The problem of the «negative frequencies» of the solutions of the D'Alembert equation
Marcello Colozzo


#### Abstract

The appearance of solutions with negative frequency in the D'Alembert wave equation can be removed with a change of variable. The corresponding positive frequencies describe waves propagating from the "future" towards the "past". This argument was developed in the 1940s by the Italian mathematician Luigi Fantappiè [1] in the analysis of the solutions of the D'Alembert equation, but also of the Klein-Gordon equation (quantum particles of spin 0) and the Dirac equation (spin $1 / 2$ particles).


## 1 The D'Alembert equation

As is known, the D'Alembert wave equation

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{1}
\end{equation*}
$$

is a linear, second-order partial differential equation (PDE) in $\psi(x, y, z, t)$. It is often written as:

$$
\square^{2} \psi=0
$$

where

$$
\square^{2}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}},
$$

is the Delambertian. The solutions of (1) si classificano in:are classified into: A) plane waves; B) spherical waves; C) standing waves. We are interested in case A. For the remaining cases, please refer to [2].

Rammentiamo che a differenza delle equazioni differenziali ordinarie (ODE), nelle PDE non interessa l'integrale generale, ma soluzioni soddisfacenti particolari condizioni al contorno o iniziali.

Given this, plane waves (described by a wave function $\psi(x, y, z, t))$ are characterized by a constant propagation direction verifying the following property: on every plane normal to this direction, the d'function wave $\psi$ depends only on the variable $t$. It follows that by orienting the x axis in the direction of propagation, the (1) is rewritten:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{2}
\end{equation*}
$$

Definition 1 We say solution of the (2) any $\psi \in C^{2}\left(\mathbb{R}^{2}\right)$ which verifies (2).
Notation 2 The definition (1) can be weakened by incorporating any finite discontinuities of the derivatives of $\psi$ and of $\psi$ itself.

Theorem 3 A necessary and sufficient condition for $\psi \in C^{2}\left(\mathbb{R}^{2}\right)$ to be a solution of (2), is that it admits a decomposition of the type:

$$
\begin{equation*}
\psi(x, t)=f(x-c t)+g(x+c t), \quad f, g \in C^{2}(\mathbb{R}) \tag{3}
\end{equation*}
$$

Proof. The sufficiency of the condition is immediate, since $f(x-c t)$ and $g(x-c t)$ are manifestly solutions of (2). To demonstrate the need, we perform the coordinate transformation in the $x t$ plane:

$$
\begin{equation*}
(x, t) \rightarrow(\xi, \eta) \tag{4}
\end{equation*}
$$

whose transformation equations are:

$$
\begin{equation*}
\xi=x-c t, \eta=x+c t \tag{5}
\end{equation*}
$$

so that (4) is manifestly invertible:

$$
\begin{equation*}
x=\frac{1}{2}(\xi+\eta), \quad t=\frac{1}{2 c}(\eta-\xi) \tag{6}
\end{equation*}
$$

The (5) imply $\psi(x, t) \equiv \psi[\xi(x, t), \eta(x, t)]$. Applying the derivation rule of composite functions:

$$
\frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial x}
$$

From (5) $\frac{\partial \xi}{\partial x}=1, \frac{\partial \eta}{\partial x}=1$, so

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial \xi}+\frac{\partial \psi}{\partial \eta} \tag{7}
\end{equation*}
$$

which can be rewritten as:

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right) \psi \tag{8}
\end{equation*}
$$

This relation is valid for every differentiable function $\psi$. This circumstance suggests writing the formal expression

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} \tag{9}
\end{equation*}
$$

which links the partial differentiation operator with respect to $x$, to the differentiation operators with respect to the variables $\xi$ and $\eta$. To determine the second partial derivative $\frac{\partial^{2} \psi}{\partial x^{2}}$, we can then write:

$$
\begin{align*}
\frac{\partial^{2}}{\partial x^{2}} & =\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)  \tag{10}\\
& =\frac{\partial^{2}}{\partial \xi^{2}}+\frac{\partial^{2}}{\partial \xi \partial \eta}+\frac{\partial^{2}}{\partial \eta \partial \xi}+\frac{\partial^{2}}{\partial \eta^{2}}
\end{align*}
$$

It is clear that we can write

$$
\frac{\partial^{2}}{\partial \xi \partial \eta}=\frac{\partial^{2}}{\partial \eta \partial \xi}
$$

if and only if this operator acts on a function that verifies the hypotheses of Schwarz's theorem on the invertibility of partial differentiation, i.e. of class $C^{2}$ on an assigned field $A$ of $\mathbb{R}^{2}$. Since we are looking for solutions $\psi \in C^{2}\left(\mathbb{R}^{2}\right)$, this condition is satisfied, so the (10) is written:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}=\frac{\partial^{2}}{\partial \xi^{2}}+2 \frac{\partial^{2}}{\partial \xi \partial \eta}+\frac{\partial^{2}}{\partial \eta^{2}} \tag{11}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial^{2} \psi}{\partial \xi^{2}}+2 \frac{\partial^{2} \psi}{\partial \xi \partial \eta}+\frac{\partial^{2} \psi}{\partial \eta^{2}} \tag{12}
\end{equation*}
$$

Proceeding in the same way for the second derivative $\frac{\partial^{2} \psi}{\partial t^{2}}$

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} \psi}{\partial \eta^{2}}-2 \frac{\partial^{2} \psi}{\partial \xi \partial \eta}+\frac{\partial^{2} \psi}{\partial \xi^{2}}\right) \tag{13}
\end{equation*}
$$

At this point we impose that $\psi$ is a solution of the D'Alembert equation:

$$
0=\frac{\partial^{2} \psi}{\partial t^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=4 \frac{\partial^{2} \psi}{\partial \xi \partial \eta}
$$

i.e.

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \xi \partial \eta}=0 \tag{14}
\end{equation*}
$$

which is the D'Alembert equation written in coordinates $(\xi, \eta)$, and integrates immediately. Indeed:

$$
\frac{\partial}{\partial \eta}\left(\frac{\partial \psi}{\partial \xi}\right)=0 \Longrightarrow \frac{\partial \psi}{\partial \xi}=\theta(\xi)
$$

being $\theta(\xi) \in C^{2}(\mathbb{R})$ an arbitrary function. Integrating again:

$$
\begin{equation*}
\psi(\xi, \eta)=\int \theta(\xi) d \xi+g(\eta) \tag{15}
\end{equation*}
$$

where the arbitrary function $g(\eta) \in C^{2}(\mathbb{R})$ plays the role of "constant" of integration (with respect to the variable $\xi$ ). We therefore set:

$$
f(\xi) \stackrel{\text { def }}{=} \int \theta(\xi) d \xi
$$

so

$$
\psi(\xi, \eta)=f(\xi)+g(\eta)
$$

By restoring the variables $(x, t)$ the statement follows.
Definition 4 The solutions $f(x-c t)$ and $g(x+c t)$ are called progressing wave and regressive wave.

These names are suggested by the fact that taking time $t$ as the real parameter, the graph of the function $f(x-c t)[g(x+c t)]$ translates uniformly in the direction of the $x$ axis and in the direction of the increasing [decreasing] abscissae. If t is the time, the translation occurs in both cases at speed $c$, as shown in the Figures 1-2.

## 2 Fundamental solutions

Fundamental solutions are those for which $\psi$ depends sinusoidally on $x \pm c t$. They are called fundamental because from them we can reconstruct a more general solution by linear superposition (thanks to the linearity of (2)). For example:

$$
\begin{equation*}
\psi(x, t)=A \cos \left[\frac{2 \pi}{\lambda}(x-c t)\right] \tag{16}
\end{equation*}
$$



Figure 1: Progressive plane wave.


Figure 2: Regressive plane wave.
where $A>0$ is the amplitude, while $\lambda>0$ is the period of $\psi$ with respect to $x$ for a given instant. This quantity is called wavelength. Let's define

$$
k \in \mathbb{R} \backslash\{0\}\left||k|=\frac{2 \pi}{\lambda}\right.
$$

We call the positive real number $|k|$ wavenumber. Continued

$$
\begin{equation*}
\psi(x, t)=A \cos [(|k| x-\omega t)] \tag{17}
\end{equation*}
$$

having defined the angular frequency $\omega=c|k|=\frac{2 \pi}{T}$ where $T$ is the period of the function $\psi$ with respect to $t$ (for an assigned $x$ ). If in ((17) we free ourselves from $|k|$ :

$$
\begin{equation*}
\psi(x, t)=A \cos [(k x-\omega t)] \tag{18}
\end{equation*}
$$

which for $k<0$ describes a regressive plane wave. Complex notation is preferable:

$$
\begin{equation*}
\psi(x, t)=A e^{i(k x-\omega t)} \tag{19}
\end{equation*}
$$

## 3 Solutions with negative frequency

The totality of (19) does not exhaust the set of solutions of (2) relative to the fundamental solutions. In fact, by imposing that (19) is a solution, we have

$$
\omega^{2}=c^{2} k^{2}
$$

therefore negative frequencies are also allowed $\omega=-c k<0$. In this case, the (19) is rewritten

$$
\begin{equation*}
\psi(x, t)=A e^{i(k x+|\omega| t)} \tag{20}
\end{equation*}
$$

Performing the change of variable $t^{\prime}=-t$

$$
\begin{equation*}
\psi\left(x, t^{\prime}\right)=A e^{i\left(k x-|\omega| t^{\prime}\right)} \tag{21}
\end{equation*}
$$

having

$$
\begin{equation*}
-\infty<t=-t^{\prime}<+\infty \Longrightarrow+\infty>t^{\prime}>-\infty \tag{22}
\end{equation*}
$$

It follows that while $\psi(x, t)=A e^{i(k x+|\omega| t)}$ describes the propagation of a plane wave with initial instant $t_{0}=-\infty\left(<\right.$ past») and with negative frequency, the function $\psi\left(x, t^{\prime}\right)=A e^{i\left(k x-|\omega| t^{\prime}\right)}$ describes the propagation of a plane wave with initial instant $t_{0}^{\prime}=+\infty$ (《future»), with positive frequency. This wave propagates backwards in time.

## References

[1] Arcidiacono G., Fantappié e gli universi. Nuove vie della scienza.
[2] Fasano A., Marmi S., Analytical Mechanics.

