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Abstract. In this short paper I will write a possible generalizations of Ein-
stein tensor and energy momentum tensor that will lead to generalizations
of Einstein field equations.
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1. Einstein tensor

Einstein tensor [1] is basis of General Relativity, it has vacuum solutions
equal to:

Gµν = 0 (1.1)
Another property is that it is symmetric and it’s covariant derivative is equal
to zero from it follows that:

∇νG
µν = 0 (1.2)

Gµν = Gνµ (1.3)

It plays crucial role in Einstein field equations [2] as it is left side of field
equation:

Gµν = κT µν (1.4)
Where tensor itself is equal to:

Gµν = Rµν − 1

2
Rgµν (1.5)

So field equations are equal to :

Rµν − 1

2
Rgµν = κT µν (1.6)

But in whole paper I will be using not contravariant form but covariant form
of this tensor so Gµν . It will be same tensor but with covariant indexes, it will
be equal to:

Gµν = Rµν −
1

2
Rgµν (1.7)

So field equation is same but with covariant indexes:

Rµν −
1

2
Rgµν = κTµν (1.8)

This is form of field equations I will use in whole paper.
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2. Riemann tensor and generalized Einstein tensor

To build a generalized Einstein tensor I need to assume some kind of basis of
deriving it. I will use Riemann tensor contractions are that basis, I want gen-
eralized tensor to have same contractions as Riemann tensor [3] [4]. It means
that if i write Riemann tensor contractions they will be same as contractions
of generalized Einstein tensor:

gαµRαµβν = 0 (2.1)

gαβRαµβν = Rµν (2.2)
gανRαµβν = −Rµβ (2.3)

gµβRαµβν = −Rαν (2.4)
gµνRαµβν = Rαβ (2.5)

gβνRαµβν = 0 (2.6)
So I can write down now same contractions but for generalized Einstein tensor
Gαµβν :

gαµGαµβν = 0 (2.7)

gαβGαµβν = Gµν (2.8)
gανGαµβν = −Gµβ (2.9)

gµβGαµβν = −Gαν (2.10)
gµνGαµβν = Gαβ (2.11)

gβνGαµβν = 0 (2.12)
From it comes another part of equations that is generalized energy momentum
tensor [5], that will have same contraction properties as Riemann tensor and
generalized Einstein tensor to follow a field equation:

gαµTαµβν = 0 (2.13)

gαβTαµβν = Tµν (2.14)
gανTαµβν = −Tµβ (2.15)

gµβTαµβν = −Tαν (2.16)
gµνTαµβν = Tαβ (2.17)

gβνTαµβν = 0 (2.18)
So from it comes that generalized Einstein tensor reduces either to plus-minus
Einstein tensor or zero and generalized energy momentum tensor have to obey
same rule to make it consistent with field equations.
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3. Generalized Einstein tensor

I will first write generalized Einstein tensor and generalized energy momen-
tum tensor, then will show that they indeed follow contractions properties. So
those tensors are equal to:

Gαµβν = Rαµβν −
1

6
R (gαβgµν − gβµgαν) (3.1)

Tαµβν =
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

(3.2)

gαµ
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (3.3)

gαβ
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= Gµν (3.4)

gαν
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= −Gµβ (3.5)

gµβ
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= −Gαν (3.6)

gµν
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= Gαβ (3.7)

gβν
(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (3.8)

gαµ
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= 0

(3.9)

gαβ
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= Tµν

(3.10)

gαν
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= −Tµβ

(3.11)

gµβ
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= −Tαν

(3.12)

gµν
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= Tαβ

(3.13)

gβν
(
1

2
(Tαβgµν + Tµνgαβ)−

1

2
(Tµβgαν + Tανgµβ)−

1

6
T (gαβgµν − gβµgαν)

)
= 0

(3.14)
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4. Conservation

It easy to derive that covariant derivative of extended Einstein tensor is
equal to zero for all indexes. It means that:

gαϕ∇ϕGαµβν = 0 (4.1)

gµϕ∇ϕGαµβν = 0 (4.2)

gβϕ∇ϕGαµβν = 0 (4.3)

gνϕ∇ϕGαµβν = 0 (4.4)
Where i did use covariant derivative with upper index index raising, trick to
do it is very simple, covariant derivative of metric tensor is equal to zero so I
can treat metric tensor as a constant, from fact that tensor reduces to Einstein
tensor so if I multiply one side of equation by metric tensor I will still get valid
result and from fact that after using metric tensor to contract generalized
Einstein tensor I will always arrive and zero:

gµϕ∇ϕg
αβ

(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (4.5)

gµϕ∇ϕGµν = 0 (4.6)

gνϕ∇ϕg
αβ

(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (4.7)

gνϕ∇ϕGµν = 0 (4.8)

gαϕ∇ϕg
µν

(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (4.9)

gαϕ∇ϕGαβ = 0 (4.10)

gβϕ∇ϕg
µν

(
Rαµβν −

1

6
R (gαβgµν − gβµgαν)

)
= 0 (4.11)

gβϕ∇ϕGαβ = 0 (4.12)
For generalized energy momentum tensor case is even simpler it’s build form
energy momentum tensor and metric tensors both of them will vanish when
taking the covariant derivative.
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5. Summary

In this short paper I showed possible generalization of Einstein tensor. This
leads to generalized energy momentum tensor, that combined create a new
field equation:

Gαµβν = κTαµβν (5.1)
Contractions of this field equation lead to zero or plus-minus Einstein tensor.
That gives new equation for space-time curvature and new vacuum equations
that will be equal to:

Gαµβν = 0 (5.2)
Problem with this equation is that is really hard to solve, as its a four rank
tensor. For example field equation will take form for simplest case of vacuum:

Rαβαβ −
1

6
R (gααgββ − gαβgαβ) = 0 (5.3)

From fact that independent components for Riemann tensor in case of spherical
symmetric space-time are only six of them [6] and there are no cross terms for
metric tensor I will get where I can write independent components:

R0101 −
1

6
Rg11g00 = 0 (5.4)

R0202 −
1

6
Rg22g00 = 0 (5.5)

R0303 −
1

6
Rg33g00 = 0 (5.6)

R1212 −
1

6
Rg11g22 = 0 (5.7)

R1313 −
1

6
Rg11g33 = 0 (5.8)

R2323 −
1

6
Rg22g33 = 0 (5.9)

From it follows clearly that vacuum solutions have non-vanishing Ricci tensor,
even in simplest case.
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