n

...
. . .

...

an,3 · · · · · · wn











.

Let vertex u1 = (a1,3, a1,4, . . . , a1,n)
t and u2 = (a2,3, a2,4, . . . , a2,n)

t. Then, Equation 1 becomes as

follows.

fv1 − fv2 = w

∣

∣

∣

∣

0 ut
2

u2 A′ − λI

∣

∣

∣

∣

− w

∣

∣

∣

∣

0 ut
1

u1 A′ − λI

∣

∣

∣

∣

= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, we assume

|A′ − λI| 6= 0. Then,

fv1 − fv2 = w|A′ − λI||0− ut
2
(A′ − λI)−1u2|

− w|A′ − λI||0− ut
1
(A′ − λI)−1u1|

= w|A′ − λI|(u2 − u1)
t(A′ − λI)−1(u2 − u1)

= 0.

When u1 = u2, fv1 and fv2 are the same. In this case, then, Sv1 and Sv2 are isomorphic.

Let u2 6= u1. When (u2−u1)
t(A′−λI)−1(u2−u1) = 0, u2−u1 and (A′−λI)−1(u2−u1) are orthogonal.

So,

(u2 − u1)
t(A′ − λI)(u2 − u1) = ut

2
A′u2 − ut

1
A′u1 − ut

2
λIu2 + ut

1
λIu1

= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, the number of

elements with value 1 in u2 and u1 is the same.

Since u2 − u1 and (A′ − λI)(u2 − u1) are orthogonal,

(u2 − u1)
tA′(u2 − u1) = (u2 − u1)

tP ′tA′P ′(u2 − u1)

= (u1 − u2)
tP ′tA′P ′(u1 − u2)

= 0
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Algorithm 1 A function to obtain a vertex v such that Ev(Sg(S, v, w)) = λ with v ∈ Vw0(S).

1: function OBTAIN VERTEX(S, λ, w)

2: for each v ∈ Vw0(S) do

3: if Ev(Sg(S, v, w)) = λ then

4: return v
5: end if

6: end for

7: return null

8: end function

with P ′ a liner operator. When A1 and A2 have the same eigenvalue set, there exists a set of nontrivial

permutation matrices {P ′|P ′tA′P ′ = A′∧ (u2−u1) = P ′(u1−u2))}. So, Sv1 and Sv2 are isomorphic.

Corollary II.2. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi 6= vj and w > 0.

If Ev(Svi) 6= Ev(Svj), then Svi and Svj are not isomorphic.

Proof. Using a permutation matrix P , A(Svi) 6= P tA(Svj)P . So, there is no bijection between Svi and

Svj . Therefore, Svi and Svj are not isomorphic.

C. Obtain vertex mapping and detect whether two graphs are isomorphic

The following Corollaries II.3 and II.4 prove that it is possible to obtain vertex mapping and detect

whether two graphs are isomorphic.

Corollary II.3. Suppose Sai and Sbi are vertex-weighted graphs. Let Ev(Sai) = Ev(Sbi). Let vai ∈
Vw0(Sai) and w > 0. When Ev(Sg(Sai , vai , w)) 6= Ev(Sg(Sbi , vbi , w)) for any vbi ∈ Vw0(Sbi), Sai and Sbi

are not isomorphic.

Proof. Using a permutation matrix P , A(Sg(Sai , vai , w)) 6= P tA(Sg(Sbi , vbi , w))P for any vai ∈ Vw0(Sai)
and vbi ∈ Vw0(Sbi). So, there is no bijection between Sg(Sai , vai , w)) and Sg(Sbi , vbi , w)). Therefore, Sai

and Sbi are not isomorphic.

Corollary II.4. Suppose Sai and Sbi are vertex-weighted graphs. Let Ev(Sai) = Ev(Sbi) and w > 0.

Let Sai+1
= Sg(Sai , vai , w) with vai ∈ Vw0(Sai). Let Sbi+1

= Sg(Sbi , vbi , w) with vbi ∈ Vw0(Sbi). Let

Ev(Sai+1
) = Ev(Sbi+1

). Now, Sai+1
and Sbi+1

are isomorphic if, and only if, Sai and Sbi are isomorphic.

Proof. Let Va be the set of vertices of Sai+1
and Vb that of Sbi+1

. When Sai+1
and Sbi+1

are not isomorphic,

there if no bijection Va → Vb.

When Sai+1
and Sbi+1

are isomorphic, there exists a bijection Va → Vb. From Theorem II.1 and

Corollaries II.2, for any vai and vbi such that Ev(Sai+1
) = Ev(Sbi+1

) , Sai and Sbi are isomorphic.

III. ALGORITHM

In this section, we present a polynomial-time algorithm to determine whether two graphs Ga and Gb

are isomorphic. We assume that the number of vertices of the graphs is n.

Since the elements of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients

of the eigenequation of this matrix are all integers. We calculate the Frobenius normal form to obtain the

coefficients of the eigenequation of the adjacency matrix of a vertex-weighted graph without real number

calculations. Then, we compare the coefficients to determine whether the eigenvalue sets are the same.

The amount of computation required to convert an adjacency matrix into the Frobenius normal form is

O(n4). The amount of computation to compare the coefficients of the two characteristic equations is O(n).
We show a function 1 to obtain a vertex v such that Ev(Sg(S, v, w)) = λ with v ∈ Vw0(S). So, the

amount of computation of this function is O(n5).
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Algorithm 2 A function that determines whether a map va 7→ vb exists for the set of vertex pair (va, vb)
of vertices va ∈ Va and vb ∈ Vb of two graphs Ga = (Va, Ea) and Gb = (Vb, Eb).

1: function TEST ISOMORPHIC(Ga = (Va, Ea), Gb = (Vb, Eb), h)

2: for i← 1 to |Va| − 1 do

3: vi ← i-th vertex in Va

4: for j ← i+ 1 to |Va| do

5: vj ← j-th vertex in Va

6: if (vi, vj) ∈ Ea then

7: if (h(vi), h(vj)) 6∈ Eb then

8: return FALSE

9: end if

10: else

11: if (h(vi), h(vj)) ∈ Eb then

12: return FALSE

13: end if

14: end if

15: end for

16: end for

17: return TRUE

18: end function

p1 p2

p3p4

p5 p6

p7p8

Ga Gb

Fig. 1. Graphs Ga and Gb as an example to determine graph isomorphism.

Function 2 determines whether a map va 7→ vb exists for the set of vertex pair (va, vb) of vertices

va ∈ Va and vb ∈ Vb of two graphs Ga = (Va, Ea) and Gb = (Vb, Eb). The amount of computation of this

function is O(n2).
Function 3 determines whether two graphs Ga and Gb are isomorphic. From Theorem II.1 and Corollar-

ies II.2, II.3, II.4, this function can detect whether two graphs are isomorphic. The amount of computation

of this function is O(n6).
Figure 1 shows that graphs Ga = (Va, Ea) and Gb = (Vb, Eb) as an example to determine graph

isomorphism. At first, we clear hash h. Let Sa0 = Ga and Sb0 = Gb. So, all vertices in Sa0 and Sb0 have

weights of 0. Next, let w0 = 2|Va|. Let Sa1 = Sg(Sa0 , p1, w0). Obtain the vertex v0 ∈ Vw0(Sb0) such

that Ev(Sg(Sb0 , v0, w0)) = Ev(Sa1). Vertices p5, . . . , p8 satisfy this condition. Since Theorem II.1 and

Corollary II.2, we can select a vertex from any of then. So, we select p5, then, let Sb1 = Sg(Sb0 , p5, w0))
and h(p1) = p5. Next, let w1 = w0+2|Va|. Let Sa2 = Sg(Sa1 , p2, w1). Obtain the vertex v1 ∈ Vw0(Sb1) such

that Ev(Sg(Sb1 , v1, w1)) = Ev(Sa2). Vertices p6 and p8 satisfy this condition. We can select a vertex from

any of then. So, we select p6, then, let Sb2 = Sg(Sb1 , p6, w1)) and h(p2) = p6. Next, let w2 = w1+2|Va|. Let

Sa3 = Sg(Sa2 , p3, w2). Obtain the vertex v2 ∈ Vw0(Sb2) such that Ev(Sg(Sb2 , v2, w2)) = Ev(Sa3). Vertex

p8 satisfies this condition. So, we use p8, then, let Sb3 = Sg(Sb2 , p8, w2) and h(p3) = p8. Next, let w3 =
w2 + 2|Va|. Let Sa4 = Sg(Sa3 , p4, w3). Obtain the vertex v3 ∈ Vw0(Sb3) such that Ev(Sg(Sb3 , v3, w3)) =
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Algorithm 3 A function that determines whether two graphs Ga and Gb are isomorphic.

1: function IS ISOMORPHIC(Ga = (Va, Ea), Gb = (Vb, Eb))
2: Sa ← Ga with all vertex weights equal to 0
3: Sb ← Gb with all vertex weights equal to 0
4: if Ev(Sa) 6= Ev(Sb) then

5: return FALSE

6: end if

7: w ← 2|Va|
8: clear hash h
9: while Vw0(Sa) 6= ∅ do

10: va ← one vertex in Vw0(Sa)
11: λ← Ev(Sg(Sa, va, w))
12: vb ← OBTAIN VERTEX(Sb, λ, w)

13: if vb = null then

14: return FALSE

15: end if

16: h(va)← vb
17: w ← w + 2|Va|
18: Sa ← Sg(Sa, va, w)
19: Sb ← Sg(Sb, vb, w)
20: end while

21: return TEST ISOMORPHIC(Ga, Gb, h)

22: end function

Ev(Sa4). Vertex p7 satisfies this condition. So, we use p7, then, let Sb4 = Sg(Sb3 , p7, w3)) and let h(p4) =
p7. Finally, using the stack h that stored the map between vertices of Ga and Gb, we check whether a

bijection exists between Ga and Gb.

IV. CONCLUSION

In this paper, we have presented an algorithm to detect whether two given graphs are isomorphic. It

has polynomial time complexity. Note that this algorithm has a limitation in that it can only obtain one

of the isomorphisms.

APPENDIX A

DEFINITION

In this section, we give the definitions used in this paper.

Definition A.1. A graph G = (V,E) is a pair consisting of a non-empty finite vertex set V 6= ∅ and

an edge set E that is a subset of V 2. The graph’s size is the number of its vertices 1 < n = |V |. The

number of vertices in a graph is assumed to be finite. In addition, we align the set V with {v1, . . . , vn}.
There is an edge between vertices va and vb when (va, vb) is an element of the set E. Also, edges have no

direction. Moreover, the graph has no multiple edges between a pair of vertices, and there are no loops

(i.e., (va, va) is never an edge).

Definition A.2. A vertex-weighted graph S = (V,E,w) is a graph with a function w : V → N that

gives the weights of the vertices. Then, a graph is a vertex-weighted graph in which the weights of all

its vertices are 0.
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Definition A.3. The adjacency matrix A of a vertex-weighted graph S = (V,E,w) with n = |V | is an

n× n symmetric matrix that is given as follows. The entries ai,j , vi, vj ∈ V , 0 < i, j ≤ n of A satisfy:






(vi, vj) ∈ E if ai,j = aj,i = 1,
(vi, vj) /∈ E if ai,j = aj,i = 0,
ai,i = w(vi).

Definition A.4. An isomorphism of graphs Ga = (Va, Ea) and Gb = (Vb, Eb) is a bijection between the

vertex sets of Ga and Gb f : Vb → Va such that two vertices vi and vj of Ga are adjacent in Ga if and

only if f(va) and f(vb) are adjacent in Gb.
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